1
|
Juengling F, Wuest F, Schirrmacher R, Abele J, Thiel A, Soucy JP, Camicioli R, Garibotto V. PET Imaging in Dementia: Mini-Review and Canadian Perspective for Clinical Use. Can J Neurol Sci 2025; 52:26-38. [PMID: 38433571 DOI: 10.1017/cjn.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.
Collapse
Affiliation(s)
- Freimut Juengling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Abele
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Garibotto
- Diagnostic Department, Nuclear Medicine and Molecular Imaging Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Hadzi-Petrushev N, Stojchevski R, Jakimovska A, Stamenkovska M, Josifovska S, Stamatoski A, Sazdova I, Sopi R, Kamkin A, Gagov H, Mladenov M, Avtanski D. GLUT5-overexpression-related tumorigenic implications. Mol Med 2024; 30:114. [PMID: 39107723 PMCID: PMC11304774 DOI: 10.1186/s10020-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Anastasija Jakimovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Slavica Josifovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Aleksandar Stamatoski
- Faculty of Dental Medicine, University Clinic for Maxillofacial Surgery in Skopje, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, 10 000, Kosovo
| | - Andre Kamkin
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
3
|
Kirby A, Graf D, Suchý M, Calvert ND, Charlton TA, Ben RN, Addison CL, Shuhendler A. It's a Trap! Aldolase-Prescribed C 4 Deoxyradiofluorination Affords Intracellular Trapping and the Tracing of Fructose Metabolism by PET. J Nucl Med 2024; 65:475-480. [PMID: 38272705 DOI: 10.2967/jnumed.123.266905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Fructose metabolism has been implicated in various diseases, including metabolic disorders, neurodegenerative disorders, cardiac disorders, and cancer. However, the limited availability of a quantitative imaging radiotracer has hindered its exploration in pathology and diagnostic imaging. Methods: We adopted a molecular design strategy based on the catalytic mechanism of aldolase, a key enzyme in fructolysis. We successfully synthesized a radiodeoxyfluorinated fructose analog, [18F]4-fluoro-4-deoxyfructose ([18F]4-FDF), in high molar activity. Results: Through heavy isotope tracing by mass spectrometry, we demonstrated that C4-deoxyfluorination of fructose led to effective trapping as fluorodeoxysorbitol and fluorodeoxyfructose-1-phosphate in vitro, unlike C1- and C6-fluorinated analogs that resulted in fluorolactate accumulation. This observation was consistent in vivo, where [18F]6-fluoro-6-deoxyfructose displayed substantial bone uptake due to metabolic processing whereas [18F]4-FDF did not. Importantly, [18F]4-FDF exhibited low uptake in healthy brain and heart tissues, known for their high glycolytic activity and background levels of [18F]FDG uptake. [18F]4-FDF PET/CT allowed for sensitive mapping of neuro- and cardioinflammatory responses to systemic lipopolysaccharide administration. Conclusion: Our study highlights the significance of aldolase-guided C4 radiodeoxyfluorination of fructose in enabling effective radiotracer trapping, overcoming limitations of C1 and C6 radioanalogs toward a clinically viable tool for imaging fructolysis in highly glycolytic tissues.
Collapse
Affiliation(s)
- Alexia Kirby
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Dominic Graf
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Mojmír Suchý
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas D Calvert
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Robert N Ben
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina L Addison
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Adam Shuhendler
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada;
- Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Echeverría CE, Oyarzún VI, López-Cortés A, Cancino J, Sotomayor PC, Goncalves MD, Godoy AS. Biological role of fructose in the male reproductive system: Potential implications for prostate cancer. Prostate 2024; 84:8-24. [PMID: 37888416 PMCID: PMC10872645 DOI: 10.1002/pros.24631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Over the last 20 years, fructose has gradually emerged as a potential metabolic substrate capable of promoting the growth and progression of various cancers, including prostate cancer (PCa). The biological and molecular mechanisms that underlie the effects of fructose on cancer are beginning to be elucidated. METHODS This review summarizes the biological function of fructose as a potential carbon source for PCa cells and its role in the functionality of the male reproductive tract under normal conditions. RESULTS The most recent biological advances related to fructose transport and metabolism as well as their implications in PCa growth and progression suggest that fructose represent a potential carbon source for PCa cells. Consequently, fructose derivatives may represent efficient radiotracers for obtaining PCa images via positron emission tomography and fructose transporters/fructose-metabolizing enzymes could be utilized as potential diagnostic and/or predictive biomarkers for PCa. CONCLUSION The existing data suggest that restriction of fructose from the diet could be a useful therapeutic strategy for patients with PCa.
Collapse
Affiliation(s)
- Carolina E. Echeverría
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical, New York, NY, USA
| | - Vanessa I. Oyarzún
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Paula C. Sotomayor
- Departamento de Urología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical, New York, NY, USA
| | - Alejandro S. Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo New York, USA
| |
Collapse
|
5
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|
6
|
Hsu WH, Ku CL, Lai YR, Wang SSS, Chou SH, Lin TH. Developing targeted drug delivery carriers for breast cancer using glutathione-sensitive doxorubicin-coupled glycated bovine serum albumin nanoparticles. Int J Biol Macromol 2023; 249:126114. [PMID: 37541475 DOI: 10.1016/j.ijbiomac.2023.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Incorporation of the nano-based carriers into drug delivery provides a promising alternative to overcome the limitations of the conventional chemotherapy. Doxorubicin (DOXO) is an effective chemotherapeutic drug widely used in chemotherapy for breast cancer treatment. A globular protein bovine serum albumin (BSA) holds great potential as carriers in pharmaceutical applications. This work is aimed at developing the DOXO-coupled glycated BSA nanoparticles via desolvation method for improving the capability of targeting the GLUT5 transporters over-expressed on breast cancer cells. Fructosamine assay and Fourier transform infrared spectroscopy were employed to determine the content of fructosamine structure and structural changes on the surfaces of nanoparticles, respectively. Additionally, the synthesized BSA nanoparticles were further characterized by electron microscopy and dynamic light scattering. Results revealed that the DOXO-coupled glycated BSA nanoparticles were spherically shaped with a hydrodynamic diameter of ~60.74 nm and a ζ-potential of ~ - 42.20 mV. Moreover, the DOXO release behavior of as-synthesized DOXO-coupled glycated BSA nanoparticles was examined under different conditions. Finally, the DOXO-coupled glycated BSA nanoparticles were found to exhibit cytotoxicity toward both MCF-7 and MDA-MB-231 cells. Our findings evidently suggested that the drug-coupled glycated BSA nanoparticles serve as the potential candidates for targeted drug delivery platform used in breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Liang Ku
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
7
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
8
|
Rana N, Aziz MA, Serya RAT, Lasheen DS, Samir N, Wuest F, Abouzid KAM, West FG. A Fluorescence-Based Assay to Probe Inhibitory Effect of Fructose Mimics on GLUT5 Transport in Breast Cancer Cells. ACS BIO & MED CHEM AU 2023; 3:51-61. [PMID: 37101605 PMCID: PMC10125380 DOI: 10.1021/acsbiomedchemau.2c00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 04/28/2023]
Abstract
Rapid cell division and reprogramming of energy metabolism are two crucial hallmarks of cancer cells. In humans, hexose trafficking into cancer cells is mainly mediated through a family of glucose transporters (GLUTs), which are facilitative transmembrane hexose transporter proteins. In several breast cancers, fructose can functionally substitute glucose as an alternative energy supply supporting rapid proliferation. GLUT5, the principal fructose transporter, is overexpressed in human breast cancer cells, providing valuable targets for breast cancer detection as well as selective targeting of anticancer drugs using structurally modified fructose mimics. Herein, a novel fluorescence assay was designed aiming to screen a series of C-3 modified 2,5-anhydromannitol (2,5-AM) compounds as d-fructose analogues to explore GLUT5 binding site requirements. The synthesized probes were evaluated for their ability to inhibit the uptake of the fluorescently labeled d-fructose derivative 6-NBDF into EMT6 murine breast cancer cells. A few of the compounds screened demonstrated highly potent single-digit micromolar inhibition of 6-NBDF cellular uptake, which was substantially more potent than the natural substrate d-fructose, at a level of 100-fold or more. The results of this assay are consistent with those obtained from a previous study conducted for some selected compounds against 18F-labeled d-fructose-based probe 6-[18F]FDF, indicating the reproducibility of the current non-radiolabeled assay. These highly potent compounds assessed against 6-NBDF open avenues for the development of more potent probes targeting GLUT5-expressing cancerous cells.
Collapse
Affiliation(s)
- Natasha Rana
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - Marwa A. Aziz
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Rabah A. T. Serya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Deena S. Lasheen
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Nermin Samir
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Frank Wuest
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
| | - Khaled A. M. Abouzid
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - F. G. West
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
9
|
Oronova A, Tanasova M. Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe. Int J Mol Sci 2022; 24:173. [PMID: 36613618 PMCID: PMC9820411 DOI: 10.3390/ijms24010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The targeting of facilitative sugar transporters (GLUTs) has been utilized in the development of tools for diagnostics and therapy. The interest in this area is promoted by the phenomenon of alterations in cellular metabolic processes that are linked to multitudes of metabolic disorders and diseases. However, nonspecific targeting (e.g., glucose-transporting GLUTs) leads to a lack of disease detection efficiency. Among GLUTs, GLUT5 stands out as a prominent target for developing specific molecular tools due to its association with metabolic diseases, including cancer. This work reports a non-radiolabeled fluoride (19F) coumarin-based glycoconjugate of 2,5-anhydro-D-mannitol as a potential PET imaging probe that targets the GLUT5 transporter. Inherent fluorescent properties of the coumarin fluorophore allowed us to establish the probe's uptake efficiency and GLUT5-specificity in a GLUT5-positive breast cell line using fluorescence detection techniques. The click chemistry approach employed in the design of the probe enables late-stage functionalization, an essential requirement for obtaining the radiolabeled analog of the probe for future in vivo cancer imaging applications. The high affinity of the probe to GLUT5 allowed for the effective uptake in nutrition-rich media.
Collapse
Affiliation(s)
- Adelina Oronova
- Chemistry Department, Michigan Technological University, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Marina Tanasova
- Chemistry Department, Michigan Technological University, Houghton, MI 49931, USA
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
10
|
Boyle AJ, Murrell E, Tong J, Schifani C, Narvaez A, Wuest M, West F, Wuest F, Vasdev N. PET Imaging of Fructose Metabolism in a Rodent Model of Neuroinflammation with 6-[ 18F]fluoro-6-deoxy-D-fructose. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238529. [PMID: 36500626 PMCID: PMC9736258 DOI: 10.3390/molecules27238529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60-120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral-contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda J. Boyle
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
- Correspondence: (A.J.B.); (N.V.); Tel.: +1-416-535-8501 (ext. 30884) (A.J.B.); +1-416-535-8501 (ext. 30988) (N.V.)
| | - Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Christin Schifani
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Andrea Narvaez
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
| | - Melinda Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
| | - Frederick West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
- Correspondence: (A.J.B.); (N.V.); Tel.: +1-416-535-8501 (ext. 30884) (A.J.B.); +1-416-535-8501 (ext. 30988) (N.V.)
| |
Collapse
|
11
|
Tigchelaar C, van Zuylen ML, Hulst AH, Preckel B, van Beek AP, Kema IP, Hermanides J, Absalom AR. Elevated cerebrospinal fluid glucose levels and diabetes mellitus are associated with activation of the neurotoxic polyol pathway. Diabetologia 2022; 65:1098-1107. [PMID: 35380232 PMCID: PMC9174140 DOI: 10.1007/s00125-022-05693-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS During hyperglycaemia, some glucose bypasses glycolysis and is metabolised via the potentially neurotoxic polyol pathway, in which glucose is metabolised to sorbitol and fructose. Increased polyol concentrations have been demonstrated in the cerebrospinal fluid (CSF) of neurological patients with and without diabetes mellitus. However, polyol levels in patients without evident neurological abnormalities have not been investigated so far. The aim of this study was to determine CSF polyol concentrations in patients without major neurological disease with normal or elevated CSF glucose concentrations. METHODS This observational cohort study used CSF and plasma analyses, as well as clinical data, from 30 participants of the Anaesthetic Biobank of Cerebrospinal Fluid study. Biomaterial was collected from adult patients scheduled for elective surgery under spinal anaesthesia. CSF polyol concentrations were measured by GC/flame ionisation detector in ten patients with normal CSF glucose levels (group 1), ten patients with elevated CSF glucose levels (group 2) and ten patients with elevated CSF glucose levels and type 2 diabetes (group 3). We compared the concentrations of plasma glucose, CSF glucose, sorbitol and fructose, and CSF polyol/glucose ratios between the three groups, and determined the correlation between plasma glucose levels and CSF glucose, sorbitol and fructose levels. RESULTS Groups 2 and 3 had significantly higher CSF fructose levels compared with group 1 (p=0.036 and p<0.001, respectively). Group 3 showed significant differences compared with groups 1 and 2 for CSF sorbitol (p<0.001 and 0.036, respectively). Moreover, patients with diabetes had a significantly higher CSF sorbitol/glucose ratio compared with patients without diabetes. There was a strong positive correlation between plasma glucose and CSF glucose, sorbitol and fructose. Finally, age, sex, CSF/plasma albumin ratio and preoperative cognitive function scores were significantly correlated with plasma glucose and CSF glucose, sorbitol and fructose levels. CONCLUSIONS/INTERPRETATION Hyperglycaemia causes a proportional increase in polyol concentrations in CSF of patients without major neurological disease. Furthermore, this study provides the first indication of upregulation of the cerebral polyol pathway in patients with diabetes without evident neurological abnormalities.
Collapse
Affiliation(s)
- Celien Tigchelaar
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Mark L van Zuylen
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham H Hulst
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Intensive Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Benedikt Preckel
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeroen Hermanides
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anthony R Absalom
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Rana N, Aziz MA, Oraby AK, Wuest M, Dufour J, Abouzid KAM, Wuest F, West FG. Towards Selective Binding to the GLUT5 Transporter: Synthesis, Molecular Dynamics and In Vitro Evaluation of Novel C-3-Modified 2,5-Anhydro-D-mannitol Analogs. Pharmaceutics 2022; 14:828. [PMID: 35456662 PMCID: PMC9032776 DOI: 10.3390/pharmaceutics14040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 02/03/2023] Open
Abstract
Deregulation and changes in energy metabolism are emergent and important biomarkers of cancer cells. The uptake of hexoses in cancer cells is mediated by a family of facilitative hexose membrane-transporter proteins known as Glucose Transporters (GLUTs). In the clinic, numerous breast cancers do not show elevated glucose metabolism (which is mediated mainly through the GLUT1 transporter) and may use fructose as an alternative energy source. The principal fructose transporter in most cancer cells is GLUT5, and its mRNA was shown to be elevated in human breast cancer. This offers an alternative strategy for early detection using fructose analogs. In order to selectively scout GLUT5 binding-pocket requirements, we designed, synthesized and screened a new class of fructose mimics based upon the 2,5-anhydromannitol scaffold. Several of these compounds display low millimolar IC50 values against the known high-affinity 18F-labeled fructose-based probe 6-deoxy-6-fluoro-D-fructose (6-FDF) in murine EMT6 breast cancer cells. In addition, this work used molecular docking and molecular dynamics simulations (MD) with previously reported GLUT5 structures to gain better insight into hexose-GLUT interactions with selected ligands governing their preference for GLUT5 compared to other GLUTs. The improved inhibition of these compounds, and the refined model for their binding, set the stage for the development of high-affinity molecular imaging probes targeting cancers that express the GLUT5 biomarker.
Collapse
Affiliation(s)
- Natasha Rana
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - Marwa A Aziz
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo P.O. Box 11566, Egypt
| | - Ahmed K Oraby
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Misr University of Science & Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt
| | - Melinda Wuest
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo P.O. Box 11566, Egypt
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City P.O. Box 32897, Egypt
| | - Frank Wuest
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - F G West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
13
|
Tee SS, Kim N, Cullen Q, Eskandari R, Mamakhanyan A, Srouji RM, Chirayil R, Jeong S, Shakiba M, Kastenhuber ER, Chen S, Sigel C, Lowe SW, Jarnagin WR, Thompson CB, Schietinger A, Keshari KR. Ketohexokinase-mediated fructose metabolism is lost in hepatocellular carcinoma and can be leveraged for metabolic imaging. SCIENCE ADVANCES 2022; 8:eabm7985. [PMID: 35385296 PMCID: PMC8985914 DOI: 10.1126/sciadv.abm7985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging.
Collapse
Affiliation(s)
- Sui Seng Tee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quinlan Cullen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arsen Mamakhanyan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rami M. Srouji
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Chirayil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sangmoo Jeong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mojdeh Shakiba
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward R. Kastenhuber
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shuibing Chen
- Weill Cornell Medical College, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlie Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R. Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B. Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
14
|
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021; 71:333-358. [PMID: 33982817 PMCID: PMC8298088 DOI: 10.3322/caac.21670] [Citation(s) in RCA: 388] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer has myriad effects on metabolism that include both rewiring of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment, and changes in normal tissue metabolism. With the recognition that fluorodeoxyglucose-positron emission tomography imaging is an important tool for the management of many cancers, other metabolites in biological samples have been in the spotlight for cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecule metabolites that like other -omics technologies can provide critical information about the cancer state that are otherwise not apparent. Here, the authors review how cancer and cancer therapies interact with metabolism at the cellular and systemic levels. An overview of metabolomics is provided with a focus on currently available technologies and how they have been applied in the clinical and translational research setting. The authors also discuss how metabolomics could be further leveraged in the future to improve the management of patients with cancer.
Collapse
Affiliation(s)
- Daniel R. Schmidt
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708 USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Matthew G. Vander Heiden
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
15
|
Wheatley DE, Fontenelle CQ, Kuppala R, Szpera R, Briggs EL, Vendeville JB, Wells NJ, Light ME, Linclau B. Synthesis and Structural Characteristics of all Mono- and Difluorinated 4,6-Dideoxy-d- xylo-hexopyranoses. J Org Chem 2021; 86:7725-7756. [PMID: 34029099 DOI: 10.1021/acs.joc.1c00796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-carbohydrate interactions are implicated in many biochemical/biological processes that are fundamental to life and to human health. Fluorinated carbohydrate analogues play an important role in the study of these interactions and find application as probes in chemical biology and as drugs/diagnostics in medicine. The availability and/or efficient synthesis of a wide variety of fluorinated carbohydrates is thus of great interest. Here, we report a detailed study on the synthesis of monosaccharides in which the hydroxy groups at their 4- and 6-positions are replaced by all possible mono- and difluorinated motifs. Minimization of protecting group use was a key aim. It was found that introducing electronegative substituents, either as protecting groups or as deoxygenation intermediates, was generally beneficial for increasing deoxyfluorination yields. A detailed structural study of this set of analogues demonstrated that dideoxygenation/fluorination at the 4,6-positions caused very little distortion both in the solid state and in aqueous solution. Unexpected trends in α/β anomeric ratios were identified. Increasing fluorine content always increased the α/β ratio, with very little difference between regio- or stereoisomers, except when 4,6-difluorinated.
Collapse
Affiliation(s)
- David E Wheatley
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Clement Q Fontenelle
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Ramakrishna Kuppala
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Robert Szpera
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Edward L Briggs
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | | | - Neil J Wells
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mark E Light
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
16
|
Nahrjou N, Ghosh A, Tanasova M. Targeting of GLUT5 for Transporter-Mediated Drug-Delivery Is Contingent upon Substrate Hydrophilicity. Int J Mol Sci 2021; 22:ijms22105073. [PMID: 34064801 PMCID: PMC8150966 DOI: 10.3390/ijms22105073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022] Open
Abstract
Specific link between high fructose uptake and cancer development and progression highlighted fructose transporters as potential means to achieve GLUT-mediated discrimination between normal and cancer cells. The gained expression of fructose-specific transporter GLUT5 in various cancers offers a possibility for developing cancer-specific imaging and bioactive agents. Herein, we explore the feasibility of delivering a bioactive agent through cancer-relevant fructose-specific transporter GLUT5. We employed specific targeting of GLUT5 by 2,5-anhydro-D-mannitol and investigated several drug conjugates for their ability to induce cancer-specific cytotoxicity. The proof-of-concept analysis was carried out for conjugates of chlorambucil (CLB) in GLUT5-positive breast cancer cells and normal breast cells. The cytotoxicity of conjugates was assessed over 24 h and 48 h, and significant dependence between cancer-selectivity and conjugate size was observed. The differences were found to relate to the loss of GLUT5-mediated uptake upon increased conjugate size and hydrophobicity. The findings provide information on the substrate tolerance of GLUT5 and highlight the importance of maintaining appropriate hydrophilicity for GLUT-mediated delivery.
Collapse
Affiliation(s)
- Nazanin Nahrjou
- Chemistry Department, Michigan Technological University, Houghton, MI 49931, USA; (N.N.); (A.G.)
| | - Avik Ghosh
- Chemistry Department, Michigan Technological University, Houghton, MI 49931, USA; (N.N.); (A.G.)
| | - Marina Tanasova
- Chemistry Department, Michigan Technological University, Houghton, MI 49931, USA; (N.N.); (A.G.)
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
- Correspondence:
| |
Collapse
|
17
|
Elferink H, Bruekers JPJ, Veeneman GH, Boltje TJ. A comprehensive overview of substrate specificity of glycoside hydrolases and transporters in the small intestine : "A gut feeling". Cell Mol Life Sci 2020; 77:4799-4826. [PMID: 32506169 PMCID: PMC7658089 DOI: 10.1007/s00018-020-03564-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
The human body is able to process and transport a complex variety of carbohydrates, unlocking their nutritional value as energy source or as important building block. The endogenous glycosyl hydrolases (glycosidases) and glycosyl transporter proteins located in the enterocytes of the small intestine play a crucial role in this process and digest and/or transport nutritional sugars based on their structural features. It is for these reasons that glycosidases and glycosyl transporters are interesting therapeutic targets to combat sugar related diseases (such as diabetes) or to improve drug delivery. In this review we provide a detailed overview focused on the molecular structure of the substrates involved as a solid base to start from and to fuel research in the area of therapeutics and diagnostics.
Collapse
Affiliation(s)
- Hidde Elferink
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Jeroen P J Bruekers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | | | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Bononi G, Iacopini D, Cicio G, Di Pietro S, Granchi C, Di Bussolo V, Minutolo F. Glycoconjugated Metal Complexes as Cancer Diagnostic and Therapeutic Agents. ChemMedChem 2020; 16:30-64. [PMID: 32735702 DOI: 10.1002/cmdc.202000456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/15/2022]
Abstract
The possibility of selectively delivering metal complexes to a defined cohort of cells on the basis of their metabolic features is a highly challenging goal, which may be extremely useful for a series of purposes, including diagnosis and therapy of pathological states, such as cancer. Tumor cells display augmented requests for carbohydrates and, in particular, for glucose in order to sustain their high proliferation rate, which causes an increased glycolytic process (Warburg effect). Since several metal complexes display diagnostic and/or therapeutic properties, their conjugation to carbohydrate portions often induce their preferential accumulation in cancer cells, similarly to what is observed with fluorodeoxyglucose (FDG). In this review we have considered the latest developments of glycoconjugates containing metal complexes in their structures. These compounds are classified as diagnostic or therapeutic agents and are further systematically discussed on the basis of the metal atom they contain. Several diagnostic techniques are possible with these probes, since, depending on the metal species included in their structures, they may be employed in nuclear medicine (PET, SPECT), magnetic resonance imaging, luminescence and phosphorescence. At the same time, the lack of selective cytotoxicity displayed by several metal-based chemotherapeutic agents, may also be solved by the conjugation of these agents to carbohydrate portions. Overall, data so far available reveal the great potential of this chemical class in the early detection and in the cure of severe neoplastic diseases, which still needs to be fully explored in the clinic.
Collapse
Affiliation(s)
- Giulia Bononi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Dalila Iacopini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Gaspare Cicio
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy.,Current address: Menarini Ricerche S.p.A. -, Laboratori di Pisa, Via Livornese 897, 56122, Pisa, Italy
| | - Sebastiano Di Pietro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| |
Collapse
|
19
|
Nakagawa T, Lanaspa MA, Millan IS, Fini M, Rivard CJ, Sanchez-Lozada LG, Andres-Hernando A, Tolan DR, Johnson RJ. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab 2020; 8:16. [PMID: 32670573 PMCID: PMC7350662 DOI: 10.1186/s40170-020-00222-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity and metabolic syndrome are strongly associated with cancer, and these disorders may share a common mechanism. Recently, fructose has emerged as a driving force to develop obesity and metabolic syndrome. Thus, we assume that fructose may be the mechanism to explain why obesity and metabolic syndrome are linked with cancer. Clinical and experimental evidence showed that fructose intake was associated with cancer growth and that fructose transporters are upregulated in various malignant tumors. Interestingly, fructose metabolism can be driven under low oxygen conditions, accelerates glucose utilization, and exhibits distinct effects as compared to glucose, including production of uric acid and lactate as major byproducts. Fructose promotes the Warburg effect to preferentially downregulate mitochondrial respiration and increases aerobic glycolysis that may aid metastases that initially have low oxygen supply. In the process, uric acid may facilitate carcinogenesis by inhibiting the TCA cycle, stimulating cell proliferation by mitochondrial ROS, and blocking fatty acid oxidation. Lactate may also contribute to cancer growth by suppressing fat oxidation and inducing oncogene expression. The ability of fructose metabolism to directly stimulate the glycolytic pathway may have been protective for animals living with limited access to oxygen, but may be deleterious toward stimulating cancer growth and metastasis for humans in modern society. Blocking fructose metabolism may be a novel approach for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, 2 Otowa-Chinji-cho, Yamashina-ku, Kyoto, Japan
- Department of Stem Cell Biology & Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO USA
| | - Inigo San Millan
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, USA
| | - Mehdi Fini
- University of Colorado Cancer Center, Aurora, CO USA
| | | | - Laura G. Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chavez, 14080 Mexico City, CP Mexico
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO USA
| | - Dean R. Tolan
- Department of Biology, Boston University, Boston, MA USA
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO USA
| |
Collapse
|
20
|
Pu Y, Zhang H, Peng Y, Fu Q, Yue Q, Zhao Y, Guo L, Wu Y. Dual-targeting liposomes with active recognition of GLUT5 and αvβ3 for triple-negative breast cancer. Eur J Med Chem 2019; 183:111720. [DOI: 10.1016/j.ejmech.2019.111720] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/24/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
|
21
|
Vaidya T, Agrawal A, Mahajan S, Thakur MH, Mahajan A. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol Diagn Ther 2019; 23:1-26. [PMID: 30411216 DOI: 10.1007/s40291-018-0366-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present era of precision medicine sees 'cancer' as a consequence of molecular derangements occurring at the commencement of the disease process, with morphologic changes happening much later in the process of tumorigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), play an integral role in the detection of disease at a macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumorigenesis, and thus has the potential to play a key role in heralding the transition from the concept of 'one size fits all' to 'precision medicine'. Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called 'radiogenomics', which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning, and artificial intelligence (AI), the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, a majority of these require validation before clinical translation is possible. In this two-part review, we discuss the systematic collaboration across structural, anatomical, and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
Affiliation(s)
- Tanvi Vaidya
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Shivani Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Meenakshi H Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
22
|
Carreño D, Corro N, Torres-Estay V, Véliz LP, Jaimovich R, Cisternas P, San Francisco IF, Sotomayor PC, Tanasova M, Inestrosa NC, Godoy AS. Fructose and prostate cancer: toward an integrated view of cancer cell metabolism. Prostate Cancer Prostatic Dis 2018; 22:49-58. [PMID: 30104655 DOI: 10.1038/s41391-018-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023]
Abstract
Activation of glucose transporter-1 (Glut-1) gene expression is a molecular feature of cancer cells that increases glucose uptake and metabolism. Increased glucose uptake is the basis for the clinical localization of primary tumors using positron emission tomography (PET) and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) as a radiotracer. However, previous studies have demonstrated that a considerable number of cancers, which include prostate cancer (CaP), express low to undetectable levels of Glut-1 and that FDG-PET has limited clinical applicability in CaP. This observation could be explained by a low metabolic activity of CaP cells that may be overcome using different hexoses, such as fructose, as the preferred energy source. However, these hypotheses have not been examined critically in CaP. This review article summarizes what is currently known about transport and metabolism of hexoses, and more specifically fructose, in CaP and provides experimental evidences indicating that CaP cells may have increased capacity to transport and metabolize fructose in vitro and in vivo. Moreover, this review highlights recent findings that allow better understanding of how metabolism of fructose may regulate cancer cell proliferation and how fructose uptake and metabolism, through the de novo lipogenesis pathway, may provide new opportunities for CaP early diagnosis, staging, and treatment.
Collapse
Affiliation(s)
- Daniela Carreño
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Néstor Corro
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Loreto P Véliz
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Department of Cell Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Paula C Sotomayor
- Center for Integrative Medicine and Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, MI, 49931, USA
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Department of Cell Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro S Godoy
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
23
|
Hamann I, Krys D, Glubrecht D, Bouvet V, Marshall A, Vos L, Mackey JR, Wuest M, Wuest F. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer—effects of hypoxia. FASEB J 2018; 32:5104-5118. [DOI: 10.1096/fj.201800360r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ingrit Hamann
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Daniel Krys
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Darryl Glubrecht
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Vincent Bouvet
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison Marshall
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Larissa Vos
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - John R. Mackey
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Melinda Wuest
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Frank Wuest
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
24
|
Merigo F, Brandolese A, Facchin S, Missaggia S, Bernardi P, Boschi F, D’Incà R, Savarino EV, Sbarbati A, Sturniolo GC. Glucose transporter expression in the human colon. World J Gastroenterol 2018; 24:775-793. [PMID: 29467549 PMCID: PMC5807937 DOI: 10.3748/wjg.v24.i7.775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate by immunostaining glucose transporter expression in human colorectal mucosa in controls and patients with inflammatory bowel disease (IBD).
METHODS Colorectal samples were obtained from patients undergoing lower endoscopic colonoscopy or recto-sigmoidoscopy. Patients diagnosed with ulcerative colitis (n = 18) or Crohn’s disease (n = 10) and scheduled for diagnostic colonoscopy were enrolled. Patients who underwent colonoscopy for prevention screening of colorectal cancer or were followed-up after polypectomy or had a history of lower gastrointestinal symptoms were designated as the control group (CTRL, n = 16). Inflammatory status of the mucosa at the sampling site was evaluated histologically and/or endoscopically. A total of 147 biopsies of colorectal mucosa were collected and processed for immunohistochemistry analysis. The expression of GLUT2, SGLT1, and GLUT5 glucose transporters was investigated using immunoperoxidase labeling. To compare immunoreactivity of GLUT5 and LYVE-1, which is a marker for lymphatic vessel endothelium, double-labeled confocal microscopy was used.
RESULTS Immunohistochemical analysis revealed that GLUT2, SGLT1, and GLUT5 were expressed only in short epithelial portions of the large intestinal mucosa. No important differences were observed in glucose transporter expression between the samples obtained from the different portions of the colorectal tract and between the different patient groups. Unexpectedly, GLUT5 expression was also identified in vessels, mainly concentrated in specific areas where the vessels were clustered. Immunostaining with LYVE-1 and GLUT5 antibodies revealed that GLUT5-immunoreactive (-IR) clusters of vessels were concentrated in areas internal to those that were LYVE-1 positive. GLUT5 and LYVE-1 did not appear to be colocalized but rather showed a close topographical relationship on the endothelium. Based on their LYVE-1 expression, GLUT5-IR vessels were identified as lymphatic. Both inflamed and non-inflamed mucosal colorectal tissue biopsies from the IBD and CTRL patients showed GLUT5-IR clusters of lymphatic vessels.
CONCLUSION Glucose transporter immunoreactivity is present in colorectal mucosa in controls and IBD patients. GLUT5 expression is also associated with lymphatic vessels. This novel finding aids in the characterization of lymphatic vasculature in IBD patients.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Alessandro Brandolese
- Department of Medicine, Gastroenterology Section, University of Verona, Verona I-37134, Italy
| | - Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Silvia Missaggia
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona I-37134, Italy
| | - Renata D’Incà
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona I-37134, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgery, Oncology and Gastroenterology, Gastroenterology Section, University Hospital of Padua, Padua I-35128, Italy
| |
Collapse
|
25
|
Wuest M, Hamann I, Bouvet V, Glubrecht D, Marshall A, Trayner B, Soueidan OM, Krys D, Wagner M, Cheeseman C, West F, Wuest F. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice. Mol Pharmacol 2018; 93:79-89. [PMID: 29142019 DOI: 10.1124/mol.117.110007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 02/14/2025] Open
Abstract
Use of [18F]FDG-positron emission tomography (PET) in clinical breast cancer (BC) imaging is limited mainly by insufficient expression levels of facilitative glucose transporter (GLUT)1 in up to 50% of all patients. Fructose-specific facilitative hexose transporter GLUT5 represents an alternative biomarker for PET imaging of hexose metabolism in BC. The goal of the present study was to compare the uptake characteristics of selected hexose-based PET radiotracers in murine BC model EMT6. Uptake of 1-deoxy-1-[18F]fluoro-d-fructose (1-[18F]FDF), 6-deoxy-6-[18F]fluoro-d-fructose (6-[18F]FDF), 1-deoxy-1-[18F]fluoro-2,5-anhydro-mannitol (1-[18F]FDAM), 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), and 6-deoxy-6-[18F]fluoro-d-glucose (6-[18F]FDG) was studied in EMT6 cells, tumors, and muscle and correlated to GLUT1 and GLUT5 expression levels. Fructose-derivative 6-[18F]FDF revealed greater tumor uptake than did structural analog 1-[18F]FDF, whereas 1-[18F]FDAM with locked anomeric configuration showed similar low tumor uptake to that of 1-[18F]FDF. Glucose-derivative 6-[18F]FDG reached maximum tumor uptake at 20 minutes, with no further accumulation over time. Uptake of 2-[18F]FDG was greatest and continuously increasing owing to metabolic trapping through phosphorylation by hexokinase II. In EMT6 tumors, GLUT5 mRNA expression was 20,000-fold lower compared with GLUT1. Whereas the latter was much greater in tumor than in muscle tissue (GLUT1 50:1), the opposite was found for GLUT5 mRNA expression (GLUT5 1:6). GLUT5 protein levels were higher in tumor versus muscle tissue as determined by Western blot and immunohistochemistry. Our data suggest that tumor uptake of fructose metabolism-targeting radiotracers 1-[18F]FDF, 6-[18F]FDF, and 1-[18F]FDAM does not correlate with GLUT5 mRNA levels but is linked to GLUT5 protein levels. In conclusion, our results highlight the importance of detailed biochemical studies on GLUT protein expression levels in combination with PET imaging studies for functional characterization of GLUTs in BC.
Collapse
Affiliation(s)
- Melinda Wuest
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Ingrit Hamann
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Vincent Bouvet
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Darryl Glubrecht
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Alison Marshall
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Brendan Trayner
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Olivier-Mohamad Soueidan
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Krys
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Michael Wagner
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Chris Cheeseman
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Frederick West
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| | - Frank Wuest
- Departments of Oncology and Cross Cancer Institute (M.Wu., I.H., V.B., D.G., A.M., D.K., M.Wa., F.Wu.), Chemistry (O.-M.S., F.We.), and Physiology (B.T., O.-M.S., C.C.), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Abstract
Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed.
Collapse
Affiliation(s)
- Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Joseph R Fedie
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
27
|
Kumar Kondapi VP, Soueidan OM, Cheeseman CI, West FG. Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities. Chemistry 2017; 23:8073-8081. [DOI: 10.1002/chem.201701329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Venkata Pavan Kumar Kondapi
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton AB, CA T6G 2G2 Canada
- Department of Physiology; University of Alberta; Medical Sciences Building Edmonton AB, CA T6G 2H7 Canada
| | - Olivier-Mohamad Soueidan
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton AB, CA T6G 2G2 Canada
- Department of Physiology; University of Alberta; Medical Sciences Building Edmonton AB, CA T6G 2H7 Canada
| | - Christopher I. Cheeseman
- Department of Physiology; University of Alberta; Medical Sciences Building Edmonton AB, CA T6G 2H7 Canada
| | - Frederick G. West
- Department of Chemistry; University of Alberta; 11227 Saskatchewan Dr. Edmonton AB, CA T6G 2G2 Canada
| |
Collapse
|
28
|
Soueidan OM, Scully TW, Kaur J, Panigrahi R, Belovodskiy A, Do V, Matier CD, Lemieux MJ, Wuest F, Cheeseman C, West FG. Fluorescent Hexose Conjugates Establish Stringent Stereochemical Requirement by GLUT5 for Recognition and Transport of Monosaccharides. ACS Chem Biol 2017; 12:1087-1094. [PMID: 28205432 DOI: 10.1021/acschembio.6b01101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The specificity characteristics of transporters can be exploited for the development of novel diagnostic therapeutic probes. The facilitated hexose transporter family (GLUTs) has a distinct set of preferences for monosaccharide substrates, and while some are expressed ubiquitously (e.g., GLUT1), others are quite tissue specific (e.g., GLUT5, which is overexpressed in some breast cancer tissues). While these differences have enabled the development of new molecular probes based upon hexose- and tissue-selective uptake, substrate design for compounds targeting these GLUT transporters has been encumbered by a limited understanding of the molecular interactions at play in hexose binding and transport. Four new fluorescently labeled hexose derivatives have been prepared, and their transport characteristics were examined in two breast cancer cell lines expressing mainly GLUTs 1, 2, and 5. Our results demonstrate, for the first time, a stringent stereochemical requirement for recognition and transport by GLUT5. 6-NBDF, in which all substituents are in the d-fructose configuration, is taken up rapidly into both cell lines via GLUT5. On the other hand, inversion of a single stereocenter at C-3 (6-NBDP), C-4 (6-NBDT), or C-5 (6-NDBS) results in selective transport via GLUT1. An in silico docking study employing the recently published GLUT5 crystal structure confirms this stereochemical dependence. This work provides insight into hexose-GLUT interactions at the molecular level and will facilitate structure-based design of novel substrates targeting individual members of the GLUT family and forms the basis of new cancer imaging or therapeutic agents.
Collapse
Affiliation(s)
- Olivier-Mohamad Soueidan
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
- Department
of Physiology, University of Alberta, 7-55 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Thomas W. Scully
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Jatinder Kaur
- Department
of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2
| | - Rashmi Panigrahi
- Department
of Biochemistry, University of Alberta, 451 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Alexandr Belovodskiy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Victor Do
- Department
of Physiology, University of Alberta, 7-55 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Carson D. Matier
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, 451 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Frank Wuest
- Department
of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2
| | - Chris Cheeseman
- Department
of Physiology, University of Alberta, 7-55 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - F. G. West
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
29
|
Hwang JJ, Jiang L, Hamza M, Dai F, Belfort-DeAguiar R, Cline G, Rothman DL, Mason G, Sherwin RS. The human brain produces fructose from glucose. JCI Insight 2017; 2:e90508. [PMID: 28239653 DOI: 10.1172/jci.insight.90508] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fructose has been implicated in the pathogenesis of obesity and type 2 diabetes. In contrast to glucose, CNS delivery of fructose in rodents promotes feeding behavior. However, because circulating plasma fructose levels are exceedingly low, it remains unclear to what extent fructose crosses the blood-brain barrier to exert CNS effects. To determine whether fructose can be endogenously generated from glucose via the polyol pathway (glucose → sorbitol → fructose) in human brain, 8 healthy subjects (4 women/4 men; age, 28.8 ± 6.2 years; BMI, 23.4 ± 2.6; HbA1C, 4.9% ± 0.2%) underwent 1H magnetic resonance spectroscopy scanning to measure intracerebral glucose and fructose levels during a 4-hour hyperglycemic clamp (plasma glucose, 220 mg/dl). Using mixed-effects regression model analysis, intracerebral glucose rose significantly over time and differed from baseline at 20 to 230 minutes. Intracerebral fructose levels also rose over time, differing from baseline at 30 to 230 minutes. The changes in intracerebral fructose were related to changes in intracerebral glucose but not to plasma fructose levels. Our findings suggest that the polyol pathway contributes to endogenous CNS production of fructose and that the effects of fructose in the CNS may extend beyond its direct dietary consumption.
Collapse
Affiliation(s)
| | - Lihong Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | | | | | - Douglas L Rothman
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Graeme Mason
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
30
|
Komatsu T, Virdee S. ICBS and ECBS Chemical Biology Meeting 2015 - Let Them Come to Berlin! ACS Chem Biol 2016; 11:1159-66. [PMID: 27198933 DOI: 10.1021/acschembio.6b00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Toru Komatsu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- JST PRESTO, Tokyo, Japan
| | - Satpal Virdee
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
31
|
Kumar Kondapi VP, Soueidan OM, Hosseini SN, Jabari N, West FG. Efficient and Easy Access to Optically Pure Tetrasubstituted Tetrahydrofurans via Stereoselective Opening ofC2-Symmetric Epoxide and Aziridine Rings. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism 2016; 65:124-39. [PMID: 26773935 DOI: 10.1016/j.metabol.2015.10.007] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
It is long recognized that cancer cells display increased glucose uptake and metabolism. In a rate-limiting step for glucose metabolism, the glucose transporter (GLUT) proteins facilitate glucose uptake across the plasma membrane. Fourteen members of the GLUT protein family have been identified in humans. This review describes the major characteristics of each member of the GLUT family and highlights evidence of abnormal expression in tumors and cancer cells. The regulation of GLUTs by key proliferation and pro-survival pathways including the phosphatidylinositol 3-kinase (PI3K)-Akt, hypoxia-inducible factor-1 (HIF-1), Ras, c-Myc and p53 pathways is discussed. The clinical utility of GLUT expression in cancer has been recognized and evidence regarding the use of GLUTs as prognostic or predictive biomarkers is presented. GLUTs represent attractive targets for cancer therapy and this review summarizes recent studies in which GLUT1, GLUT3, GLUT5 and others are inhibited to decrease cancer growth.
Collapse
Affiliation(s)
- Carly C Barron
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Philip J Bilan
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Theodoros Tsakiridis
- Department of Oncology, and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
33
|
Hwang JJ, Johnson A, Cline G, Belfort-DeAguiar R, Snegovskikh D, Khokhar B, Han CS, Sherwin RS. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women. PLoS One 2015; 10:e0128582. [PMID: 26035307 PMCID: PMC4452737 DOI: 10.1371/journal.pone.0128582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023] Open
Abstract
Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.
Collapse
Affiliation(s)
- Janice J. Hwang
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
| | - Andrea Johnson
- Yale University School of Medicine, Department of Obstetrics and Gynecology, New Haven, Connecticut, United States of America
| | - Gary Cline
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
| | - Renata Belfort-DeAguiar
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
| | - Denis Snegovskikh
- Yale University School of Medicine, Department of Anesthesia, New Haven, Connecticut, United States of America
| | - Babar Khokhar
- Yale University School of Medicine, Department of Neurology, New Haven, Connecticut, United States of America
| | - Christina S. Han
- Yale University School of Medicine, Department of Obstetrics and Gynecology, New Haven, Connecticut, United States of America
| | - Robert S. Sherwin
- Yale University School of Medicine, Division of Endocrinology, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabeled PET substrates can be traced at subphysiological concentrations, allowing noninvasive imaging of metabolism and intratumoral heterogeneity in systems ranging from advanced cancer models to patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of the tumor, including carbohydrate, amino acid, and fatty acid metabolism. In this review, we briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism are considered alongside new technical developments, such as combined PET/magnetic resonance imaging scanners, which could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
35
|
Soueidan OM, Trayner BJ, Grant TN, Henderson JR, Wuest F, West FG, Cheeseman CI. New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5. Org Biomol Chem 2015; 13:6511-21. [DOI: 10.1039/c5ob00314h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two fluorinated fructose analogs are taken up by tumor cells in culture. Their high affinity for the transporter protein GLUT5 provides information on the structural demands of its binding site, and suggests approaches towards new molecular imaging probes.
Collapse
Affiliation(s)
- Olivier-Mohamad Soueidan
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
- Department of Physiology
| | | | - Tina N. Grant
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
- Department of Physiology
| | - Jeff R. Henderson
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Frank Wuest
- Department of Oncology
- Cross Cancer Institute
- University of Alberta
- Edmonton
- Canada T6G 1Z2
| | - F. G. West
- Department of Chemistry
- 11227 Saskatchewan Drive University of Alberta
- Edmonton
- Canada T6G 2G2
| | | |
Collapse
|
36
|
Kim SJ, Bae PK, Chung BH. Self-assembled levan nanoparticles for targeted breast cancer imaging. Chem Commun (Camb) 2015; 51:107-10. [DOI: 10.1039/c4cc07679f] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report on the targeted imaging of breast cancer using self-assembled levan nanoparticles.
Collapse
Affiliation(s)
- Sun-Jung Kim
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 305-806
- Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center
- Daejeon 305-806
- Republic of Korea
| | - Bong Hyun Chung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 305-806
- Republic of Korea
- BioNano Health Guard Research Center
| |
Collapse
|
37
|
Inoue K, Gibbs SL, Liu F, Lee JH, Xie Y, Ashitate Y, Fujii H, Frangioni JV, Choi HS. Microscopic validation of macroscopic in vivo images enabled by same-slide optical and nuclear fusion. J Nucl Med 2014; 55:1899-904. [PMID: 25324521 DOI: 10.2967/jnumed.114.141606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED It is currently difficult to determine the molecular and cellular basis for radioscintigraphic signals obtained during macroscopic in vivo imaging. The field is in need of technology that helps bridge the macroscopic and microscopic regimes. To solve this problem, we developed a fiducial marker (FM) simultaneously compatible with 2-color near-infrared (NIR) fluorescence (700 and 800 nm), autoradiography, and conventional hematoxylin-eosin (HE) histology. METHODS The FM was constructed from an optimized concentration of commercially available human serum albumin, 700- and 800-nm NIR fluorophores, (99m)Tc-pertechnetate, dimethyl sulfoxide, and glutaraldehyde. Lymphangioleiomyomatosis cells coexpressing the sodium iodide symporter and green fluorescent protein were labeled with 700-nm fluorophore and (99m)Tc-pertechnatate and then administered intratracheally into CD-1 mice. After in vivo SPECT imaging and ex vivo SPECT and NIR fluorescence imaging of the lungs, 30-μm frozen sections were prepared and processed for 800-nm NIR fluorophore costaining, autoradiography, and HE staining on the same slide using the FMs to coregister all datasets. RESULTS Optimized FMs, composed of 100 μM unlabeled human serum albumin, 1 μM NIR fluorescent human serum albumin, 15% dimethyl sulfoxide, and 3% glutaraldehyde in phosphate-buffered saline (pH 7.4), were prepared within 15 min, displayed homogeneity and stability, and were visible by all imaging modalities, including HE staining. Using these FMs, tissue displaying high signal by SPECT could be dissected and analyzed on the same slide and at the microscopic level for 700-nm NIR fluorescence, 800-nm NIR fluorescence, autoradiography, and HE histopathologic staining. CONCLUSION When multimodal FMs are combined with a new technique for simultaneous same-slide NIR fluorescence imaging, autoradiography, and HE staining, macroscopic in vivo images can now be studied unambiguously at the microscopic level.
Collapse
Affiliation(s)
- Kazumasa Inoue
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Summer L Gibbs
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Fangbing Liu
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jeong Heon Lee
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yang Xie
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Yoshitomo Ashitate
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Hirofumi Fujii
- Functional Imaging Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - John V Frangioni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and Curadel, LLC, Worcester, Massachusetts
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Douard V, Sabbagh Y, Lee J, Patel C, Kemp FW, Bogden JD, Lin S, Ferraris RP. Excessive fructose intake causes 1,25-(OH)(2)D(3)-dependent inhibition of intestinal and renal calcium transport in growing rats. Am J Physiol Endocrinol Metab 2013; 304:E1303-13. [PMID: 23571713 PMCID: PMC3680696 DOI: 10.1152/ajpendo.00582.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca(2+) transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca(2+) absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca(2+) transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca(2+) transport rate as well as in expression of intestinal and renal Ca(2+) transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca(2+) transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca(2+) transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca(2+) and vitamin D deficiency.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey - New Jersey Medical School, Newark, New Jersey
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lo KKW, Law WHT, Chan JCY, Liu HW, Zhang KY. Photophysical and cellular uptake properties of novel phosphorescent cyclometalated iridium(III) bipyridine D-fructose complexes. Metallomics 2013; 5:808-812. [PMID: 23612896 DOI: 10.1039/c3mt20276c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
We report here the synthesis, characterization and photophysical properties of two novel phosphorescent cyclometalated iridium(III) polypyridine D-fructose complexes and their fructose-free counterparts. The cellular uptake of the complexes and their cytotoxicity have also been examined.
Collapse
Affiliation(s)
- Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Transformed cells exhibit a high rate of glucose consumption beyond that necessary for ATP synthesis. Glucose aids in the generation of biomass and regulates cellular signaling critical for oncogenic progression. A key rate-limiting step in glucose utilization is the transport of glucose across the plasma membrane. This review will highlight key glucose transporters (GLUTs) and current therapies targeting this class of proteins. RECENT FINDINGS GLUTs, enabling the facilitative entry of glucose into a cell, are increasingly found to be deregulated in cancer. Although cancer-specific expression patterns for GLUTs are being identified, comprehensive analyses substantiating a role for individual GLUTs are still required. Studies defining GLUTs as being rate-limiting in specific tumor contexts, the identification of GLUT1 inhibitors via synthetic lethality screens, novel engagement of the insulin-responsive GLUT4 in myeloma and identification of GLUT9 being a urate transporter, are key advances underscoring the need for continued investigation of this large and enigmatic class of proteins. SUMMARY Tumor cells exhibit elevated levels of glucose uptake, a phenomenon that has been capitalized upon for the prognostic and diagnostic imaging of a wide range of cancers using radio-labeled glucose analogs. We have, however, not yet been able to target glucose entry in a tumor cell-specific manner for therapy. GLUTs have been identified as rate-limiting in specific tumor contexts. The identification and targeting of tumor-specific GLUTs provide a promising approach to block glucose-regulated metabolism and signaling more comprehensively.
Collapse
|
41
|
Isnardi V, Clotagatide A, Bruel S, Perek N. Is [(99m)Tc]glucarate uptake mediated by fructose transporter GLUT-5? Nucl Med Biol 2013; 39:1226-31. [PMID: 23084044 DOI: 10.1016/j.nucmedbio.2012.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 05/22/2012] [Accepted: 07/08/2012] [Indexed: 11/17/2022]
Abstract
PURPOSE There is growing interest in the ability of [(99m)Tc]Glucarate ([(99m)Tc]GLA) to accumulate in viable tumor cells. Recent vivo studies suggest that [(99m)Tc]Glucarate could be helpful for tumor detection. Fructose transport is thought to be implicated. It is clearly established that facilitated fructose transport in tumor cells is related to the GLUT-5 transporter. This study therefore investigated whether [(99m)Tc]GLA uptake is mediated by GLUT-5 transporter. METHODS Different tumor cell lines were used. Modulation of GLUT-5 expression was assessed with and without antisense oligonucleotides directed against GLUT-5. GLUT-5 expression was assessed by indirect cell ELISA. To correlate GLUT-5 expression with tracer accumulation, [(99m)Tc]GLA uptake was determined after antisense treatment. A competition with fructose was also monitored. RESULTS Inhibition of GLUT-5 expression by antisense oligonucleotides directed against GLUT-5 was effective after 24 h. An optimal of 10μM antisense oligonucleotides directed against GLUT-5 produced a 30%-40% decrease in protein expression. Modulation of [(99m)Tc]GLA uptake was monitored either by use of specific antisense oligonucleotides or by competition with fructose. Both of them produced a significant decrease of [(99m)Tc]GLA accumulation in all tested cell lines. CONCLUSION Our results clearly demonstrate that [(99m)Tc]GLA uptake is related to GLUT-5 transporter expression and transport. In tumor imaging, [(99m)Tc]GLA may be a useful tool for non-invasive detection of malignant tumors expressing high levels of GLUT-5 transporter as, for example, breast cancers.
Collapse
Affiliation(s)
- Vanina Isnardi
- Laboratory of Biophysics, IFRESIS Faculty of Medicine University of Saint Etienne-Lyon, France 42023.
| | | | | | | |
Collapse
|
42
|
McQuade DT, Plutschack MB, Seeberger PH. Passive fructose transporters in disease: a molecular overview of their structural specificity. Org Biomol Chem 2013; 11:4909-20. [DOI: 10.1039/c3ob40805a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Douard V, Ferraris RP. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol 2012; 591:401-14. [PMID: 23129794 DOI: 10.1113/jphysiol.2011.215731] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fructose intake has increased dramatically since humans were hunter-gatherers, probably outpacing the capacity of human evolution to make physiologically healthy adaptations. Epidemiological data indicate that this increasing trend continued until recently. Excessive intakes that chronically increase portal and peripheral blood fructose concentrations to >1 and 0.1 mm, respectively, are now associated with numerous diseases and syndromes. The role of the fructose transporters GLUT5 and GLUT2 in causing, contributing to or exacerbating these diseases is not well known. GLUT5 expression seems extremely low in neonatal intestines, and limited absorptive capacities for fructose may explain the high incidence of malabsorption in infants and cause problems in adults unable to upregulate GLUT5 levels to match fructose concentrations in the diet. GLUT5- and GLUT2-mediated fructose effects on intestinal electrolyte transporters, hepatic uric acid metabolism, as well as renal and cardiomyocyte function, may play a role in fructose-induced hypertension. Likewise, GLUT2 may contribute to the development of non-alcoholic fatty liver disease by facilitating the uptake of fructose. Finally, GLUT5 may play a role in the atypical growth of certain cancers and fat tissues. We also highlight research areas that should yield information needed to better understand the role of these GLUTs in fructose-induced diseases.
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology & Physiology, UMDNJ – New Jersey Medical School, 185 S. Orange Avenue, Newark, NJ 07101-1749, USA
| | | |
Collapse
|
44
|
PET Tracers for Clinical Imaging of Breast Cancer. JOURNAL OF ONCOLOGY 2012; 2012:710561. [PMID: 22973310 PMCID: PMC3437678 DOI: 10.1155/2012/710561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/13/2012] [Indexed: 11/17/2022]
Abstract
Molecular imaging of breast cancer has undoubtedly permitted a substantial development of the overall diagnostic accuracy of this malignancy in the last years. Accurate tumour staging, design of individually suited therapies, response evaluation, early detection of recurrence and distant lesions have also evolved in parallel with the development of novel molecular imaging approaches. In this context, positron emission tomography (PET) can be probably seen as the most interesting molecular imaging technology with straightforward clinical application for such purposes. Dozens of radiotracers for PET imaging of breast cancer have been tested in laboratory animals. However, in this review we shall focus mainly in the smaller group of PET radiopharmaceuticals that have lead through into the clinical setting. PET imaging can be used to target general metabolic phenomena related to tumoural transformation, including glucose metabolism and cell proliferation, but can also be directed to specific hormone receptors that are characteristic of the breast cancer cell. Many other receptors and transport molecules present in the tumour cells could also be of interest for imaging. Furthermore, molecules related with the tumour microenvironment, tumour induced angiogenesis or even hypoxia could also be used as molecular biomarkers for breast cancer imaging.
Collapse
|
45
|
Wuest M, Kumar P, Wang M, Yang J, Jans HS, Wiebe LI. In vitro and in vivo evaluation of [(18)F]F-GAZ, a novel oxygen-mimetic azomycin-glucose conjugate, for imaging hypoxic tumor. Cancer Biother Radiopharm 2012; 27:473-80. [PMID: 22746267 DOI: 10.1089/cbr.2011.1148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several F-18-labeled 2-nitroimidazole (azomycin) derivatives have been proposed for imaging hypoxia using positron emission tomography (PET). Their cell penetration is based on passive diffusion, which limits their intracellular concentration maxima. The purpose of this study was to investigate the uptake of N-(2-[(18)F]fluoro-3-(6-O-glucosyl)propyl-azomycin ([(18)F]F-GAZ), a new azomycin-glucose conjugate, in vitro and in vivo. [(18)F]F-GAZ was synthesized from its tetraacetyl nosylate precursor by nucleophilic radiofluorination. [(18)F]F-GAZ was evaluated in vivo in EMT-6 tumor-bearing Balb/C mice utilizing the PET and biodistribution analysis. In vitro uptake of [(18)F]FDG by EMT-6 cells was measured in the presence of unlabeled F-GAZ, 2-FDG, and D-glucose. [(18)F]F-GAZ was rapidly cleared from all tissues, including the blood pool and kidneys, with ultimate accumulation in the urinary bladder. Uptake of tracer doses of [(18)F]F-GAZ into EMT-6 tumors was fast, reaching a standardized uptake value of 0.66±0.05 within 5-6 minutes postinjection (p.i.), and decreased to 0.24±0.04 by 60 minutes p.i. (n=6). A tumor-muscle ratio of 1.87±0.18 was observed after 60 minutes. Total uptake of [(18)F]F-GAZ in tumors (60 minutes) amounted to 1.25%±0.15% ID/g versus 0.61%±0.14% ID/g (n=4) in muscle. Similar biodistribution and excretion were observed using carrier-added (100 mg/kg) doses of F-GAZ. In vitro, D-glucose and unlabeled 2-FDG were two orders of magnitude more potent than F-GAZ as competitive inhibitors of [(18)F]FDG uptake into EMT-6 cells. Besides its interaction with glucose transporters, F-GAZ seems to be not transported in the presence of glucose. Furthermore, [(18)F]F-GAZ is unlikely to be effective as a hypoxia imaging agent. The low in vivo toxicity and substantial retention in tumor observed at high doses of F-GAZ do provide rationale for further testing as a radiosensitizer for external beam radiation therapy of radioresistant, hypoxic tumors.
Collapse
Affiliation(s)
- Melinda Wuest
- Department of Oncology, University of Alberta , and Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Microfluidic technology: An economical and versatile approach for the synthesis of O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET). Bioorg Med Chem Lett 2012; 22:2291-5. [DOI: 10.1016/j.bmcl.2012.01.083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 11/24/2022]
|
47
|
Douard V, Suzuki T, Sabbagh Y, Lee J, Shapses S, Lin S, Ferraris RP. Dietary fructose inhibits lactation-induced adaptations in rat 1,25-(OH)₂D₃ synthesis and calcium transport. FASEB J 2011; 26:707-21. [PMID: 22038050 DOI: 10.1096/fj.11-190264] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We recently showed that excessive fructose consumption, already associated with numerous metabolic abnormalities, reduces rates of intestinal Ca(2+) transport. Using a rat lactation model with increased Ca(2+) requirements, we tested the hypothesis that mechanisms underlying these inhibitory effects of fructose involve reductions in renal synthesis of 1,25-(OH)(2)D(3). Pregnant and virgin (control) rats were fed isocaloric fructose or, as controls, glucose, and starch diets from d 2 of gestation to the end of lactation. Compared to virgins, lactating dams fed glucose or starch had higher rates of intestinal transcellular Ca(2+) transport, elevated intestinal and renal expression of Ca(2+) channels, Ca(2+)-binding proteins, and CaATPases, as well as increased levels of 25-(OH)D(3) and 1,25-(OH)(2)D(3). Fructose consumption prevented almost all of these lactation-induced increases, and reduced vitamin D receptor binding to promoter regions of Ca(2+) channels and binding proteins. Changes in 1,25-(OH)(2)D(3) level were tightly correlated with alterations in expression of 1α-hydroxylase but not with levels of parathyroid hormone and of 24-hydroxylase. Bone mineral density, content, and mechanical strength each decreased with lactation, but then fructose exacerbated these effects. When Ca(2+) requirements increase during lactation or similar physiologically challenging conditions, excessive fructose consumption may perturb Ca(2+) homeostasis because of fructose-induced reductions in synthesis of 1,25-(OH)(2)D(3).
Collapse
Affiliation(s)
- Veronique Douard
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07101-1709, USA
| | | | | | | | | | | | | |
Collapse
|