1
|
Moreira LDPD, Corich V, Jørgensen EG, Devold TG, Nadai C, Giacomini A, Porcellato D. Potential bioactive peptides obtained after in vitro gastrointestinal digestion of wine lees from sequential fermentations. Food Res Int 2024; 176:113833. [PMID: 38163727 DOI: 10.1016/j.foodres.2023.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
The biotechnological reuse of winery by-products has great potential to increase the value and sustainability of the wine industry. Recent studies revealed that yeast biomass can be an exciting source of bioactive peptides with possible benefits for human health, and its incorporation in plant-based foods is considered innovative and sustainable. In this study, we aimed to identify, through in silico analyses, potential bioactive peptides from yeast extracts after in vitro digestion. Wine lees from a non-Saccharomyces oenological yeast, Starmerella bacillaris FRI751, Saccharomyces cerevisiae EC1118, and sequential fermentation performed with both strains (SEQ) were recovered in a synthetic must. Cellular pellets were enzymatically treated with zymolyase, and the yeast extracts were submitted to in vitro gastrointestinal digestions. LC-MS/MS sequenced the hydrolyzed peptides, and their potential bioactivity was inferred. S. bacillaris FRI751 fermentation showed 132 peptide sequences, S. cerevisiae EC1118 60, SEQ 89. A total of 243 unique peptide sequences were identified across the groups. Furthermore, based on the peptide sequence, the FRI751 extract showed the highest potential antihypertensive with 275 bioactive fragments. Other bioactivities, such as antimicrobial and immunomodulatory, were also identified in all yeast extracts. A potential antiobesity bioactive peptide VVP was identified only in the yeast extract from S. bacillaris single strain. The wine lees from S. bacillaris single strain and SEQ fermentation are a richer source of potential bioactive peptides than those from S. cerevisiae fermentation. This study opens new possibilities in the valorization of winemaking by-products.
Collapse
Affiliation(s)
- Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy.
| | - Emilie Gullberg Jørgensen
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Tove Gulbrandsen Devold
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Chiara Nadai
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy; Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, PD, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
2
|
Szerszunowicz I, Kozicki S. Plant-Derived Proteins and Peptides as Potential Immunomodulators. Molecules 2023; 29:209. [PMID: 38202792 PMCID: PMC10780438 DOI: 10.3390/molecules29010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The immune response of humans may be modulated by certain biopeptides. The present study aimed to determine the immunomodulatory potential of plant-derived food proteins and hydrolysates obtained from these proteins via monocatalytic in silico hydrolysis (using ficin, stem bromelainm or pepsin (pH > 2)). The scope of this study included determinations of the profiles of select bioactivities of proteins before and after hydrolysis and computations of the frequency of occurrence of selected bioactive fragments in proteins (parameter A), frequency/relative frequency of the release of biopeptides (parameters AE, W) and the theoretical degree of hydrolysis (DHt), by means of the resources and programs available in the BIOPEP-UWM database. The immunomodulating (ImmD)/immunostimulating (ImmS) peptides deposited in the database were characterized as well (ProtParam tool). Among the analyzed proteins of cereals and legumes, the best precursors of ImmD immunopeptides (YG, YGG, GLF, TPRK) turned out to be rice and garden pea proteins, whereas the best precursors of ImmS peptides appeared to be buckwheat (GVM, GFL, EAE) and broad bean (LLY, EAE) proteins. The highest number of YG sequences was released by stem bromelain upon the simulated hydrolysis of rice proteins (AE = 0.0010-0.0820, W = 0.1994-1.0000, DHt = 45-82%). However, antibacterial peptides (IAK) were released by ficin only from rice, oat, and garden pea proteins (DHt = 41-46%). Biopeptides (YG, IAK) identified in protein hydrolysates are potential immunomodulators, nutraceuticals, and components of functional food that may modulate the activity of the human immune system. Stem bromelain and ficin are also active components that are primed to release peptide immunomodulators from plant-derived food proteins.
Collapse
Affiliation(s)
- Iwona Szerszunowicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland
| | | |
Collapse
|
3
|
Zhu F. Amaranth proteins and peptides: Biological properties and food uses. Food Res Int 2023; 164:112405. [PMID: 36738021 DOI: 10.1016/j.foodres.2022.112405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Amaranthus grains have attracted great attention due to its attractive health benefits. The grains have processing properties (e.g., starch related properties) similar to those of common cereals. Amaranth grains are gluten free and protein is a significant component of these grains. Proteins of the grains have been used in various food applications such as formulations of edible films and emulsions for controlled release of bioactive compounds. The proteins have been hydrolyzed using different enzymes to produce peptides and hydrolysates, which showed a range of biological functions including anti-hypertensive and antioxidant activities among others. They have been formulated into staple foods including breads and pastas for improved nutritional quality. This review summarizes the recent advances of the last 5 years in understanding the biological functions and food applications of proteins, protein hydrolysates and peptides from the grains of different Amaranthus species. Limitations in the studies summarized are critically discussed with an aim to improve the efficiency in amaranth grain protein and peptide research.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Aguilar-Padilla J, Centeno-Leija S, Bojórquez-Velázquez E, Elizalde-Contreras JM, Ruiz-May E, Serrano-Posada H, Osuna-Castro JA. Characterization of the Technofunctional Properties and Three-Dimensional Structure Prediction of 11S Globulins from Amaranth ( Amaranthus hypochondriacus L.) Seeds. Foods 2023; 12:foods12030461. [PMID: 36765990 PMCID: PMC9914310 DOI: 10.3390/foods12030461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Amaranth 11S globulins (Ah11Sn) are an excellent source of essential amino acids; however, there have been no investigations on the characterization of their techno-functional properties at different pH conditions and NaCl concentrations, which are necessary for food formulations. In this work, we report a new two-step purification method for native Ah11Sn with purity levels of ~95%. LC-MS/MS analysis revealed the presence of three different Ah11Sn paralogs named Ah11SB, A11SC, and Ah11SHMW, and their structures were predicted with Alphafold2. We carried out an experimental evaluation of Ah11Sn surface hydrophobicity, solubility, emulsifying properties, and assembly capacity to provide an alternative application of these proteins in food formulations. Ah11Sn showed good surface hydrophobicity, solubility, and emulsifying properties at pH values of 2 and 3. However, the emulsions became unstable at 60 min. The assembly capacity of Ah11Sn evaluated by DLS analysis showed mainly the trimeric assembly (~150-170 kDa). This information is beneficial to exploit and utilize Ah11Sn rationally in food systems.
Collapse
Affiliation(s)
- Jorge Aguilar-Padilla
- Facultad de Ciencias Químicas, Universidad de Colima, Carr. Colima-Coquimatlán km. 9, Coquimatlán 28400, Colima, Mexico
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Carr. Colima-Manzanillo km. 40, Tecomàn 28100, Colima, Mexico
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28629, Colima, Mexico
| | - Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28629, Colima, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Cluster BioMimic®, Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - José M. Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Cluster BioMimic®, Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Cluster BioMimic®, Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28629, Colima, Mexico
- Correspondence: (H.S.-P.); (J.A.O.-C.)
| | - Juan Alberto Osuna-Castro
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Carr. Colima-Manzanillo km. 40, Tecomàn 28100, Colima, Mexico
- Correspondence: (H.S.-P.); (J.A.O.-C.)
| |
Collapse
|
5
|
Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides. Nutrients 2023; 15:nu15020351. [PMID: 36678223 PMCID: PMC9864886 DOI: 10.3390/nu15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The estimated increase in world population will lead to a deterioration in global food security, aggravated in developing countries by hidden hunger resulting from protein deficiency. To reduce or avoid this crisis, a dietary shift towards the consumption of sustainable, nutrient-rich, and calorically efficient food products has been recommended by the FAO and WHO. Plant proteins derived from grains and seeds provide nutritionally balanced diets, improve health status, reduce poverty, enhance food security, and contain several functional compounds. In this review, the current evidence on the nutritional and functional properties of underutilized grains is summarized, focusing on their incorporation into functional foods and the role of their proteins as novel source of bioactive peptides with health benefits.
Collapse
|
6
|
Shahbaz M, Raza N, Islam M, Imran M, Ahmad I, Meyyazhagan A, Pushparaj K, Balasubramanian B, Park S, Rengasamy KRR, Gondal TA, El-Ghorab A, Abdelgawad MA, Ghoneim MM, Wan C. The nutraceutical properties and health benefits of pseudocereals: a comprehensive treatise. Crit Rev Food Sci Nutr 2022; 63:10217-10229. [PMID: 35549783 DOI: 10.1080/10408398.2022.2071205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review article depicts the possible replacement of staple cereal sources with some pseudocereals like Chia, Quinoa, Buckwheat, and Amaranth, which not only provide recommended daily allowance of all nutrients but also help to reduce the chances of many non-communicable infections owing to the presence of several bioactive compounds. These pseudocereals are neglected plant seeds and should be added in our routine diet. Besides, they can serve as nutraceuticals in combating various diseases by improving the health status of the consumers. The bioactive compounds like rutin, quercetin, peptide chains, angiotensin I, and many other antioxidants present in these plant seeds help to reduce the oxidative stress in the body which leads toward better health of the consumers. All these pseudocereals have high quantity of soluble fiber which helps to regulate bowel movement, control hypercholesterolemia (presence of high plasma cholesterol levels), hypertension (high blood pressure), and cardiovascular diseases. The ultimate result of consumption of pseudocereals either as a whole or in combination with true cereals as staple food may help to retain the integrity of the human body which increases the life expectancy by slowing down the aging process.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Nighat Raza
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Mahad Islam
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
- Food, Nutrition and Lifestyle Unit, King Fahed Medical Research Center, Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, India
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | | | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Victoria, Australia
| | - Ahmed El-Ghorab
- College of Science, Chemistry Department, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, PR China
| |
Collapse
|
7
|
Evaluation of thermogravimetric, textural and viscoelastic properties in ternary system of amaranth, wheat and whole wheat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Comparative evaluation of pseudocereals peptides: A review of their nutritional contribution. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Borawska-Dziadkiewicz J, Darewicz M, Tarczyńska AS. Properties of peptides released from salmon and carp via simulated human-like gastrointestinal digestion described applying quantitative parameters. PLoS One 2021; 16:e0255969. [PMID: 34375367 PMCID: PMC8354434 DOI: 10.1371/journal.pone.0255969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Apart from the classical (experimental) methods, biologically active peptides can be studied via bioinformatics approach, also known as in silico analysis. This study aimed to verify the following research hypothesis: ACE inhibitors and antioxidant peptides can be released from salmon and carp proteins during simulated in silico human-like gastrointestinal digestion. The potential to release biopeptides was evaluated using the BIOPEP-UWM quantitative criteria including the profile of biological activity, frequency of the occurrence (A)/release (AE) of fragments with an ACE inhibitory or antioxidant activity by selected enzymes, and relative frequency of release of bioactive fragments with a given activity by selected enzymes (W). Salmon collagen and myofibrillar proteins of carp turned out to be the best potential source of the searched peptides-ACE inhibitors and antioxidant peptides. Nonetheless, after digestion, the highest numbers of ACE inhibitors and antioxidant peptides were potentially released from the myofibrillar proteins of salmon and carp. Peptide Ranker Score, Pepsite2, and ADMETlab platform were applied to evaluate peptides' bioactivity potential, their safety and drug-like properties. Among the 63 sequences obtained after the simulated digestion of salmon and carp proteins, 30 were considered potential biopeptides. The amino acid sequences of ACE-inhibiting and antioxidant peptides were predominated by P, G, F, W, R, and L. The predicted high probability of absorption of most analyzed peptides and their low toxicity should be considered as their advantage.
Collapse
Affiliation(s)
- Justyna Borawska-Dziadkiewicz
- Faculty of Food Science, Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Małgorzata Darewicz
- Faculty of Food Science, Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Sylwia Tarczyńska
- Faculty of Food Science, Department of Dairy Science and Quality Management, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Sánchez-López F, Robles-Olvera VJ, Hidalgo-Morales M, Tsopmo A. Angiotensin-I converting enzyme inhibitory activity of Amaranthus hypochondriacus seed protein hydrolysates produced with lactic bacteria and their peptidomic profiles. Food Chem 2021; 363:130320. [PMID: 34146770 DOI: 10.1016/j.foodchem.2021.130320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
The aim of this work was to determine the in vitro antihypertensive activities of lactobacillus (L. plantarum and L. helveticus) prepared amaranth protein hydrolysates, to determine the contribution of zinc, and to identify peptides. Depending on the bacteria species and the duration of the hydrolysis, up to 45.9% inhibition of angiotensin converting enzyme (ACE) was obtained. Size separation of the most active hydrolysates to yield < 1, <3-1, <3, <10-3 and < 10 kDa fractions enhanced ACE inhibition by 2-fold. A mixed mechanism of inhibition is proposed due to low correlation of ACE and zinc chelation. Thirty-six peptides were identified in the fractions using tandem mass spectrometry. A bioinformatic analysis showed the presence of encrypted fragments such as GVSEE or VNVDDPSK with known ACE-inhibitory properties. In conclusion, lactic acid bacteria proteases released peptides from amaranth proteins with ACE-inhibitory properties that were related to the presence of peptides with known or predicted ACE-inhibitor motifs.
Collapse
Affiliation(s)
- Fabiola Sánchez-López
- Tecnológico Nacional de México-Instituto Tecnológico de Veracruz-UNIDA, M.A. de Quevedo #2779, Col. Formando Hogar, Veracruz 91897, Mexico
| | - Víctor J Robles-Olvera
- Tecnológico Nacional de México-Instituto Tecnológico de Veracruz-UNIDA, M.A. de Quevedo #2779, Col. Formando Hogar, Veracruz 91897, Mexico
| | - Madeleine Hidalgo-Morales
- Tecnológico Nacional de México-Instituto Tecnológico de Veracruz-UNIDA, M.A. de Quevedo #2779, Col. Formando Hogar, Veracruz 91897, Mexico
| | - Apollinaire Tsopmo
- Food Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
11
|
Huang Y, Jia F, Zhao J, Hou Y, Hu SQ. Novel ACE Inhibitory Peptides Derived from Yeast Hydrolysates: Screening, Inhibition Mechanisms and Effects on HUVECs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2412-2421. [PMID: 33593053 DOI: 10.1021/acs.jafc.0c06053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The antihypertensive activity of yeast hydrolysate (YH) was confirmed in our previous study. However, the critical peptides in YH and the underlying mechanisms have not been fully elucidated. This study aimed to explore the angiotensin-converting enzyme (ACE) inhibitory peptides in YH and illustrate their molecular and cellular mechanisms. The potential of YH-derived peptides was evaluated by in silico methods, followed by in vitro verification. A new competitive ACE inhibitory peptide, VIPVPFF (V7), with an IC50 value of 10.27 μM, was screened. YH and V7 increased the nitric oxide (NO) levels, upregulated GUCY1A1 gene expression (approximately 15-fold), and functioned in several hypertension-related pathways in human umbilical vein endothelial cells (HUVECs). This study revealed the antihypertensive mechanisms of YH and V7, laying down a theoretical basis for their application.
Collapse
Affiliation(s)
- Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Feng Jia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| |
Collapse
|
12
|
Sarabandi K, Jafari SM. Improving the antioxidant stability of flaxseed peptide fractions during spray drying encapsulation by surfactants: Physicochemical and morphological features. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Sandoval-Sicairos ES, Milán-Noris AK, Luna-Vital DA, Milán-Carrillo J, Montoya-Rodríguez A. Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chem 2020; 343:128394. [PMID: 33097329 DOI: 10.1016/j.foodchem.2020.128394] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/03/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022]
Abstract
Amaranth (Amaranthus hypochondriacus) is an ancestral nutritional grain and good source of bioactive compounds as peptides. In this study, the effect of in vitro simulated gastrointestinal digestion (SGD) of germinated amaranth on the release of antioxidant and anti-inflammatory peptides was evaluated. The germinated amaranth peptides generated during SGD were released after 90 min of incubation with pancreatin and fractioned to F1 (>10 kDa), F2 (3-10 kDa), and F3 (<3 kDa). Among germinated amaranth peptides fractions tested, F2 had the highest antioxidant activity, while F1 and F2 exhibited a high anti-inflammatory response caused by lipopolysaccharide-induced in RAW 264.7 macrophages. A total of 11 peptides sequences were identified in the fractions evaluated, and they exhibit potential biological activity against non-communicable diseases. The findings from this study showed first time report on bioactive peptides, especially anti-inflammatory, from germinated amaranth released by in vitro gastrointestinal digestion.
Collapse
Affiliation(s)
- Eslim Sugey Sandoval-Sicairos
- Laboratorio de Nutracéuticos (18), Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico; Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico
| | - Ada Keila Milán-Noris
- Laboratorio de Nutracéuticos (18), Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico; Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico
| | - Diego Armando Luna-Vital
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Puebla, Vía Atlixcáyotl 2301, CP 72453 Puebla, Mexico
| | - Jorge Milán-Carrillo
- Laboratorio de Nutracéuticos (18), Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico; Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico
| | - Alvaro Montoya-Rodríguez
- Laboratorio de Nutracéuticos (18), Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico; Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Blv. de las Américas y Josefa Ortiz de Domínguez, S/N, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
14
|
Agunloye OM, Oboh G, Bello GT, Oyagbemi AA. Caffeic and chlorogenic acids modulate altered activity of key enzymes linked to hypertension in cyclosporine-induced hypertensive rats. J Basic Clin Physiol Pharmacol 2020; 32:169-177. [PMID: 33001849 DOI: 10.1515/jbcpp-2019-0360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aimed to explore the protective mechanism of caffeic acid (CAA) and chlorogenic acid (CHA) on cyclosporine (CSA) induced hypertensive rats. METHODS Effect of CAA and CHA on diastolic blood pressure (DBP), mean arterial pressure (MAP), angiotensin-converting enzyme (ACE), e-nucleotide triphosphate dephosphorylase (e-NTPDase), 5' nucleotidase and adenosine deaminase (ADA) activity in CSA-induced hypertensive rats were determined. RESULTS CAA and CHA administration stabilized hypertensive effect caused by CSA administration. Also, altered activity of ACE (lung), e-NTPDase, 5' nucleotidase, ADA as well as elevated malondiadehyde (MDA) level was restored in all the treated hypertensive rats in comparison with the untreated hypertensive rats. CONCLUSION Hence, these observed results could underlie some of the mechanisms through which CAA and CHA could offer antihypertensive effect.
Collapse
Affiliation(s)
- Odunayo M Agunloye
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Gbemisola T Bello
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ademola A Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Nardo AE, Suárez S, Quiroga AV, Añón MC. Amaranth as a Source of Antihypertensive Peptides. FRONTIERS IN PLANT SCIENCE 2020; 11:578631. [PMID: 33101347 PMCID: PMC7546275 DOI: 10.3389/fpls.2020.578631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Amaranth is an ancestral crop used by pre-Columbian cultures for 6000 to 8000 years. Its grains have a relevant chemical composition not only from a nutritional point of view but also due to the contribution of components with good techno-functional properties and important potential as bioactive compounds. Numerous studies have shown that amaranth storage proteins possess encrypted sequences that, once released, exhibit different physiological activities. One of the most studied is antihypertensive activity. This review summarizes the progress made over the last years (2008-2020) related to this topic. Studies related to inhibition of different enzymes of the Renin-Angiotensin-Aldosterone system, in particular Angiotensin Converting Enzyme (ACE) and Renin, as well as those referring to potential modulation mechanisms of tissue or local Renin-Angiotensin-Aldosterone system, are analyzed, including in silico, in vitro, in vivo, and ex vivo assays. Furthermore, the potential use of these bioactive peptides or products containing them, in the elaboration of functional food matrices is discussed. Finally, the most relevant conclusions and future requirements in research and development of food products are presented.
Collapse
Affiliation(s)
| | | | | | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas (CIC-PBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata), La Plata, Argentina
| |
Collapse
|
16
|
Castro-Jácome TP, Alcántara-Quintana LE, Tovar-Pérez EG. Optimization of Sorghum Kafirin Extraction Conditions and Identification of Potential Bioactive Peptides. Biores Open Access 2020; 9:198-208. [PMID: 32923174 PMCID: PMC7484892 DOI: 10.1089/biores.2020.0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in extracting kafirins (KAF), the main storage protein from sorghum grain has recently increased due to its gluten-free content and the significant scientific evidence showing the health benefits of the bioactive peptides from cereal grains in human diets. The objectives were to obtain the highest percentage of KAF extraction using amyloglucosidase as pretreatment to increase the extraction yield and predict the bioactive peptides in the KAF. In this study, pretreatments with amyloglucosidase increased the extraction yield of KAF compared with extraction methods using only ethanol and sodium metabisulfite. Two protein fragment sequences were identified from KAF extract and were evaluated for potential bioactive peptide using the BIOPEP-UWM database, which suggest that KAF proteins from white sorghum may be considered as good precursors of dipeptidyl peptidase-inhibitor, angiotensin-converting enzyme inhibitor, antioxidant and hypotensive peptides following chymotrypsin, thermolysin, and subtilisin and their combination. Average scores aligned using PeptideRanker confirmed KAF proteins' potential sources of bioactive peptides with over 5 peptides scored over 0.8. In addition, 31 unexplored peptide sequences that could have biological activity were identified. Our results suggest that KAF can be used in the peptide productions with potential biological activity and beyond.
Collapse
Affiliation(s)
- Tania P. Castro-Jácome
- Instituto Tecnológico de Tepic. Av. Tecnológico No. 2595, Col. Lagos del Country, Tepic, Nayarit, México
| | - Luz E. Alcántara-Quintana
- Catedra CONACyT, Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Av. Niño Artillero No. 130, Zona Universitaria, S.L.P., México
| | - Erik G. Tovar-Pérez
- Catedra CONACyT, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Carretera Chichimequillas s/n, El Marqués, Querétaro, México
| |
Collapse
|
17
|
Mas-Capdevila A, Iglesias-Carres L, Arola-Arnal A, Aragonès G, Muguerza B, Bravo FI. Implication of Opioid Receptors in the Antihypertensive Effect of a Novel Chicken Foot-Derived Peptide. Biomolecules 2020; 10:E992. [PMID: 32630658 PMCID: PMC7408493 DOI: 10.3390/biom10070992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The peptide AVFQHNCQE demonstrated to produce nitric oxide-mediated antihypertensive effect. This study investigates the bioavailability and the opioid-like activity of this peptide after its oral administration. For this purpose, in silico and in vitro approaches were used to study the peptide susceptibility to GI digestion. In addition, AVFQHNCQE absorption was studied both in vitro by using Caco-2 cell monolayers and in vivo evaluating peptide presence in plasma from Wistar rats by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Both in vivo and in vitro experiments demonstrated that peptide AVFQHNCQE was not absorbed. Thus, the potential involvement of opioid receptors in the BP-lowering effect of AVFQHNCQE was studied in the presence of opioid receptors-antagonist Naloxone. No changes in blood pressure were recorded in rats administered Naloxone, demonstrating that AVFQHNCQE antihypertensive effect is mediated through its interaction with opioid receptors. AVFQHNCQE opioid-like activity would clarify the antihypertensive properties of AVFQHNCQE despite its lack of absorption.
Collapse
Affiliation(s)
- Anna Mas-Capdevila
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Lisard Iglesias-Carres
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
- EURECAT-Technology Centre of Catalonia, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.M.-C.); (L.I.-C.); (A.A.-A.); (G.A.); (F.I.B.)
| |
Collapse
|
18
|
Morales D, Miguel M, Garcés-Rimón M. Pseudocereals: a novel source of biologically active peptides. Crit Rev Food Sci Nutr 2020; 61:1537-1544. [PMID: 32406747 DOI: 10.1080/10408398.2020.1761774] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interest in the research about underexploited foods has increased in the last two decades. Pseudocereals have been consumed by the ancient populations for hundreds of years. These plants that do not belong to the family of cereals, but that have properties and uses similar to them, stand out among underexploited foods. Some of the most representative species are quinoa, amaranth, chia and buckwheat. They do not contain gluten but high valued proteins and peptides can be obtained from them, as well as other nutritional and bioactive compounds such as flavonoids, phenolic acids, fatty acids, vitamins and minerals. Anticancer, antioxidant, anti-inflammatory, hypocholesterolemic and antihypertensive properties have been found and postulated for pseudocereals protein derived peptides. These interesting characteristics of pseudocereals are producing an increase of the relevance of these crops. The purpose of this work was to carry out an exhaustive revision of the scientific literature describing the biological activities of peptides and protein hydrolysates obtained from the most widely studied pseudocereals: quinoa, amaranth, chia and buckwheat.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM + CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Miguel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Marta Garcés-Rimón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain.,Grupo de Biotecnología Alimentaria, Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
19
|
Gomes MJC, Lima SLS, Alves NEG, Assis A, Moreira MEC, Toledo RCL, Rosa COB, Teixeira OR, Bassinello PZ, De Mejía EG, Martino HSD. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutr Metab Cardiovasc Dis 2020; 30:141-150. [PMID: 31757569 DOI: 10.1016/j.numecd.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Common beans (Phaseolus vulgaris L.) protein hydrolysate is a source of bioactive peptides with known health benefits. The aim of this study was to evaluate the effect of common bean protein hydrolysate on lipid metabolism and endothelial function in male adult BALB/c mice fed an atherogenic diet for nine weeks. METHODS AND RESULTS Male adult mice were divided into three experimental groups (n = 12) and fed with normal control diet; atherogenic diet and atherogenic diet added with bean protein hydrolysate (700 mg/kg/day) for nine weeks. Food intake, weight gain, lipid profile, Atherogenic Index of Plasma, inflammation biomarkers and endothelial function were evaluated. APH group presented reduced feed intake, weight gain, lipid profile, tumor necrosis factor-α, angiotensin II (94% and 79%, respectively) and increased endothelial nitric oxide synthase (62%). CONCLUSIONS Protein hydrolysate showed hypocholesterolemic activity preventing inflammation and dysfunction of vascular endothelium, in addition to decreasing oxidative stress, indicating an adjuvant effect on reducing atherogenic risk.
Collapse
Affiliation(s)
- Mariana J C Gomes
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Sâmara L S Lima
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Natália E G Alves
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Andressa Assis
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Maria E C Moreira
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil; Faculdade Dinâmica do Vale do Piranga -FADIP, 205 G St, Paraiso, Ponte Nova, Minas Gerais, 35430-302, Brazil
| | - Renata C L Toledo
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Carla O B Rosa
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Olívia R Teixeira
- Embrapa Rice and Bean, Rodovia GO-462, Km 12. Zona Rural, Santo Antônio de Goiás, Goiás, 75375000, Brazil
| | - Priscila Z Bassinello
- Embrapa Rice and Bean, Rodovia GO-462, Km 12. Zona Rural, Santo Antônio de Goiás, Goiás, 75375000, Brazil
| | - Elvira G De Mejía
- Department of Foods Science and Human Nutrition, University of Illinois Urbana-Champaign, 228 ERML, MC-051, 1201 West Gregory Drive, Urbana, IL, 61801, USA
| | - Hércia S D Martino
- Departamento de Nutrição e Saúde da Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil.
| |
Collapse
|
20
|
Identification of renin inhibitors peptides from amaranth proteins by docking protocols. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
21
|
Moyer TB, Heil LR, Kirkpatrick CL, Goldfarb D, Lefever WA, Parsley NC, Wommack AJ, Hicks LM. PepSAVI-MS Reveals a Proline-rich Antimicrobial Peptide in Amaranthus tricolor. JOURNAL OF NATURAL PRODUCTS 2019; 82:2744-2753. [PMID: 31557021 PMCID: PMC6874829 DOI: 10.1021/acs.jnatprod.9b00352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Traditional medicinal plants are a rich source of antimicrobials; however, the bioactive peptide constituents of most ethnobotanical species remain largely unexplored. Herein, PepSAVI-MS, a mass spectrometry-based peptidomics pipeline, was implemented for antimicrobial peptide (AMP) discovery in the medicinal plant Amaranthus tricolor. This investigation revealed a novel 1.7 kDa AMP with strong activity against Escherichia coli ATCC 25922, deemed Atr-AMP1. Initial efforts to determine the sequence of Atr-AMP1 utilized chemical derivatization and enzymatic digestion to provide information about specific residues and post-translational modifications. EThcD (electron-transfer/higher-energy collision dissociation) produced extensive backbone fragmentation and facilitated de novo sequencing, the results of which were consistent with orthogonal characterization experiments. Additionally, multistage HCD (higher-energy collisional dissociation) facilitated discrimination between isobaric leucine and isoleucine. These results revealed a positively charged proline-rich peptide present in a heterogeneous population of multiple peptidoforms, possessing several post-translational modifications including a disulfide bond, methionine oxidation, and proline hydroxylation. Additional bioactivity screening of a simplified fraction containing Atr-AMP1 revealed activity against Staphylococcus aureus LAC, demonstrating activity against both a Gram-negative and a Gram-positive bacterial species unlike many known short chain proline-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Tessa B. Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Lilian R. Heil
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Christine L. Kirkpatrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - William A. Lefever
- Department of Chemistry, High Point University, High Point, North Carolina United States
| | - Nicole C. Parsley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, North Carolina United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina United States
| |
Collapse
|
22
|
Suárez S, Aphalo P, Rinaldi G, Añón MC, Quiroga A. Effect of amaranth proteins on the RAS system. In vitro, in vivo and ex vivo assays. Food Chem 2019; 308:125601. [PMID: 31670190 DOI: 10.1016/j.foodchem.2019.125601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/26/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
The aim of this work was to analyse the hypotensive effect of amaranth protein/peptides on spontaneously hypertensive rats (SHR). The mechanism of action of these peptides was studied in vivo and ex vivo. We also tested the effect of protection against gastrointestinal digestion (GID) exerted by an O:W emulsion on the integrity of the antihypertensive peptides. All samples tested produced a decrease in blood pressure (SBP). The animals treated with emulsion (GE) and emulsion + peptide (GE+VIKP) showed the most significant reduction in the SBP (42 ± 2 mmHg and 35 ± 2 mmHg, respectively). The results presented suggest that after GID, a variety of peptides with biological activities were released or were resistant to this process. These peptides play a role in the regulation of the SBP by acting on plasma ACE, plasma renin and the vascular system. These results support the use of amaranth protein/peptides in the elaboration of functional foods for hypertensive individuals.
Collapse
Affiliation(s)
- Santiago Suárez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116 - 1900, La Plata, Buenos Aires, Argentina (Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, CIC)
| | - Paula Aphalo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116 - 1900, La Plata, Buenos Aires, Argentina (Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, CIC)
| | - Gustavo Rinaldi
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 - 1900, La Plata, Buenos Aires, Argentina.
| | - Maria Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116 - 1900, La Plata, Buenos Aires, Argentina (Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, CIC).
| | - Alejandra Quiroga
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116 - 1900, La Plata, Buenos Aires, Argentina (Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, CIC)
| |
Collapse
|
23
|
Shih YH, Chen FA, Wang LF, Hsu JL. Discovery and Study of Novel Antihypertensive Peptides Derived from Cassia obtusifolia Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7810-7820. [PMID: 31264418 DOI: 10.1021/acs.jafc.9b01922] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antihypertensive peptides were screened from thermolysin hydrolysate of Cassia obtusifolia seeds (Jue Ming Zi) using two independent bioassay-guided fractionations, reversed-phase high-performance liquid chromatography (RP-HPLC), and strong cation-exchange (SCX) liquid chromatography coupled with angiotensin I-converting enzyme (ACE) inhibitory assay. The identical peptide in the most active RP-HPLC and SCX fractions was simultaneously de novo sequenced as FHAPWK with high-resolution mass spectrometry. FHAPWK (IC50 = 16.83 ± 0.90 μM) was further identified as a competitive inhibitor and a true inhibitor on ACE by a Lineweaver-Burk plot and preincubation experiment, respectively. The molecular docking simulation indicated that FHAPWK could interact with several key residues of the ACE active site, which is consistent with the result of the inhibitory kinetics study. Moreover, its antihypertensive effect was demonstrated using the animal model of spontaneously hypertensive rats. It is concluded that FHAPWK is the first reported antihypertensive peptide derived from thermolysin hydrolysate of C. obtusifolia seeds.
Collapse
Affiliation(s)
| | - Fu-An Chen
- Department of Pharmacy and Master Program , Tajen University , Pingtung , Taiwan
| | - Li-Fei Wang
- Hospitality and Tourism Research Center , National Kaohsiung University of Hospitality and Tourism , Kaohsiung City 81271 , Taiwan
| | | |
Collapse
|
24
|
Amaranth proteins emulsions as delivery system of Angiotensin-I converting enzyme inhibitory peptides. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Deng X, Sun L, Lai X, Xiang L, Li Q, Zhang W, Zhang L, Sun S. Tea Polypeptide Ameliorates Diabetic Nephropathy through RAGE and NF-κB Signaling Pathway in Type 2 Diabetes Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11957-11967. [PMID: 30354109 DOI: 10.1021/acs.jafc.8b04819] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetic nephropathy (DN) is a major complication of type 2 diabetes (T2D), which is a key determinant of mortality in diabetic patients. Developing new therapeutic drugs which can not only control T2D but also prevent the development of DN is of great significance. We studied the therapeutic potential of Cuiyu tea polypeptides (TP), natural bioactive peptides isolated from a type of green tea, against DN and its underlying molecular mechanisms. TP (1000 mg/kg bw/day, p.o.) administration for 5 weeks significantly reduced the fasting blood glucose by 52.04 ± 9.23% in the high fat diet/streptozocin (HFD/STZ)-induced (30 mg/kg bw) diabetic mice. Compared to the model group, the serum insulin level of the TP group was decreased by 25.54 ± 6.06%, while at the same time, the HOMA-IR, HOMA-IS, and lipid levels showed different degrees of recovery ( p < 0.05). Moreover, in TP group mice the total urinary protein, creatinine, and urine nitrogen, all which can reflect the damage degree of the glomerular filtration function to a certain extent, dramatically declined by 34.51 ± 2.65%, 42.24 ± 15.24%, and 80.30 ± 6.01% compared to the model group, respectively. Mechanistically, TP stimulated the polyol PKCζ/JNK/NF-κB/TNF-α/iNOS and AGEs/RAGE/TGF-β1 pathways, upregulated the expression of podocin in the glomeruli, and decreased the release of pro-inflammatory cytokines. These results strongly indicate the therapeutic potential of TP against DN.
Collapse
Affiliation(s)
- Xuming Deng
- Tea Research Institute , Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization , Dafeng Road No. 6 , Tianhe District, Guangzhou 510640 , China
- Department of Tea Science, College of Horticulture , South China Agricultural University , Guangzhou 510641 , China
| | - Lingli Sun
- Tea Research Institute , Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization , Dafeng Road No. 6 , Tianhe District, Guangzhou 510640 , China
| | - Xingfei Lai
- Tea Research Institute , Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization , Dafeng Road No. 6 , Tianhe District, Guangzhou 510640 , China
| | - Limin Xiang
- Tea Research Institute , Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization , Dafeng Road No. 6 , Tianhe District, Guangzhou 510640 , China
| | - Qiuhua Li
- Tea Research Institute , Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization , Dafeng Road No. 6 , Tianhe District, Guangzhou 510640 , China
| | - Wenji Zhang
- Tea Research Institute , Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization , Dafeng Road No. 6 , Tianhe District, Guangzhou 510640 , China
| | - Lingzhi Zhang
- Department of Tea Science, College of Horticulture , South China Agricultural University , Guangzhou 510641 , China
| | - Shili Sun
- Tea Research Institute , Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization , Dafeng Road No. 6 , Tianhe District, Guangzhou 510640 , China
| |
Collapse
|
26
|
Tovar-Pérez EG, Lugo-Radillo A, Aguilera-Aguirre S. Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity, and characterization. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1514625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Erik G. Tovar-Pérez
- CONACYT – Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Agustin Lugo-Radillo
- CONACYT – Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | - Selene Aguilera-Aguirre
- CONACYT – Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| |
Collapse
|
27
|
Vera Hernández FP, Martínez Núñez M, Ruiz Rivas M, Vázquez Portillo RE, Bibbins Martínez MD, Luna Suárez S, Rosas Cárdenas FDF. Reference genes for RT-qPCR normalisation in different tissues, developmental stages and stress conditions of amaranth. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:713-721. [PMID: 29603549 DOI: 10.1111/plb.12725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Studies of gene expression are very important for the identification of genes that participate in different biological processes. Currently, reverse transcription quantitative real-time PCR (RT-qPCR) is a high-throughput, sensitive and widely used method for gene expression analysis. Nevertheless, RT-qPCR requires precise normalisation of data to avoid the misinterpretation of experimental data. In this sense, the selection of reference genes is critical for gene expression analysis. At this time, several studies focus on the selection of reference genes in several species. However, the identification and validation of reference genes for the normalisation of RT-qPCR have not been described in amaranth. A set of seven housekeeping genes were analysed using RT-qPCR, to determine the most stable reference genes in amaranth for normalisation of gene expression analysis. Transcript stability and gene expression level of candidate reference genes were analysed in different tissues, at different developmental stages and under different types of stress. The data were compared using the geNorm, NormFinder and Bestkeeper statistical methods. The reference genes optimum for normalisation of data varied with respect to treatment. The results indicate that AhyMDH, AhyGAPDH, AhyEF-1α and AhyACT would be optimum for accurate normalisation of experimental data, when all treatment are analysed in the same experiment. This study presents the most stable reference genes for normalisation of gene expression analysis in amaranth, which will contribute significantly to future gene studies of this species.
Collapse
Affiliation(s)
- F P Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Martínez Núñez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M Ruiz Rivas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - R E Vázquez Portillo
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - M D Bibbins Martínez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - S Luna Suárez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| | - F de F Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, México
| |
Collapse
|
28
|
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2018; 59:1949-1975. [DOI: 10.1080/10408398.2018.1434480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Domancar Orona-Tamayo
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - María Elena Valverde
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| |
Collapse
|
29
|
Martin M, Deussen A. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Crit Rev Food Sci Nutr 2017; 59:1264-1283. [PMID: 29244531 DOI: 10.1080/10408398.2017.1402750] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death. The underlying pathophysiology is largely contributed by an overactivation of the renin-angiotensin-aldosterone-system (RAAS). Herein, angiotensin II (AngII) is a key mediator not only in blood pressure control and vascular tone regulation, but also involved in inflammation, endothelial dysfunction, atherosclerosis, hypertension and congestive heart failure. Since more than three decades suppression of AngII generation by inhibition of the angiotensin-converting enzyme (ACE) or blockade of the AngII-receptor has shown clinical benefit by reducing hypertension, atherosclerosis and other inflammation-associated cardiovascular diseases. Besides pharmaceutical ACE-inhibitors some natural peptides derived from food proteins reduce in vitro ACE activity. Several animal studies and a few human clinical trials have shown antihypertensive effects of such peptides, which might be attractive as food additives to prevent age-related RAAS activation. However, their inhibitory potency on in vitro ACE activity does not always correlate with an antihypertensive impact. While some peptides with high inhibitory activity on ACE-activity in vitro show no antihypertensive effect in vivo, other peptides with only a moderate ACE inhibitory activity in vitro cause such effects. The explanation for this conflicting phenomenon between inhibitory activity and antihypertensive effect remains unclear to date. This review shall critically address the effects of natural peptides derived from different food proteins on the cardiovascular system and the possible underlying mechanisms. A central aspect will be to point to conceptual gaps in the current understanding of the action of these peptides with respect to in vivo blood pressure lowering effects.
Collapse
Affiliation(s)
- Melanie Martin
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| | - Andreas Deussen
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| |
Collapse
|
30
|
Marya, Khan H, Nabavi SM, Habtemariam S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci 2017; 193:153-158. [PMID: 29055800 DOI: 10.1016/j.lfs.2017.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic disorder in which the glucose level in blood exceeds beyond the normal level. Persistent hyperglycemia leads to diabetes late complication and obviously account for a large number of morbidity and mortality worldwide. Numerous therapeutic options are available for the treatment of diabetes including insulin for type I and oral tablets for type II, but its effective management is still a dream. To date, several options are under investigation in various research laboratories for efficacious and safer agents. Of them, peptides are currently amongst the most widely investigated potential therapeutic agents whose design and optimal uses are under development. A number of natural and synthetic peptides have so far been found with outstanding antidiabetic effect mediated through diverse mechanisms. The applications of new emerging techniques and drug delivery systems further offer opportunities to achieve the desired target outcomes. Some outstanding peptides in preclinical and clinical studies with better efficacy and safety profile have already been identified. Further detail studies on these peptides may therefore lead to significant clinically useful antidiabetic agents.
Collapse
Affiliation(s)
- Marya
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
31
|
Kerpes R, Fischer S, Becker T. The production of gluten-free beer: Degradation of hordeins during malting and brewing and the application of modern process technology focusing on endogenous malt peptidases. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Quiroga AV, Aphalo P, Nardo AE, Añón MC. In Vitro Modulation of Renin-Angiotensin System Enzymes by Amaranth (Amaranthus hypochondriacus) Protein-Derived Peptides: Alternative Mechanisms Different from ACE Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7415-7423. [PMID: 28805378 DOI: 10.1021/acs.jafc.7b02240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Among the factors affecting the development of cardiovascular diseases, hypertension is one of the most important. Research done on amaranth proteins has demonstrated their hypotensive capacity in vivo and in vitro; nevertheless, the mechanism underlying this effect remains unclear. The aim of this study was to analyze in vitro the inhibition of peptides derived from an amaranth hydrolysate (AHH) on other RAS enzymes other than ACE. The chymase and renin activities were studied. AHH was not able to inhibit chymase activity, although a dose-response effect was found on renin activity (IC50 0.6 mg/mL). To provide an approach to the renin inhibition mechanism, we analyzed AHH renin inhibition kinetics and performed a structural characterization of the peptides involved in the effect in terms of molecular size and hydrophobicity. Results suggest that amaranth peptides exhibit renin competitive inhibition behavior. Renin inhibition potency was directly related to peptide hydrophobicity. RP-HPLC separation of AHH and subsequent analysis of the peptide sequences showed 6 peptides belonging to 11S globulin (that can be grouped into 3 families) that would be responsible for renin inhibition. These results demonstrate that Amaranthus hypochondriacus seeds are an adequate source of peptides with renin inhibitory properties that could be used in functional food formulations.
Collapse
Affiliation(s)
- Alejandra V Quiroga
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata) y Comisión de Investigaciones Científicas (CIC-PBA), Universidad Nacional de La Plata (UNLP) , Calle 47 y 116, 1900 La Plata, Buenos Aires, Argentina
- Cátedra de Química General e Inorgánica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata , Calle 60 y 119, 1900 La Plata, Buenos Aires, Argentina
| | - Paula Aphalo
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata) y Comisión de Investigaciones Científicas (CIC-PBA), Universidad Nacional de La Plata (UNLP) , Calle 47 y 116, 1900 La Plata, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas, Ministerio de Ciencia, Tecnología e Innovación , Calle 526 e/10 y 11, 1900 La Plata, Buenos Aires, Argentina
| | - Agustina E Nardo
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata) y Comisión de Investigaciones Científicas (CIC-PBA), Universidad Nacional de La Plata (UNLP) , Calle 47 y 116, 1900 La Plata, Buenos Aires, Argentina
| | - María C Añón
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT La Plata) y Comisión de Investigaciones Científicas (CIC-PBA), Universidad Nacional de La Plata (UNLP) , Calle 47 y 116, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
33
|
Ko SC, Kang MC, Kang N, Kim HS, Lee SH, Ahn G, Jung WK, Jeon YJ. Effect of angiotensin I-converting enzyme (ACE) inhibition and nitric oxide (NO) production of 6,6′-bieckol, a marine algal polyphenol and its anti-hypertensive effect in spontaneously hypertensive rats. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Saleh ASM, Zhang Q, Shen Q. Recent Research in Antihypertensive Activity of Food Protein-derived Hydrolyzates and Peptides. Crit Rev Food Sci Nutr 2017; 56:760-87. [PMID: 25036695 DOI: 10.1080/10408398.2012.724478] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Year to year obesity prevalence, reduced physical activities, bad habits/or stressful lifestyle, and other environmental and physiological impacts lead to increase in diseases such as coronary heart disease, stroke, cancer, diabetes, and hypertension worldwide. Hypertension is considered as one of the most common serious chronic diseases; however, discovery of medications with high efficacy and without side effects for treatment of patients remains a challenge for scientists. Recent trends in functional foods have evidenced that food bioactive proteins play a major role in the concepts of illness and curing; therefore, nutritionists, biomedical scientists, and food scientists are working together to develop improved systems for the discovery of peptides with increased potency and therapeutic benefits. This review presents a recent research carried out to date for the purpose of isolation and identification of bioactive hydrolyzates and peptides with angiotensin I converting enzyme inhibitory activity and antihypertensive effect from animal, marine, microbial, and plant food proteins. Effects of food processing and hydrolyzation conditions as well as some other impacts on formation, activity, and stability of these hydrolyzates and peptides are also presented.
Collapse
Affiliation(s)
- Ahmed S M Saleh
- a College of Food Science and Nutritional Engineering, China Agricultural University , Beijing , China.,b Department of Food Science and Technology , Faculty of Agriculture, Assiut University , Assiut , Egypt
| | - Qing Zhang
- a College of Food Science and Nutritional Engineering, China Agricultural University , Beijing , China
| | - Qun Shen
- a College of Food Science and Nutritional Engineering, China Agricultural University , Beijing , China
| |
Collapse
|
35
|
López-Sánchez J, Ponce-Alquicira E, Pedroza-Islas R, de la Peña-Díaz A, Soriano-Santos J. Effects of heat and pH treatments and in vitro digestion on the biological activity of protein hydrolysates of Amaranthus hypochondriacus L. grain. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:4298-4307. [PMID: 28115770 PMCID: PMC5223265 DOI: 10.1007/s13197-016-2428-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022]
Abstract
The aim of this work was to assess the effects of temperature (T), time (t) and pH treatments and an in vitro digestion on the stability of the angiotensin I-converting-enzyme-inhibitory activity (ACEIA) and antithrombotic activity (ATA; assessed as inhibition of platelet aggregation) of selected protein hydrolysates of amaranth named Alb1H103 and GloH88 and GluH24 with dipeptidyl peptidase IV inhibitory activity (DPPIVIA). Heat treatment (40-100 °C) for 1 h showed no significant differences among ACEIA, DPPIVIA and ATA of the heated hydrolysates at pH 4 and 7. There was no statistically significant loss of any bioactivity under heat treatment for 3 h at pH 4.0. Alb1H103 and GluH24 maintained the inhibitory activity of ACE and ATA at pH 7.0 for 3 h, whereas GloH88 maintained ACEIA and ATA for 2.0 h at pH 7.0. The pH effect on hydrolysates bioactivity was assessed in the range of 2.0-12.0. This was negligible on ACEIA, ATA and DPPIVIA. The in vitro digestion was performed using pepsin, trypsin (T) and α-chymotrypsin (C). A previous treatment of hydrolysates with pepsin improved the proteolytic activities of T and C. The hydrolysates kept at 100 °C for 1 h at pH 4.0, showed a significant increase in bioactivity. Conversely, a treatment at pH 7.0 showed no significant difference (p < 0.05) in the hydrolysates bioactivities after their digestion. Thus, biological activity of hydrolysates may be preserved or enhanced, depending on their processing conditions.
Collapse
Affiliation(s)
- J. López-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Campus Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Ap. P. 55-535, Deleg. Iztapalapa, 09340 Mexico City, Mexico
| | - E. Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Campus Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Ap. P. 55-535, Deleg. Iztapalapa, 09340 Mexico City, Mexico
| | - R. Pedroza-Islas
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, 01219 Mexico City, Mexico
| | - A. de la Peña-Díaz
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
| | - J. Soriano-Santos
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Campus Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Ap. P. 55-535, Deleg. Iztapalapa, 09340 Mexico City, Mexico
| |
Collapse
|
36
|
Moronta J, Smaldini PL, Fossati CA, Añon MC, Docena GH. The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
37
|
|
38
|
Montoya-Rodríguez A, de Mejía EG. Pure peptides from amaranth (Amaranthus hypochondriacus) proteins inhibit LOX-1 receptor and cellular markers associated with atherosclerosis development in vitro. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Feng J, Dai Z, Zhang Y, Meng L, Ye J, Ma X. Alteration of Gene Expression Profile in Kidney of Spontaneously Hypertensive Rats Treated with Protein Hydrolysate of Blue Mussel (Mytilus edulis) by DNA Microarray Analysis. PLoS One 2015; 10:e0142016. [PMID: 26517713 PMCID: PMC4627735 DOI: 10.1371/journal.pone.0142016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Marine organisms are rich sources of bioactive components, which are often reported to have antihypertensive effects. However, the underlying mechanisms have yet to be fully identified. The aim of this study was to investigate the antihypertensive effect of enzymatic hydrolysis of blue mussel protein (HBMP) in rats. Peptides with in vitro ACE inhibitory activity were purified from HBMP by ultrafiltration, gel filtration chromatography and reversed-phase high performance liquid chromatography. And the amino acid sequences of isolated peptides were estimated to be Val-Trp, Leu-Gly-Trp, and Met-Val-Trp-Thr. To study its in vivo action, spontaneously hypertensive rats (SHRs) were orally administration with high- or low-dose of HBMP for 28 days. Major components of the renin-angiotensin (RAS) system in serum of SHRs from different groups were analyzed, and gene expression profiling were performed in the kidney of SHRs, using the Whole Rat Genome Oligonucleotide Microarray. Results indicated although genes involved in RAS system were not significantly altered, those related to blood coagulation system, cytokine and growth factor, and fatty acids metabolism were remarkablely changed. Several genes which were seldom reported to be implicated in pathogenesis of hypertension also showed significant expression alterations after oral administration of HBMP. These data provided valuable information for our understanding of the molecular mechanisms that underlie the potential antihypertensive activities of HBMP, and will contribute towards increased value-added utilization of blue mussel protein.
Collapse
Affiliation(s)
- Junli Feng
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Zhiyuan Dai
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- * E-mail:
| | - Yanping Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lu Meng
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jian Ye
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Xuting Ma
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
41
|
Minkiewicz P, Darewicz M, Iwaniak A, Sokołowska J, Starowicz P, Bucholska J, Hrynkiewicz M. Common Amino Acid Subsequences in a Universal Proteome--Relevance for Food Science. Int J Mol Sci 2015; 16:20748-73. [PMID: 26340620 PMCID: PMC4613229 DOI: 10.3390/ijms160920748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 02/06/2023] Open
Abstract
A common subsequence is a fragment of the amino acid chain that occurs in more than one protein. Common subsequences may be an object of interest for food scientists as biologically active peptides, epitopes, and/or protein markers that are used in comparative proteomics. An individual bioactive fragment, in particular the shortest fragment containing two or three amino acid residues, may occur in many protein sequences. An individual linear epitope may also be present in multiple sequences of precursor proteins. Although recent recommendations for prediction of allergenicity and cross-reactivity include not only sequence identity, but also similarities in secondary and tertiary structures surrounding the common fragment, local sequence identity may be used to screen protein sequence databases for potential allergens in silico. The main weakness of the screening process is that it overlooks allergens and cross-reactivity cases without identical fragments corresponding to linear epitopes. A single peptide may also serve as a marker of a group of allergens that belong to the same family and, possibly, reveal cross-reactivity. This review article discusses the benefits for food scientists that follow from the common subsequences concept.
Collapse
Affiliation(s)
- Piotr Minkiewicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Małgorzata Darewicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Anna Iwaniak
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Jolanta Sokołowska
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Piotr Starowicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Justyna Bucholska
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| | - Monika Hrynkiewicz
- Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, Olsztyn-Kortowo 10-726, Poland.
| |
Collapse
|
42
|
Gonzalez C, Rosas-Hernandez H, Jurado-manzano B, Ramirez-Lee MA, Salazar-Garcia S, Martinez-Cuevas PP, Velarde-salcedo AJ, Morales-Loredo H, Espinosa-Tanguma R, Ali SF, Rubio R. The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacol Sin 2015; 36:572-86. [PMID: 25891087 DOI: 10.1038/aps.2014.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/26/2014] [Indexed: 01/17/2023]
Abstract
AIM Prolactin family hormones include growth hormone, placental lactogen and prolactin, which are able to regulate angiogenesis via NO and prostaglandins. However, their effects on vascular tone are not fully understood. The aim of this study was to evaluate the effects of prolactin family hormones on rat vascular tone in vitro. METHODS Aortic rings were prepared from adult male rats and precontracted with phenylephrine, then treated with the hormones and drugs. The tension was measured with isometric force displacement transducer connected to a polygraph. NO production and prostacyclin release in physiological solution was determined. Cultured rat aortic endothelial cells (RAECs) were treated with the hormones and drugs, and the phosphorylation of eNOS at serine 1177 was assessed using Western bolt analysis. RESULTS Administration of growth hormone or placental lactogen (0.01-100 nmol/L) induced endothelium-dependent vasodilation. Both the hormones significantly increased the phosphorylation of eNOS in RAECs and NO level in physiological solution. Preincubation with L-NAME blocked growth hormone- or placental lactogen-induced vasodilation and NO production. Preincubation with an antibody against growth hormone receptors blocked growth hormone- and placental lactogen-induced vasodilation. Addition of a single dose of prolactin (0.01 nmol/L) induced sustained vessel relaxation, whereas multiple doses of prolactin induced a biphasic contraction-relaxation effect. The vascular effects of prolactin depended on endothelium. Prolactin significantly increased the level of prostacyclin I2 in physiological solution. Preincubation with indomethacin or an antibody against prolactin receptors blocked prolactin-induced vasodilation. CONCLUSION The prolactin family hormones regulate rat vascular tone, selectively promoting either relaxation or contraction of vascular smooth muscle via activation of either growth hormone receptors or prolactin receptors within the endothelium.
Collapse
|
43
|
Choi JH, Kim KT, Kim SM. Biofunctional properties of enzymatic squid meat hydrolysate. Prev Nutr Food Sci 2015; 20:67-72. [PMID: 25866752 PMCID: PMC4391543 DOI: 10.3746/pnf.2015.20.1.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/11/2015] [Indexed: 11/29/2022] Open
Abstract
Squid is one of the most important commercial fishes in the world and is mainly utilized or consumed as sliced raw fish or as processed products. The biofunctional activities of enzymatic squid meat hydrolysate were determined to develop value-added products. Enzymatic squid hydrolysate manufactured by Alcalase effectively quenched 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and hydrogen peroxide radical with IC50 values of 311, 3,410, and 111.5 μg/mL, respectively. Angiotensin I-converting enzyme inhibitory activity of squid hydrolysate was strong with an IC50 value of 145.1 μg/mL, while tyrosinase inhibitory activity with an IC50 value of 4.72 mg/mL was moderately low. Overall, squid meat hydrolysate can be used in food or cosmetic industries as a bioactive ingredient and possibly be used in the manufacture of seasoning, bread, noodle, or cosmetics.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea
| | - Kyung-Tae Kim
- Institute of Drug Research & Development, Chungnam National University, Daejeon 305-764, Korea
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea
| |
Collapse
|
44
|
Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. Int J Mol Sci 2015; 16:4150-60. [PMID: 25690031 PMCID: PMC4346949 DOI: 10.3390/ijms16024150] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/18/2014] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect.
Collapse
|
45
|
Montoya-Rodríguez A, Gómez-Favela MA, Reyes-Moreno C, Milán-Carrillo J, González de Mejía E. Identification of Bioactive Peptide Sequences from Amaranth (Amaranthus hypochondriacus) Seed Proteins and Their Potential Role in the Prevention of Chronic Diseases. Compr Rev Food Sci Food Saf 2015; 14:139-158. [DOI: 10.1111/1541-4337.12125] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Alvaro Montoya-Rodríguez
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS; Ciudad Univ; AP 1354, CP 80000 Culiacán Sinaloa México
- Dept. of Food Science and Human Nutrition; Univ. of Illinois at Urbana-Champaign; IL 61801 U.S.A
| | - Mario A. Gómez-Favela
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS; Ciudad Univ; AP 1354, CP 80000 Culiacán Sinaloa México
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS; Ciudad Univ; AP 1354, CP 80000 Culiacán Sinaloa México
| | - Jorge Milán-Carrillo
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS; Ciudad Univ; AP 1354, CP 80000 Culiacán Sinaloa México
| | - Elvira González de Mejía
- Dept. of Food Science and Human Nutrition; Univ. of Illinois at Urbana-Champaign; IL 61801 U.S.A
| |
Collapse
|
46
|
Gonzalez C, Rosas-Hernandez H, Ramirez-Lee MA, Salazar-García S, Ali SF. Role of silver nanoparticles (AgNPs) on the cardiovascular system. Arch Toxicol 2014; 90:493-511. [DOI: 10.1007/s00204-014-1447-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/17/2014] [Indexed: 01/13/2023]
|
47
|
Montoya-Rodríguez A, Milán-Carrillo J, Dia VP, Reyes-Moreno C, González de Mejía E. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Sci 2014; 12:30. [PMID: 24891839 PMCID: PMC4041052 DOI: 10.1186/1477-5956-12-30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Atherosclerosis is considered a progressive disease that affects arteries that bring blood to the heart, to the brain and to the lower end. It derives from endothelial dysfunction and inflammation, which play an important role in the thrombotic complications of atherosclerosis. Cardiovascular disease is the leading cause of death around the world and one factor that can contribute to its progression and prevention is diet. Our previous study found that amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Furthermore, extrusion improved the anti-inflammatory effect of amaranth protein hydrolysates in both cell lines, probably attributed to the production of bioactive peptides during processing. Therefore, the objective of this study was to compare the anti-atherosclerotic potential of pepsin-pancreatin hydrolysates from unprocessed and extruded amaranth in THP-1 lipopolysaccharide-induced human macrophages and suggest the mechanism of action. RESULTS Unprocessed amaranth hydrolysate (UAH) and extruded amaranth hydrolysate (EAH) showed a significant reduction in the expression of interleukin-4 (IL-4) (69% and 100%, respectively), interleukin-6 (IL-6) (64% and 52%, respectively), interleukin-22 (IL-22) (55% and 70%, respectively). Likewise, UAH and EAH showed a reduction in the expression of monocyte-chemo attractant protein-1 (MCP-1) (35% and 42%, respectively), transferrin receptor-1 (TfR-1) (48% and 61%, respectively), granulocyte-macrophage colony-stimulating factor (GM-CSF) (59% and 63%, respectively), and tumor necrosis factor-α (TNF-α) (60% and 63%, respectively). Also, EAH reduced the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (27%), intracellular adhesion molecule-1 (ICAM-1) (28%) and matrix metalloproteinase-9 (MMP-9) (19%), important molecular markers in the atherosclerosis pathway. EAH, led to a reduction of 58, 52 and 79% for LOX-1, ICAM-1 and MMP-9, respectively, by confocal microscopy. CONCLUSIONS Extruded amaranth hydrolysate showed potential anti-atherosclerotic effect in LPS-induced THP-1 human macrophage-like cells by reducing the expression of proteins associated with LOX-1 signaling pathway.
Collapse
Affiliation(s)
- Alvaro Montoya-Rodríguez
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS, Ciudad Universitaria, AP 1354, Culiacán, Sinaloa CP 80000, México
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228 ERML, MC-051, 1201 West, Gregory Drive, Urbana, IL 61801, USA
| | - Jorge Milán-Carrillo
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS, Ciudad Universitaria, AP 1354, Culiacán, Sinaloa CP 80000, México
| | - Vermont P Dia
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228 ERML, MC-051, 1201 West, Gregory Drive, Urbana, IL 61801, USA
| | - Cuauhtémoc Reyes-Moreno
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS, Ciudad Universitaria, AP 1354, Culiacán, Sinaloa CP 80000, México
| | - Elvira González de Mejía
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228 ERML, MC-051, 1201 West, Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Udenigwe CC, Mohan A. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Montoya-Rodríguez A, de Mejía EG, Dia VP, Reyes-Moreno C, Milán-Carrillo J. Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Mol Nutr Food Res 2014; 58:1028-41. [PMID: 24431078 DOI: 10.1002/mnfr.201300764] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 11/08/2022]
Abstract
SCOPE The objective was to compare the anti-inflammatory potential of unprocessed and extruded amaranth pepsin/pancreatin hydrolysates in LPS-induced human THP-1 macrophages-like and mouse RAW 264.7 macrophages focusing on their anti-inflammatory mechanism of action related to NF-κB signaling pathway. METHODS AND RESULTS Amaranth hydrolysates were characterized by MS-MS and tested for anti-inflammatory effects on human and mouse macrophages. Peptides found in extruded amaranth hydrolysates displayed antioxidant capacity, angiotensin converting enzyme-inhibitor activity, and dipeptidyl peptidase-IV inhibitor activity. Gly-Pro-Arg peptide was present and reported as antithrombotic. Extruded amaranth hydrolysates (1 mg/mL) significantly reduced tumor necrosis factor alpha secretion in THP-1 and RAW 264.7 cells by 36.5 and 33.5%, respectively; with concomitant reduction in PGE2 (15.4 and 31.4%), and COX-2 (38.1 and 67.6%), respectively. Phosphorylation of IKK-α was significantly reduced by 52.5 and 88.2% leading to reduced phosphorylation of IκB-α (86.1 and 66.2%), respectively; resulting in a reduction in the expression of p65 NF-κB subunits in the nucleus by 64.2% for THP-1 and 70.7% for RAW 264.7 cells. CONCLUSION Amaranth hydrolysates inhibited LPS-induced inflammation in human and mouse macrophages by preventing activation of NF-κB signaling. Extrusion improved anti-inflammatory effect of amaranth hydrolysates in both cells, which might be attributed to the production of bioactive peptides during processing.
Collapse
Affiliation(s)
- Alvaro Montoya-Rodríguez
- Programa Regional del Noroeste para el Doctorado en Biotecnología, FCQB-UAS, Ciudad Universitaria, Culiacán, Sinaloa, México; Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, USA
| | | | | | | | | |
Collapse
|
50
|
Estrada-Salas PA, Montero-Morán GM, Martínez-Cuevas PP, González C, Barba de la Rosa AP. Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:427-433. [PMID: 24369818 DOI: 10.1021/jf404539y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Canary grass is used as traditional food for diabetes and hypertension treatment. The aim of this work is to characterize the biological activity of encrypted peptides released after gastrointestinal digestion of canary seed proteins. Canary peptides showed 43.5% inhibition of dipeptidyl peptidase IV (DPPIV) and 73.5% inhibition of angiotensin-converting enzyme (ACE) activity. An isolated perfused rat heart system was used to evaluate the canary seed vasoactive effect. Nitric oxide (NO), a major vasodilator agent, was evaluated in the venous effluent from isolated perfused rat heart. Canary seed peptides (1 μg/mL) were able to induce the production of NO (12.24 μM) in amounts similar to those induced by captopril (CPT) and bradykinin (BK). These results show that encrypted peptides in canary seed have inhibitory activity against DPPIV and ACE, enzymes that are targets for diabetes and hypertension treatments.
Collapse
Affiliation(s)
- Patricia A Estrada-Salas
- IPICyT, Instituto Potosino de Investigación Cientı́fica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a sección, 78216 San Luis Potosı́, S.L.P., Mexico
| | | | | | | | | |
Collapse
|