1
|
Ge Y, Zhan H, Wu S, Wang J, Xu Y, Liang Y, Peng L, Gao L, Zhao J, He Z. GPR40 signaling in agouti-related peptide neurons mediates fat preference. Life Sci 2025; 373:123677. [PMID: 40320138 DOI: 10.1016/j.lfs.2025.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/18/2025] [Accepted: 05/01/2025] [Indexed: 05/17/2025]
Abstract
AIMS Fat preference is mediated by fatty acid receptors in the oral, intestinal, and central nervous systems, but their central nervous system roles remain unclear. Here, we investigated how GPR40, a medium- and long-chain fatty acid receptor, regulates fat preference via agouti-related peptide (AgRP) neurons in the hypothalamic arcuate nucleus (ARC). MATERIALS AND METHODS AgRP neuron-specific Gpr40 knockout mice were generated to investigate the role of GPR40 in dietary fat preference. Behavioral tests were conducted to assess dietary preferences, and metabolic analyses were performed after starvation. We also measured the activity of AgRP neurons and the expression levels of AgRP and neuropeptide Y (NPY) to explore the mechanisms. KEY FINDINGS Our results indicate that GPR40 is a novel signaling pathway that regulates fat preference in hypothalamic AgRP neurons, but not in pro-opiomelanocortin (POMC) neurons. AgRP-specific Gpr40 knockout mice displayed a reduced preference for fat. This alteration in dietary preference was not associated with behavioral anomalies such as anxiety, depression, or deficits in short-term memory. Additionally, Gpr40 deletion in ARC AgRP neurons resulted in a diminished metabolic state, increased AgRP neuronal activity, and elevated levels of AgRP and NPY peptides following starvation, leading to reduced fat intake and increased carbohydrate intake. Inhibition of AgRP neuronal activity in AgRP-specific Gpr40 knockout mice rescued the observed changes in fat preference. SIGNIFICANCE GPR40 signaling in AgRP neurons plays a critical role in regulating fat preference by modulating neuronal activity and the expression of AgRP and NPY peptides.
Collapse
Affiliation(s)
- Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yixiao Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Li Peng
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital & Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism; Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Vinitha T, Sharika R, Balamurugan K. Oleoylethanolamine precursor triggers lipolysis during Time-Restricted Intermittent Fasting and promotes longevity and healthy aging of Caenorhabditis elegans. J Physiol Biochem 2025:10.1007/s13105-025-01087-6. [PMID: 40332671 DOI: 10.1007/s13105-025-01087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Intermittent fasting (IF), Time-Restricted Intermittent Fasting (TRIF), and fasting-mimicking diets have gained popularity among weight loss programs. The body efficiently utilizes its energy reserves to activate metabolic processes in response to food intake. Modifying food regimens can alter/extend life span and promote healthy aging by activating specific metabolic processes. However, changes in general lipid metabolism, especially the alteration in N-acylethanolamide (NAE) regulation and their role in promoting lipolysis and extending life span during TRIF, are still inadequately explored. To bridge the knowledge gap, this study focuses on enhancing Oleoylethanolamine (OEA), a precursor molecule that instigates satiety, promotes lipolysis and extends the life span of model system, Caenorhabditis elegans. TRIF regimen in C. elegans induces OEA, which in turn lead to satiety followed by lipolysis and ATP synthesis. Lipolysis is stimulated by the increase in Adipose Tissue Triglyceride Lipase-1 (ATGL-1) activity that results from the enrichment in OEA precursor. In addition, the TRIF regimen induces oxidative stress resistance in C. elegans. Subsequently, this promotes longevity and slow aging in C. elegans by altering the insulin/ insulin-like growth factor signaling (IIS) pathway. The present study suggested the beneficial effects of time-restricted fasting in the eukaryotic model nematodes through the activation of lipid metabolism that involves enhanced production of OEA precursors which promotes lipolysis. In addition, the data revealed that the increased ATP production resulted in oxidative stress tolerance that promoted longevity and slow aging processes.
Collapse
Affiliation(s)
- Thondimuthu Vinitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Rajasekharan Sharika
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
3
|
La Merrill MA, Smith MT, McHale CM, Heindel JJ, Atlas E, Cave MC, Collier D, Guyton KZ, Koliwad S, Nadal A, Rhodes CJ, Sargis RM, Zeise L, Blumberg B. Consensus on the key characteristics of metabolism disruptors. Nat Rev Endocrinol 2025; 21:245-261. [PMID: 39613954 PMCID: PMC11916920 DOI: 10.1038/s41574-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Metabolism-disrupting agents (MDAs) are chemical, infectious or physical agents that increase the risk of metabolic disorders. Examples include pharmaceuticals, such as antidepressants, and environmental agents, such as bisphenol A. Various types of studies can provide evidence to identify MDAs, yet a systematic method is needed to integrate these data to help to identify such hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we developed 12 KCs of MDAs based on our knowledge of processes underlying metabolic diseases and the effects of their causal agents: (1) alters function of the endocrine pancreas; (2) impairs function of adipose tissue; (3) alters nervous system control of metabolic function; (4) promotes insulin resistance; (5) disrupts metabolic signalling pathways; (6) alters development and fate of metabolic cell types; (7) alters energy homeostasis; (8) causes inappropriate nutrient handling and partitioning; (9) promotes chronic inflammation and immune dysregulation in metabolic tissues; (10) disrupts gastrointestinal tract function; (11) induces cellular stress pathways; and (12) disrupts circadian rhythms. In this Consensus Statement, we present the logic that revealed the KCs of MDAs and highlight evidence that supports the identification of KCs. We use chemical, infectious and physical agents as examples to illustrate how the KCs can be used to organize and use mechanistic data to help to identify MDAs.
Collapse
Affiliation(s)
- Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA, USA
| | - Cliona M McHale
- School of Public Health, University of California, Berkeley, CA, USA
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Environmental Health Sciences, Bozeman, MT, USA
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - David Collier
- Department of Pediatrics, East Carolina University, Greenville, NC, USA
| | - Kathryn Z Guyton
- Board on Environmental Studies and Toxicology, National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Suneil Koliwad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), CIBERDEM, Miguel Hernandez University of Elche, Elche, Spain
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Zeise
- Office of the Director, Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency, Sacramento, CA, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Iremonger KJ, Power EM. The paraventricular nucleus of the hypothalamus: a key node in the control of behavioural states. J Physiol 2025; 603:2231-2243. [PMID: 40119815 PMCID: PMC12013795 DOI: 10.1113/jp288366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/05/2025] [Indexed: 03/24/2025] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus contains diverse populations of neuropeptide-producing neurons. These include neurons that synthesise oxytocin, vasopressin, corticotropin-releasing hormone, thyrotropin-releasing hormone and somatostatin. While it is well established that these neurons control the secretion of neuroendocrine hormones, there is growing evidence that they also control the expression of important homeostatic behaviours. Here we review recent data showing a critical role of PVN neurons in controlling arousal, social behaviour, defensive behaviour and pain. Collectively, this suggests that the PVN is a key node in a wider neural network controlling behavioural states.
Collapse
Affiliation(s)
- Karl J. Iremonger
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Emmet M. Power
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
5
|
Xu Z, Wen S, Dong M, Zhou L. Targeting central pathway of Glucose-Dependent Insulinotropic Polypeptide, Glucagon and Glucagon-like Peptide-1 for metabolic regulation in obesity and type 2 diabetes. Diabetes Obes Metab 2025; 27:1660-1675. [PMID: 39723473 DOI: 10.1111/dom.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Obesity and type 2 diabetes are significant public health challenges that greatly impact global well-being. The development of effective therapeutic strategies has become more and more concentrated on the central nervous system and metabolic regulation. The primary pharmaceutical interventions for the treatment of obesity and uncontrolled hyperglycemia are now generally considered to be incretin-based anti-diabetic treatments, particularly glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonists. This is a result of their substantial influence on the central nervous system and the consequent effects on energy balance and glucose regulation. It is increasingly crucial to understand the neural pathways of these pharmaceuticals. The purpose of this review is to compile and present the most recent central pathways regarding glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide and glucagon receptors, with a particular emphasis on central metabolic regulation.
Collapse
Affiliation(s)
- Zhimin Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Fudan University, Shanghai, China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
6
|
Skoracka K, Hryhorowicz S, Schulz P, Zawada A, Ratajczak-Pawłowska AE, Rychter AM, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. The role of leptin and ghrelin in the regulation of appetite in obesity. Peptides 2025; 186:171367. [PMID: 39983918 DOI: 10.1016/j.peptides.2025.171367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Leptin and ghrelin are two key hormones that play opposing roles in the regulation of appetite and energy balance. Ghrelin stimulates appetite and food intake following binding to receptors and the subsequent activation of orexigenic neurons in the arcuate nucleus. Leptin, conversely, has been demonstrated to suppress appetite and reduce food intake. This occurs through the inhibition of ghrelin-activated neurons, while simultaneously activating those that promote satiety and increase energy expenditure. A lack of biological response despite elevated leptin levels, which is known as leptin resistance, is observed in individuals with excess body weight and represents a significant challenge. As the dysregulation of ghrelin and leptin signalling has been linked to the development of obesity and other metabolic disorders, an in-depth understanding of the genetic determinants affecting these two hormones may facilitate a more comprehensive grasp of the intricate interactions that underpin the pathogenesis of obesity.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, Poznan 60-812, Poland.
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan 60-479, Poland
| | - Piotr Schulz
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Alicja Ewa Ratajczak-Pawłowska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan 60-479, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland.
| |
Collapse
|
7
|
Gahr M. [Metabolic adverse drug reactions related to psychotropic drugs]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2025; 93:95-103. [PMID: 39313203 DOI: 10.1055/a-2405-5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Metabolic adverse drug reactions (mADR) related to psychotropic drugs have significant health-related effects including weight gain, impaired glucose tolerance, diabetes mellitus and dyslipidemia as well as economic relevance. Nearly all antipsychotics (AP) and many antidepressants (AD) and mood stabilisers may induce weight gain. Weight development in the first weeks or months after the beginning of the therapy is the strongest predictor for weight gain related to AP and AD. The most important risk factors for mADR are antagonistic effects at H1-, 5-HT2C- und M3-receptors and antidopaminergic effects. However, several other systems are also relevant. Systematic monitoring of metabolic parameters is recommended in all patients treated with substances that are associated with an increased risk of mADR. Lifestyle modification, dietary measures, exercise therapy, dose reduction, change and discontinuation of the substance, and additional treatment with metformin and topiramate are evidence-based treatment options for AP-associated weight gain. GLP-1 receptor agonists such as liraglutide are also promising.
Collapse
Affiliation(s)
- Maximilian Gahr
- Krankenhaus für Psychiatrie, Psychotherapie und Psychosomatische Medizin, Schloss Werneck, Werneck, Germany
| |
Collapse
|
8
|
Hayashi T, Kumamoto K, Kobayashi T, Hou X, Nagao S, Harada N, Honda S, Shimono Y, Nishio E. Estrogen synthesized in the central nervous system enhances MC4R expression and reduces food intake. FEBS J 2025. [PMID: 39967403 DOI: 10.1111/febs.17426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Estrogen is synthesized throughout various tissues in the body, and its production is regulated by the rate-limiting enzyme aromatase (encoded by the Cyp19a1 gene). Notably, aromatase is also expressed in central nervous system cells, allowing for localized estrogen synthesis in regions such as the hypothalamus. Estrogens produced within these neurons are referred to as neuroestrogens. In this study, we investigated the role of neuroestrogens in the regulation of appetite through modulation of hypothalamic pathways in OVX, ArKO, and aromatase-restored mice. Estrogen suppresses appetite by influencing the expression of appetite-regulating peptides, including POMC and NPY, via MC4R. We explored the direct effects of neuroestrogens, independent from ovarian estrogen, on appetite suppression and the underlying molecular mechanisms. We monitored body weight and food intake and evaluated the expression of Cyp19a1, Mc4r, and other appetite-related genes. Our findings indicate that OVX and ArKO mice exhibited increased body weight and food consumption, which correlated with altered expression of Mc4r and Cyp19a1. Conversely, restoration of Cyp19a1 expression in a neuron specific manner significantly decreased food intake and increased Mc4r expression in the hypothalamus. Furthermore, neuroestrogens enhanced leptin responsiveness. Our results imply that neuroestrogens likely contribute to appetite regulation and may be relevant for body weight reduction.
Collapse
Affiliation(s)
- Takanori Hayashi
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Anatomy and Medical Biology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kanako Kumamoto
- Center for Disease Model and Educational Support, Fujita Health University, Toyoake, Japan
| | - Tatsuya Kobayashi
- Department of Regulatory Science, Research Promotion Unit, Fujita Health University School of Medical Science, Toyoake, Japan
- Reproduction Center, Fujita Health University Haneda Clinic, Otaku, Japan
- Department of Molecular Infectiology, Reproductive Medicine, Chiba University of Graduate School of Medicine, Chiba, Japan
| | - Xinfeng Hou
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shizuko Nagao
- Center for Disease Model and Educational Support, Fujita Health University, Toyoake, Japan
| | - Nobuhiro Harada
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinichiro Honda
- Department of Biochemistry, Fukuoka School of Pharmaceutical Sciences, Fukuoka University, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Nishio
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
9
|
Ernesto CMS, Laura SSD, Obed PMI, David AGR, Eloy GGJ, Lilia GHA. LCN2 blockade mitigating metabolic dysregulation and redefining appetite control in type 2 diabetes. Metab Brain Dis 2025; 40:97. [PMID: 39808380 PMCID: PMC11732943 DOI: 10.1007/s11011-024-01454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025]
Abstract
LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D. MATERIAL AND METHODS 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control. T2D was induced by low doses of streptozotocin and a high-carbohydrate diet. LCN2 blockade was performed by intraperitoneal administration of a polyclonal anti-LCN2 antibody. We analyzed metabolic parameters, food intake, feeding patterns, and serum LCN2 and leptin concentrations. In another group of intact or T2D mice, we analyzed the effect of blocking LCN2 and recombinant LCN2 on food consumption in a fasting-refeeding test and, the expression of cFOS and LCN2 in brain sections, specifically in the hypothalamus, piriform cortex, visceral area, arcuate nucleus and caudate-putamen. RESULTS T2D caused an increase in serum LCN2, without alterations in Ad libitum feeding, but with changes in the feeding pattern associated with alterations in LCN2-cFOS signalling in hypothalamic and non-hypothalamic brain regions. Blocking LCN2 improved metabolic parameters, increased Ad libitum feeding, and restored the feeding pattern after fasting, which is associated with enhanced LCN2 signalling in the brain. CONCLUSIONS Blocking LCN2 restores metabolic health and normalizes the pattern of food consumption by normalizing LCN2 signalling in different brain regions.
Collapse
Affiliation(s)
- Cifuentes-Mendiola Saúl Ernesto
- Section of Osteimmunology and Oral Immunology, Laboratory of Dental Reseach. FES Iztacala, National Autonomous University of Mexico (UNAM), México, Mexico State, México
| | - Sólis-Suarez Diana Laura
- Section of Osteimmunology and Oral Immunology, Laboratory of Dental Reseach. FES Iztacala, National Autonomous University of Mexico (UNAM), México, Mexico State, México
- Postgraduate in Dentistry Science, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Pérez-Martínez Isaac Obed
- Section of Sensation Neurobiology and Oral Movements, Laboratory of Dental Reseach. FES Iztacalaestigación Odontológica, National Autonomous University of Mexico (UNAM), México State, México, México
| | - Andrade-González Rey David
- Section of Sensation Neurobiology and Oral Movements, Laboratory of Dental Reseach. FES Iztacalaestigación Odontológica, National Autonomous University of Mexico (UNAM), México State, México, México
| | - García-Gama Jahaziel Eloy
- Section of Osteimmunology and Oral Immunology, Laboratory of Dental Reseach. FES Iztacala, National Autonomous University of Mexico (UNAM), México, Mexico State, México
| | - García-Hernández Ana Lilia
- Section of Osteimmunology and Oral Immunology, Laboratory of Dental Reseach. FES Iztacala, National Autonomous University of Mexico (UNAM), México, Mexico State, México.
| |
Collapse
|
10
|
Sanadgol E, Zendehdel M, Vazir B, Rassouli A, Haghbinnazarpak H. Central administration of galanin-like peptide (GALP) causes short-term orexigenic effects in broilers: Mediatory role of NPY1 and D1 receptors. Neurosci Lett 2025; 844:138042. [PMID: 39551101 DOI: 10.1016/j.neulet.2024.138042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Studies conducted on mammalian models have indicated the role of galanin-like peptide (GALP) in appetite regulation. For the first time, the present study examines the effects of this peptide on feed consumption and behavioral changes, as well as its interaction with dopaminergic and neuropeptide Y (NPY) systems in broilers. In experiment 1, broilers were injected with GALP (0.5, 1, and 2 μg) and saline. In experiment 2, saline, NPY1 receptor antagonist (BIBO-3304), GALP (2 μg), and BIBO-3304 + GALP were administrated. Experiments 3-6 were identical to experiment 2, except that NPY2 receptor antagonist (BIIE 0246), NPY5 receptor antagonist (CGP 71683A), D1 receptor antagonist (SCH39166), and D2 receptor antagonist (L-741,626) were injected instead of BIBO-3304. After that, cumulative meal consumption was recorded for 2 h. Also, behavioral changes in the broilers receiving GALP (0.5, 1, and 2 μg) were monitored for thirty minutes after infusion. Following the administration of GALP (1 and 2 μg), food intake and the number of feeding and exploratory pecks of chicks increased (P < 0.05), while other behaviors did not change significantly (P ≥ 0.05). Co-infusion of BIBO-3304 + GALP suppressed the orexigenic effect of GALP (P < 0.05). Infusion of BIIE 0246, CGP 71683A, and L-741,626 with GALP, had no significant effect on GALP-induced hyperphagia (P ≥ 0.05). However, the orexigenic effects of GALP were stimulated following the co-administration of SCH39166A + GALP (P < 0.05). These findings indicate that NPY1 and D1 receptors can mediate GALP-induced hyperphagia in broilers.
Collapse
Affiliation(s)
- Elham Sanadgol
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Bita Vazir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Rassouli
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hadi Haghbinnazarpak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Shahid Tanweer A, Shaheen MH, Alshamsi BA, Almazrouei MA, Almasri RM, Shahid Tanveer A, Rajeh JM. Endocrine Dysfunction Following Bariatric Surgery: A Systematic Review of Postoperative Changes in Major Endocrine Hormones. Cureus 2025; 17:e77756. [PMID: 39981480 PMCID: PMC11842000 DOI: 10.7759/cureus.77756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Bariatric surgery (BS) is an effective intervention for obesity and related metabolic disorders, significantly improving metabolic health and alleviating hormonal imbalances. However, it induces complex endocrine changes that can lead to dysfunctions, impacting the somatotropic, gonadal, thyroid, pancreatic, and adrenal axes. This review highlights the dual effects of BS on the endocrine system. A comprehensive review of peer-reviewed studies using PRISMA guidelines was conducted, focusing on human research evaluating pre and postoperative endocrine parameters. Studies were selected for their relevance and quality in elucidating the endocrine consequences of BS. BS restores growth hormone secretion and improves fertility but may disrupt insulin-like growth factor-1 recovery and sex hormone balance, leading to bone loss and catabolic states. Postprandial insulin hypersecretion can result in hyperinsulinemic hypoglycemia, with impaired counter-regulatory hormone responses. Secondary hyperparathyroidism and reduced bone density highlight additional risks. Changes in thyroid hormone levels have implications for both hypothyroid and euthyroid patients. These findings underscore the interplay between improved metabolic control and potential endocrine dysfunctions. The current evidence predominantly comprises association studies that may not be of quality for safe clinical decision-making, highlighting the need for high-quality research to establish causality and refine therapeutic strategies. Bridging knowledge gaps in the mechanisms underlying these changes is crucial to optimizing BS outcomes. A holistic approach integrating preoperative screening, individualized postoperative care, and targeted therapies is essential to mitigate complications while maximizing benefits.
Collapse
Affiliation(s)
- Ammar Shahid Tanweer
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Majd H Shaheen
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Bashayer A Alshamsi
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Mahra A Almazrouei
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Rama M Almasri
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| | | | - Jana M Rajeh
- Internal Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, ARE
| |
Collapse
|
12
|
Stefanakis K, Upadhyay J, Ramirez-Cisneros A, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024; 161:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez-Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
13
|
Niu X, Zhang Q, Liu J, Zhao Y, Shang N, Li S, Liu Y, Xiong W, Sun E, Zhang Y, Zhao H, Li Y, Wang P, Fang B, Zhao L, Chen J, Wang F, Pang G, Wang C, He J, Wang R. Effect of synbiotic supplementation on obesity and gut microbiota in obese adults: a double-blind randomized controlled trial. Front Nutr 2024; 11:1510318. [PMID: 39664910 PMCID: PMC11633458 DOI: 10.3389/fnut.2024.1510318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Synbiotics, combining specific probiotics and selected prebiotics, may benefit health issues like obesity, but evidence remains inconsistent. OBJECTIVE This study aimed to verify the effect of a pre-screened synbiotics combination [containing Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup), galacto-oligosaccharides (GOS) and xylo-oligosaccharides (XOS)] on obesity in the population. METHODS In a randomized, double-blind, placebo-controlled trial, 80 individuals with obesity consumed daily synbiotics (containing MN-Gup 1 × 1011 CFU/day, GOS 0.7 g/day, and XOS 0.7 g/day) or placebo for 12 weeks. Body composition, blood lipids, serum hormone, bile acids, and gut microbiota were measured pre-and post-intervention. RESULTS Synbiotics supplementation significantly decreased body fat percentage, waist, and serum low-density lipoprotein cholesterol (LDL-C), increased peptide YY, cholecystokinin, oxyntomodulin, GSH (glutathione peroxidase) in individuals with obesity. Additionally, synbiotic supplementation led to an enrichment of beneficial bacteria and bile acids chenodeoxycholic acid (CDCA). Bifidobacterium and Romboutsia were significantly positively correlated with CDCA. A more favorable effect was observed in individuals with obesity and abnormal LDL-C compared to those without dyslipidemia. CONCLUSION Twelve-week synbiotics intervention reduced body fat percentage, waist, and serum LDL-C, especially in individuals with obesity and abnormal LDL-C. The possible mechanisms may be related to changes in gut microbiota, bile acids and gut hormones. CLINICAL TRIAL REGISTRATION Chictr.org.cn, identifier ChiCTR2200064156.
Collapse
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qi Zhang
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Julong Liu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Yuyang Zhao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Nan Shang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Xiong
- Food Laboratory of Zhongyuan, Luohe, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Yong Zhang
- Department of Nutrition, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongfeng Zhao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bing Fang
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Liang Zhao
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Juan Chen
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lhasa, China
| | - Guofang Pang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Chenyuan Wang
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Jingjing He
- Research Center for Probiotics, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Forner-Piquer I, Giommi C, Sella F, Lombó M, Montik N, Dalla Valle L, Carnevali O. Endocannabinoid System and Metabolism: The Influences of Sex. Int J Mol Sci 2024; 25:11909. [PMID: 39595979 PMCID: PMC11593739 DOI: 10.3390/ijms252211909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid system (ECS) is a lipid signaling system involved in numerous physiological processes, such as endocrine homeostasis, appetite control, energy balance, and metabolism. The ECS comprises endocannabinoids, their cognate receptors, and the enzymatic machinery that tightly regulates their levels within tissues. This system has been identified in various organs, including the brain and liver, in multiple mammalian and non-mammalian species. However, information regarding the sex-specific regulation of the ECS remains limited, even though increasing evidence suggests that interactions between sex steroid hormones and the ECS may ultimately modulate hepatic metabolism and energy homeostasis. Within this framework, we will review the sexual dimorphism of the ECS in various animal models, providing evidence of the crosstalk between endocannabinoids and sex hormones via different metabolic pathways. Additionally, we will underscore the importance of understanding how endocrine-disrupting chemicals and exogenous cannabinoids influence ECS-dependent metabolic pathways in a sex-specific manner.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Marta Lombó
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Molecular Biology, Universidad de León, 24071 León, Spain
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
15
|
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024; 16:3560. [PMID: 39458554 PMCID: PMC11510221 DOI: 10.3390/nu16203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Obesity, clinically defined as a body mass index (BMI) of 30 kg/m2 or higher, is a medical condition characterized by the excessive accumulation of body fat, which can lead to adverse health consequences. As a global public health issue with an escalating prevalence, controlling appetite and satiety is essential for regulating energy balance and managing body weight. Dietary proteins and peptides have gained interest in their potential to prevent and treat obesity by modulating satiety signals. This narrative review analyzes scientific evidence highlighting the role of dietary proteins and peptides in regulating satiety signals and investigates their therapeutic potential in preventing and treating obesity. METHODS A comprehensive literature search was conducted in multiple electronic databases, including PubMed, Scopus, and Web of Science. The search focused on articles examining the impact of dietary proteins and peptides on satiety and obesity, encompassing both preclinical and clinical trials. RESULTS Several studies have demonstrated a correlation between the intake of specific proteins or peptides from plant and animal sources and satiety regulation. These investigations identified mechanisms where amino acids and peptides interact with enteroendocrine cell receptors, activating intracellular signaling cascades that promote the release of anorexigenic gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). Both in vitro and in vivo assays have shown that these interactions contribute to appetite regulation and the sensation of satiety. CONCLUSIONS Using proteins and peptides in the diet may be an effective strategy for regulating appetite and controlling body weight. However, more research-including clinical trials-is needed to understand the underlying mechanisms better and optimize the application of these bioactive compounds in preventing and treating obesity.
Collapse
Affiliation(s)
- Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico;
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Mayvi Alvarado-Olivarez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa-Enríquez 91193, Veracruz, Mexico
| |
Collapse
|
16
|
Solmi M, Miola A, Capone F, Pallottino S, Højlund M, Firth J, Siskind D, Holt RIG, Corbeil O, Cortese S, Dragioti E, Du Rietz E, Nielsen RE, Nordentoft M, Fusar-Poli P, Hartman CA, Høye A, Koyanagi A, Larsson H, Lehto K, Lindgren P, Manchia M, Skonieczna-Żydecka K, Stubbs B, Vancampfort D, Vieta E, Taipale H, Correll CU. Risk factors, prevention and treatment of weight gain associated with the use of antidepressants and antipsychotics: a state-of-the-art clinical review. Expert Opin Drug Saf 2024; 23:1249-1269. [PMID: 39225182 DOI: 10.1080/14740338.2024.2396396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION People with severe mental illness have poor cardiometabolic health. Commonly used antidepressants and antipsychotics frequently lead to weight gain, which may further contribute to adverse cardiovascular outcomes. AREAS COVERED We searched MEDLINE up to April 2023 for umbrella reviews, (network-)meta-analyses, trials and cohort studies on risk factors, prevention and treatment strategies of weight gain associated with antidepressants/antipsychotics. We developed 10 clinical recommendations. EXPERT OPINION To prevent, manage, and treat antidepressant/antipsychotic-related weight gain, we recommend i) assessing risk factors for obesity before treatment, ii) monitoring metabolic health at baseline and regularly during follow-up, iii) offering lifestyle interventions including regular exercise and healthy diet based on patient preference to optimize motivation, iv) considering first-line psychotherapy for mild-moderate depression and anxiety disorders, v)choosing medications based on medications' and patient's weight gain risk, vi) choosing medications based on acute vs long-term treatment, vii) using effective, tolerated medications, viii) switching to less weight-inducing antipsychotics/antidepressants where possible, ix) using early weight gain as a predictor of further weight gain to inform the timing of intervention/switch options, and x) considering adding metformin or glucagon-like peptide-1 receptor agonists, or topiramate(second-line due to potential adverse cognitive effects) to antipsychotics, or aripiprazole to clozapine or olanzapine.
Collapse
Affiliation(s)
- Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program, University of Ottawa, Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | | | - Federico Capone
- Department of Medicine (DIMED), Unit of Internal Medicine III, Padua University Hospital, University of Padua, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Mikkel Højlund
- Department of Psychiatry Aabenraa, Mental Health Services in the Region of Southern Denmark, Aabenraa, Denmark
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Princess Alexandra Hospital, Brisbane, Qld, Australia
- Physical and Mental Health Research Stream, Queensland Centre for Mental Health Research, School of Clinical Medicine, Brisbane, Qld, Australia
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Olivier Corbeil
- Faculty of Pharmacy, Université Laval, Québec, Canada
- Department of Pharmacy, Quebec Mental Health University Institute, Québec, Canada
| | - Samuele Cortese
- Developmental EPI (Evidence synthesis, Prediction, Implementation) lab, Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Child and Adolescent Mental Health Service, Solent NHS Trust, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University of Bari 'Aldo Moro', Bari, Italy
| | - Elena Dragioti
- Pain and Rehabilitation Centre, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Research Laboratory Psychology of Patients, Families & Health Professionals, Department of Nursing, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ebba Du Rietz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - René Ernst Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Merete Nordentoft
- Mental Health Centre Copenhagen, Department of Clinical Medicine, Copenhagen University Hospital, Glostrup, Denmark
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Outreach and Support in South-London (OASIS) service, South London and Maudlsey (SLaM) NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Catharina A Hartman
- Interdisciplinary Centre Psychopathology and Emotion regulation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anne Høye
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Mental Health and Substance Abuse, University Hospital of North Norway, Tromsø, Norway
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Barcelona, Spain
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Kelli Lehto
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Peter Lindgren
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- The Swedish Institute for Health Economics, Lund, Sweden
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Davy Vancampfort
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- University Psychiatric Centre KU Leuven, Leuven, Belgium
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Heidi Taipale
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
17
|
Osakabe N, Ohmoto M, Shimizu T, Iida N, Fushimi T, Fujii Y, Abe K, Calabrese V. Gastrointestinal hormone-mediated beneficial bioactivities of bitter polyphenols. FOOD BIOSCI 2024; 61:104550. [DOI: 10.1016/j.fbio.2024.104550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Jawharji MT, Alshammari GM, Binobead MA, Albanyan NM, Al-Harbi LN, Yahya MA. Comparative Efficacy of Low-Carbohydrate and Ketogenic Diets on Diabetic Retinopathy and Oxidative Stress in High-Fat Diet-Induced Diabetic Rats. Nutrients 2024; 16:3074. [PMID: 39339674 PMCID: PMC11435414 DOI: 10.3390/nu16183074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
This study examined the effect of a low-carbohydrate diet (LCD) and a low-carbohydrate ketogenic diet (LCKD) on diabetic retinopathy in high-fat diet-induced diabetes mellitus in rats and studied the mechanisms of action. Rats were divided into four groups: the Control group, which was fed a normal diet for 16 weeks; the HFD group, which was fed a high-fat diet (HFD) for the first 8 weeks and then switched to a normal diet for 8 weeks; the HFD+LCD group, fed a HFD for 8 weeks followed by an LCD for 8 weeks, and the HFD+LCKD group, which was fed a HFD for 8 weeks followed by an LCKD for 8 more weeks. Both the LCD and the LCKD effectively reduced the final body and total fat weights and decreased fasting serum levels of glucose, insulin, hemoglobin A1 (HbA1C), triglycerides, cholesterol, and LDL-c. They also reduced the levels of malondialdehyde (MDA), tumor necrosis factor-α, vascular endothelial factor, caspapse-3, and bax. In the HFD rats, we found increased serum levels of β-Hydroxybutyrate and upregulated expression of Bcl2, glutathione, superoxide dismutase, and hemeoxygenase-1. Moreover, the LCD and LCKD significantly reduced mRNA levels of Kelch-like ECH-associated protein 1 (Keap1) and enhanced mRNA and nuclear concentrations of nuclear factor erythroid factor 2 (Nrf2). All these effects were associated with improved layers of the retina in the HFD - LCD and HFD + LCKD rats but not in HFD animals. The impact of the LCKD was always more profound on all measured parameters and on improving the structure of the retina compared to the LCD. In conclusion, the LCKD is superior to the LCD in preventing diabetic retinopathy in HFD-fed rats. Mechanistically, our results suggest that the hypoglycemic and hypolipidemic conditions and the Nrf2-dependent antioxidant and anti-inflammatory effects may be involved in the preventative effects of the LCD and LCKD.
Collapse
Affiliation(s)
- Monya T. Jawharji
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Manal Abdulaziz Binobead
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Nouf Mohammed Albanyan
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.J.); (M.A.B.); (L.N.A.-H.); (M.A.Y.)
| |
Collapse
|
19
|
Cai H, Schnapp WI, Mann S, Miscevic M, Shcmit MB, Conteras M, Fang C. Neural circuits regulation of satiation. Appetite 2024; 200:107512. [PMID: 38801994 PMCID: PMC11227400 DOI: 10.1016/j.appet.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Terminating a meal after achieving satiation is a critical step in maintaining a healthy energy balance. Despite the extensive collection of information over the last few decades regarding the neural mechanisms controlling overall eating, the mechanism underlying different temporal phases of eating behaviors, especially satiation, remains incompletely understood and is typically embedded in studies that measure the total amount of food intake. In this review, we summarize the neural circuits that detect and integrate satiation signals to suppress appetite, from interoceptive sensory inputs to the final motor outputs. Due to the well-established role of cholecystokinin (CCK) in regulating the satiation, we focus on the neural circuits that are involved in regulating the satiation effect caused by CCK. We also discuss several general principles of how these neural circuits control satiation, as well as the limitations of our current understanding of the circuits function. With the application of new techniques involving sophisticated cell-type-specific manipulation and mapping, as well as real-time recordings, it is now possible to gain a better understanding of the mechanisms specifically underlying satiation.
Collapse
Affiliation(s)
- Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Bio 5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Wesley I Schnapp
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Shivani Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Masa Miscevic
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew B Shcmit
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Marco Conteras
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Caohui Fang
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
20
|
Zhu M, Jun S, Nie X, Chen J, Hao Y, Yu H, Zhang X, Sun L, Liu Y, Yuan X, Yuan F, Wang S. Mapping of afferent and efferent connections of phenylethanolamine N-methyltransferase-expressing neurons in the nucleus tractus solitarii. CNS Neurosci Ther 2024; 30:e14808. [PMID: 38887205 PMCID: PMC11183208 DOI: 10.1111/cns.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.
Collapse
Affiliation(s)
- Mengchu Zhu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Department of Laboratory DiagnosticsHebei Medical UniversityShijiazhuangHebeiChina
| | - Shirui Jun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiaojun Nie
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Jinting Chen
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yinchao Hao
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Hongxiao Yu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiang Zhang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Lu Sun
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Yuelin Liu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xiangshan Yuan
- Department of Anatomy and Histoembryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of NeurologyJinshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Fang Yuan
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| | - Sheng Wang
- Department of NeurobiologyHebei Medical UniversityShijiazhuangHebeiChina
- Hebei Key Laboratory of NeurophysiologyShijiazhuangHebei ProvinceChina
| |
Collapse
|
21
|
Diao S, Chen C, Benani A, Magnan C, Van Steenwinckel J, Gressens P, Cruciani-Guglielmacci C, Jacquens A, Bokobza C. Preterm birth: A neuroinflammatory origin for metabolic diseases? Brain Behav Immun Health 2024; 37:100745. [PMID: 38511150 PMCID: PMC10950814 DOI: 10.1016/j.bbih.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.
Collapse
Affiliation(s)
- Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | | | - Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Anesthesia and Critical Care, APHP-Sorbonne University, Hôpital La Pitié- Salpêtrière, Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| |
Collapse
|
22
|
Chiavaroli A, Di Simone SC, Acquaviva A, Nilofar N, Libero ML, Brunetti L, Recinella L, Leone S, Orlando G, Zengin G, Di Vito M, Menghini L, Ferrante C. Neuromodulatory Effects Induced by the Association of Moringa oleifera Lam., Tribulus terrestris L., Rhodiola rosea Lam., and Undaria pinnatidifida Extracts in the Hypothalamus. Chem Biodivers 2024; 21:e202302075. [PMID: 38527165 DOI: 10.1002/cbdv.202302075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The present study investigated the role of a commercial formulation constituted by herbal extracts from Rhodiola rosea, Undaria pinnatifida, Tribulus terrestris, and Moringa oleifera. The formulation was analysed for determining the content in total phenols and flavonoids and scavenging/reducing properties. The formulation was also tested on isolated mouse hypothalamus in order to investigate effects on serotonin, dopamine, neuropeptide Y (NPY), and orexin A. The gene expression of gonadrotopin releasing hormone (GnRH) was also assayed. The formulation was able to reduce dopamine and serotonin turnover, and this could be related, albeit partially, to the capability of different phytochemicals, among which hyperoside and catechin to inhibit monoaminooxidases activity. In parallel, the formulation was effective in reducing the gene expression of NPY and orexin-A and to improve the gene expression of GnRH. In this context, the increased GnRH gene expression induced by the formulation may contribute not only to improve the resistance towards the stress related to ageing, but also to prevent the reduction of libido that could be related with a stimulation of the serotoninergic pathway. According to the in silico analysis, hyperoside could play a pivotal role in modulating the gene expression of GnRH. Regarding NPY and orexin A gene expression, no direct interactions between the formulation phytochemicals and these neuropeptides were anticipated; thus, suggesting that the pattern of gene expression observed following exposure of the hypothalamus to the formulation may be secondary to inhibitory effects of dopamine and serotonin turnover. Concluding, the present study demonstrated the efficacy of the formulation in exerting neuromodulatory effects at the hypothalamic level; thus, suggesting the potential to contrast stress and fatigue.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Nilofar Nilofar
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Maura Di Vito
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A., Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "G. d'Annunzio" University, via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
23
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Yamashita Y. Physiological functions of poorly absorbed polyphenols via the glucagon-like peptide-1. Biosci Biotechnol Biochem 2024; 88:493-498. [PMID: 38378922 DOI: 10.1093/bbb/zbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. Some polyphenols are hard to be absorbed into the body due to their structural characteristics. This review focuses on the health beneficial effects of polyphenols mediated by intestinal hormones, particularly related to the systemic functions through the secretion of glucagon-like peptide-1 (GLP-1), an enteric hormone that stimulates postprandial insulin secretion. GLP-1 is secreted from L cells in the distal small intestine. Therefore, some poorly absorbed polyphenols are known to have the ability to act on the intestines and promote GLP-1 secretion. It has been reported that it not only reduces hyperglycemia but also prevents obesity by reduction of overeating and improves blood vessel function. This review discusses examples of health effects of polyphenols mediated by GLP-1 secretion.
Collapse
Affiliation(s)
- Yoko Yamashita
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
25
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
26
|
Kaiya H. Update on Feeding Regulation by Ghrelin in Birds: Focused on Brain Network. Zoolog Sci 2024; 41:39-49. [PMID: 38587516 DOI: 10.2108/zs230071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/21/2023] [Indexed: 04/09/2024]
Abstract
Ghrelin is known to be a feeding stimulatory hormone in mammals, but in birds, in contrast to mammals, the feeding behavior is regulated in inhibitory manners. This is because the neuropeptides associated with the regulation in the brain are different from those in mammals, i.e., it has been shown that, in chickens, a corticotropin-releasing hormone family peptide, urocortin, which is a feeding-inhibitory peptide, is mainly involved in the inhibitory mechanism. However, feeding is also regulated by various neurotransmitters in the brain, and recently, their interaction with the mechanisms underlying feeding inhibition by ghrelin in birds has been intensively studied and clarified. This review summarizes these findings.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Grandsoul Research Institute for Immunology, Inc., Utano, Uda, Nara 633-2221, Japan,
- Faculty of Science, University of Toyama, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
27
|
Tucker JAL, Bornath DPD, McCarthy SF, Hazell TJ. Leptin and energy balance: exploring Leptin's role in the regulation of energy intake and energy expenditure. Nutr Neurosci 2024; 27:87-95. [PMID: 36583502 DOI: 10.1080/1028415x.2022.2161135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.
Collapse
Affiliation(s)
- Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
28
|
Kras K, Ropka-Molik K, Muszyński S, Arciszewski MB. Expression of Genes Encoding Selected Orexigenic and Anorexigenic Peptides and Their Receptors in the Organs of the Gastrointestinal Tract of Calves and Adult Domestic Cattle ( Bos taurus taurus). Int J Mol Sci 2023; 25:533. [PMID: 38203717 PMCID: PMC10779135 DOI: 10.3390/ijms25010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The regulation of food intake occurs at multiple levels, and two of the components of this process are orexigenic and anorexigenic peptides, which stimulate or inhibit appetite, respectively. The study of the function of these compounds in domestic cattle is essential for production efficiency, animal welfare, and health, as well as for economic benefits, environmental protection, and the contribution to a better understanding of physiological aspects that can be applied to other species. In this study, the real-time PCR method was utilized to determine the expression levels of GHRL, GHSR, SMIM20, GPR173, LEP, LEPR, and NUCB2 (which encode ghrelin, its receptor, phoenixin-14, its receptor, leptin, its receptor, and nesfatin-1, respectively) in the gastrointestinal tract (GIT) of Polish Holstein-Friesian breed cattle. In all analyzed GIT segments, mRNA for all the genes was present in both age groups, confirming their significance in these tissues. Gene expression levels varied distinctly across different GIT segments and between young and mature subjects. The differences between calves and adults were particularly pronounced in areas such as the forestomachs, ileum, and jejunum, indicating potential changes in peptides regulating food intake based on the developmental phase. In mature individuals, the forestomachs predominantly displayed an increase in GHRL expression, while the intestines had elevated levels of GHSR, GPR173, LEP, and NUCB2. In contrast, the forestomachs in calves showed upregulated expressions of LEP, LEPR, and NUCB2, highlighting the potential importance of peptides from these genes in bovine forestomach development.
Collapse
Affiliation(s)
- Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 St., 20-950 Lublin, Poland;
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St., 32-083 Balice, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12 St., 20-950 Lublin, Poland;
| |
Collapse
|
29
|
Ferreira-Hermosillo A, de Miguel Ibañez R, Pérez-Dionisio EK, Villalobos-Mata KA. Obesity as a Neuroendocrine Disorder. Arch Med Res 2023; 54:102896. [PMID: 37945442 DOI: 10.1016/j.arcmed.2023.102896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Obesity is one of the most prevalent diseases in the world. Based on hundreds of clinical and basic investigations, its etiopathogenesis goes beyond the simple imbalance between energy intake and expenditure. The center of the regulation of appetite and satiety lies in the nuclei of the hypothalamus where peripheral signals derived from adipose tissue (e.g., leptin), the gastrointestinal tract, the pancreas, and other brain structures, arrive. These signals are part of the homeostatic control system (eating to survive). Additionally, a hedonic or reward system (eating for pleasure) is integrated into the regulation of appetite. This reward system consists of a dopaminergic circuit that affects eating-related behaviors influencing food preferences, food desires, gratification when eating, and impulse control to avoid compulsions. These systems are not separate. Indeed, many of the hormones that participate in the homeostatic system also participate in the regulation of the hedonic system. In addition, factors such as genetic and epigenetic changes, certain environmental and sociocultural elements, the microbiota, and neuronal proinflammatory effects of high-energy diets also contribute to the development of obesity. Therefore, obesity can be considered a complex neuroendocrine disease, and all of the aforementioned components should be considered for the management of obesity.
Collapse
Affiliation(s)
- Aldo Ferreira-Hermosillo
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Regina de Miguel Ibañez
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Enid Karina Pérez-Dionisio
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karen Alexandra Villalobos-Mata
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
30
|
Lee HG, Jung IH, Park BS, Yang HR, Kim KK, Tu TH, Yeh JY, Lee S, Yang S, Lee BJ, Kim JG, Nam-Goong IS. Altered Metabolic Phenotypes and Hypothalamic Neuronal Activity Triggered by Sodium-Glucose Cotransporter 2 Inhibition. Diabetes Metab J 2023; 47:784-795. [PMID: 37915185 PMCID: PMC10695712 DOI: 10.4093/dmj.2022.0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/17/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGRUOUND Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are currently used to treat patients with diabetes. Previous studies have demonstrated that treatment with SGLT-2 inhibitors is accompanied by altered metabolic phenotypes. However, it has not been investigated whether the hypothalamic circuit participates in the development of the compensatory metabolic phenotypes triggered by the treatment with SGLT-2 inhibitors. METHODS Mice were fed a standard diet or high-fat diet and treated with dapagliflozin, an SGLT-2 inhibitor. Food intake and energy expenditure were observed using indirect calorimetry system. The activity of hypothalamic neurons in response to dapagliflozin treatment was evaluated by immunohistochemistry with c-Fos antibody. Quantitative real-time polymerase chain reaction was performed to determine gene expression patterns in the hypothalamus of dapagliflozin-treated mice. RESULTS Dapagliflozin-treated mice displayed enhanced food intake and reduced energy expenditure. Altered neuronal activities were observed in multiple hypothalamic nuclei in association with appetite regulation. Additionally, we found elevated immunosignals of agouti-related peptide neurons in the paraventricular nucleus of the hypothalamus. CONCLUSION This study suggests the functional involvement of the hypothalamus in the development of the compensatory metabolic phenotypes induced by SGLT-2 inhibitor treatment.
Collapse
Affiliation(s)
- Ho Gyun Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Il Hyeon Jung
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Byong Seo Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Hye Rim Yang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Kwang Kon Kim
- Department of Biological Science, University of Ulsan, Ulsan, Korea
| | - Thai Hien Tu
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Jung-Yong Yeh
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Sewon Lee
- Division of Sport Science, College of Arts & Physical Education, Incheon National University, Incheon, Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, Korea
| | - Sunggu Yang
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, Korea
- Department of Nano-Bioengineering, College of Life Science and Technology, Incheon National University, Incheon, Korea
| | - Byung Ju Lee
- Department of Biological Science, University of Ulsan, Ulsan, Korea
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, Korea
| | - Il Seong Nam-Goong
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
31
|
Paoli A, Bianco A, Moro T, Mota JF, Coelho-Ravagnani CF. The Effects of Ketogenic Diet on Insulin Sensitivity and Weight Loss, Which Came First: The Chicken or the Egg? Nutrients 2023; 15:3120. [PMID: 37513538 PMCID: PMC10385501 DOI: 10.3390/nu15143120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The ketogenic diet (KD) is, nowadays, considered an interesting nutritional approach for weight loss and improvement in insulin resistance. Nevertheless, most of the studies available in the literature do not allow a clear distinction between its effects on insulin sensitivity per se, and the effects of weight loss induced by KDs on insulin sensitivity. In this review, we discuss the scientific evidence on the direct and weight loss mediated effects of KDs on glycemic status in humans, describing the KD's biochemical background and the underlying mechanisms.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
- Research Center for High Performance Sport, UCAM, Catholic University of Murcia, 30107 Murcia, Spain
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, 90144 Palermo, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
| | - Joao Felipe Mota
- School of Nutrition, Federal University of Goiás, Goiânia 74605-080, Brazil
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Christianne F Coelho-Ravagnani
- Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Post-Graduate Program in Movement Sciences, Institute of Health (INISA), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
32
|
Gutiérrez-Casares JR, Quintero J, Segú-Vergés C, Rodríguez Monterde P, Pozo-Rubio T, Coma M, Montoto C. In silico clinical trial evaluating lisdexamfetamine's and methylphenidate's mechanism of action computational models in an attention-deficit/hyperactivity disorder virtual patients' population. Front Psychiatry 2023; 14:939650. [PMID: 37333910 PMCID: PMC10273406 DOI: 10.3389/fpsyt.2023.939650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is an impairing psychiatric condition with the stimulants, lisdexamfetamine (LDX), and methylphenidate (MPH), as the first lines pharmacological treatment. Methods Herein, we applied a novel in silico method to evaluate virtual LDX (vLDX) and vMPH as treatments for ADHD applying quantitative systems pharmacology (QSP) models. The objectives were to evaluate the model's output, considering the model characteristics and the information used to build them, to compare both virtual drugs' efficacy mechanisms, and to assess how demographic (age, body mass index, and sex) and clinical characteristics may affect vLDX's and vMPH's relative efficacies. Results and Discussion We molecularly characterized the drugs and pathologies based on a bibliographic search, and generated virtual populations of adults and children-adolescents totaling 2,600 individuals. For each virtual patient and virtual drug, we created physiologically based pharmacokinetic and QSP models applying the systems biology-based Therapeutic Performance Mapping System technology. The resulting models' predicted protein activity indicated that both virtual drugs modulated ADHD through similar mechanisms, albeit with some differences. vMPH induced several general synaptic, neurotransmitter, and nerve impulse-related processes, whereas vLDX seemed to modulate neural processes more specific to ADHD, such as GABAergic inhibitory synapses and regulation of the reward system. While both drugs' models were linked to an effect over neuroinflammation and altered neural viability, vLDX had a significant impact on neurotransmitter imbalance and vMPH on circadian system deregulation. Among demographic characteristics, age and body mass index affected the efficacy of both virtual treatments, although the effect was more marked for vLDX. Regarding comorbidities, only depression negatively impacted both virtual drugs' efficacy mechanisms and, while that of vLDX were more affected by the co-treatment of tic disorders, the efficacy mechanisms of vMPH were disturbed by wide-spectrum psychiatric drugs. Our in silico results suggested that both drugs could have similar efficacy mechanisms as ADHD treatment in adult and pediatric populations and allowed raising hypotheses for their differential impact in specific patient groups, although these results require prospective validation for clinical translatability.
Collapse
Affiliation(s)
- José Ramón Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain
| | - Javier Quintero
- Servicio de Psiquiatría, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - Cristina Segú-Vergés
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | - Carmen Montoto
- Medical Department, Takeda Farmacéutica España, Madrid, Spain
| |
Collapse
|
33
|
Alabduljabbar K, Al-Najim W, le Roux CW. Food preferences after bariatric surgery: a review update. Intern Emerg Med 2023; 18:351-358. [PMID: 36478323 DOI: 10.1007/s11739-022-03157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
Obesity is a serious and global health problem. The multiple complications of obesity reduce quality of life and increase mortality. Bariatric surgery is one of the best treatment options for obesity management. Bariatric surgery helps people reduce their caloric intake by treating the disease of obesity effectively, in part by increasing signaling from the gut to the brain. The most frequent surgical options are Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). There is controversy regarding changes in food preferences and selection after bariatric surgery. In this review, we aim to outline the changes in food intake and selection, clarify the behavior changes in food intake, and assess the potential mechanisms responsible for these changes in patients after bariatric surgery.
Collapse
Affiliation(s)
- Khaled Alabduljabbar
- Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Werd Al-Najim
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
34
|
Frick JM, Eller OC, Foright RM, Levasseur BM, Yang X, Wang R, Winter MK, O'Neil MF, Morris EM, Thyfault JP, Christianson JA. High-fat/high-sucrose diet worsens metabolic outcomes and widespread hypersensitivity following early-life stress exposure in female mice. Am J Physiol Regul Integr Comp Physiol 2023; 324:R353-R367. [PMID: 36693166 PMCID: PMC9970659 DOI: 10.1152/ajpregu.00216.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Exposure to stress early in life has been associated with adult-onset comorbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early-life stress model using neonatal maternal separation (NMS) in mice, which displays evidence of increased body weight and adiposity, widespread mechanical allodynia, and hypothalamic-pituitary-adrenal axis dysregulation in male mice. Early-life stress and consumption of a Western-style diet contribute to the development of obesity; however, relatively few preclinical studies have been performed in female rodents, which are known to be protected against diet-induced obesity and metabolic dysfunction. In this study, we gave naïve and NMS female mice access to a high-fat/high-sucrose (HFS) diet beginning at 4 wk of age. Robust increases in body weight and fat were observed in HFS-fed NMS mice during the first 10 wk on the diet, driven partly by increased food intake. Female NMS mice on an HFS diet showed widespread mechanical hypersensitivity compared with either naïve mice on an HFS diet or NMS mice on a control diet. HFS diet-fed NMS mice also had impaired glucose tolerance and fasting hyperinsulinemia. Strikingly, female NMS mice on an HFS diet showed evidence of hepatic steatosis with increased triglyceride levels and altered glucocorticoid receptor levels and phosphorylation state. They also exhibited increased energy expenditure as observed via indirect calorimetry and expression of proinflammatory markers in perigonadal adipose. Altogether, our data suggest that early-life stress exposure increased the susceptibility of female mice to develop diet-induced metabolic dysfunction and pain-like behaviors.
Collapse
Affiliation(s)
- Jenna M Frick
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Olivia C Eller
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Rebecca M Foright
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Brittni M Levasseur
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Xiaofang Yang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Ruipeng Wang
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Association, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Maura F O'Neil
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - E Matthew Morris
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John P Thyfault
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas, United States
| | - Julie A Christianson
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
35
|
Han W, Wang L, Ohbayashi K, Takeuchi M, O'Farrell L, Coskun T, Rakhat Y, Yabe D, Iwasaki Y, Seino Y, Yada T. Glucose-dependent insulinotropic polypeptide counteracts diet-induced obesity along with reduced feeding, elevated plasma leptin and activation of leptin-responsive and proopiomelanocortin neurons in the arcuate nucleus. Diabetes Obes Metab 2023; 25:1534-1546. [PMID: 36852745 DOI: 10.1111/dom.15001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
AIM To clarify the effects of glucose-dependent insulinotropic polypeptide (GIP) receptor agonists (GIPRAs) on feeding and body weight. MATERIALS AND METHODS Acute and subchronic effects of subcutaneous GIPFA-085, a long-acting GIPRA, on blood glucose, food intake, body weight, respiratory exchange ratio and plasma leptin levels were measured in diet-induced obese (DIO) mice and/or functional leptin-deficient ob/ob mice. The effects of GIPFA-085 on the hypothalamic arcuate nucleus (ARC) neurons from lean and DIO mice were studied by measuring cytosolic Ca2+ concentration ([Ca2+ ]i ). RESULTS Single bolus GIPFA-085 (30, 300 nmol/kg) dose-dependently reduced blood glucose in glucose tolerance tests, elevated plasma leptin levels at 0.5-6 hours and inhibited food intake at 2-24 hours after injection in DIO mice. Daily GIPFA-085 (300 nmol/kg) inhibited food intake and increased fat utilization on day 1, and reduced body weight gain on days 3-12 of treatment in DIO, but not ob/ob, mice. GIPFA-085 increased [Ca2+ ]i in the ARC leptin-responsive and proopiomelanocortin (POMC) neurons. GIPFA-085 and leptin cooperated to increase [Ca2+ ]i in ARC neurons and inhibit food intake. CONCLUSIONS GIPFA-085 acutely inhibits feeding and increases lipid utilization, and sustainedly lowers body weight in DIO mice via mechanisms involving rises in leptin and activation of ARC leptin-responsive and POMC neurons. This study highlights the therapeutic potential of GIPRAs for treating obesity and diabetes.
Collapse
Affiliation(s)
- Wanxin Han
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Department of Diabetes, Endocrinology and Metabolism/Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
- Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lei Wang
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Department of Diabetes, Endocrinology and Metabolism/Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
- Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | | | | | | | - Yermek Rakhat
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Department of Diabetes, Endocrinology and Metabolism/Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
- Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism/Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Hospital, Osaka, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Hospital, Osaka, Japan
| | - Toshihiko Yada
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Kyoto, Japan
- Department of Diabetes, Endocrinology and Metabolism/Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu, Japan
- Division of Diabetes, Metabolism and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
36
|
Candemir B, İleri İ, Yalçın MM, Sel AT, Göker B, Gülbahar Ö, Yetkin İ. Relationship Between Appetite-Related Peptides and Frailty in Older Adults. Endocr Res 2023:1-9. [PMID: 36799510 DOI: 10.1080/07435800.2023.2180029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Frailty, is a geriatric syndrome that reduces the resistance to stress situations caused by activities of daily living and increases morbidity and mortality. We hypothesized that a decrease in orexigenic peptides or an increase in anorexigenic peptides might be associated with frailty. We aimed to investigate the relationship between frailty and six appetite-related peptides: ghrelin, neuropeptide Y (NPY), agouti-related peptide (AgRP), cocaine-amphetamine-associated peptide (CART), peptide YY, and alpha MSH (α-MSH). METHODS This cross-sectional study was conducted on 85 older adults who visited the outpatient clinic. All patients underwent comprehensive geriatric assessment. Frailty status was assessed using the Fried frailty index. Plasma levels of six appetite-related peptides were studied. RESULTS The mean age was 73.7 ± 5.4 years, 27 (31.8%) of the patients were male, and 32 of the patients (37.6%) were frail. While plasma levels of ghrelin, NPY and AgRP were significantly lower in frail patients, CART and α-MSH levels were higher compared to non-frail patients (p < .05 for all). Peptide YY was found to be higher in the frail group, however, the difference did not reach statistical significance (p = .052). In multivariate logistic regression analysis, the ghrelin, AgRP, CART, and α-MSH levels were independent predictors of frailty. Moreover, a weak correlation was found between all peptides(except NPY) and handgrip strength and Lawton-Brody score. CONCLUSION Ghrelin, AgRP, CART, and α-MSH levels were found to be independent predictors of frailty. Our results suggest that appetite-related peptides might be playing roles in the pathogenesis of frailty. Further larger prospective studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Burcu Candemir
- Health Sciences University, Gulhane Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - İbrahim İleri
- Gazi University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, Ankara, Turkey
| | - Mehmet Muhittin Yalçın
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Aydın Tuncer Sel
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Berna Göker
- Gazi University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, Ankara, Turkey
| | - Özlem Gülbahar
- Gazi University Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
| | - İlhan Yetkin
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
37
|
The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. Biomedicines 2023; 11:biomedicines11020446. [PMID: 36830982 PMCID: PMC9953676 DOI: 10.3390/biomedicines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Energy balance is regulated by several hormones and peptides, and neuropeptide Y is one of the most crucial in feeding and energy expenditure control. NPY is regulated by a series of peripheral nervous and humoral signals that are responsive to nutrient sensing, but its role in the energy balance is also intricately related to the energetic status, namely mitochondrial function. During fasting, mitochondrial dynamics and activity are activated in orexigenic neurons, increasing the levels of neuropeptide Y. By acting on the sympathetic nervous system, neuropeptide Y modulates thermogenesis and lipolysis, while in the peripheral sites, it triggers adipogenesis and lipogenesis instead. Moreover, both central and peripheral neuropeptide Y reduces mitochondrial activity by decreasing oxidative phosphorylation proteins and other mediators important to the uptake of fatty acids into the mitochondrial matrix, inhibiting lipid oxidation and energy expenditure. Dysregulation of the neuropeptide Y system, as occurs in metabolic diseases like obesity, may lead to mitochondrial dysfunction and, consequently, to oxidative stress and to the white adipose tissue inflammatory environment, contributing to the development of a metabolically unhealthy profile. This review focuses on the interconnection between mitochondrial function and dynamics with central and peripheral neuropeptide Y actions and discusses possible therapeutical modulations of the neuropeptide Y system as an anti-obesity tool.
Collapse
|
38
|
Correia D, Domingues I, Faria M, Oliveira M. Effects of fluoxetine on fish: What do we know and where should we focus our efforts in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159486. [PMID: 36257440 DOI: 10.1016/j.scitotenv.2022.159486] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Fluoxetine is one of the most studied and detected selective serotonin reuptake inhibitors in the aquatic environment, found at concentrations ranging from ng/L to μg/L. Its presence in this environment can induce effects on aquatic organisms that may compromise their fitness. Several experimental studies have demonstrated that fluoxetine can induce neurotoxicity, genetic and biochemical changes, and cause behavioral dysfunction in a wide range of fish species. However, contradictory results can be found. There is thus the need for a comprehensive review of the current state of knowledge on the effects of fluoxetine on fish at different levels of biological organization, highlighting inclusive patterns and discussing the potential causes for the contradictory results, that can be found in the available literature. This review also aims to explore and identify the main gaps in knowledge and areas for future research. We conclude that environmentally relevant concentrations of fluoxetine (e.g., from 0.00345 μg/L) produced adverse effects and often this concentration range is not addressed in conventional environmental risk assessment strategies. Its environmental persistence and ionizable properties reinforce the need for standardized testing with representative aquatic models, targeting endpoints sensitive to the specific mode of action of fluoxetine, in order to assess and rank its actual environmental risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
39
|
Kaneko K, Tokuyama Y, Taniguchi E, Abe S, Nakato J, Iwakura H, Sato M, Kurabayashi A, Suzuki H, Ito A, Higuchi Y, Nakayama R, Uchiyama K, Takahashi H, Ohinata K. Rice Endoplasmic Protein-Derived Peptides, Rice-Ghretropins A and B, Stimulate Ghrelin Release in MGN3-1 Cells and Increase Plasma Acylated Ghrelin and Food Intake in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:421-429. [PMID: 36580688 DOI: 10.1021/acs.jafc.2c05965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we demonstrated that novel rice-derived bioactive peptides promote the secretion of ghrelin, an endogenous orexigenic hormone secreted from the stomach. The enzymatic digest of rice endosperm protein with subtilisin, a microorganism-derived enzyme, stimulated acylated ghrelin secretion in the ghrelin-releasing cell line MGN3-1 and increased food intake after oral administration in mice. By performing a comprehensive analysis based on structure-activity relationships, we selected candidate peptides from over 30,000 peptides in the rice digest. Among them, we found that QAFEPIRSV and TNPWHSPRQGSF, corresponding to the amino acid sequence of the rice endoplasmic proteins glutelin A1 or A2(52-60) and B1 or B2(31-42), respectively, stimulated acylated ghrelin release in MGN3-1 cells. We named them rice-ghretropins A and B. Pyroglutamate formation of rice-ghretropin A, [pyr1]-rice-ghretropin A, also promoted ghrelin secretion. Furthermore, oral administration of rice-ghretropins increased food intake, plasma ghrelin concentration, and small intestinal transit in mice. In addition, the subtilisin digest of the rice protein significantly increased food intake for 4 h in 9 month-old (control: 0.61 ± 0.049 g; digest: 0.83 ± 0.059 g) and 24 month-old mice (control: 0.52 ± 0.067 g; digest: 1.01 ± 0.064 g). In summary, we found that novel bioactive peptides, namely, rice-ghretropins, from the enzymatic digest of rice endosperm stimulated acylated ghrelin secretion and increased food intake. This is the first report of rice-derived exogenous bioactive peptides that increase acylated ghrelin secretion.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuki Tokuyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Eriko Taniguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shimon Abe
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Junya Nakato
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama 841-8509, Japan
| | - Masaru Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Atsushi Kurabayashi
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hideyuki Suzuki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Akira Ito
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Yuki Higuchi
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Ryoko Nakayama
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Kimiko Uchiyama
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Hajime Takahashi
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
40
|
Relationships of orexigenic and anorexigenic hormones with body fat distribution in patients with obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol 2022; 280:2445-2452. [PMID: 36547712 DOI: 10.1007/s00405-022-07799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE We aimed to examine the relationships of disease activity and risk factors with serum levels of orexigenic and anorexigenic hormones in patients with obstructive sleep apnea syndrome (OSAS). METHODS Fasting blood samples were taken for hormonal analysis of all participants, abdominal/neck bioimpedance measurements were recorded, and polysomnography (PSG) analyses were performed. According to the apnea-hypopnea index (AHI), 34 patients with newly diagnosed OSAS and 34 participants without OSAS were compared. RESULTS The median body mass index (BMI) measured in the OSAS group was 30.39 kg/m2 and AHI was 18.95 and these values were 25.40 kg/m2 and 1.55 in the control group. There was a higher level of visceral adiposity and neuropeptide Y (NPY) in the moderate-to-severe OSAS group compared to the mild OSAS and control groups, and in the mild OSAS group compared to the control group (p = 0.001, p < 0.001). A positive correlation between the level of NPY and AHI and BMI (p < 0.001, p = 0.011), and a negative correlation between NPY levels and oxygen saturation (p = 0.001) was found. Oxygen saturation and desaturation rates were correlated with body fat percentage, body fat mass, abdominal adiposity, visceral adiposity, resting metabolic rate, and NPY levels. CONCLUSIONS The visceral adiposity ratio and increase in NPY levels are important parameters that increase the severity of OSAS. Considering the negative effects of NPY on vascular endothelium, measurement of basal NPY level before PSG in patients with OSAS is considered a parameter related to disease severity.
Collapse
|
41
|
Brain fractalkine-CX3CR1 signalling is anti-obesity system as anorexigenic and anti-inflammatory actions in diet-induced obese mice. Sci Rep 2022; 12:12604. [PMID: 35871167 PMCID: PMC9308795 DOI: 10.1038/s41598-022-16944-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.
Collapse
|
42
|
Martins N, Castro C, Oliva-Teles A, Peres H. The Interplay between Central and Peripheral Systems in Feed Intake Regulation in European Seabass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233287. [PMID: 36496811 PMCID: PMC9739057 DOI: 10.3390/ani12233287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate the effects of feeding or feed deprivation on the orexigenic and anorexigenic responses at the central (whole brain) and peripheral (anterior and posterior intestine, stomach, and liver) system levels in European seabass. For this purpose, a group of fish (208 g) was fed a single meal daily for 8 days (fed group) and another group was feed-deprived for 8 days (unfed group). Compared to the fed group, in the whole brain, feed deprivation did not induce changes in npy, agrp1, and cart2 expression, but increased agrp2 and pomc1 expression. In the anterior intestine, feed deprivation increased cck expression, while in the posterior intestine, the npy expression increased and pyyb decreased. In the stomach, the ghr expression decreased regardless of the feeding status. The hepatic lep expression increased in the unfed fish. The present results suggest a feed intake regulation mechanism in European seabass similar to that observed in other teleosts.
Collapse
Affiliation(s)
- Nicole Martins
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Carolina Castro
- FLATLANTIC—Atividades Piscícolas, S.A., Rua do Aceiros s/n, 3070-732 Praia de Mira, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| |
Collapse
|
43
|
Prida E, Álvarez-Delgado S, Pérez-Lois R, Soto-Tielas M, Estany-Gestal A, Fernø J, Seoane LM, Quiñones M, Al-Massadi O. Liver Brain Interactions: Focus on FGF21 a Systematic Review. Int J Mol Sci 2022; 23:ijms232113318. [PMID: 36362103 PMCID: PMC9658462 DOI: 10.3390/ijms232113318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 21 is a pleiotropic hormone secreted mainly by the liver in response to metabolic and nutritional challenges. Physiologically, fibroblast growth factor 21 plays a key role in mediating the metabolic responses to fasting or starvation and acts as an important regulator of energy homeostasis, glucose and lipid metabolism, and insulin sensitivity, in part by its direct action on the central nervous system. Accordingly, pharmacological recombinant fibroblast growth factor 21 therapies have been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates. In this systematic review, we discuss how fibroblast growth factor 21 regulates metabolism and its interactions with the central nervous system. In addition, we also state our vision for possible therapeutic uses of this hepatic-brain axis.
Collapse
Affiliation(s)
- Eva Prida
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Sara Álvarez-Delgado
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Pérez-Lois
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mateo Soto-Tielas
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Ana Estany-Gestal
- Unidad de Metodología de la Investigación, Fundación Instituto de Investigación de Santiago (FIDIS), 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Luisa María Seoane
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| | - Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
- Correspondence: (M.Q.); (O.A.-M.); Tel.: +34-981955708 (M.Q.); +34-981955522 (O.A.-M.)
| |
Collapse
|
44
|
Politi M, Tresca G, Menghini L, Ferrante C. Beyond the Psychoactive Effects of Ayahuasca: Cultural and Pharmacological Relevance of Its Emetic and Purging Properties. PLANTA MEDICA 2022; 88:1275-1286. [PMID: 34794194 DOI: 10.1055/a-1675-3840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The herbal preparation ayahuasca has been an important part of ritual and healing practices, deployed to access invisible worlds in several indigenous groups in the Amazon basin and among mestizo populations of South America. The preparation is usually known to be composed of two main plants, Banisteriopsis caapi and Psychotria viridis, which produce both hallucinogenic and potent purging and emetic effects; currently, these are considered its major pharmacological activities. In recent decades, the psychoactive and visionary effect of ayahuasca has been highly sought after by the shamanic tourism community, which led to the popularization of ayahuasca use globally and to a cultural distancing from its traditional cosmological meanings, including that of purging and emesis. Further, the field of ethnobotany and ethnopharmacology has also produced relatively limited data linking the phytochemical diversity of ayahuasca with the different degrees of its purging and emetic versus psychoactive effects. Similarly, scientific interest has also principally addressed the psychological and mental health effects of ayahuasca, overlooking the cultural and pharmacological importance of the purging and emetic activity. The aim of this review is therefore to shed light on the understudied purging and emetic effect of ayahuasca herbal preparation. It firstly focuses on reviewing the cultural relevance of emesis and purging in the context of Amazonian traditions. Secondly, on the basis of the main known phytochemicals described in the ayahuasca formula, a comprehensive pharmacological evaluation of their emetic and purging properties is presented.
Collapse
Affiliation(s)
- Matteo Politi
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
- Research Department, Center for Drug Addiction Treatment and Research on Traditional Medicines - Takiwasi, Tarapoto, Peru
| | - Giorgia Tresca
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| |
Collapse
|
45
|
Mak KWY, Mustafa AF, Belsham DD. Neuroendocrine microRNAs linked to energy homeostasis: future therapeutic potential. Pharmacol Rep 2022; 74:774-789. [PMID: 36083576 DOI: 10.1007/s43440-022-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
The brain orchestrates whole-body metabolism through an intricate system involving interneuronal crosstalk and communication. Specifically, a key player in this complex circuitry is the hypothalamus that controls feeding behaviour, energy expenditure, body weight and metabolism, whereby hypothalamic neurons sense and respond to circulating hormones, nutrients, and chemicals. Dysregulation of these neurons contributes to the development of metabolic disorders, such as obesity and type 2 diabetes. The involvement of hypothalamic microRNAs, post-transcriptional regulators of gene expression, in the central regulation of energy homeostasis has become increasingly apparent, although not completely delineated. This review summarizes current evidence demonstrating the regulation of feeding-related neuropeptides by brain-derived microRNAs as well as the regulation of specific miRNAs by nutrients and other peripheral signals. Moreover, the involvement of microRNAs in the central nervous system control of insulin, leptin, and estrogen signal transduction is examined. Finally, the therapeutic and diagnostic potential of microRNAs for metabolic disorders will be discussed and the regulation of brain-derived microRNAs by nutrients and other peripheral signals is considered. Demonstrating a critical role of microRNAs in hypothalamic regulation of energy homeostasis is an innovative route to uncover novel biomarkers and therapeutic candidates for metabolic disorders.
Collapse
Affiliation(s)
- Kimberly W Y Mak
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Aws F Mustafa
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Song C, Wei W, Wang T, Zhou M, Li Y, Xiao B, Huang D, Gu J, Shi L, Peng J, Jin D. Microglial infiltration mediates cognitive dysfunction in rat models of hypothalamic obesity via a hypothalamic-hippocampal circuit involving the lateral hypothalamic area. Front Cell Neurosci 2022; 16:971100. [PMID: 36072565 PMCID: PMC9443213 DOI: 10.3389/fncel.2022.971100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the mechanism underlying cognitive dysfunction mediated by the lateral hypothalamic area (LHA) in a hypothalamic-hippocampal circuit in rats with lesion-induced hypothalamic obesity (HO). The HO model was established by electrically lesioning the hypothalamic nuclei. The open field (OP) test, Morris water maze (MWM), novel object recognition (NOR), and novel object location memory (NLM) tests were used to evaluate changes in cognition due to alterations in the hypothalamic-hippocampal circuit. Western blotting, immunohistochemical staining, and cholera toxin subunit B conjugated with Alexa Fluor 488 (CTB488) reverse tracer technology were used to determine synaptophysin (SYN), postsynaptic density protein 95 (PSD95), ionized calcium binding adaptor molecule 1 (Iba1), neuronal nuclear protein (NeuN), and Caspase3 expression levels and the hypothalamic-hippocampal circuit. In HO rats, severe obesity was associated with cognitive dysfunction after the lesion of the hypothalamus. Furthermore, neuronal apoptosis and activated microglia in the downstream of the lesion area (the LHA) induced microglial infiltration into the intact hippocampus via the LHA-hippocampal circuit, and the synapses engulfment in the hippocampus may be the underlying mechanism by which the remodeled microglial mediates memory impairments in HO rats. The HO rats exhibited microglial infiltration and synapse loss into the hippocampus from the lesioned LHA via the hypothalamic-hippocampal circuit. The underlying mechanisms of memory function may be related to the circuit.
Collapse
Affiliation(s)
- Chong Song
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Chong Song,
| | - Wei Wei
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Tong Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Min Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunshi Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bing Xiao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dongyi Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junwei Gu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linyong Shi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Chong Song,
| | - Dianshi Jin
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
- *Correspondence: Chong Song,
| |
Collapse
|
47
|
Neuromodulatory and Protective Effects Induced by the Association of Herbal Extracts from Valeriana officinalis, Ziziphus jujuba, and Humulus lupulus with Melatonin: An Innovative Formulation for Counteracting Sleep Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The use of herbal extracts could represent an advantageous approach for treating sleeping disorders, especially in mild-to-moderate conditions, before the onset of a specific therapy with first-line drugs. Specifically, the focus was posed about the use of extracts from Valeriana officinalis, Ziziphus jujuba, and Humulus lupulus. Multiple studies demonstrated the efficacy of these medicinal plants to positively manage insomnia symptoms. Additionally, their efficacy in the treatment of sleeping disorders could also be improved by their pharmacological association. In the present study, extracts from Valeriana officinalis, Ziziphus jujuba, Humulus lupulus, melatonin, and their pharmacological association, Vagonotte® MEL, were studied for potential application in the treatment of insomnia. Methods: The extracts and melatonin were tested on hypothalamic neurons and tissue for evaluating biocompatibility and protective and neuromodulatory effects. The neuromodulatory effects were evaluated as orexin A gene expression and serotonin steady state level, in the hypothalamus. Results: The extracts and melatonin, although with evident differences, were effective as antioxidant and anti-inflammatory agents; additionally, they were also able to reduce the hypothalamic gene expression of orexin A and the steady state level of serotonin, playing master roles in wakefulness. It is noteworthy that the formulation displayed all the effects of the single ingredients, without any sign of toxicity and pharmacological interference in the hypothalamus. Conclusions: Concluding, the present study explored the biological effects of melatonin and herbal extracts with phytotherapy interest in V. officinalis, Z. jujuba, and H. lupulus. The study demonstrated their intrinsic scavenging/reducing activity, together with protective and neuromodulatory effects in the hypothalamus, with a significant reduction of both orexin A gene expression and serotonin steady state level. Additionally, the study also considered their pharmacological association, which displayed an overall pharmacological spectrum mirroring, including all the effects of the single ingredients, without showing any sign of toxicity in the brain and interference between the extracts and melatonin.
Collapse
|
48
|
da Silva RKB, de Vasconcelos DAA, da Silva AVE, da Silva RPB, de Oliveira Neto OB, Galindo LCM. Effects of maternal high-fat diet on the hypothalamic components related to food intake and energy expenditure in mice offspring. Life Sci 2022; 307:120880. [PMID: 35963301 DOI: 10.1016/j.lfs.2022.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Maternal exposure to a high-fat diet (HFD) during pregnancy and lactation has been related to changes in the hypothalamic circuits involved in the regulation of food intake. Furthermore, maternal HFD during the critical period of development can alter the offspring's metabolic programming with long-term repercussions. This study systematically reviewed the effects of HFD consumption during pre-pregnancy, pregnancy and/or lactation. The main outcomes evaluated were food intake; body weight; cellular or molecular aspects of peptides and hypothalamic receptors involved in the regulation of energy balance in mice. Two independent authors performed a search in the electronic databases Medline/PubMed, LILACS, Web of Science, EMBASE, SCOPUS and Sigle via Open Gray. Included were experimental studies of mice exposed to HFD during pregnancy and/or lactation that evaluated body composition, food intake, energy expenditure and hypothalamic components related to energy balance. Internal validity was assessed using the SYRCLE risk of bias. The Kappa index was measured to analyze the agreement between reviewers. The PRISMA statement was used to report this systematic review. Most studies demonstrated that there was a higher body weight, body fat deposits and food intake, as well as alterations in the expression of hypothalamic neuropeptides in offspring that consumed HFD. Therefore, the maternal diet can affect the phenotype and metabolism of the offspring, in addition to harming the hypothalamic circuits and favoring the orexigenic pathways.
Collapse
Affiliation(s)
- Regina Katiuska Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Diogo Antonio Alves de Vasconcelos
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Roxana Patrícia Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | | | - Lígia Cristina Monteiro Galindo
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Anatomy, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
49
|
Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry 2022; 12:318. [PMID: 35941105 PMCID: PMC9360032 DOI: 10.1038/s41398-022-02054-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD. Given the frequently observed autism-like behavioral phenotypes in Prader-Willi and Schaaf-Yang syndromes, it is unclear whether oxytocin treatment represents a viable option to treat behavioral symptoms in these diseases. Here we review the latest findings on intranasal OT treatment, Prader-Willi and Schaaf-Yang syndromes, and propose novel research strategies for tailored oxytocin-based therapies for affected individuals. Finally, we propose the critical period theory, which could explain why oxytocin-based treatment seems to be most efficient in infants, but not adolescents.
Collapse
|
50
|
Shao Y, Tian J, Yang Y, Hu Y, Zhu Y, Shu Q. Identification of key genes and pathways revealing the central regulatory mechanism of brain-derived glucagon-like peptide-1 on obesity using bioinformatics analysis. Front Neurosci 2022; 16:931161. [PMID: 35992905 PMCID: PMC9389235 DOI: 10.3389/fnins.2022.931161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/07/2022] [Indexed: 12/01/2022] Open
Abstract
Objective Central glucagon-like peptide-1 (GLP-1) is a target in treating obesity due to its effect on suppressing appetite, but the possible downstream key genes that GLP-1 regulated have not been studied in depth. This study intends to screen out the downstream feeding regulation genes of central GLP-1 neurons through bioinformatics analysis and verify them by chemical genetics, which may provide insights for future research. Materials and methods GSE135862 genetic expression profiles were extracted from the Gene Expression Omnibus (GEO) database. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were carried out. STRING database and Cytoscape software were used to map the protein-protein interaction (PPI) network of the differentially expressed genes (DEGs). After bioinformatics analysis, we applied chemogenetic methods to modulate the activities of GLP-1 neurons in the nucleus tractus solitarius (NTS) and observed the alterations of screened differential genes and their protein expressions in the hypothalamus under different excitatory conditions of GLP-1 neurons. Results A total of 49 DEGs were discovered, including 38 downregulated genes and 11 upregulated genes. The two genes with the highest expression scores were biglycan (Bgn) and mitogen-activated protein kinase activated protein kinase 3 (Mapkapk3). The results of GO analysis showed that there were 10 molecular functions of differential genes. Differential genes were mainly localized in seven regions around the cells, and enriched in 10 biology processes. The results of the KEGG signaling pathway enrichment analysis showed that differential genes played an important role in seven pathways. The top 15 genes selected according to the Cytoscape software included Bgn and Mapkapk3. Chemogenetic activation of GLP-1 in NTS induced a decrease in food intake and body mass, while chemogenetic inhibition induced the opposite effect. The gene and protein expression of GLP-1 were upregulated in NTS when activated by chemogenetics. In addition, the expression of Bgn was upregulated and that of Mapkapk3 was downregulated in the hypothalamus. Conclusion Our data showed that GLP-1 could modulate the protein expression of Bgn and Mapkapk3. Our findings elucidated the regulatory network in GLP-1 to obesity and might provide a novel diagnostic and therapeutic target for obesity.
Collapse
Affiliation(s)
- Yuwei Shao
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanan Yang
- Department of Traditional Chinese Medicine, China Resources Wugang General Hospital, Wuhan, China
| | - Yan Hu
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ye Zhu
- College of Health Sciences, Wuhan Sports University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qing Shu,
| |
Collapse
|