1
|
Hao M, Zhang C, Wang T, Hu H. Pharmacological effects, formulations, and clinical research progress of curcumin. Front Pharmacol 2025; 16:1509045. [PMID: 40166470 PMCID: PMC11955698 DOI: 10.3389/fphar.2025.1509045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Curcumin, a polyphenolic compound derived from the traditional Chinese medicine turmeric, which has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, antioxidant, and antiviral properties. However, its clinical application is hindered by low solubility and bioavailability. To overcome these limitations, researchers have developed various formulations such as nanoformulations, solid dispersions, and microspheres. These advancements have led to improved therapeutic effects and have facilitated the progression of clinical research, primarily focusing on Phase I and Phase II trials for conditions like diabetes, obesity, and metabolic syndrome. In recent years, there has been a noticeable increase in Phase III and IV clinical trials, particularly concerning oral and dental diseases and arthritis. This article reviews recent literature from both domestic and international sources, providing a comprehensive overview of curcumin's research progress, including its pharmacological mechanisms, formulation developments, and clinical studies.
Collapse
Affiliation(s)
- Minghui Hao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chungang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, China
- Qimeng Co., LTD, Chifeng, China
| | - Ti Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Heng Hu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
2
|
Sidhambaram J, Sakayanathan P, Loganathan C, Iruthayaraj A, Thayumanavan P. Esterified Indole-3-propionic Acid: A Novel Inhibitor against Cholinesterase Identified through Experimental and Computational Approaches. ACS OMEGA 2025; 10:9073-9087. [PMID: 40092751 PMCID: PMC11904713 DOI: 10.1021/acsomega.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are targeted for designing drugs against cognitive dysfunction. Curcumin (CUR) and indole-3-propionic acid (IPA) are known for their neuroprotective activity. The clinical application of CUR is hindered due to poor absorption and bioavailability. Hence, CUR was conjugated with IPA to form the CUR-IPA diester. CUR-IPA inhibition against electric eel AChE (eAChE), human AChE (hAChE), and hBChE was carried out. In silico and molecular dynamics (MD) analyses of the interaction of CUR-IPA with hAChE and hBChE were done. UV-visible spectroscopy (λmax at 415 and 276 nm), NMR spectrum, and ESI/MS/MS [m/z = 711 (M + H)] confirmed CUR-IPA formation. CUR-IPA showed in vitro antioxidant activity. The IC50 values of eAChE, hAChE, and hBChE enzyme inhibition were 5.66, 59.30, and 60.66 μM, respectively. MD simulation-based analysis such as RMSD, RMSF, free-energy calculation, PCA, FEL, and DCCM confirmed the stable binding of CUR-IPA with hAChE and hBChE. Further QM/MM analysis confirmed the stable interaction of CUR-IPA with hAChE and hBChE. Since CUR-IPA showed in vitro inhibition against AChE and BChE, a further neuroprotective effect in in vivo could be studied.
Collapse
Affiliation(s)
| | | | - Chitra Loganathan
- Department
of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Chennai600 077, India
| | - Ancy Iruthayaraj
- Bioinnov
Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636009, India
| | | |
Collapse
|
3
|
Limsuwan S, Awaeloh N, Na-Phatthalung P, Kaewmanee T, Chusri S. Exploring Antioxidant Properties of Standardized Extracts from Medicinal Plants Approved by the Thai FDA for Dietary Supplementation. Nutrients 2025; 17:898. [PMID: 40077768 PMCID: PMC11901555 DOI: 10.3390/nu17050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES There is a growing interest in plant-derived antioxidants as functional food ingredients, given their potential to address oxidative stress-related diseases, notably neurodegenerative disorders. This study aims to investigate the antioxidant properties of medicinal plants that have been approved by the Thai FDA for dietary supplementation, with the goal of further utilizing them as food-functional ingredients to prevent neurodegenerative conditions. METHODS A systematic review-based methodology was employed on a list of 211 medicinal plants, and 21 medicinal plants were chosen based on their documented antioxidant activity and acetylcholinesterase (AChE) inhibitory capacity. The 21 commercially available standardized extracts were subjected to evaluation for their phenolic and flavonoid content, as well as their antioxidant activities utilizing metal-chelating activity, DPPH, ABTS free radical scavenging, ferric-reducing antioxidant power (FRAP), and superoxide anion scavenging techniques. RESULTS Among the 21, six extracts-Bacopa monnieri, Camellia sinensis, Coffea arabica, Curcuma longa, Tagetes erecta, and Terminalia chebula-emerged as the most promising. These extracts exhibited elevated levels of phenolic (up to 1378.19 mg gallic acid equivalents per gram) and flavonoids, with Coffea arabica and Curcuma longa showing the strongest antioxidant and free radical scavenging activities, indicating their potential for use in functional foods aimed at delaying neurodegenerative diseases. CONCLUSIONS Due to their high levels of phenolic and flavonoid compounds, along with strong metal-chelating abilities and significant free radical scavenging activities, these standardized extracts show potential for functional food applications that may help delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Nurulhusna Awaeloh
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| | - Pinanong Na-Phatthalung
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani 94000, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| |
Collapse
|
4
|
Prabha S, Choudhury A, Islam A, Thakur SC, Hassan MI. Understanding of Alzheimer's disease pathophysiology for therapeutic implications of natural products as neuroprotective agents. Ageing Res Rev 2025; 105:102680. [PMID: 39922232 DOI: 10.1016/j.arr.2025.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, affecting more than 24.3 million people worldwide in 2024. Sporadic AD (SAD) is more common and occurs in the geriatric population, while familial AD (FAD) is rare and appears before the age of 65 years. Due to progressive cholinergic neuronal loss and modulation in the PKC/MAPK pathway, β-secretase gets upregulated, leading to Aβ aggregation, which further activates tau kinases that form neurofibrillary tangles (NFT). Simultaneously, antioxidant enzymes are also upregulated, increasing oxidative stress (OS) and reactive species by impairing mitochondrial function, leading to DNA damage and cell death. This review discusses the classifications and components of several natural products (NPs) that target these signaling pathways for AD treatment. NPs, including alkaloids, polyphenols, flavonoids, polysaccharides, steroids, fatty acids, tannins, and polypeptides derived from plants, microbes, marine animals, venoms, insects, and mushrooms, are explored in detail. A synergistic combination of plant metabolites, together with prebiotics and probiotics has been shown to decrease Aβ aggregates by increasing the production of bioactive compounds. Toxins derived from venomous organisms have demonstrated effectiveness in modulating signaling pathways and reducing OS. Marine metabolites have also shown neuroprotective and anti-inflammatory properties. The cholera toxin B subunit and an Aβ15 fragment have been combined to create a possible oral AD vaccine, that showed enhancement of cognitive function in mice. Insect tea is also a reliable source of antioxidants. A functional edible mushroom snack bar showed an increment in cognitive markers. Future directions and therapeutic approaches for the treatment of AD can be improved by focusing more on NPs derived from these sources.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Yagci T, Genc S, Dundar R, Altiner HI, Taghizadehghalehjoughi A. A Combination of Anatolian Propolis and Curcumin Protects Fibroblasts Against Beclomethasone (Nazal Steroid)-Induced Oxidative Stress by Modulating IL-25, MMP-2, VEGF, and FGF-2 Expressions. Pharmaceuticals (Basel) 2025; 18:326. [PMID: 40143104 PMCID: PMC11946772 DOI: 10.3390/ph18030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Nasal steroids are commonly prescribed in ear, nose, and throat clinics. It is observed that the use of nasal steroids is increasing due to the prevalence of allergic rhinitis. Because beclomethasone (BCM) toxicity is low, it is highly preferred in allergic rhinitis. The rate of toxicity increases with the increase in the duration and dose of BCM use. However, the protective mechanism of Anatolian propolis (AP) and curcumin (Cur) against BCM toxicity has not been fully explained. Aim: The study evaluates the potential BCM-induced toxicity effect on VEGF, MMP-2, IL-25, and IL-10 parameters after Cur and AP treatment. Materials and Methods: Cell viability, oxidative stress, and gene expression were used for toxicity evaluation. Results: AP 2.5 mg/mL and Cur 16 µg/mL show high viability and antioxidant capacity. BCM increased the levels of IL-25, IL-10, and MMP-2, and a decrease was detected in the expression levels of FGF-2 and VEGF. Conclusions: AP and Cur show effective healing, and AP has been shown to improve inflammation more effectively than Cur. However, the combination of AP and Cur significantly improved the induced toxicity effects.
Collapse
Affiliation(s)
- Tarik Yagci
- Department of Otorhinolaryngology, Faculty of Medicine, Şeyh Edebali University, 11230 Bilecik, Turkey; (T.Y.); (R.D.); (H.I.A.)
| | - Sidika Genc
- Department of Medical Pharmacology, Faculty of Medicine, Şeyh Edebali University, 11230 Bilecik, Turkey;
| | - Riza Dundar
- Department of Otorhinolaryngology, Faculty of Medicine, Şeyh Edebali University, 11230 Bilecik, Turkey; (T.Y.); (R.D.); (H.I.A.)
| | - Halil Ibrahim Altiner
- Department of Otorhinolaryngology, Faculty of Medicine, Şeyh Edebali University, 11230 Bilecik, Turkey; (T.Y.); (R.D.); (H.I.A.)
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Şeyh Edebali University, 11230 Bilecik, Turkey;
| |
Collapse
|
6
|
Micucci M, Gianfanti F, Donati Zeppa S, Annibalini G, Canonico B, Fanelli F, Saltarelli R, Osman R, Montanari M, Lopez D, Nasoni G, Panza G, Bargagni E, Luchetti F, Retini M, Mari M, Zappia G, Stocchi V, Bartolacci A, Burattini S, Battistelli M. Q-Der: a next-generation CoQ10 analogue supercharging neuroprotection by combating oxidative stress and enhancing mitochondrial function. Front Mol Biosci 2025; 12:1525103. [PMID: 40070687 PMCID: PMC11893404 DOI: 10.3389/fmolb.2025.1525103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Background Mitochondrial dysfunction and oxidative stress are central mechanisms in the progression of neurodegenerative diseases. This study first evaluated the toxicity of Q-Der (Q10-diacetate), a derivative of Coenzyme Q10, in HT22 hippocampal neurons under normal and oxidative stress conditions. Methods HT22 cells were treated with Q-Der at 2.5, 5 and 10 µM with and without rotenone. Mitochondrial superoxide production (Mitosox), gene expression (via qRT-PCR), and protein levels (via Western blot) were measured. Morphological analyses were performed using transmission (TEM) and scanning (SEM) electron microscopes. Results Q-Der significantly reduced mitochondrial superoxide levels, particularly at 5 μM, and upregulated key mitochondrial biogenesis genes, including PGC-1α and TFAM. Additionally, it restored the expression of MT-ND1 and MT-COI, which were downregulated by rotenone. Western blot results showed a significant recovery in CV-ATP5A (complex V) expression (p < 0.05), preserving mitochondrial ATP production. Morphological analyses further confirmed Q-Der's ability to maintain cellular and mitochondrial structure under stress conditions. Conclusion These findings suggest that Q-Der is non-toxic under normal conditions and protects against oxidative stress, supporting its potential as a therapeutic agent for neurodegenerative diseases.
Collapse
Affiliation(s)
- Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Federico Gianfanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sabrina Donati Zeppa
- Department of Human Sciences and Promotion of the Quality of Life, University of San Raffaele, Roma, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fabiana Fanelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Riham Osman
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniele Lopez
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giovanna Panza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Erik Bargagni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giovanni Zappia
- Department of Human Sciences and Promotion of the Quality of Life, University of San Raffaele, Roma, Italy
- Umolsystem Srl, Tecnopolo Roma-Castel Romano, Roma, Italy
| | - Vilberto Stocchi
- Department of Human Sciences and Promotion of the Quality of Life, University of San Raffaele, Roma, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
7
|
Sureshbabu A, Smirnova E, Tuong DTC, Vinod S, Chin S, Moniruzzaman M, Senthil K, Lee DI, Adhimoolam K, Min T. Unraveling the Curcumin's Molecular Targets and Its Potential in Suppressing Skin Inflammation Using Network Pharmacology and In Vitro Studies. Drug Dev Res 2025; 86:e70058. [PMID: 39943799 DOI: 10.1002/ddr.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 05/09/2025]
Abstract
Curcumin, a polyphenol compound derived from turmeric, has garnered attention for its anti-inflammatory and antioxidant properties, making it a promising candidate for treating skin inflammation. Despite its potential, the underlying pharmacological effects to skin inflammation remain unclear. Therefore, this study aimed to reveal the curcumin's molecular targets and its potential in suppressing skin inflammation using network pharmacology and in vitro experiments. A total of 7,393 and 239 targets related to curcumin and skin inflammation, respectively, were obtained from public databases. By drawing a Venn diagram, 216 common targets were identified as candidate targets. These targets were subjected to gene function and pathway enrichment analyses, and a protein-protein interaction network was established to investigate curcumin's impact on inflammation. The gene functions were mainly associated with inflammatory response, membrane raft, and serine-type endopeptidase activity. The NF-κB and MAPK pathways could be the major pathways through which curcumin acts on skin inflammation. Ten major targets of curcumin in the treatment of skin inflammation were identified: AKT1, TNF, EGFR, APP, MMP9, STAT3, HIF1A, PTGS2, EP300, and GSK3B. Molecular docking analysis results showed high binding affinity of curcumin to PTGS2, GSK3B, HIF1A, and STAT3, which may contribute to its inhibitory effect on skin inflammation. In vitro experiments confirmed curcumin's anti-inflammatory effect on inflammation by reducing the expression levels of NO, IL-1β, and IL-6 in LPS-induced HaCaT cells. Taken together, this study reveals major targets and pathways of curcumin in the treatment of skin inflammation, paving the way for invivo and clinical investigations.
Collapse
Affiliation(s)
- Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Do Thi Cat Tuong
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Sangeetha Vinod
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute of Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Kalaiselvi Senthil
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute of Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Dong I Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karthikeyan Adhimoolam
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA), Bio-Resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
8
|
Moselhy OA, Abdel-Aziz N, El-Bahkery A, Moselhy SS, Ibrahim EA. Curcumin nanoparticles alleviate brain mitochondrial dysfunction and cellular senescence in γ-irradiated rats. Sci Rep 2025; 15:3857. [PMID: 39890961 PMCID: PMC11785741 DOI: 10.1038/s41598-025-87635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Despite the diverse applications of γ radiation in radiotherapy, industrial processes, and sterilization, it causes hazardous effects on living organisms, such as cellular senescence, persistent cell cycle arrest, and mitochondrial dysfunction. This study evaluated the efficacy of curcumin nanoparticles (CNPs) in mitigating mitochondrial dysfunction and cellular senescence induced by γ radiation in rat brain tissues. Four groups of male Wistar albino rats (n = 8 per group) were included: (Gr1) the control group; (Gr2) the CNPs group (healthy rats receiving oral administration of curcumin nanoparticles at a dose of 10 mg/kg/day, three times per week for eight weeks); (Gr3) the irradiated group (rats exposed to a single dose of 10 Gy head γ irradiation); and (Gr4) the irradiated + CNPs group (irradiated rats treated with CNPs). The data obtained demonstrated that oral administration of CNPs for eight weeks attenuated oxidative stress in γ-irradiated rats by lowering the brain's lipid peroxidation level [malondialdehyde (MDA)] and enhancing antioxidant markers [superoxide dismutase (SOD), reduced glutathione (GSH), and total antioxidant capacity (TAC)] (P < 0.05). In addition, CNPs significantly increased mitochondrial function by improving complex I, complex II, and ATP production levels compared to the irradiated group. In irradiated rats, CNPs also showed anti-neuroinflammatory effects by reducing brain interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-ĸB) levels (P < 0.05). Moreover, CNPs administered to irradiated rats significantly reduced brain β-galactosidase activity and the expression levels of p53, p21, and p16 genes (P < 0.05) while concurrently inducing a significant increase in AMPK mRNA expression compared to the irradiated group. In conclusion, CNPs ameliorated the neurotoxicity of γ radiation and hold promise as a novel agent to delay cellular senescence via their combined antioxidant, anti-inflammatory, and mitochondrial-enhancing properties.
Collapse
Affiliation(s)
- Omnia A Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nahed Abdel-Aziz
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Azza El-Bahkery
- Radiation Biology Research Department, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
9
|
Popovici LF, Brinza I, Gatea F, Badea GI, Vamanu E, Oancea S, Hritcu L. Enhancement of Cognitive Benefits and Anti-Anxiety Effects of Phytolacca americana Fruits in a Zebrafish ( Danio rerio) Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2025; 14:97. [PMID: 39857431 PMCID: PMC11762548 DOI: 10.3390/antiox14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Phytolacca americana fruits exhibit a wide range of biological activities, including antimicrobial, anti-inflammatory, and anticancer properties. This study aims to investigate the phenolic profile of hydroethanolic extracts from both fresh (PEC) and dried (PEU) fruits of P. americana using high-performance liquid chromatography (HPLC) and to evaluate their impact on anxiety-like behavior, memory, oxidative stress, and cholinergic status in zebrafish (Danio rerio, Tübingen strain) treated with scopolamine (SCO, 100 μM). Acute administration of PEC and PEU (0.1, 0.5, and 1 mg/L) was conducted for one hour per day. In silico analyses were performed to evaluate the pharmacokinetic characteristics of the phenolic compounds discerned in the two extracts, using platforms such as SwissAdme, Molinspiration, ProToX-III, AdmetLab 3.0, PKCSM, and PASS. Anxiety-like behavior and memory performance were assessed through specific behavioral assays, including the novel tank test (NTT), light/dark test (LD), novel approach test (NAT), Y-maze, and novel object recognition (NOR). Subsequently, the activity of acetylcholinesterase (AChE) and the extent of oxidative stress in the zebrafish brain were investigated. Our findings suggest that both PEC and PEU possess anxiolytic effects, alleviating SCO-induced anxiety and enhancing cognitive performance in amnesic zebrafish. Furthermore, these extracts demonstrated the ability to mitigate cholinergic deficits by inhibiting AChE activity and supporting antioxidant defense mechanisms through increased activity of antioxidant enzymes and reduced lipid and protein peroxidation. These results highlight the potential use of P. americana fruit extracts in managing anxiety and cognitive impairments related to dementia conditions.
Collapse
Affiliation(s)
- Lucia-Florina Popovici
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
| | - Ion Brinza
- Faculty of Sciences, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania; (F.G.); (G.I.B.)
| | - Georgiana Ileana Badea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania; (F.G.); (G.I.B.)
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 011464 Bucharest, Romania;
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| |
Collapse
|
10
|
Awaeloh N, Limsuwan S, Na-Phatthalung P, Kaewmanee T, Chusri S. Novel Development and Sensory Evaluation of Extruded Snacks from Unripe Banana (Musa ABB cv. Kluai 'Namwa') and Rice Flour Enriched with Antioxidant-Rich Curcuma longa Microcapsules. Foods 2025; 14:205. [PMID: 39856872 PMCID: PMC11764956 DOI: 10.3390/foods14020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
With the growing consumer demand for natural functional ingredients that promote health and well-being while preventing age-related diseases, this study aimed to develop extruded snacks enriched with Curcuma longa (turmeric) microcapsules, recognized for their significant antioxidant properties. Unripe banana flour (Musa ABB cv. Kluai 'Namwa') and rice (Oryza sativa) flour were employed as a gluten-free base to create this novel extruded snack. Curcuma longa extract microcapsules were prepared using a spray-drying technique with varying core-to-wall ratios. Antioxidant capacities were assessed through DPPH, ABTS, superoxide radical scavenging, metal chelating, and ferric-reducing assays. The CM6 microcapsules, prepared at 140 °C with a 1:10 core-to-wall ratio, exhibited potent antioxidant activity, with 58.93 ± 3.31% inhibition for DPPH radicals, 87.58 ± 1.33% for ABTS, and 78.41 ± 1.40% for superoxide radicals. Snacks enriched with 0.25% CM6 microcapsules received high consumer acceptance, with an average liking score of 7.5 out of 9. These findings suggest that snacks made with these gluten-free flours and Curcuma longa microcapsules could be novel, convenient, and appealing functional food products that offer an attractive way to deliver antioxidant benefits with high consumer acceptance. Further research on evaluating the active constituents in the snack, its long-term health benefits, and shelf-life stability is recommended for commercialization.
Collapse
Affiliation(s)
- Nurulhusna Awaeloh
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| | - Surasak Limsuwan
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand;
| | - Pinanong Na-Phatthalung
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Muang, Pattani 94000, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand;
| |
Collapse
|
11
|
Rasheed N, Hussain HK, Rehman Z, Sabir A, Ashraf W, Ahmad T, Alqahtani F, Imran I. Co-administration of coenzyme Q10 and curcumin mitigates cognitive deficits and exerts neuroprotective effects in aluminum chloride-induced Alzheimer's disease in aged mice. Exp Gerontol 2025; 199:112659. [PMID: 39689736 DOI: 10.1016/j.exger.2024.112659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Aluminum chloride (AlCl3), a known neurotoxic and Alzheimerogenic metal disrupts redox homeostasis which plays a pivotal role in pathophysiology of neurodegenerative disorders, particularly cognitive decline. The current study was designed to unveil the long-term neuroprotective outcomes and efficacy of CoQ10 and curcumin low dose (100 mg/kg each) combination in 18-months old geriatric male Balb/c mice subjected to AlCl3-prompted memory derangements (200 mg/kg in water bottles) for 28 days. The neuroprotective properties driven by antioxidant mechanisms were assessed via observing cellular pathology in key-memory related brain regions including the cornuammonis (CA3 and DG) and cortex 2/3 layer. Our outcomes revealed that AlCl3 exposure significantly reduced spatial learning and memory. In contrast, CoQ10 and curcumin combinatorial regime markedly mitigated cognitive deficits Vs. individual high-dose in AlCl3-treated animals as demonstrated by their improved performance in neurobehavioral tests such as the Y-maze, novel object recognition, passive avoidance and Morris-water maze test. Additionally, CoQ10 and curcumin co-administration restored redox balance by significantly reducing the levels of oxidative stressor (MDA) and increasing the anti-oxidant capacity (SOD,GPx). AchE is an enzyme involved in acetylcholine breakdown which negatively impacts acetylcholine levels and memory function. AlCl3 exposure elevated AchE levels in mice brains vs. treatment. This neurochemical alteration was notably reversed in the dual-treatment group. Furthermore, CoQ10 and curcumin ameliorated AlCl3-induced neurotoxicity by preserving neuronal cytoarchitecture in both cortical and hippocampal regions. In conclusion, CoQ10 and curcumin combination might attenuate memory loss induced by AlCl3-intoxication via restoring aberrant AchE activity, enhanced anti-oxidant defenses and salvaging the deleterious neuronal damage.
Collapse
Affiliation(s)
- Nida Rasheed
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hafiza Khushbakht Hussain
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Azka Sabir
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, Grenoble, France
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
12
|
Wdowiak K, Tajber L, Miklaszewski A, Cielecka-Piontek J. Application of the Box-Behnken Design in the Development of Amorphous PVP K30-Phosphatidylcholine Dispersions for the Co-Delivery of Curcumin and Hesperetin Prepared by Hot-Melt Extrusion. Pharmaceutics 2024; 17:26. [PMID: 39861675 PMCID: PMC11768460 DOI: 10.3390/pharmaceutics17010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. Methods: This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions. A Box-Behnken design was employed to assess these factors. Solid-state characterization and biopharmaceutical studies were then conducted. X-ray powder diffraction (XRPD) was used to confirm the amorphous nature of the dispersions, while differential scanning calorimetry (DSC) provided insight into the miscibility of the systems. Fourier-transform infrared spectroscopy (FTIR) was employed to assess the intermolecular interactions. The apparent solubility and dissolution profiles of the systems were studied in phosphate buffer at pH 6.8. In vitro permeability across the gastrointestinal tract and blood-brain barrier was evaluated using the parallel artificial membrane permeability assay. Results: The quantities of polyphenols and phospholipids were identified as significant factors influencing the biopharmaceutical performance of the systems. Solid-state analysis confirmed the formation of amorphous dispersions and the development of interactions among components. Notably, a significant improvement in solubility was observed, with formulations exhibiting distinct release patterns for the active compounds. Furthermore, the in vitro permeability through the gastrointestinal tract and blood-brain barrier was enhanced. Conclusions: The findings suggest that amorphous PVP K30-phosphatidylcholine dispersions have the potential to improve the biopharmaceutical properties of curcumin and hesperetin.
Collapse
Affiliation(s)
- Kamil Wdowiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, D02 PN40 Dublin, Ireland;
| | - Andrzej Miklaszewski
- Faculty of Materials Engineering and Technical Physics, Institute of Materials Science and Engineering, Poznan University of Technology, 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
13
|
Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, Tomoaia G, Mocanu A, Pal-Racz C, Toma VA, Roman I, Ujica MA, Pop LC. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024; 30:43. [PMID: 39795101 PMCID: PMC11722367 DOI: 10.3390/molecules30010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability. Formulations have been discovered including curcumin's complexes with brain-derived phospholipids and proteins, or its liposomal encapsulation. These novel strategies aim to improve curcumin's bioavailability and stability, and its capability to cross the BBB, thereby potentially enhancing its efficacy in treating cerebrovascular diseases. In summary, this review provides a comprehensive overview of molecular pathways involved in interactions of curcumin and its metabolites, and brain vascular homeostasis. This review explores cellular and molecular current aspects, of curcumin-based effects with an emphasis on curcumin's metabolism and its impact on pathological conditions, such as neurodegenerative diseases, schizophrenia, and cerebral angiopathy. It also highlights the limitations posed by curcumin's poor bioavailability and discusses ongoing efforts to surpass these impediments to harness the full therapeutic potential of curcumin in neurological disorders.
Collapse
Affiliation(s)
- Claudia-Andreea Moldoveanu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
| | - Alexandra Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor St., RO-400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Department of Orthopedics and Traumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 47 Gen. Traian Moșoiu St., RO-400132 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Csaba Pal-Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Centre for Systems Biology, Biodiversity and Bioresources “3B”, Babeș-Bolyai University, 44 Republicii St., RO-400347 Cluj-Napoca, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Madalina-Anca Ujica
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Lucian-Cristian Pop
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| |
Collapse
|
14
|
Cai J, Zhong H, Luo J, Huang X, Xu Q, Li P. Inhalable multi-stimulus sensitive curcumin-alginate nanogels for scavenging reactive oxygen species and anti-inflammatory co-ordination to alleviate acute lung injury. Int J Biol Macromol 2024; 283:137816. [PMID: 39571867 DOI: 10.1016/j.ijbiomac.2024.137816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
Acute lung injury (ALI) is one of the most common and extremely critical clinical conditions, which progresses with an inflammatory response and overproduction of reactive oxygen species (ROS), leading to oxidative damage to the lungs. Curcumin (Cur) has great potential in treating ALI due to its excellent antioxidant and anti-inflammatory effects. In this study, Cur and alginate were cross-linked by zinc ions and intermolecular hydrogen bonding to form an inhalable aqueous nanogel system to overcome Cur's low solubility and bioavailability. Cur-alginate (ZA-Cur) nanogels exhibited superior antioxidant properties and down-regulated inflammation-associated factors in vitro with controlled-release behavior under multi-stimulus conditions such as temperature, pH, and ions. Meanwhile, the nanogels system could effectively scavenge cellular ROS to repair oxidative stress damage. In a mice model of ALI, tracheal nebulised inhalation of ZA-Cur nanogels down-regulated the expression of inflammation-related genes such as TNF-α, IL-1β, and IL-6, as well as modulated MDA content and CAT activity to attenuate oxidative stress injury, showing promising lung-protective effects. In conclusion, this work developed inhalable ZA-Cur nanogels to decelerate the progression of lesions in ALI by scavenging intracellular ROS and alleviating inflammation simultaneously, which may be a promising strategy for treating ALI.
Collapse
Affiliation(s)
- Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyi Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jianwei Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinghai Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiuting Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
15
|
Małkowska A, Makarowa K, Zawada K, Grzelak M, Zmysłowska A. Effect of curcumin on the embryotoxic effect of ethanol in a zebrafish model. Toxicol In Vitro 2024; 101:105951. [PMID: 39389325 DOI: 10.1016/j.tiv.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Curcumin, a natural polyphenol found in the turmeric plant, has been shown to have anti-inflammatory and antioxidant properties. It has been widely studied for its potential protective effect against various health conditions, including ethanol-induced malformation. Ethanol exposure during pregnancy can lead to various developmental abnormalities, known as fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). Due to the high prevalence of FASD and FAS and no effective treatment, it is essential to develop preventive strategies. Recent studies have investigated the potential protective effect of curcumin against ethanol-induced malformation in animal models. This study aimed to examine whether curcumin can reduce the toxic effects of ethanol in zebrafish embryos. The present study showed that pure curcumin applied together with 1.5 % ethanol (v/v) did not lead to a protective effect on ethanol-induced malformations such as disturbances of body length and width or pericardia oedema in growing zebrafish embryos. Moreover, curcumin extract showed a pro-oxidant effect in the Fenton reaction in the presence of ethanol.
Collapse
Affiliation(s)
- Anna Małkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland.
| | - Katerina Makarowa
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Katarzyna Zawada
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Maksymilian Grzelak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Aleksandra Zmysłowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Zeng Q, Jiang T. Molecular mechanisms of ferroptosis in cardiovascular disease. Mol Cell Biochem 2024; 479:3181-3193. [PMID: 38374233 DOI: 10.1007/s11010-024-04940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024]
Abstract
Ferroptosis is a newly recognized type of regulated cell death that is characterized by the accumulation of iron and lipid peroxides in cells. Studies have shown that ferroptosis plays a significant role in the pathogenesis of various diseases, including cardiovascular diseases. In cardiovascular disease, ferroptosis is associated with ischemia-reperfusion injury, myocardial infarction, heart failure, and atherosclerosis. The molecular mechanisms underlying ferroptosis include the iron-dependent accumulation of lipid peroxidation products, glutathione depletion, and dysregulation of lipid metabolism, among others. This review aims to summarize the current knowledge of the molecular mechanisms of ferroptosis in cardiovascular disease and discuss the potential therapeutic strategies targeting ferroptosis as a treatment for cardiovascular disease.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Tingting Jiang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
17
|
Deng L, Wang R, Xu X, Jiang H, Han J, Liu W. Characterization, in vitro elderly digestion, and organoids cell uptake of curcumin-loaded nanoparticles. Food Chem 2024; 458:140292. [PMID: 38959794 DOI: 10.1016/j.foodchem.2024.140292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Curcumin, a bioactive compound, showed versatile in anti-inflammatory and anti-cancer ability, while their biological fate in elderly is unclear. In this study, curcumin-loaded nanoparticles based on octyl succinate hydrate (OSA) starch and sodium caseinate were prepared and the in vitro elderly digestion and absorption fate was investigated. The loading capacity of curcumin-loaded nanoparticles prepared from OSA starch (HI), sodium caseinate (SC) and OSA starch‑sodium caseinate (HS) were all higher than 15%. Curcumin release behavior of the three nanoparticles during in vitro digestion conformed to first-order kinetics. Meanwhile, the transport efficiency of curcumin for HI, SC, and HS increased significantly than the free curcumin (near 1-fold), and the permeability were 1.9, 2.0, and 2.0 times, respectively. The gene expressions of TNF-α, SREBP2 and NPC1L1 in the organoids were enhanced than control group. This study provided scientific reference and guidance for encapsulation of curcumin and digestion and absorption properties in elderly.
Collapse
Affiliation(s)
- Leiyu Deng
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruijie Wang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanyun Jiang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
18
|
Khan AN, Jawarkar RD, Zaki MEA, Al Mutairi AA. Natural compounds for oxidative stress and neuroprotection in schizophrenia: composition, mechanisms, and therapeutic potential. Nutr Neurosci 2024; 27:1306-1320. [PMID: 38462971 DOI: 10.1080/1028415x.2024.2325233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.
Collapse
Affiliation(s)
- Anam N Khan
- Department of Pharamacognosy, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A Al Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Sun H, Qiu X, Li X, Wang H. Eco-friendly, pH-sensitive curcumin-loaded sodium alginate/hydroxyapatite/quaternary ammonium chitosan microspheres with enhanced antibacterial and antioxidant activities for fruit preservation. Int J Biol Macromol 2024; 279:135297. [PMID: 39233149 DOI: 10.1016/j.ijbiomac.2024.135297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The development of intelligent responsive reactive packaging materials with natural polymers shows excellent potential in food preservation. In this study, eco-friendly, pH-sensitive sodium alginate (SA)/hydroxyapatite (HA)/quaternary ammonium chitosan (HACC) composite microspheres loading curcumin (CUR) with excellent antibacterial and antioxidant activities were successfully synthesized. Scanning electron microscopy (SEM) and nitrogen adsorption/desorption tests indicated that the doping of HA substantially increased the specific surface area and pore volume of the microspheres. The loading experiments showed that the efficiency of the microspheres was significantly increased by 49.47 % and 55.10 %, respectively, when HA and HACC were incorporated into the SA network. The release test results suggested that the release rate of SA/HA/HACC microspheres loading CUR (SA/HA/HACC@CUR) increased as the pH decreased, demonstrating notable pH-responsive release characteristics. DPPH free radical scavenging experiments demonstrated that the SA/HA/HACC@CUR had excellent and long-lasting antioxidant capacity. The antibacterial experiments revealed that the SA/HA/HACC@CUR had excellent antibacterial properties, with inhibition rates of 88.73 % and 92.52 % against E. coli and S. aureus, respectively. Making coatings out of microspheres could effectively slow down the rotting and deterioration of cherry tomatoes during storage, suggesting that microspheres with intelligent responses have a broad application prospect in fruit preservation.
Collapse
Affiliation(s)
- Haonan Sun
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaolin Qiu
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyi Li
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hanyu Wang
- Department of Packaging Engineering, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
20
|
Li P, Alenazi KKK, Dally J, Woods EL, Waddington RJ, Moseley R. Role of oxidative stress in impaired type II diabetic bone repair: scope for antioxidant therapy intervention? FRONTIERS IN DENTAL MEDICINE 2024; 5:1464009. [PMID: 39917650 PMCID: PMC11797775 DOI: 10.3389/fdmed.2024.1464009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 02/09/2025] Open
Abstract
Impaired bone healing is a significant complication observed in individuals with type 2 diabetes mellitus (T2DM), leading to prolonged recovery, increased risk of complications, impaired quality of life, and increased risk of patient morbidity. Oxidative stress, resulting from an imbalance between the generation of reactive oxygen species (ROS) and cellular/tissue antioxidant defence mechanisms, has been identified as a critical contributor to the pathogenesis of impaired bone healing in T2DM. Antioxidants have shown promise in mitigating oxidative stress and promoting bone repair, particularly non-enzymic antioxidant entities. This comprehensive narrative review aims to explore the underlying mechanisms and intricate relationship between oxidative stress, impaired bone healing and T2DM, with a specific focus on the current preclinical and clinical evidence advocating the potential of antioxidant therapeutic interventions in improving bone healing outcomes in individuals with T2DM. From the ever-emerging evidence available, it is apparent that exogenously supplemented antioxidants, especially non-enzymic antioxidants, can ameliorate the detrimental effects of oxidative stress, inflammation, and impaired cellular function on bone healing processes during uncontrolled hyperglycaemia; and therefore, hold considerable promise as novel efficacious therapeutic entities. However, despite such conclusions, several important gaps in our knowledge remain to be addressed, including studies involving more sophisticated enzymic antioxidant-based delivery systems, further mechanistic studies into how these antioxidants exert their desirable reparative effects; and more extensive clinical trial studies into the optimisation of antioxidant therapy dosing, frequency, duration and their subsequent biodistribution and bioavailability. By enhancing our understanding of such crucial issues, we can fully exploit the oxidative stress-neutralising properties of these antioxidants to develop effective antioxidant interventions to mitigate impaired bone healing and reduce the associated complications in such T2DM patient populations.
Collapse
Affiliation(s)
- Pui Li
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kuraym Khalid Kuraym Alenazi
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Louise Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Biomaterials Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
Shan X, Xu X, Wang L, Lu Y, Chen X, Li F, Du M, Xing H, Pan S. Dietary curcumin supplementation attenuates hepatic damage and function abnormality in a chronic corticosterone-induced stress model in broilers. J Steroid Biochem Mol Biol 2024; 243:106579. [PMID: 39032671 DOI: 10.1016/j.jsbmb.2024.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Chronic stress refers to the activation of the hypothalamic-pituitary-adrenal (HPA) axis and elevated blood contents of ACTH and corticosterone (CORT), exhibiting significant adverse effects on health outcomes. Currently, natural polyphenol compounds are increasingly being explored as potential therapeutic agents and have been considered as a treatment option for a variety of stress-induced diseases. Curcumin (CUR) is the main substance in Curcuma longa (Zingiberacea) rhizome that has strong health-beneficial properties. The study aimed to assess the potential protective effects of CUR on hepatic oxidative stress damage and abnormal lipid deposition in a chronic CORT-induced stress (CCIS) model in broilers. One hundred and twenty experimental broilers were randomly divided into 1) control group (CON), 2) CUR group (200 mg/kg feed), 3) CORT group (4 mg/kg BW CORT) and 4) CORT+CUR group (200 mg/kg feed plus 4 mg/kg BW CORT). The liver histology, glycolipid metabolism and oxidative stress were determined. In addition, qPCR was performed to identify shifts in genes expression. Compared with CON group, broilers under CCIS showed a decreased body weight, body weight gain and average daily gain, while dietary CUR significantly reversed these adverse effects. Furthermore, the plasma contents of TCH, TG, HDL-C, LDL-C, TP, GLB and AST were all significantly increased in CCIS broilers, while dietary CUR obviously alleviated the increase of TCH, HDL-C, LDL-C and AST, and relieved the hepatic lipid deposition disorder and liver injury. Moreover, CCIS significantly increased the contents of MDA in both liver and plasma, and decreased the content of plasma SOD, while CUR obviously reversed these changes, showing reduced oxidative stress damage. Finally, the mRNA expressions of FAS, ACC, SCD and the protein level of PPAR-γ were significantly increased, meanwhile the mRNA expression of lipolytic genes ACOX1, ATGL and CPT as well as two major intracellular antioxidant enzymes SOD1 and GPX1 were obviously decreased, while CUR effectively reversed these effects. These results showed that dietary CUR effectively alleviated CCIS-induced body weight loss, hepatic oxidative damage and lipid deposition disorder, suggesting the possible therapeutic effectiveness of CUR against hepatic damage and function abnormality caused by CCIS.
Collapse
Affiliation(s)
- Xuemei Shan
- Guangling College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yao Lu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Pan
- Guangling College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
22
|
Ruan Y, Luo H, Tang J, Ji M, Yu D, Yu Q, Cao Z, Mai Y, Zhang B, Chen Y, Liu J, Liao W. Curcumin inhibits oxidative stress and autophagy in C17.2 neural stem cell through ERK1/2 signaling pathways. Aging Med (Milton) 2024; 7:559-570. [PMID: 39507234 PMCID: PMC11535172 DOI: 10.1002/agm2.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Objectives This study investigates curcumin's neuroprotective role and its potential in promoting neurogenesis in progenitor cells within the brain. Notably, curcumin's antioxidant properties have been implicated in Alzheimer's disease treatment. However, the association between curcumin's antioxidative effects and its impact on neural stem cells (NSCs) remains to be elucidated. Methods C17.2 neural stem cells were utilized as a model to simulate oxidative stress, induced by hydrogen peroxide (H2O2). We quantified the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and intracellular reactive oxygen species (ROS), alongside the gene expression of SOD1 and SOD2, to assess intracellular oxidative stress. Additionally, Western blot analysis was conducted to measure the expressions of LC3-II, Beclin-1, and phosphorylated ERK (p-ERK), thereby evaluating autophagy and ERK signaling pathway activation. Results Treatment with curcumin resulted in a reduction of MDA and ROS levels, suggesting a protective effect on NSCs against oxidative damage induced by H2O2. Furthermore, a decrease in the relative expressions of LC3-II, Beclin-1, and p-ERK was observed post-curcumin treatment. Conclusions The findings suggest that curcumin may confer protection against oxidative stress by attenuating autophagy and deactivating the ERK1/2 signaling pathways, which could contribute to therapeutic strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Yuting Ruan
- Department of Rehabilitation, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Haoyu Luo
- Department of Neurology, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jingyi Tang
- Department of NeurologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongChina
| | - Mengyao Ji
- Department of Neurology, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Dapeng Yu
- Department of Rehabilitation, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Qun Yu
- Department of Neurology, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhiyu Cao
- Department of NeurologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangdongChina
| | - Yingren Mai
- Department of Neurology, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Bei Zhang
- Department of NeurologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yan Chen
- Department of Rehabilitation, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jun Liu
- Department of Neurology, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wang Liao
- Department of Neurology, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
23
|
Serafino A, Krasnowska EK, Romanò S, De Gregorio A, Colone M, Dupuis ML, Bonucci M, Ravagnan G, Stringaro A, Fuggetta MP. The Synergistic Combination of Curcumin and Polydatin Improves Temozolomide Efficacy on Glioblastoma Cells. Int J Mol Sci 2024; 25:10572. [PMID: 39408901 PMCID: PMC11477178 DOI: 10.3390/ijms251910572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBL) is one of the more malignant primary brain tumors; it is currently treated by a multimodality strategy including surgery, and radio- and chemotherapy, mainly consisting of temozolomide (TMZ)-based chemotherapy. Tumor relapse often occurs due to the establishment of TMZ resistance, with a patient median survival time of <2 years. The identification of natural molecules with strong anti-tumor activity led to the combination of these compounds with conventional chemotherapeutic agents, developing protocols for integrated anticancer therapies. Curcumin (CUR), resveratrol (RES), and its glucoside polydatin (PLD) are widely employed in the pharmaceutical and nutraceutical fields, and several studies have demonstrated that the combination of these natural products was more cytotoxic than the individual compounds alone against different cancers. Some of us recently demonstrated the synergistic efficacy of the sublingual administration of a new nutraceutical formulation of CUR+PLD in reducing tumor size and improving GBL patient survival. To provide some experimental evidence to reinforce these clinical results, we investigated if pretreatment with a combination of CUR+PLD can improve TMZ cytotoxicity on GBL cells by analyzing the effects on cell cycle, viability, morphology, expression of proteins related to cell proliferation, differentiation, apoptosis or autophagy, and the actin network. Cell viability was assessed using the MTT assay or a CytoSmart cell counter. CalcuSyn software was used to study the CUR+PLD synergism. The morphology was evaluated by optical and scanning electron microscopy, and protein expression was analyzed by Western blot. Flow cytometry was used for the cell cycle, autophagic flux, and apoptosis analyses. The results provide evidence that CUR and PLD, acting in synergy with each other, strongly improve the efficacy of alkylating anti-tumor agents such as TMZ on drug-resistant GBL cells through their ability to affect survival, differentiation, and tumor invasiveness.
Collapse
Affiliation(s)
- Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Ewa Krystyna Krasnowska
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Sabrina Romanò
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Alex De Gregorio
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health (ISS), 00161 Rome, Italy; (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health (ISS), 00161 Rome, Italy; (M.C.); (M.L.D.); (A.S.)
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI) Foundation, 00165 Rome, Italy;
| | - Giampietro Ravagnan
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health (ISS), 00161 Rome, Italy; (M.C.); (M.L.D.); (A.S.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy; (E.K.K.); (S.R.); (A.D.G.); (G.R.); (M.P.F.)
| |
Collapse
|
24
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
25
|
Yaikwawong M, Jansarikit L, Jirawatnotai S, Chuengsamarn S. Curcumin Reduces Depression in Obese Patients with Type 2 Diabetes: A Randomized Controlled Trial. Nutrients 2024; 16:2414. [PMID: 39125295 PMCID: PMC11314607 DOI: 10.3390/nu16152414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Type 2 diabetes and depression co-occur in a bidirectional manner. Curcumin supplements exhibit antidepressant effects that may mitigate depression by modulating neurotransmitters and reducing inflammatory and oxidative stress pathways. This study aimed to evaluate the efficacy of curcumin in improving depression severity in obese type 2 diabetes patients. The study employed a randomized, double-blind, placebo-controlled trial design with 227 participants. The primary end-point was depression severity assessed using the Patient Health Questionnaire-9. Biomarkers were measured at baseline and at 3-, 6-, 9-, and 12-month intervals. The biomarkers assessed were serotonin levels, pro-inflammatory cytokines (interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha), antioxidant activities (total antioxidant status, glutathione peroxidase, and superoxide dismutase), and malondialdehyde. After 12 months, the curcumin group exhibited significantly improved depression severity (p = 0.000001). The curcumin group had higher levels of serotonin (p < 0.0001) but lower levels of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha (p < 0.001 for all) than the placebo group. Total antioxidant status, glutathione peroxidase activity, and superoxide dismutase activity were elevated in the curcumin group, whereas malondialdehyde levels were greater in the placebo group (p < 0.001 for all). These findings suggest curcumin may have antidepressant effects on obese type 2 diabetes patients.
Collapse
Affiliation(s)
- Metha Yaikwawong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.Y.); (L.J.); (S.J.)
| | - Laddawan Jansarikit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.Y.); (L.J.); (S.J.)
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (M.Y.); (L.J.); (S.J.)
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Somlak Chuengsamarn
- Division of Endocrinology and Metabolism, Faculty of Medicine, HRH Princess Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| |
Collapse
|
26
|
Izadi M, Sadri N, Abdi A, Zadeh MMR, Jalaei D, Ghazimoradi MM, Shouri S, Tahmasebi S. Longevity and anti-aging effects of curcumin supplementation. GeroScience 2024; 46:2933-2950. [PMID: 38409646 PMCID: PMC11009219 DOI: 10.1007/s11357-024-01092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024] Open
Abstract
Aging is a gradual and irreversible process that is accompanied by an overall decline in cellular function and a significant increase in the risk of age-associated disorders. Generally, delaying aging is a more effective method than treating diseases associated with aging. Currently, researchers are focused on natural compounds and their therapeutic and health benefits. Curcumin is the main active substance that is present in turmeric, a spice that is made up of the roots and rhizomes of the Curcuma longa plant. Curcumin demonstrated a positive impact on slowing down the aging process by postponing age-related changes. This compound may have anti-aging properties by changing levels of proteins involved in the aging process, such as sirtuins and AMPK, and inhibiting pro-aging proteins, such as NF-κB and mTOR. In clinical research, this herbal compound has been extensively examined in terms of safety, efficacy, and pharmacokinetics. There are numerous effects of curcumin on mechanisms related to aging and human diseases, so we discuss many of them in detail in this review.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mahdi Ghazimoradi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Shouri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
28
|
Gogoi NG, Rahman A, Dutta P, Saikia J, Baruah A, Handique JG. Design, Synthesis, Biological Evaluation and in Silico Studies of Curcumin Pyrrole Conjugates. Chem Biodivers 2024; 21:e202301605. [PMID: 38488861 DOI: 10.1002/cbdv.202301605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Curcumin conjugated heterocyclic compounds are potent candidates with drug likeness against various bacterial pathogens. A set of curcumin-based pyrrole conjugates (CPs) were synthesized and characterized by FT-IR, 1H and 13C NMR and HR-MS techniques. The results of free radical scavenging activity of the synthesized CPs, evaluated by FRAP and CUPRAC assays, showed the potency of these compounds as effective antioxidants. CP3 exhibits the highest antioxidant activity amongst the CPs. The bactericidal efficacy of CPs was screened against ESKAP bacterial pathogens, and CPs were found to possess better antibacterial property than curcumin, specifically against staphylococcus aureus bacteria. In addition, serum albumin (BSA and HSA) binding interaction of these CPs were determined by UV-visible and fluorescence spectrophotometric techniques. In-silico molecular docking study was performed to determine the binding patterns of molecular targets against Staphylococcus aureus tyrosyl tRNA synthetase, and serum albumin proteins. The structure-activity relationship showed that the presence of multiple phenolic hydroxyl groups, and electron withdrawing groups on the structure of CP molecule, enhances its antioxidant and antibacterial activity, respectively.
Collapse
Affiliation(s)
- Nishi Gandha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Manohari Devi Kanoi Girls College, Dibrugarh, 786001, Assam, India
| | - Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Pankaj Dutta
- Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Jiban Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | | |
Collapse
|
29
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. The ameliorative effect of turmeric (Curcuma longa Linn) extract and its major constituent, curcumin, and its analogs on ethanol toxicity. Phytother Res 2024; 38:2165-2181. [PMID: 38396341 DOI: 10.1002/ptr.8165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/09/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-β/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Scuto M, Rampulla F, Reali GM, Spanò SM, Trovato Salinaro A, Calabrese V. Hormetic Nutrition and Redox Regulation in Gut-Brain Axis Disorders. Antioxidants (Basel) 2024; 13:484. [PMID: 38671931 PMCID: PMC11047582 DOI: 10.3390/antiox13040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress resilience and overall human health have received much attention. Recently, the gut-brain axis has attracted prominent interest for preventing and therapeutically impacting neuropathologies and gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with probiotics have shown to improve gut bioavailability and blood-brain barrier (BBB) permeability, thus inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with hormesis, polyphenols display biphasic dose-response effects by activating at a low dose the Nrf2 pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1 upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modulation of the composition and function of the gut microbiota through polyphenols and/or probiotics enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer's disease and other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive performance and brain health. In this review, we also explore interactions of the gut-brain axis based on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and personalized nutritional therapies.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | | | | | | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.R.); (G.M.R.); (S.M.S.); (V.C.)
| | | |
Collapse
|
31
|
Jacob S, Kather FS, Morsy MA, Boddu SHS, Attimarad M, Shah J, Shinu P, Nair AB. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:672. [PMID: 38668166 PMCID: PMC11054677 DOI: 10.3390/nano14080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| |
Collapse
|
32
|
Posey KL. Curcumin and Resveratrol: Nutraceuticals with so Much Potential for Pseudoachondroplasia and Other ER-Stress Conditions. Biomolecules 2024; 14:154. [PMID: 38397390 PMCID: PMC10886985 DOI: 10.3390/biom14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Natural products with health benefits, nutraceuticals, have shown considerable promise in many studies; however, this potential has yet to translate into widespread clinical use for any condition. Notably, many drugs currently on the market, including the first analgesic aspirin, are derived from plant extracts, emphasizing the historical significance of natural products in drug development. Curcumin and resveratrol, well-studied nutraceuticals, have excellent safety profiles with relatively mild side effects. Their long history of safe use and the natural origins of numerous drugs contrast with the unfavorable reputation associated with nutraceuticals. This review aims to explore the nutraceutical potential for treating pseudoachondroplasia, a rare dwarfing condition, by relating the mechanisms of action of curcumin and resveratrol to molecular pathology. Specifically, we will examine the curcumin and resveratrol mechanisms of action related to endoplasmic reticulum stress, inflammation, oxidative stress, cartilage health, and pain. Additionally, the barriers to the effective use of nutraceuticals will be discussed. These challenges include poor bioavailability, variations in content and purity that lead to inconsistent results in clinical trials, as well as prevailing perceptions among both the public and medical professionals. Addressing these hurdles is crucial to realizing the full therapeutic potential of nutraceuticals in the context of pseudoachondroplasia and other health conditions that might benefit.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| |
Collapse
|
33
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Dhiman P, Malik N. Curcumin Derivatives Linked to a Reduction of Oxidative Stress in Mental Dysfunctions and Inflammatory Disorders. Curr Med Chem 2024; 31:6826-6841. [PMID: 37605400 DOI: 10.2174/0929867331666230821102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Stress is a critical factor in the etiology of inflammation and neurodegeneration. The risk factor for the majority of psychiatric disorders is oxidative stress-induced depression. Mitochondrial damage and oxidative stress are associated with the development of neurodegenerative disorders. During aging, the brain and associated regions become more susceptible due to oxidative stress. The leading cause of oxidative stress is the continuous generation of ROS (reactive oxygen species) and RNS (Reactive nitrogen species) endogenously or exogenously. In this review, discussion on a potent antioxidant natural constituent "curcumin" has been made to alleviate many pathological and neurological disorders. A focused compilation of vast and informative research on the potential of curcumin as a magical moiety used therapeutically has been done in search of its role in controlling the neurological and similar disorders induced by oxidative stress.
Collapse
Affiliation(s)
- Priyanka Dhiman
- Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC), Landran, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140307, India
| | - Neelam Malik
- Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET), Samalkha, Haryana 132102, India
| |
Collapse
|
35
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
36
|
Wu F, Yang X, Wang F, Liu Y, Han S, Liu S, Zhang Z, Chen B. Dietary curcumin supplementation alleviates diquat-induced oxidative stress in the liver of broilers. Poult Sci 2023; 102:103132. [PMID: 37826902 PMCID: PMC10571021 DOI: 10.1016/j.psj.2023.103132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
This study purposed to investigate the alleviating effect of dietary curcumin supplementation on oxidative stress in the liver of broilers induced by diquat. One-day-old Cobb broilers (400) were selected and randomly divided into 5 groups, with 8 replicates and 10 broilers per replicate. The control group and the diquat group were fed the basal diet, while the curcumin supplementation groups were fed the basal diet supplemented with different amounts of curcumin (50, 100, and 150 mg/kg). On d 21 of the test, 1 broiler was randomly selected from each replicate and intraperitoneally injected with 20 mg/mL of diquat solution at a dose of 1 mL/kg BW or equivalent physiological saline (for the control group). After 48 h of feeding, the selected broilers were slaughtered for analysis. The results show that diquat treatment reduced the antioxidant capacity of the liver, caused oxidative stress, and affected its lipid metabolism. However, diet supplementation using curcumin completely or partially reversed the effect of diquat on the liver of broilers. The blood alanine aminotransferase activity, total bilirubin and total protein levels, and liver Caspase-3 mRNA abundance in broilers were lower or significantly lower in the curcumin supplementation group than in the diquat group (P < 0.05). The curcumin supplementation groups had significantly higher total antioxidant capacity activity but significantly lower malondialdehyde in the liver of broilers than the diquat group (P < 0.05). The blood triglyceride level of broilers was lower or significantly lower in the curcumin supplementation groups than in the diquat group (P < 0.05). The activities of cetyl coenzyme A carboxylase in the liver were significantly lower in the 150 mg/kg curcumin supplementation groups than in the DQ group (P < 0.05). In conclusion, dietary curcumin supplementation could ameliorate the effects of diquat-induced oxidative stress on the antioxidant capacity, tissue morphology, and lipid metabolism of the liver of broilers, thus protecting the liver. The recommended dosage for broiler diets is 100 to 150 mg/kg curcumin.
Collapse
Affiliation(s)
- Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
37
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
38
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
39
|
Aloi E, Tone CM, Barberi RC, Ciuchi F, Bartucci R. Effects of curcumin in the interaction with cardiolipin-containg lipid monolayers and bilayers. Biophys Chem 2023; 301:107082. [PMID: 37544082 DOI: 10.1016/j.bpc.2023.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Curcumin, a plant polyphenol extracted from the Chinese herb turmeric, has gained widespread attention in recent years because of its multifunctional properties as antioxidant, antinflammatory, antimicrobial, and anticancer agent. Effects of the molecule on mitochondrial membranes properties have also been evidenced. In this work, the interaction of curcumin with models of mitochondrial membranes composed of dimyristoylphosphatidylcholine (DMPC) or mixtures of DMPC and 4 mol% tetramyristoylcardiolipin (TMCL) has been investigated by using biophysical techniques. Spectrophotometry and fluorescence allowed to determine the association constant and the binding energy of curcumin with pure DMPC and mixed DMPC/TMCL aqueous bilayers. The molecular organization of pure DMPC and cardiolipin-containing Langmuir monolayers at the air-water interface were investigated and the morphology of the monolayers transferred into mica substrates were characterized through atomic force microscopy (AFM). It is found that curcumin associates at the polar/apolar interface of the lipid bilayers and the binding is favored in the presence of cardiolipin. At 2 mol%, curcumin is well miscible with lipid monolayers, particularly with mixed DMPC/TMCL ones, where compact terraces formation characterized by a reduction of the surface roughness is observed in the AFM topographic images. At 10 mol%, curcumin perturbs the stability of DMPC monolayers and morphologically are evident terraces surrounded by cur aggregates. In the presence of TMCL, very few curcumin aggregates and larger compact terraces are observed. The overall results indicate that cardiolipin augments the incorporation of curcumin in model membranes highlighting the mutual interplay cardiolipin-curcumin in mitochondrial membranes.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Caterina M Tone
- Department of Physics, University of Calabria, 87036 Rende, Italy; CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Riccardo C Barberi
- Department of Physics, University of Calabria, 87036 Rende, Italy; CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Federica Ciuchi
- CNR Nanotec c/o Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
40
|
Kotb RR, Afifi AM, El-Houseini ME, Ezz-Elarab M, Basalious EB, Omran MM, Abdellateif MS. The potential immuno-stimulating effect of curcumin, piperine, and taurine combination in hepatocellular carcinoma; a pilot study. Discov Oncol 2023; 14:169. [PMID: 37704828 PMCID: PMC10499730 DOI: 10.1007/s12672-023-00785-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND This is a phase II clinical trial to investigate the immunotherapeutic effect of Curcumin, Piperine, and Taurine (CPT) combination in hepatocellular carcinoma (HCC). METHODS Twenty-six HCC patients aged (50-80 years) were recruited for administration of a daily dose of 5 g of curcumin, 50 mg of piperine, and 500 mg of taurine divided into three doses for successive 3 months. The three components (CPT) were prepared in one capsule. Patients were assessed after each month (cycle) for the plasma levels of CD4, CD8, CD25, Interleukins-2 (IL-2), IL-6, IL-12, Interferon-gamma (IFN- γ), Lactate dehydrogenase (LDH), and Vascular endothelial growth factor (VEGF), FOXP3 mRNA, and miRNA 21. RESULTS There was a significant increase in the plasma levels of CD4 and CD8, while a significant decrease in the CD25 level after the second and third cycles compared to the baseline level [P < 0.001 for both]. Also, there was a significant increase in the plasma levels of IL-2, IL-12, and IFN-γ [ P = 0.001, P = 0.006, and P = 0.029; respectively], while there was a significant decrease in IL-6, VEGF-α, LDH, and Alpha-fetoprotein (AFP) after CPT administration compared to the baseline levels [P < 0.001, P < 0.001, P = 0.020, and P = 0.004; respectively]. The expression level of miRNA-21 was significantly decreased after CPT administration compared to the baseline level [5.5±0.88, 4.1±0.78, 3±0.75, and 2.5±0.76; respectively, P<0.001]. Though there was a noticeable decrease in the FOXP3 expression after each cycle, however, it didn't reach a significant level [5.3±0.8, 4.2±0.76, 3.2±0.67, and 2.5±0.79; respectively, P=0.184]. CONCLUSION CPT could exhibit a potential immune-stimulating effect in HCC patients. The current trial had been registered at the National Hepatology and Tropical Medicine Research Institute (NHTMRI), with a registration number of NHTMRI-IRB 2-21 on 5th January 2021.
Collapse
Affiliation(s)
- Raghda R Kotb
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Afifi
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Motawa E El-Houseini
- Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Ezz-Elarab
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Emad B Basalious
- Pharmaceutics and Industrial Pharmacy department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Biological science division, University of Chicago, Chicago, IL, USA
| | - Mona S Abdellateif
- Medical Biochemistry and molecular biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
41
|
Mundekkad D, Cho WC. Applications of Curcumin and Its Nanoforms in the Treatment of Cancer. Pharmaceutics 2023; 15:2223. [PMID: 37765192 PMCID: PMC10536212 DOI: 10.3390/pharmaceutics15092223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the diverse medicinal and pharmacokinetic properties of turmeric, it is well-known in the therapeutic, pharmaceutic, nutraceutical, cosmetic, and dietary industries. It gained importance due to its multitude of properties, such as wound-healing, anti-inflammatory, anti-oxidant, anti-microbial, cytoprotective, anti-aging, anti-cancer, and immunomodulatory effects. Even though the natural healing effect of turmeric has been known to Indians as early as 2500 BCE, the global demand for turmeric has increased only recently. A major reason for the beneficiary activities of turmeric is the presence of the yellow-colored polyphenolic compound called curcumin. Many studies have been carried out on the various properties of curcumin and its derivatives. Despite its low bioavailability, curcumin has been effectively used for the treatment of many diseases, such as cardiovascular and neurological diseases, diabetes, arthritis, and cancer. The advent of nanobiotechnology has further opened wide opportunities to explore and expand the use of curcumin in the medical field. Nanoformulations using curcumin and its derivatives helped to design new treatment modalities, specifically in cancer, because of the better bioavailability and solubility of nanocurcumin when compared to natural curcumin. This review deals with the various applications of curcumin nanoparticles in cancer therapy and broadly tries to understand how it affect the immunological status of the cancer cell.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Department of Biotechnology, Nehru Arts and Science College, Thirumalayampalayam, Coimbatore 641105, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
42
|
Marini HR, Facchini BA, di Francia R, Freni J, Puzzolo D, Montella L, Facchini G, Ottaiano A, Berretta M, Minutoli L. Glutathione: Lights and Shadows in Cancer Patients. Biomedicines 2023; 11:2226. [PMID: 37626722 PMCID: PMC10452337 DOI: 10.3390/biomedicines11082226] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In cases of cellular injury, there is an observed increase in the production of reactive oxygen species (ROS). When this production becomes excessive, it can result in various conditions, including cancerogenesis. Glutathione (GSH), the most abundant thiol-containing antioxidant, is fundamental to re-establishing redox homeostasis. In order to evaluate the role of GSH and its antioxi-dant effects in patients affected by cancer, we performed a thorough search on Medline and EMBASE databases for relevant clinical and/or preclinical studies, with particular regard to diet, toxicities, and pharmacological processes. The conjugation of GSH with xenobiotics, including anti-cancer drugs, can result in either of two effects: xenobiotics may lose their harmful effects, or GSH conjugation may enhance their toxicity by inducing bioactivation. While being an interesting weapon against chemotherapy-induced toxicities, GSH may also have a potential protective role for cancer cells. New studies are necessary to better explain the relationship between GSH and cancer. Although self-prescribed glutathione (GSH) implementation is prevalent among cancer patients with the intention of reducing the toxic effects of anticancer treatments and potentially preventing damage to normal tissues, this belief lacks substantial scientific evidence for its efficacy in reducing toxicity, except in the case of cisplatin-related neurotoxicity. Therefore, the use of GSH should only be considered under medical supervision, taking into account the appropriate timing and setting.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80133 Napoli, Italy;
| | - Raffaele di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-ONLUS), 33170 Pordenone, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Napoli, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| |
Collapse
|
43
|
Bi D, Li M, Yao L, Zhu N, Fang W, Guo W, Wu Y, Xu H, Hu Z, Xu X. Enhancement of the chemical stability of nanoemulsions loaded with curcumin by unsaturated mannuronate oligosaccharide. Food Chem 2023; 414:135670. [PMID: 36827777 DOI: 10.1016/j.foodchem.2023.135670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Unsaturated mannuronate oligosaccharide (MOS) is an acidic oligosaccharide prepared from alginate-derived polymannuronate by enzymatic depolymerization, followed by double bond formation between C-4 and C-5 at the nonreducing end. In this study, MOS was used as a stabilizer to fabricate O/W nanoemulsions loaded with curcumin (MOS-CUR) for the first time. The results revealed that the MOS-CUR showed small droplet sizes and narrow size distributions and was slightly more stable than normal oil-in-water (O/W) curcumin nanoemulsions (water-CUR). Additionally, MOS can improve the superoxide anion scavenging ability and iron ion reducing ability of the curcumin nanoemulsion system. Although the digestion behaviour of MOS-CUR and water-CUR was similar, the bioavailability of curcumin in MOS-CUR was significantly higher than that in water-CUR. All these results indicated that MOS could be used as a stabilizer for preparing nanoemulsions to easily encapsulate labile nutrients and to enhance the bioavailability and antioxidant capacity of these nutrients.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Meiting Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Quality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Nanting Zhu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Weishan Fang
- Department of Experimental Teaching Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, PR China
| | - Wushuang Guo
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Institute of Stomatological Research, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
44
|
Gao L, Liu X, Luo X, Lou X, Li P, Li X, Liu X. Antiaging effects of dietary supplements and natural products. Front Pharmacol 2023; 14:1192714. [PMID: 37441528 PMCID: PMC10333707 DOI: 10.3389/fphar.2023.1192714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is an inevitable process influenced by genetics, lifestyles, and environments. With the rapid social and economic development in recent decades, the proportion of the elderly has increased rapidly worldwide, and many aging-related diseases have shown an upward trend, including nervous system diseases, cardiovascular diseases, metabolic diseases, and cancer. The rising burden of aging-related diseases has become an urgent global health challenge and requires immediate attention and solutions. Natural products have been used for a long time to treat various human diseases. The primary cellular pathways that mediate the longevity-extending effects of natural products involve nutrient-sensing pathways. Among them, the sirtuin, AMP-activated protein kinase, mammalian target of rapamycin, p53, and insulin/insulin-like growth factor-1 signaling pathways are most widely studied. Several studies have reviewed the effects of individual natural compounds on aging and aging-related diseases along with the underlying mechanisms. Natural products from food sources, such as polyphenols, saponins, alkaloids, and polysaccharides, are classified as antiaging compounds that promote health and prolong life via various mechanisms. In this article, we have reviewed several recently identified natural products with potential antiaging properties and have highlighted their cellular and molecular mechanisms. The discovery and use of dietary supplements and natural products that can prevent and treat multiple aging-related diseases in humans will be beneficial. Thus, this review provides theoretical background for existing dietary supplements and natural products as potential antiaging agents.
Collapse
|
45
|
Lan X, Liu Y, Wang L, Wang H, Hu Z, Dong H, Yu Z, Yuan Y. A review of curcumin in food preservation: Delivery system and photosensitization. Food Chem 2023; 424:136464. [PMID: 37247602 DOI: 10.1016/j.foodchem.2023.136464] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
As a natural polyphenol, curcumin has been used as an alternative to synthetic preservatives in food preservation. Different from previous reviews that mainly focus on the pH-responsive discoloration of curcumin to detect changes in food quality in real time, this paper focuses on the perspective of the delivery system and photosensitization of curcumin for food preservation. The delivery system is an effective means to overcome the challenges of curcumin like instability, hydrophobicity, and low bioavailability. Curcumin as a photosensitizer can effectively sterilize to preserve food. The practical fresh-keeping effects of the delivery system and photosensitization of curcumin on foods (fruits/vegetables, animal-derived food, and grain) were summarized comprehensively, including shelf-life extension, maintenance of physicochemical properties, nutritional quality, and sensory. Future research should focus on the development of novel curcumin-loaded materials used for food preservation, and most importantly, the biosafety and accumulation toxicity associated with these materials should be explored.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Hao Dong
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhiwen Yu
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
46
|
Meng H, Wei JH, Yu PZ, Ren JX, Tang MY, Sun JY, Yan XY, Su J. Insights into Advanced Neurological Dysfunction Mechanisms Following DBS Surgery in Parkinson's Patients: Neuroinflammation and Pyroptosis. Curr Issues Mol Biol 2023; 45:4480-4494. [PMID: 37232753 DOI: 10.3390/cimb45050284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Parkinson's disease is a severe neurodegenerative disorder. Currently, deep brain electrical stimulation (DBS) is the first line of surgical treatment. However, serious neurological impairments such as speech disorders, disturbances of consciousness, and depression after surgery limit the efficacy of treatment. In this review, we summarize the recent experimental and clinical studies that have explored the possible causes of neurological deficits after DBS. Furthermore, we tried to identify clues from oxidative stress and pathological changes in patients that could lead to the activation of microglia and astrocytes in DBS surgical injury. Notably, reliable evidence supports the idea that neuroinflammation is caused by microglia and astrocytes, which may contribute to caspase-1 pathway-mediated neuronal pyroptosis. Finally, existing drugs and treatments may partially ameliorate the loss of neurological function in patients following DBS surgery by exerting neuroprotective effects.
Collapse
Affiliation(s)
- Hao Meng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Jia-Hang Wei
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Peng-Zheng Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Jia-Xin Ren
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Meng-Yao Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Jun-Yi Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Xiao-Yu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| |
Collapse
|
47
|
Safari Z, Bagherniya M, Khoram Z, Ebrahimi Varzaneh A, Heidari Z, Sahebkar A, Askari G. The effect of curcumin on anthropometric indices, blood pressure, lipid profiles, fasting blood glucose, liver enzymes, fibrosis, and steatosis in non-alcoholic fatty livers. Front Nutr 2023; 10:1163950. [PMID: 37275651 PMCID: PMC10233031 DOI: 10.3389/fnut.2023.1163950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Curcumin is a natural polyphenol that may be effective against liver steatosis and steatohepatitis. The present study aimed to evaluate the effects of phytosomal curcumin on lipid profile, fasting blood sugar, anthropometric indices, liver enzymes, fibrosis, and steatosis in non-alcoholic fatty liver patients. Methods The participants were randomized to the curcumin-phosphatidylserine phytosomal receiving group and the placebo receiving group and were followed up for 12 weeks. Data on anthropometric indices, lipid profile, blood glucose, blood pressure, liver enzymes, hepatic steatosis, and fibrosis were collected at the beginning and the end of the clinical trial. Results Supplementation for 12 weeks with phytosomal curcumin significantly reduced fibrosis and steatosis in the phytosomal curcumin receiving group compared with the placebo group (p < 0.05). Phytosomal curcumin also significantly reduced waist circumference and blood pressure compared with the placebo group (p < 0.05). There was no significant difference between the phytosomal curcumin and the placebo groups regarding changes in weight, body mass index, fasting blood glucose, liver enzymes, and lipid profile. Conclusion Curcumin, at a dose of 250 mg per day, might be effective in treating patients with NAFLD. Further studies are necessary to confirm these findings and to discover the underlying mechanisms. Clinical trial registration https://www.irct.ir/trial/43730, identifier: IRCT20121216011763N39.
Collapse
Affiliation(s)
- Zahra Safari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Khoram
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Ballester P, Cerdá B, Arcusa R, García-Muñoz AM, Marhuenda J, Zafrilla P. Antioxidant Activity in Extracts from Zingiberaceae Family: Cardamom, Turmeric, and Ginger. Molecules 2023; 28:4024. [PMID: 37241765 PMCID: PMC10220638 DOI: 10.3390/molecules28104024] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
An increase in life expectancy leads to a greater impact of chronic non-communicable diseases. This is even more remarkable in elder populations, to whom these become main determinants of health status, affecting mental and physical health, quality of life, and autonomy. Disease appearance is closely related to the levels of cellular oxidation, pointing out the importance of including foods in one's diet that can prevent oxidative stress. Previous studies and clinical data suggest that some plant-based products can slow and reduce the cellular degradation associated with aging and age-related diseases. Many plants from one family present several applications that range from the food to the pharmaceutical industry due to their characteristic flavor and scents. The Zingiberaceae family, which includes cardamom, turmeric, and ginger, has bioactive compounds with antioxidant activities. They also have anti-inflammatory, antimicrobial, anticancer, and antiemetic activities and properties that help prevent cardiovascular and neurodegenerative diseases. These products are abundant sources of chemical substances, such as alkaloids, carbohydrates, proteins, phenolic acids, flavonoids, and diarylheptanoids. The main bioactive compounds found in this family (cardamom, turmeric, and ginger) are 1,8-cineole, α-terpinyl acetate, β-turmerone, and α-zingiberene. The present review gathers evidence surrounding the effects of dietary intake of extracts of the Zingiberaceae family and their underlying mechanisms of action. These extracts could be an adjuvant treatment for oxidative-stress-related pathologies. However, the bioavailability of these compounds needs to be optimized, and further research is needed to determine appropriate concentrations and their antioxidant effects in the body.
Collapse
Affiliation(s)
| | | | - Raúl Arcusa
- Faculty of Pharmacy and Nutrition, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe, 30107 Murcia, Spain; (P.B.); (B.C.); (A.M.G.-M.); (J.M.); (P.Z.)
| | | | | | | |
Collapse
|
49
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on liver function in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 74:102952. [PMID: 37178581 DOI: 10.1016/j.ctim.2023.102952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Liver conditions are major burdens upon health systems around the world. Turmeric /curcumin is believed to possess therapeutic features in ameliorating various metabolic disorders. In this systematic review and meta-analysis of the randomized controlled trials (RCTs), we examined the effect of turmeric/curcumin supplementation on some liver function tests (LFTs). METHODS We comprehensively searched online databases (i.e. PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar) from inception up to October 2022. Final outcomes included aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). Weighted mean differences (WMDs) were reported. In case of between-study heterogeneity, subgroup analysis was conducted. Non-linear dose-response analysis was carried out to detect the potential effect of dosage and duration. The registration code is CRD42022374871. RESULTS Thirty-one RCTs were included in the meta-analysis. Turmeric/curcumin supplementation significantly reduced blood levels of ALT (WMD = -4.09 U/L; 95 % CI = -6.49, -1.70) and AST (WMD = -3.81 U/L; 95 % CI = -5.71, -1.91), but not GGT (WMD: -12.78 U/L; 95 % CI: -28.20, 2.64). These improvements, though statistically significant, do not ensure clinical effectiveness. CONCLUSION It seems that turmeric/curcumin supplementation might be effective in improving AST and ALT levels. However, further clinical trials are needed to examine its effect on GGT. Quality of the evidence across the studies was low for AST and ALT and very low for GGT. Therefore, more studies with high quality are needed to assess this intervention on hepatic health.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
50
|
Lu Y, Jarrahi A, Moore N, Bartoli M, Brann DW, Baban B, Dhandapani KM. Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury. Neurobiol Dis 2023; 180:106090. [PMID: 36934795 PMCID: PMC10763650 DOI: 10.1016/j.nbd.2023.106090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nicholas Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Darrell W Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|