1
|
Makovec M, Skitek M, Šimnovec L, Jerin A. Neuron-Specific Enolase and S100B as Biomarkers of Ischemic Brain Injury During Surgery. Clin Pract 2025; 15:74. [PMID: 40310303 PMCID: PMC12026299 DOI: 10.3390/clinpract15040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Biochemical markers can be used in addition to neuroimaging techniques to evaluate the extent of ischemic brain injuries and to enable earlier diagnosis and faster intervention following the ischemic event. Among the potential biomarkers of ischemic brain injuries during surgery, neuron-specific enolase (NSE) and S100B are the most frequently studied and were shown to be the most promising. The aim of this review was to summarize the role of NSE and S100B as biomarkers of ischemic brain injuries that occur during selected surgical procedures, predominantly carotid endarterectomy (CEA). Some other invasive interventions that cause ischemic brain injuries, like extracorporeal membrane oxygenation, were also included. We can conclude that these biomarkers can be useful for the evaluation of ischemic brain injuries that occur during various surgical procedures. They can help to determine the most optimal conditions for performing the surgery and therefore improve the procedures to consequently minimize brain damage caused during surgery. Because of a significant delay between sample collection and obtaining the results, they are not suitable for real-time assessment of brain injuries. Some improvement can be expected with the future development of laboratory methods. The association of the changes in NSE and S100B levels during surgery with potential consequences of ischemic brain injury have been described in numerous studies. However, even in a very homogenous group of surgical procedures like CEA, these findings cannot be summarized into a common final conclusion; therefore, the prognostic value of the two markers is not clearly supported at the present time.
Collapse
Affiliation(s)
- Matej Makovec
- Department of Vascular Surgery, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Milan Skitek
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia
| | - Leja Šimnovec
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Jerin
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1525 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Kalra S, Sachdeva H, Pant AB, Singh G. Neuroprotection in traumatic brain injury: effects of alpha-asarone and Acorus calamus extract in mice using weight drop model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03977-4. [PMID: 40080151 DOI: 10.1007/s00210-025-03977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025]
Abstract
Traumatic brain injury (TBI) is a significant public health concern characterized by severe neurological consequences. The management of TBI remains a formidable challenge, necessitating a multifaceted approach aimed at reducing secondary injury and promoting neuroprotection. This study assessed the neuroprotective potential of Alpha-asarone (AA) at 12.5, 25, 50 mg/kg, p.o (phytoconstituent of Acorus calamus) at, and Acorus calamus (AC) extract at 190 mg/kg, p.o in a murine TBI model induced by weight drop method. Blood-Brain Barrier (BBB) permeability and oxidative stress were evaluated on 1st and 3rd day, while Neurological Severity Score (NSS) was assessed on 1st, 3rd, 7th, 14th, and 21st day after TBI. The administration of AA and AC extract at all tested doses demonstrated a dose-dependent restoration of blood-brain barrier (BBB) integrity and oxidative stress markers. Specifically, AA at doses of 25 mg/kg and 50 mg/kg, as well as AC extract at 190 mg/kg, administered orally, exhibited significant effects on BBB integrity and oxidative stress at 1st and 3rd day post-treatment. Furthermore, enhanced neurological outcomes were observed at 14th and 21st day post TBI, evidenced by improved NSS, particularly with the 50 mg/kg dose of AA and the 190 mg/kg dose of AC extract. This research underscores the potential of AA and AC extract as neuroprotective agents. The findings highlight their efficacy in improving BBB integrity, mitigating oxidative stress-induced cellular damage and enhancing neurological impairments following TBI. These results hold promise for the development of innovative neuroprotective therapies and advocate for the exploration of natural compounds as adjunctive interventions in TBI management.
Collapse
Affiliation(s)
- Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Himanshu Sachdeva
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Aditya Bhushan Pant
- Indian Institute of Toxicological Research, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, 226001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
3
|
Eslami M, Raji-Amirhasani A, Khaksari M, Keshavarzi Z, Rostamzadeh F, Sabet N, Jafari E, Soltani Z, Karamouzian S. The changes of digestive system inflammatory, oxidative stress, and histopathology factors following oral mesenchymal stem cells administration in rats with traumatic brain injury. BMC Neurosci 2025; 26:20. [PMID: 40050727 PMCID: PMC11884162 DOI: 10.1186/s12868-025-00936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/10/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND AND AIMS Mucous mesenchymal stem cells can migrate to damaged areas, and their use is proposed as a new approach to treating diseases. The present study aimed to investigate the effect of oral mesenchymal stem cells (OMSCs) on inflammatory, oxidative stress, and histopathological indices in the tissues of the stomach, intestine, and colon after traumatic brain injury (TBI). METHODS AND MATERIALS Adult male rats were randomly divided into four groups: Sham, TBI, Vehicle (Veh), and Stem cell (SC). Intravenous injection of OMSCs was performed at 1 and 24 h after injury. The inflammatory, oxidative stress, and histopathological indices of the tissues of the stomach, small intestine, and colon were evaluated 48 h after injury. RESULTS After TBI, IL-1β and IL-6 levels increased and IL-10 levels decreased in the tissues of the stomach, small intestine, and colon, but the administration of OMSCS prevented these changes to a large extent. Oxidative stress indices (MDA, PC, TAC, SOD, and CAT) showed an increase in oxidative stress after TBI, but oxidative stress was less severe in the OMSC group. The administration of OMSCs after TBI improved the histopathological outcome in the tissues of the stomach, small intestine, and colon. CONCLUSION Administration of OMSCs in rats suffering from TBI can improve inflammatory, oxidative stress, and histopathological indices in the tissues of the stomach, small intestine, and colon, which shows the beneficial effect of using OMSCs in TBI.
Collapse
Affiliation(s)
- Masoud Eslami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Raji-Amirhasani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeed Karamouzian
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Carteri RB. Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury. J Integr Neurosci 2025; 24:25292. [PMID: 39862005 DOI: 10.31083/jin25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025] Open
Abstract
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials. Furthermore, mitochondrial metabolism produces signaling molecules such as reactive oxygen species (ROS), regulating calcium levels and controlling the expression profile of intrinsic pro-apoptotic effectors influenced by TBI. Hence, the set of these functions is widely referred to as 'mitochondrial function', although the complexity of the relationship between such components limits such a definition. In this review, we present mitochondria as a therapeutic target, focus on TBI, and discuss aspects of mitochondrial structure and function.
Collapse
Affiliation(s)
- Randhall Bruce Carteri
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil
- Department of Nutrition, Centro Universitário CESUCA, 94935-630 Cachoeirinha, Rio Grande do Sul (RS), Brazil
| |
Collapse
|
5
|
Supraja P, Tripathy S, Singh R, Gangwar R, Singh SG. A novel cleanroom-free technique for simultaneous electrodeposition of polypyrrole onto array of IDuEs: Towards low-cost, stable and accurate point-of-care TBI diagnosis without trained manpower. Biosens Bioelectron 2025; 267:116824. [PMID: 39362136 DOI: 10.1016/j.bios.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Drop-casted polypyrrole (PPY) nanomaterial-based point-of-care Traumatic Brain Injury (TBI) immunosensing platforms reported previously demand trained manpower at field-test, due to poor adhesion between nanomaterial and electrode surface, limiting the point-of-care purpose. The usage of conventional clean-room-based physical and chemical vapor deposition techniques in creating strong adhesion is limited on account of cost and process complexity. Addressing this technical gap, we report a novel low-cost clean-room-free technique that can effectively electrodeposit the PPY simultaneously onto the working areas of array of Interdigitated microelectrodes (IDμEs) from the precursor solution. Through optimization of deposition cycles and molar concentration ratio of monomer and oxidizing agents, a high-quality nanomaterial was electrodeposited on IDμEs' surface. Further, by using the electrodeposited PPY as a bioelectrical transducer, the TBI-specific UCHL1 and GFAP target analytes were simultaneously detected in terms of variation of DC-Resistance and AC-Capacitance parameters, recorded through chemiresistive I-V and chemicapacitive C-F responses of bioelectrodes, respectively. Such simultaneous multianalyte-detection in terms of multiple parameters increases the diversity of decision-making parameters by several folds, inherently aids in enhancing the diagnostic accuracy of TBI test kit. Here, the efficiency of the electrodeposited PPY-based chemiresistive and chemicapacitive immunosensing platforms in detecting TBI-specific target analytes simultaneously in real-time human-plasma samples was analyzed in terms of sensitivity, resolution, LoD, RoD, long-term stability (30 weeks), and the same is compared with drop-cast PPY-based immunosensing platform. Notably, the electrodeposited PPY sensing platforms showed superior performance in terms of sensitivity, LoD, device variability and long-term stability without demanding any trained manpower in the field.
Collapse
Affiliation(s)
- Patta Supraja
- Department of Electronics and Communication Engineering, SRM University AP, 522240, India.
| | - Suryasnata Tripathy
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India; MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, Netherlands.
| | - Ranjana Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| | - Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| |
Collapse
|
6
|
Valero-Hernandez E, Tremoleda JL, Michael-Titus AT. Omega-3 Fatty Acids and Traumatic Injury in the Adult and Immature Brain. Nutrients 2024; 16:4175. [PMID: 39683568 DOI: 10.3390/nu16234175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) can lead to substantial disability and health loss. Despite its importance and impact worldwide, no treatment options are currently available to help protect or preserve brain structure and function following injury. In this review, we discuss the potential benefits of using omega-3 polyunsaturated fatty acids (O3 PUFAs) as therapeutic agents in the context of TBI in the paediatric and adult populations. Methods: Preclinical and clinical research reports investigating the effects of O3 PUFA-based interventions on the consequences of TBI were retrieved and reviewed, and the evidence presented and discussed. Results: A range of animal models of TBI, types of injury, and O3 PUFA dosing regimens and administration protocols have been used in different strategies to investigate the effects of O3 PUFAs in TBI. Most evidence comes from preclinical studies, with limited clinical data available thus far. Overall, research indicates that high O3 PUFA levels help lessen the harmful effects of TBI by reducing tissue damage and cell loss, decreasing associated neuroinflammation and the immune response, which in turn moderates the severity of the associated neurological dysfunction. Conclusions: Data from the studies reviewed here indicate that O3 PUFAs could substantially alleviate the impact of traumatic injuries in the central nervous system, protect structure and help restore function in both the immature and adult brains.
Collapse
Affiliation(s)
- Ester Valero-Hernandez
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
7
|
El-Menyar A, Asim M, Khan N, Rizoli S, Mahmood I, Al-Ani M, Kanbar A, Alaieb A, Hakim S, Younis B, Taha I, Jogol H, Siddiqui T, Hammo AA, Abdurraheim N, Alabdallat M, Bahey AAA, Ahmed K, Atique S, Chaudry IH, Prabhu KS, Uddin S, Al-Thani H. Systemic and cerebro-cardiac biomarkers following traumatic brain injury: an interim analysis of randomized controlled clinical trial of early administration of beta blockers. Sci Rep 2024; 14:19574. [PMID: 39179700 PMCID: PMC11343837 DOI: 10.1038/s41598-024-70470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
This is an interim analysis of the Beta-blocker (Propranolol) use in traumatic brain injury (TBI) based on the high-sensitive troponin status (BBTBBT) study. The BBTBBT is an ongoing double-blind placebo-controlled randomized clinical trial with a target sample size of 771 patients with TBI. We sought, after attaining 50% of the sample size, to explore the impact of early administration of beta-blockers (BBs) on the adrenergic surge, pro-inflammatory cytokines, and the TBI biomarkers linked to the status of high-sensitivity troponin T (HsTnT). Patients were stratified based on the severity of TBI using the Glasgow coma scale (GCS) and HsTnT status (positive vs negative) before randomization. Patients with positive HsTnT (non-randomized) received propranolol (Group-1; n = 110), and those with negative test were randomized to receive propranolol (Group-2; n = 129) or placebo (Group-3; n = 111). Propranolol was administered within 24 h of injury for 6 days, guided by the heart rate (> 60 bpm), systolic blood pressure (≥ 100 mmHg), or mean arterial pressure (> 70 mmHg). Luminex and ELISA-based immunoassays were used to quantify the serum levels of pro-inflammatory cytokines (Interleukin (IL)-1β, IL-6, IL-8, and IL-18), TBI biomarkers [S100B, Neuron-Specific Enolase (NSE), and epinephrine]. Three hundred and fifty patients with comparable age (mean 34.8 ± 9.9 years) and gender were enrolled in the interim analysis. Group 1 had significantly higher baseline levels of IL-6, IL-1B, S100B, lactate, and base deficit than the randomized groups (p = 0.001). Group 1 showed a significant temporal reduction in serum IL-6, IL-1β, epinephrine, and NSE levels from baseline to 48 h post-injury (p = 0.001). Patients with severe head injuries had higher baseline levels of IL-6, IL-1B, S100B, and HsTnT than mild and moderate TBI (p = 0.01). HsTnT levels significantly correlated with the Injury Severity Score (ISS) (r = 0.275, p = 0.001), GCS (r = - 0.125, p = 0.02), and serum S100B (r = 0.205, p = 0.001). Early Propranolol administration showed a significant reduction in cytokine levels and TBI biomarkers from baseline to 48 h post-injury, particularly among patients with positive HsTnT, indicating the potential role in modulating inflammation post-TBI.Trial registration: ClinicalTrials.gov NCT04508244. It was registered first on 11/08/2020. Recruitment started on 29 December 2020 and is ongoing. The study was partly presented at the 23rd European Congress of Trauma and Emergency Surgery (ECTES), April 28-30, 2024, in Estoril, Lisbon, Portugal.
Collapse
Affiliation(s)
- Ayman El-Menyar
- Department of Surgery, Clinical Research, Trauma and Vascular Surgery, Hamad Medical Corporation, Doha, Qatar.
- Department of Clinical Medicine, Weill Cornell Medicine, P.O. Box 24144, Doha, Qatar.
| | - Mohammad Asim
- Department of Surgery, Clinical Research, Trauma and Vascular Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Naushad Khan
- Department of Surgery, Clinical Research, Trauma and Vascular Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Sandro Rizoli
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ismail Mahmood
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Mushreq Al-Ani
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ahad Kanbar
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Abubaker Alaieb
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Suhail Hakim
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Basil Younis
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahim Taha
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Hisham Jogol
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Tariq Siddiqui
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Abdel Aziz Hammo
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Nuri Abdurraheim
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Alabdallat
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | | | - Khalid Ahmed
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Sajid Atique
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Hassan Al-Thani
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
8
|
Denby E, Dempster T, White T, Brockman K, Ellis H, Dharm-Datta S, Wilkinson D, Brunger H. Dizziness Directly Influences Postconcussion Symptoms and Is Predictive of Poorer Mental Health in UK Military Personnel: A Retrospective Analysis. J Head Trauma Rehabil 2024; 39:231-238. [PMID: 37773599 DOI: 10.1097/htr.0000000000000895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
OBJECTIVE To investigate the contribution of dizziness to postconcussion symptoms, depression, and anxiety symptoms. SETTING Mild traumatic brain injury (mTBI) service, Defence Medical Rehabilitation Centre, Stanford Hall. PARTICIPANTS Two hundred eighty-three UK military personnel from the Royal Navy, Royal Airforce, Royal Marines, and British Army. DESIGN A retrospective analysis of data from the Ministry of Defence medical records database. MAIN MEASURES Sixteen-item Rivermead Post Concussion Symptoms Questionnaire, Generalized Anxiety Disorder 7-item scale, Patient Health Questionnaire-9, The Dizziness Handicap Inventory. RESULTS Injuries from sports or falls were the most common mechanism of mTBI, accounting for 23%, respectively. Chi-square analysis indicated that individuals with dizziness and postconcussion symptoms (PCS) had greater severity of PCS, depression, and anxiety than those with PCS alone. Mediation analysis showed dizziness directly and independently influenced the severity of PCS, despite the indirect effects of mediating depression and anxiety symptoms. CONCLUSION Comorbid dizziness and PCS were predictive of poorer mental health compared with PCS alone. In addition, dizziness directly influenced the severity of PCS irrespective of the indirect effects of mental health symptoms. These observations suggest that treating dizziness with vestibular rehabilitation may improve PCS and mental health.
Collapse
Affiliation(s)
- Emma Denby
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Tammy Dempster
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Toni White
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Katherine Brockman
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Henrietta Ellis
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Shreshth Dharm-Datta
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - David Wilkinson
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| | - Helen Brunger
- School of Psychology, University of Kent, Canterbury, United Kingdom (Drs Denby and Wilkinson); School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom (Drs Denby and Dempster);
- Mild Traumatic Brain Injury Service, Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, United Kingdom (Mss White and Brockman and Drs Ellis, Dharm-Datta, and Brunger)
| |
Collapse
|
9
|
Carteri RB, Padilha M, de Quadros SS, Cardoso EK, Grellert M. Shock index and its variants as predictors of mortality in severe traumatic brain injury. World J Crit Care Med 2024; 13:90617. [PMID: 38633479 PMCID: PMC11019626 DOI: 10.5492/wjccm.v13.i1.90617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The increase in severe traumatic brain injury (sTBI) incidence is a worldwide phenomenon, resulting in a heavy disease burden in the public health systems, specifically in emerging countries. The shock index (SI) is a physiological parameter that indicates cardiovascular status and has been used as a tool to assess the presence and severity of shock, which is increased in sTBI. Considering the high mortality of sTBI, scrutinizing the predictive potential of SI and its variants is vital. AIM To describe the predictive potential of SI and its variants in sTBI. METHODS This study included 71 patients (61 men and 10 women) divided into two groups: Survival (S; n = 49) and Non-survival (NS; n = 22). The responses of blood pressure and heart rate (HR) were collected at admission and 48 h after admission. The SI, reverse SI (rSI), rSI multiplied by the Glasgow Coma Score (rSIG), and Age multiplied SI (AgeSI) were calculated. Group comparisons included Shapiro-Wilk tests, and independent samples t-tests. For predictive analysis, logistic regression, receiver operator curves (ROC) curves, and area under the curve (AUC) measurements were performed. RESULTS No significant differences between groups were identified for SI, rSI, or rSIG. The AgeSI was significantly higher in NS patients at 48 h following admission (S: 26.32 ± 14.2, and NS: 37.27 ± 17.8; P = 0.016). Both the logistic regression and the AUC following ROC curve analysis showed that only AgeSI at 48 h was capable of predicting sTBI outcomes. CONCLUSION Although an altered balance between HR and blood pressure can provide insights into the adequacy of oxygen delivery to tissues and the overall cardiac function, only the AgeSI was a viable outcome-predictive tool in sTBI, warranting future research in different cohorts.
Collapse
Affiliation(s)
- Randhall B Carteri
- Department of Nutrition, Centro Universitário CESUCA, Porto Alegre 94935-630, Brazil
| | - Mateus Padilha
- Department of Analysis and Systems Development, Centro Universitário CESUCA, Porto Alegre 94935-630, Brazil
| | - Silvaine Sasso de Quadros
- Department of Nutrition, Hospital Pronto Socorro de Porto Alegre, Porto Alegre 90040-192, Rio Grande do Sul, Brazil
| | - Eder Kroeff Cardoso
- Department of Physiotherapy, Hospital Pronto Socorro de Porto Alegre, Porto Alegre 90040-192, Rio Grande do Sul, Brazil
| | - Mateus Grellert
- Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Gomes PDC, Hin-Chu M, Rickard JJS, Goldberg Oppenheimer P. Advanced Tuneable Micronanoplatforms for Sensitive and Selective Multiplexed Spectroscopic Sensing via Electro-Hydrodynamic Surface Molecular Lithography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306068. [PMID: 38225756 DOI: 10.1002/advs.202306068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Micro- and nanopatterning of materials, one of the cornerstones of emerging technologies, has transformed research capabilities in lab-on-a-chip diagnostics. Herein, a micro- and nanolithographic method is developed, enabling structuring materials at the submicron scale, which can, in turn, accelerate the development of miniaturized platform technologies and biomedical sensors. Underpinning it is the advanced electro-hydrodynamic surface molecular lithography, via inducing interfacial instabilities produces micro- and nanostructured substrates, uniquely integrated with synthetic surface recognition. This approach enables the manufacture of design patterns with tuneable feature sizes, which are functionalized via synthetic nanochemistry for highly sensitive, selective, rapid molecular sensing. The development of a high-precision piezoelectric lithographic rig enables reproducible substrate fabrication with optimum signal enhancement optimized for functionalization with capture molecules on each micro- and nanostructured array. This facilitates spatial separation, which during the spectroscopic sensing, enables multiplexed measurement of target molecules, establishing the detection at minute concentrations. Subsequently, this nano-plasmonic lab-on-a-chip combined with the unconventional computational classification algorithm and surface enhanced Raman spectroscopy, aimed to address the challenges associated with timely point-of-care detection of disease-indicative biomarkers, is utilized in validation assay for multiplex detection of traumatic brain injury indicative glycan biomarkers, demonstrating straightforward and cost-effective micro- and nanoplatforms for accurate detection.
Collapse
Affiliation(s)
- Paulo De Carvalho Gomes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and, Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martin Hin-Chu
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and, Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and, Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
11
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
12
|
Alizadeh E, Sabet N, Soltani Z, Khaksari M, Jafari E, Karamouzian S. The administration of oral mucosal mesenchymal-derived stem cells improves hepatic inflammation, oxidative stress, and histopathology following traumatic brain injury. Transpl Immunol 2023; 81:101950. [PMID: 37918577 DOI: 10.1016/j.trim.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The inflammatory mediators produced after traumatic brain injury (TBI) are reaching peripheral organs causing organ and tissue damage, including the liver. Our study assessed the effect of intravenous (i.v.) infusion of oral mesenchymal stem cells (OMSCs) on TBI-induced liver damage by measuring liver inflammatory factors and liver oxidative stress. METHODS Twenty-eight adult male Wistar rats were divided into four groups: 1) sham control; 2) TBI alone (TBI); 3) TBI vehicle (Veh)-control; and 4) TBI with OMSC treatment (SC). OMSCs were obtained from oral mucosa biopsies. OMSCs were administered and administered i.v. at 1 and 24 h after TBI. Within 48 h after TBI, multiple parameters were analyzed, including inflammation, oxidative stress, and histopathological changes. RESULTS In comparison to sham controls, the TBI alone showed in liver significantly increased levels of interleukin-1β (IL-1β; P < 0.001), interleukin-6 (IL-6; P < 0.001), malondialdehyde (MDA; P < 0.001), and protein carbonyl (PC; P < 0.001). At the same time the TBI alone decreased the liver levels of superoxide dismutase (SOD; P < 0.001), total antioxidant capacity (TAC; P < 0.001), catalase (CAT; P < 0.001), and interleukin-10 (IL-10; P < 0.001). In comparison to the TBI alone group, the therapeutic group treated with i.v. infusion of OMSCs demonstrated significantly reduced changes of IL-1β (P < 0.001), IL-6 (P < 0.01), MDA (P < 0.01), PC (P < 0.05), SOD (P < 0.001), TAC (P < 0.01), CAT (P < 0.01), and IL-10 (P < 0.01). Histopathological evaluation showed in TBI alone group that the total score of liver tissue injury included extensive hydropic degeneration, lobular necrosis, inflammation as well as central vein congestion with subendothelial hemorrhage increased compared the sham group (P < 0.001). Administration of OMSC showed significantly smaller increase in the injury score compared to the TBI alone group (P < 0.001). CONCLUSION Therapy with i.v. OMSCs administration after TBI reduces liver injury, as measured by inflammation and oxidative stress. The use of OMSCs can be considered for treatment of liver injury caused by TBI.
Collapse
Affiliation(s)
- Eshagh Alizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Karamouzian
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Supraja P, Tripathy S, Govind Singh S. Smartphone-powered, ultrasensitive, and selective, portable and stable multi-analyte chemiresistive immunosensing platform with PPY/COOH-MWCNT as bioelectrical transducer: Towards point-of-care TBI diagnosis. Bioelectrochemistry 2023; 151:108391. [PMID: 36805206 DOI: 10.1016/j.bioelechem.2023.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/24/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Traumatic Brain Injury, one of the significant causes of mortality and morbidity, affects worldwide and continues to be a diagnostic challenge. The most desirable and partially met clinical need is to simultaneously detect the disease-specific-biomarkers in a broad range of readily available body fluids on a single platform with a rapid, low-cost, ultrasensitive and selective device. Towards this, an array of interdigitated microelectrodes was fabricated on commercially existing low-cost single-side copper cladded printed-circuit-board substrate followed by the bioelectrodes preparation through covalent immobilization of brain injury specific biomarkers on carboxylic functionalized multi-walled carbon nanotubes embedded polypyrrole nanocomposite modified interdigitated microelectrodes. Subsequently, the immunological binding events were transduced as the normalized change in bioelectrode resistance with and without the target analyte via current-voltage analysis. As proof of concept, current-voltage responses were primarily recorded using a conventional probe station, and later, a portable handheld-electronic-readout was developed for the point-of-care application. The data compilation and analysis were carried out using the in-house developed android-based mobile app. Notably, the smartphone powered the readout through a PL-2303 serial connector, avoiding integrating power sources with the readout. Further, this technology can be adapted to other point-of-care biosensing applications.
Collapse
Affiliation(s)
- Patta Supraja
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| | - Suryasnata Tripathy
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology Surat, 395007, India.
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| |
Collapse
|
14
|
Abbasloo E, Amiresmaili S, Shirazpour S, Khaksari M, Kobeissy F, Thomas TC. Satureja khuzistanica Jamzad essential oil and pure carvacrol attenuate TBI-induced inflammation and apoptosis via NF-κB and caspase-3 regulation in the male rat brain. Sci Rep 2023; 13:4780. [PMID: 36959464 PMCID: PMC10036533 DOI: 10.1038/s41598-023-31891-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Traumatic brain injury (TBI) causes progressive dysfunction that induces biochemical and metabolic changes that lead to cell death. Nevertheless, there is no definitive FDA-approved therapy for TBI treatment. Our previous immunohistochemical results indicated that the cost-effective natural Iranian medicine, Satureja khuzistanica Jamzad essential oil (SKEO), which consists of 94.16% carvacrol (CAR), has beneficial effects such as reducing neuronal death and inflammatory markers, as well as activating astrocytes and improving neurological outcomes. However, the molecular mechanisms of these neuroprotective effects have not yet been elucidated. This study investigated the possible mechanisms involved in the anti-inflammatory and anti-apoptotic properties of SKEO and CAR after TBI induction. Eighty-four male Wistar rats were randomly divided into six groups: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg), and TBI + SKEO (200 mg/kg) groups. After establishing the "Marmarou" weight drop model, diffuse TBI was induced in the rat brain. Thirty minutes after TBI induction, SKEO & CAR were intraperitoneally injected. One day after TBI, injured rats exhibited significant brain edema, neurobehavioral dysfunctions, and neuronal apoptosis. Western blot results revealed upregulation of the levels of cleaved caspase-3, NFκB p65, and Bax/Bcl-2 ratio, which was attenuated by CAR and SKEO (200 mg/kg). Furthermore, the ELISA results showed that CAR treatment markedly prevents the overproduction of the brain pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6. Moreover, the neuron-specific enolase (NSE) immunohistochemistry results revealed the protective effect of CAR and SKEO on post-TBI neuronal death. The current study revealed that the possible neuroprotective mechanisms of SKEO and CAR might be related to (at least in part) modulating NF-κB regulated inflammation and caspase-3 protein expression. It also suggested that CAR exerts more potent protective effects than SKEO against TBI. Nevertheless, the administration of SKEO and CAR may express a novel therapeutic approach to ameliorate TBI-related secondary phase neuropathological outcomes.
Collapse
Affiliation(s)
- Elham Abbasloo
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Sara Shirazpour
- Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, USA
- Translational Neurotrauma Research Program, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
15
|
Pandya JD, Musyaju S, Modi HR, Cao Y, Flerlage WJ, Huynh L, Kociuba B, Visavadiya NP, Kobeissy F, Wang K, Gilsdorf JS, Scultetus AH, Shear DA. Comprehensive evaluation of mitochondrial redox profile, calcium dynamics, membrane integrity and apoptosis markers in a preclinical model of severe penetrating traumatic brain injury. Free Radic Biol Med 2023; 198:44-58. [PMID: 36758906 DOI: 10.1016/j.freeradbiomed.2023.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Traumatic Brain Injury (TBI) is caused by the external physical assaults damages the brain. It is a heterogeneous disorder that remains a leading cause of death and disability in the military and civilian population of the United States. Preclinical investigations of mitochondrial responses in TBI have ascertained that mitochondrial dysfunction is an acute indicator of cellular damage and plays a pivotal role in long-term injury progression through cellular excitotoxicity. The current study was designed to provide an in-depth evaluation of mitochondrial endpoints with respect to redox and calcium homeostasis, and cell death responses following penetrating TBI (PTBI). To evaluate these pathological cascades, anesthetized adult male rats (N = 6/group) were subjected to either 10% unilateral PTBI or Sham craniectomy. Animals were euthanized at 24 h post-PTBI, and purified mitochondrial fractions were isolated from the brain injury core and perilesional areas. Overall, increased reactive oxygen and nitrogen species (ROS/RNS) production, and elevated oxidative stress markers such as 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and protein carbonyls (PC) were observed in the PTBI group compared to Sham. Mitochondrial antioxidants such as glutathione, peroxiredoxin (PRX-3), thioredoxin (TRX), nicotinamide adenine dinucleotide phosphate (NADPH), superoxide dismutase (SOD), and catalase (CAT) levels were significantly decreased after PTBI. Likewise, PTBI mitochondria displayed significant loss of Ca2+ homeostasis, early opening of mitochondrial permeability transition pore (mPTP), and increased mitochondrial swelling. Both, outer and inner mitochondrial membrane integrity markers, such as voltage-dependent anion channels (VDAC) and cytochrome c (Cyt C) expression were significantly decreased following PTBI. The apoptotic cell death was evidenced by significantly decreased B-cell lymphoma-2 (Bcl-2) and increased glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression after PTBI. Collectively, current results highlight the comprehensive picture of mitochondria-centric acute pathophysiological responses following PTBI, which may be utilized as novel prognostic indicators of disease progression and theragnostic indicators for evaluating neuroprotection therapeutics following TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Ying Cao
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - William J Flerlage
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Linda Huynh
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Brittany Kociuba
- Veterinary Services Program, Department of Pathology, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, 20910, USA
| |
Collapse
|
16
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
17
|
Hicks C, Dhiman A, Barrymore C, Goswami T. Traumatic Brain Injury Biomarkers, Simulations and Kinetics. Bioengineering (Basel) 2022; 9:612. [PMID: 36354523 PMCID: PMC9687153 DOI: 10.3390/bioengineering9110612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
This paper reviews the predictive capabilities of blood-based biomarkers to quantify traumatic brain injury (TBI). Biomarkers for concussive conditions also known as mild, to moderate and severe TBI identified along with post-traumatic stress disorder (PTSD) and chronic traumatic encephalopathy (CTE) that occur due to repeated blows to the head during one's lifetime. Since the pathways of these biomarkers into the blood are not fully understood whether there is disruption in the blood-brain barrier (BBB) and the time it takes after injury for the expression of the biomarkers to be able to predict the injury effectively, there is a need to understand the protein biomarker structure and other physical properties. The injury events in terms of brain and mechanics are a result of external force with or without the shrapnel, in the wake of a wave result in local tissue damage. Thus, these mechanisms express specific biomarkers kinetics of which reaches half-life within a few hours after injury to few days. Therefore, there is a need to determine the concentration levels that follow injury. Even though current diagnostics linking biomarkers with TBI severity are not fully developed, there is a need to quantify protein structures and their viability after injury. This research was conducted to fully understand the structures of 12 biomarkers by performing molecular dynamics simulations involving atomic movement and energies of forming hydrogen bonds. Molecular dynamics software, NAMD and VMD were used to determine and compare the approximate thermodynamic stabilities of the biomarkers and their bonding energies. Five biomarkers used clinically were S100B, GFAP, UCHL1, NF-L and tau, the kinetics obtained from literature show that the concentration values abruptly change with time after injury. For a given protein length, associated number of hydrogen bonds and bond energy describe a lower bound region where proteins self-dissolve and do not have long enough half-life to be detected in the fluids. However, above this lower bound, involving higher number of bonds and energy, we hypothesize that biomarkers will be viable to disrupt the BBB and stay longer to be modeled for kinetics for diagnosis and therefore may help in the discoveries of new biomarkers.
Collapse
Affiliation(s)
- Celeste Hicks
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Akshima Dhiman
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Chauntel Barrymore
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Tarun Goswami
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| |
Collapse
|
18
|
Identifying technical skills and clinical procedures for simulation-based training in emergency medicine: A nationwide needs assessment. Am J Emerg Med 2022; 62:140-143. [PMID: 36167748 DOI: 10.1016/j.ajem.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022] Open
|
19
|
Supraja P, Tripathy S, Krishna Vanjari SR, Singh SG. Label-free, ultrasensitive and rapid detection of FDA-approved TBI specific UCHL1 biomarker in plasma using MWCNT-PPY nanocomposite as bio-electrical transducer: A step closer to point-of-care diagnosis of TBI. Biosens Bioelectron 2022; 216:114631. [PMID: 35973277 DOI: 10.1016/j.bios.2022.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
Abstract
Traumatic Brain Injury (TBI), a major cause of mortality and neurological disability affecting people of all ages worldwide, remains a diagnostic and therapeutic challenge to date. Rapid, ultra-sensitive, selective, and wide-range detection of TBI biomarkers in easily accessible body fluids is an unmet clinical need. Considering this, in this work, we report the design and development of a facile, label-free, highly stable and sensitive, chemi-impedance-based sensing platform for rapid and wide range detection of Ubiquitin-carboxy terminal hydrolase L1 (UCHL1: FDA-approved TBI specific plasma biomarker), using carboxylic functionalized MWCNTs embedded polypyrrole (PPY) nanocomposites (PPY/f-MWCNT). The said nanocomposites were synthesized using chemical oxidative polymerization method. Herein, the functionalized MWCNTs are used as conducting fillers so as to increase the polymer's dielectric constant according to the micro-capacitor model, thereby augmenting both DC electrical conductivity and AC dielectric property of the nanocomposite. The proposed immunosensing platform comprises of PPY/f-MWCNT modified interdigitated microelectrode (IDμEs) array, on which anti-UCHL1-antibodies are immobilized using suitable covalent chemistry. The AC electrical characterization of the nanocomposite modified IDμEs, with and without the antibodies, was performed through generic capacitance vs. frequency (C-F, 1 KHz - 1 MHz) and capacitance vs. applied bias (C-V, 0.1 V-1 V) measurements, using an Agilent B1500A parametric analyzer. The binding event of UCHL1 peptides to anti-UCHL1-antibodies was transduced in terms of normalised changes in parallel capacitance, via the C-F analysis. Further, we have tested the detection efficiency of the said immunoassay against UCHL1 spiked human plasma samples in the concentration range 10 fg/mL - 1 μg/mL. The proposed sensing platform detected UCHL1 in spiked-plasma samples linearly in the range of 10 fg/mL - 1 ng/mL with a sensitivity and LoD of 4.22 ((ΔC/C0)/ng.mL-1)/cm2 and 0.363 fg/mL, respectively. Further, it showed excellent stability (30 weeks), repeatability, reproducibility, selectivity and interference-resistance. The proposed approach is label-free, and if desired, can be used in conjunction with DC measurements, for biosensing applications.
Collapse
Affiliation(s)
- Patta Supraja
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| | - Suryasnata Tripathy
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology Surat, 395007, India.
| | | | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India.
| |
Collapse
|
20
|
Martinez BI, Mousa GA, Fleck K, MacCulloch T, Diehnelt CW, Stephanopoulos N, Stabenfeldt SE. Uncovering temporospatial sensitive TBI targeting strategies via in vivo phage display. SCIENCE ADVANCES 2022; 8:eabo5047. [PMID: 35867794 PMCID: PMC9307250 DOI: 10.1126/sciadv.abo5047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneous pathophysiology of traumatic brain injury (TBI) is a barrier to advancing diagnostics and therapeutics, including targeted drug delivery. We used a unique discovery pipeline to identify novel targeting motifs that recognize specific temporal phases of TBI pathology. This pipeline combined in vivo biopanning with domain antibody (dAb) phage display, next-generation sequencing analysis, and peptide synthesis. We identified targeting motifs based on the complementarity-determining region 3 structure of dAbs for acute (1 day post-injury) and subacute (7 days post-injury) post-injury time points in a preclinical TBI model (controlled cortical impact). Bioreactivity and temporal sensitivity of the targeting motifs were validated via immunohistochemistry. Immunoprecipitation-mass spectrometry indicated that the acute TBI targeting motif recognized targets associated with metabolic and mitochondrial dysfunction, whereas the subacute TBI motif was largely associated with neurodegenerative processes. This pipeline successfully discovered temporally specific TBI targeting motif/epitope pairs that will serve as the foundation for the next-generation targeted TBI therapeutics and diagnostics.
Collapse
Affiliation(s)
- Briana I. Martinez
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Gergey Alzaem Mousa
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kiera Fleck
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Tara MacCulloch
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Institute Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, USA
| | - Chris W. Diehnelt
- Biodesign Institute Center for Innovations in Medicine, Arizona State University, Tempe, AZ, USA
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Institute Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ, USA
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
21
|
Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022; 20:248. [PMID: 35641956 PMCID: PMC9153106 DOI: 10.1186/s12951-022-01450-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
From the global perspective, stroke refers to a highly common cause of disability and death. Ischemic stroke (IS), attributed to blood vessel blockage, preventing the flow of blood to brain, acts as the most common form of stroke. Thus far, thrombolytic therapy is the only clinical treatment for IS with the approval from the FDA. Moreover, the physiology barrier complicates therapeutically and diagnostically related intervention development of IS. Accordingly, developing efficient and powerful curative approaches for IS diagnosis and treatment is urgently required. The advent of nanotechnology has brought dawn and hope to better curative and imaging forms for the management of IS. This work reviews the recent advances and challenges correlated with the nano drug delivery system for IS therapy and diagnosis. The overview of the current knowledge of the important molecular pathological mechanisms in cerebral ischemia and how the drugs cross the blood brain barrier will also be briefly summarized.
Collapse
Affiliation(s)
- Wei Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Yijiao Liu
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Shengnan Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lingyan Lv
- Department of Pharmacy, The Jiangyin Clinical College of Xuzhou Medical University, 214400, Jiangyin, China
| | - Hongdan Lu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
22
|
Forensic biomarkers of lethal traumatic brain injury. Int J Legal Med 2022; 136:871-886. [PMID: 35226180 PMCID: PMC9005436 DOI: 10.1007/s00414-022-02785-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
Abstract
AbstractTraumatic brain injury (TBI) is a major cause of death and its accurate diagnosis is an important concern of daily forensic practice. However, it can be challenging to diagnose TBI in cases where macroscopic signs of the traumatic head impact are lacking and little is known about the circumstances of death. In recent years, several post-mortem studies investigated the possible use of biomarkers for providing objective evidence for TBIs as the cause of death or to estimate the survival time and time since death of the deceased. This work systematically reviewed the available scientific literature on TBI-related biomarkers to be used for forensic purposes. Post-mortem TBI-related biomarkers are an emerging and promising resource to provide objective evidence for cause of death determinations as well as survival time and potentially even time since death estimations. This literature review of forensically used TBI-biomarkers revealed that current markers have low specificity for TBIs and only provide limited information with regards to survival time estimations and time since death estimations. Overall, TBI fatality-related biomarkers are largely unexplored in compartments that are easily accessible during autopsies such as urine and vitreous humor. Future research on forensic biomarkers requires a strict distinction of TBI fatalities from control groups, sufficient sample sizes, combinations of currently established biomarkers, and novel approaches such as metabolomics and mi-RNAs.
Collapse
|
23
|
Wu X, Wei H, Wu JQ. Coding and long non-coding gene expression changes in the CNS traumatic injuries. Cell Mol Life Sci 2022; 79:123. [PMID: 35129669 PMCID: PMC8907010 DOI: 10.1007/s00018-021-04092-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are two main central nervous system (CNS) traumas, caused by external physical insults. Both injuries have devastating effects on the quality of life, and there is no effective therapy at present. Notably, gene expression profiling using bulk RNA sequencing (RNA-Seq) and single-cell RNA-Seq (scRNA-Seq) have revealed significant changes in many coding and non-coding genes, as well as important pathways in SCI and TBI. Particularly, recent studies have revealed that long non-coding RNAs (lncRNAs) with lengths greater than 200 nucleotides and without protein-coding potential have tissue- and cell type-specific expression pattern and play critical roles in CNS injury by gain- and loss-of-function approaches. LncRNAs have been shown to regulate protein-coding genes or microRNAs (miRNAs) directly or indirectly, participating in processes including inflammation, glial activation, cell apoptosis, and vasculature events. Therefore, lncRNAs could serve as potential targets for the diagnosis, treatment, and prognosis of SCI and TBI. In this review, we highlight the recent progress in transcriptome studies of SCI and TBI and insights into molecular mechanisms.
Collapse
Affiliation(s)
- Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Campbell B, Budreau D, Williams-Perez S, Chakravarty S, Galet C, McGonagill P. Admission Lymphopenia Predicts Infectious Complications and Mortality in Traumatic Brain Injury Victims. Shock 2022; 57:189-198. [PMID: 34618726 DOI: 10.1097/shk.0000000000001872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of mortality and disability associated with increased risk of secondary infections. Identifying a readily available biomarker may help direct TBI patient care. Herein, we evaluated whether admission lymphopenia could predict outcomes of TBI patients. METHODS This is a 10-year retrospective review of TBI patients with a head Abbreviated Injury Score 2 to 6 and absolute lymphocyte counts (ALC) collected within 24 h of admission. Exclusion criteria were death within 24 h of admission and presence of bowel perforation on admission. Demographics, admission data, injury severity score, mechanism of injury, and outcomes were collected. Association between baseline variables and outcomes was analyzed. RESULTS We included 2,570 patients; 946 (36.8%) presented an ALC ≤1,000 on admission (lymphopenic group). Lymphopenic patients were significantly older, less likely to smoke, and more likely to have heart failure, hypertension, or chronic kidney disease. Lymphopenia was associated with increased risks of mortality (OR = 1.903 [1.389-2.608]; P < 0.001) and pneumonia (OR = 1.510 [1.081-2.111]; P = 0.016), increased LOS (OR = 1.337 [1.217-1.469]; P < 0.001), and likelihood of requiring additional healthcare resources at discharge (OR = 1.669 [1.344-2.073], P < 0.001). Additionally, lymphopenia increased the risk of early in-hospital death (OR = 1.459 [1.097-1.941]; P = 0.009). Subgroup analysis showed that lymphopenia was associated with mortality in polytrauma patients and those who presented with two or more concurrent types of TBI. In all subgroup analyses, lymphopenia was associated with longer length of stay and discharge requiring higher level of care. CONCLUSION A routine complete blood count with differential for all TBI patients may help predict patient outcomes and direct care accordingly.
Collapse
Affiliation(s)
| | - Daniel Budreau
- Department of Surgery, Acute Care Surgery Division, University of Iowa, Iowa City, Iowa
- Aurora BayCare Medical Center, Green Bay, Wisconsin
| | | | | | - Colette Galet
- Department of Surgery, Acute Care Surgery Division, University of Iowa, Iowa City, Iowa
| | - Patrick McGonagill
- Department of Surgery, Acute Care Surgery Division, University of Iowa, Iowa City, Iowa
| |
Collapse
|
25
|
Peters AJ, Schnell E, Saugstad JA, Treggiari MM. Longitudinal Course of Traumatic Brain Injury Biomarkers for the Prediction of Clinical Outcomes: A Review. J Neurotrauma 2021; 38:2490-2501. [PMID: 33899510 DOI: 10.1089/neu.2020.7448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein biomarkers are often measured at hospital presentation to diagnose traumatic brain injury (TBI) and predict patient outcomes. However, a biomarker measurement at this single time point is no more accurate at predicting patient outcomes than less invasive and more cost-effective methods. Here, we review evidence that TBI biomarkers provide greater prognostic value when measured repeatedly over time, such that a trajectory of biomarker concentrations can be evaluated. PubMed, Google Scholar, and Cochrane Central Register were searched to identify studies from the last decade in which established TBI biomarkers had been measured at more than one time point following acute TBI, and which related their findings to patient outcomes. Twenty-two studies were identified, 18 of which focused on adults and 4 of which focused on children. Three general biomarker trajectories were identified: persistently high, persistently low, and reversal of decreasing concentrations. Downtrend reversal was highly specific to predicting poor patient outcomes. Four studies demonstrated that biomarker trajectories can be affected by therapeutic interventions. Additional studies demonstrated that biomarkers measured at a later time point offered superior prognostic value than a single measurement obtained at initial hospital presentation. Among other details, longitudinal biomarker trajectory assessments may identify ongoing injury and predict patient deterioration before clinical symptoms develop and thus help guide therapeutic interventions.
Collapse
Affiliation(s)
- Austin J Peters
- Department of Anesthesiology and Perioperative Medicine, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Eric Schnell
- Portland Health Care System, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Julie A Saugstad
- Portland Health Care System, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Miriam M Treggiari
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Hergenroeder GW, Yokobori S, Choi HA, Schmitt K, Detry MA, Schmitt LH, McGlothlin A, Puccio AM, Jagid J, Kuroda Y, Nakamura Y, Suehiro E, Ahmad F, Viele K, Wilde EA, McCauley SR, Kitagawa RS, Temkin NR, Timmons SD, Diringer MN, Dash PK, Bullock R, Okonkwo DO, Berry DA, Kim DH. Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: A Multicenter Randomized Clinical Trial. Neurocrit Care 2021; 36:560-572. [PMID: 34518968 PMCID: PMC8964656 DOI: 10.1007/s12028-021-01334-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Background Hypothermia is neuroprotective in some ischemia–reperfusion injuries. Ischemia–reperfusion injury may occur with traumatic subdural hematoma (SDH). This study aimed to determine whether early induction and maintenance of hypothermia in patients with acute SDH would lead to decreased ischemia–reperfusion injury and improve global neurologic outcome. Methods This international, multicenter randomized controlled trial enrolled adult patients with SDH requiring evacuation of hematoma within 6 h of injury. The intervention was controlled temperature management of hypothermia to 35 °C prior to dura opening followed by 33 °C for 48 h compared with normothermia (37 °C). Investigators randomly assigned patients at a 1:1 ratio between hypothermia and normothermia. Blinded evaluators assessed outcome using a 6-month Glasgow Outcome Scale Extended score. Investigators measured circulating glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 levels. Results Independent statisticians performed an interim analysis of 31 patients to assess the predictive probability of success and the Data and Safety Monitoring Board recommended the early termination of the study because of futility. Thirty-two patients, 16 per arm, were analyzed. Favorable 6-month Glasgow Outcome Scale Extended outcomes were not statistically significantly different between hypothermia vs. normothermia groups (6 of 16, 38% vs. 4 of 16, 25%; odds ratio 1.8 [95% confidence interval 0.39 to ∞], p = .35). Plasma levels of glial fibrillary acidic protein (p = .036), but not ubiquitin C-terminal hydrolase L1 (p = .26), were lower in the patients with favorable outcome compared with those with unfavorable outcome, but differences were not identified by temperature group. Adverse events were similar between groups. Conclusions This trial of hypothermia after acute SDH evacuation was terminated because of a low predictive probability of meeting the study objectives. There was no statistically significant difference in functional outcome identified between temperature groups. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01334-w.
Collapse
Affiliation(s)
- Georgene W Hergenroeder
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA. .,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA.
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Huimahn Alex Choi
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Karl Schmitt
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Michelle A Detry
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Lisa H Schmitt
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Anna McGlothlin
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jonathan Jagid
- Department of Neurological Surgery, Jackson Memorial Hospital, University of Miami, Miami, FL, USA
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Kagawa University Hospital, Kagawa Prefecture, Japan
| | - Yukihiko Nakamura
- Emergency and Critical Care Medicine, Kurume University Hospital, Fukuoka, Japan
| | - Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Faiz Ahmad
- Department of Neurological Surgery, Grady Memorial Hospital, Emory University School of Medicine, Atlanta, GA, USA
| | - Kert Viele
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Elisabeth A Wilde
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stephen R McCauley
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ryan S Kitagawa
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Nancy R Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Shelly D Timmons
- Department of Neurological Surgery, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael N Diringer
- Departments of Neurology, Neurological Surgery, Anesthesiology, and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Pramod K Dash
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ross Bullock
- Department of Neurological Surgery, Jackson Memorial Hospital, University of Miami, Miami, FL, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Donald A Berry
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Dong H Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
27
|
Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. J Neurotrauma 2021; 38:2323-2334. [PMID: 33544034 DOI: 10.1089/neu.2020.7379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. Anesthetized adult male rats were subjected to either PTBI or sham craniectomy (n = 6 animals per group × 7 time points). Animals were euthanized at 30 min, 3 h, 6 h, 24 h, 3 days, 7 days, and 14 days post-PTBI, and mitochondria were isolated from the ipsilateral hemisphere of brain regions near the injury core (i.e., frontal cortex [FC] and striatum [ST]) and a more distant region from the injury core (i.e., hippocampus [HIP]). Mitochondrial bioenergetics parameters were measured in real time using the high-throughput procedures of the Seahorse Flux Analyzer (Agilent Technologies, Santa Clara, CA). The post-injury time course of FC + ST showed a biphasic mitochondrial bioenergetics dysfunction response, indicative of reduced adenosine triphosphate synthesis rate and maximal respiratory capacity after PTBI. An initial phase of energy crisis was detected at 30 min (-42%; p < 0.05 vs. sham), which resolved to baseline levels between 3 and 6 h (non-significant vs. sham). This was followed by a second and more robust phase of bioenergetics dysregulation detected at 24 h that remained unresolved out to 14 days post-injury (-55% to -90%; p < 0.05 vs. sham). In contrast, HIP mitochondria showed a delayed onset of mitochondrial dysfunction at 7 days (-74%; p < 0.05 vs. sham) that remained evident out to 14 days (-51%; p < 0.05 vs. sham) post-PTBI. Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Lai Yee Leung
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Science (USUHS), Bethesda, Maryland, USA
| | - Hye M Hwang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Xiaofang Yang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| |
Collapse
|
28
|
Zhou H, Hu L, Li J, Ruan W, Cao Y, Zhuang J, Xu H, Peng Y, Zhang Z, Xu C, Yu Q, Li Y, Dou Z, Hu J, Wu X, Yu X, Gu C, Cao S, Yan F, Chen G. AXL kinase-mediated astrocytic phagocytosis modulates outcomes of traumatic brain injury. J Neuroinflammation 2021; 18:154. [PMID: 34233703 PMCID: PMC8264993 DOI: 10.1186/s12974-021-02201-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background Complex changes in the brain microenvironment following traumatic brain injury (TBI) can cause neurological impairments for which there are few efficacious therapeutic interventions. The reactivity of astrocytes is one of the keys to microenvironmental changes, such as neuroinflammation, but its role and the molecular mechanisms that underpin it remain unclear. Methods Male C57BL/6J mice were subjected to the controlled cortical impact (CCI) to develop a TBI model. The specific ligand of AXL receptor tyrosine kinase (AXL), recombinant mouse growth arrest-specific 6 (rmGas6) was intracerebroventricularly administered, and selective AXL antagonist R428 was intraperitoneally applied at 30 min post-modeling separately. Post-TBI assessments included neurobehavioral assessments, transmission electron microscopy, immunohistochemistry, and western blotting. Real-time polymerase chain reaction (RT-PCR), siRNA transfection, and flow cytometry were performed for mechanism assessments in primary cultured astrocytes. Results AXL is upregulated mainly in astrocytes after TBI and promotes astrocytes switching to a phenotype that exhibits the capability of ingesting degenerated neurons or debris. As a result, this astrocytic transformation promotes the limitation of neuroinflammation and recovery of neurological dysfunction. Pharmacological inhibition of AXL in astrocytes significantly decreased astrocytic phagocytosis both in vivo and in primary astrocyte cultures, in contrast to the effect of treatment with the rmGas6. AXL activates the signal transducer and activator of the transcription 1 (STAT1) pathway thereby further upregulating ATP-binding cassette transporter 1 (ABCA1). Moreover, the supernatant from GAS6-depleted BV2 cells induced limited enhancement of astrocytic phagocytosis in vitro. Conclusion Our work establishes the role of AXL in the transformation of astrocytes to a phagocytic phenotype via the AXL/STAT1/ABCA1 pathway which contributes to the separation of healthy brain tissue from injury-induced cell debris, further ameliorating neuroinflammation and neurological impairments after TBI. Collectively, our findings provide a potential therapeutic target for TBI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02201-3.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Wu Ruan
- Department of Burn and Plastic Surgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Zhejiang, 310052, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, No. 3333 Binsheng Road, Zhejiang, 310052, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Qian Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Yin Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Junwen Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Xinyan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Xiaobo Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Chi Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China.
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road88th, Hangzhou, 310016, China.
| |
Collapse
|
29
|
Chen KY, Tsai TY, Chang CF, Ou JC, Tsai YR, Ma HP, Chiu WT, Tsai SH, Liao KH, Lin JW, Lin CM, Wu JCC, Chiang YH. Worsening of Dizziness Impairment Is Associated with Bone Marrow Kinase on Chromosome X Level in Patients after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:1445-1449. [PMID: 25747875 DOI: 10.1089/neu.2014.3691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over 2 million people suffer from mild traumatic brain injury (mTBI) each year. Predicting symptoms of mTBI and the characterization of those symptoms has been challenging. Biomarkers that correlate clinical symptoms to disease outcome are desired to improve understanding of the disease and optimize patient care. Bone marrow kinase on chromosome X (BMX), a member of the TEC family of nonreceptor tyrosine kinases, is up-regulated after traumatic neural injury in a rat model of mTBI. The aim of this investigation was to determine whether BMX serum concentrations can effectively be used to predict outcomes after mTBI in a clinical setting. A total of 63 patients with mTBI (Glasgow Coma Score [GCS] between 13 and 15) were included. Blood samples taken at the time of hospital admission were analyzed for BMX. Data collected included demographic and clinical variables. Outcomes were assessed using the Dizziness Handicap Inventory (DHI) questionnaire at baseline and 6 weeks postinjury. The participant was asssigned to the case group if the subject's complaints of dizziness became worse at the sixth week assessment; otherwise, the participant was assigned to the control group. A receiver operating characteristic curve was constructed to explore BMX level. Significant associations were found between serum levels of BMX and dizziness. Areas under the curve for prediction of change in DHI postinjury were 0.76 for total score, 0.69 for physical score, 0.65 for emotional score, and 0.66 for functional score. Specificities were between 0.69 and 0.77 for total score and emotional score, respectively. Therefore, BMX demonstrates potential as a candidate serum biomarker of exacerbating dizziness post-mTBI.
Collapse
Affiliation(s)
- Kai-Yun Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yao Tsai
- Department of Emergency Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cheng-Fu Chang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ju-Chi Ou
- Department of Emergency Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yan-Rou Tsai
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Hon-Ping Ma
- Department of Emergency Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Ta Chiu
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shin-Han Tsai
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsing Liao
- Department of Neurosurgery, Wan Fang Hospital, Taipei, Taiwan
| | - Jia-Wei Lin
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Min Lin
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - John Chung-Che Wu
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Translational Research Laboratory, Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Gozt AK, Hellewell SC, Thorne J, Thomas E, Buhagiar F, Markovic S, Van Houselt A, Ring A, Arendts G, Smedley B, Van Schalkwyk S, Brooks P, Iliff J, Celenza A, Mukherjee A, Xu D, Robinson S, Honeybul S, Cowen G, Licari M, Bynevelt M, Pestell CF, Fatovich D, Fitzgerald M. Predicting outcome following mild traumatic brain injury: protocol for the longitudinal, prospective, observational Concussion Recovery ( CREST) cohort study. BMJ Open 2021; 11:e046460. [PMID: 33986061 PMCID: PMC8126315 DOI: 10.1136/bmjopen-2020-046460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Mild traumatic brain injury (mTBI) is a complex injury with heterogeneous physical, cognitive, emotional and functional outcomes. Many who sustain mTBI recover within 2 weeks of injury; however, approximately 10%-20% of individuals experience mTBI symptoms beyond this 'typical' recovery timeframe, known as persistent post-concussion symptoms (PPCS). Despite increasing interest in PPCS, uncertainty remains regarding its prevalence in community-based populations and the extent to which poor recovery may be identified using early predictive markers. OBJECTIVE (1) Establish a research dataset of people who have experienced mTBI and document their recovery trajectories; (2) Evaluate a broad range of novel and established prognostic factors for inclusion in a predictive model for PPCS. METHODS AND ANALYSIS The Concussion Recovery Study (CREST) is a prospective, longitudinal observational cohort study conducted in Perth, Western Australia. CREST is recruiting adults aged 18-65 from medical and community-based settings with acute diagnosis of mTBI. CREST will create a state-wide research dataset of mTBI cases, with data being collected in two phases. Phase I collates data on demographics, medical background, lifestyle habits, nature of injury and acute mTBI symptomatology. In Phase II, participants undergo neuropsychological evaluation, exercise tolerance and vestibular/ocular motor screening, MRI, quantitative electroencephalography and blood-based biomarker assessment. Follow-up is conducted via telephone interview at 1, 3, 6 and 12 months after injury. Primary outcome measures are presence of PPCS and quality of life, as measured by the Post-Concussion Symptom Scale and the Quality of Life after Brain Injury questionnaires, respectively. Multivariate modelling will examine the prognostic value of promising factors. ETHICS AND DISSEMINATION Human Research Ethics Committees of Royal Perth Hospital (#RGS0000003024), Curtin University (HRE2019-0209), Ramsay Health Care (#2009) and St John of God Health Care (#1628) have approved this study protocol. Findings will be published in peer-reviewed journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER ACTRN12619001226190.
Collapse
Affiliation(s)
- Aleksandra Karolina Gozt
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- Perron Institute of Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Sarah Claire Hellewell
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Jacinta Thorne
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Elizabeth Thomas
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
- Division of Surgery, Faculty of Health & Medical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Francesca Buhagiar
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun Markovic
- Australian Alzheimer's Research Foundation, Nedlands, Western Australia, Australia
- The Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Anoek Van Houselt
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alexander Ring
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- School of Physiotherapy and Exercise Science, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
| | - Glenn Arendts
- Emergency Department, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Ben Smedley
- Emergency Department, Rockingham General Hospital, Cooloongup, Western Australia, Australia
| | - Sjinene Van Schalkwyk
- Emergency Department, Joondalup Health Campus, Joondalup, Western Australia, Australia
| | - Philip Brooks
- Emergency Department, Saint John of God Midland Public Hospital, Midland, Western Australia, Australia
- School of Medicine, The University of Notre Dame and Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - John Iliff
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Emergency Department, Saint John of God Hospital Murdoch, Murdoch, Western Australia, Australia
- Emergency Department, Royal Perth Hospital, Perth, Western Australia, Australia
- Royal Flying Doctor Service- Western Operations, Jandakot, Western Australia, Australia
| | - Antonio Celenza
- Emergency Department, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Division of Emergency Medicine, School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ashes Mukherjee
- Emergency Department, Armadale Health Service, Mount Nasura, Western Australia, Australia
| | - Dan Xu
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Suzanne Robinson
- Centre for Clinical Research Excellence, School of Population Health, Curtin University, Bentley, Western Australia, Australia
| | - Stephen Honeybul
- Statewide Director of Neurosurgery, Department of Health Government of Western Australia, Perth, Western Australia, Australia
- Head of Department, Sir Charles Gairdner Hospital, Royal Perth Hospital and Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Gill Cowen
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Melissa Licari
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, West Perth, Western Australia, Australia
| | - Michael Bynevelt
- Division of Surgery, School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- The Neurological Intervention & Imaging Service of Western Australia at Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Carmela F Pestell
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Daniel Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- Emergency Medicine, Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University Faculty of Health Sciences, Bentley, Western Australia, Australia
- Perron Institute of Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
31
|
Thango NS, Rohlwink UK, Dlamini L, Tshavhungwe MP, Banderker E, Salie S, Enslin JMN, Figaji AA. Brain interstitial glycerol correlates with evolving brain injury in paediatric traumatic brain injury. Childs Nerv Syst 2021; 37:1713-1721. [PMID: 33585956 DOI: 10.1007/s00381-021-05058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE A better understanding of the complex pathophysiology of traumatic brain injury (TBI) is needed to improve our current therapies. Cerebral microdialysis (CMD) is an advanced method to monitor the brain, but little is known about its parameters in children. Brain glycerol, one of the CMD variables, is an essential component of the phospholipid bilayer cell membrane and is considered a useful marker of tissue hypoxia in adults. This study examined the time course of glycerol and its associations in paediatric TBI. METHODS In this retrospective cohort study, we collected data on children (< 13years) with severe TBI who underwent CMD monitoring. The relationship of glycerol was examined with respect to physiological, radiological variables, and clinical outcome. RESULTS Twenty-eight children underwent CMD monitoring and had evaluable data. Lesion progression on head computed tomography (CT) demonstrated a strong relationship with glycerol (median glycerol, maximum and initial-to-maximum) when lesion size increased by > 30% (p=0.01, p=0.04 and p=0.004). Absolute glycerol values had a weak but statistically significant association with intracranial pressure and brain oxygenation. We did not find an association with clinical outcome. CONCLUSION This is the first study to provide data on brain interstitial glycerol in children. CMD glycerol, particularly an increase from baseline, is associated with other markers of injury and with a significant increase in lesion size on repeat head CT. As such, it may represent a useful monitorable marker for evolving injury in paediatric TBI.
Collapse
Affiliation(s)
- Nqobile S Thango
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Ursula K Rohlwink
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lindizwe Dlamini
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - M Phophi Tshavhungwe
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - E Banderker
- Department of Radiology, University of Cape Town, Cape Town, South Africa
| | - Shamiel Salie
- Paediatric Intensive Care Unit, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - J M N Enslin
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Anthony A Figaji
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa. .,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
32
|
Safar K, Zhang J, Emami Z, Gharehgazlou A, Ibrahim G, Dunkley BT. Mild traumatic brain injury is associated with dysregulated neural network functioning in children and adolescents. Brain Commun 2021; 3:fcab044. [PMID: 34095832 PMCID: PMC8176148 DOI: 10.1093/braincomms/fcab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Mild traumatic brain injury is highly prevalent in paediatric populations, and can result in chronic physical, cognitive and emotional impairment, known as persistent post-concussive symptoms. Magnetoencephalography has been used to investigate neurophysiological dysregulation in mild traumatic brain injury in adults; however, whether neural dysrhythmia persists in chronic mild traumatic brain injury in children and adolescents is largely unknown. We predicted that children and adolescents would show similar dysfunction as adults, including pathological slow-wave oscillations and maladaptive, frequency-specific, alterations to neural connectivity. Using magnetoencephalography, we investigated regional oscillatory power and distributed brain-wide networks in a cross-sectional sample of children and adolescents in the chronic stages of mild traumatic brain injury. Additionally, we used a machine learning pipeline to identify the most relevant magnetoencephalography features for classifying mild traumatic brain injury and to test the relative classification performance of regional power versus functional coupling. Results revealed that the majority of participants with chronic mild traumatic brain injury reported persistent post-concussive symptoms. For neurophysiological imaging, we found increased regional power in the delta band in chronic mild traumatic brain injury, predominantly in bilateral occipital cortices and in the right inferior temporal gyrus. Those with chronic mild traumatic brain injury also showed dysregulated neuronal coupling, including decreased connectivity in the delta range, as well as hyper-connectivity in the theta, low gamma and high gamma bands, primarily involving frontal, temporal and occipital brain areas. Furthermore, our multivariate classification approach combined with functional connectivity data outperformed regional power in terms of between-group classification accuracy. For the first time, we establish that local and large-scale neural activity are altered in youth in the chronic phase of mild traumatic brain injury, with the majority presenting persistent post-concussive symptoms, and that dysregulated interregional neural communication is a reliable marker of lingering paediatric ‘mild’ traumatic brain injury.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Zahra Emami
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Avideh Gharehgazlou
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Ibrahim
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9 Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5T 1W7
| |
Collapse
|
33
|
Santana Baskar P, Cordato D, Wardman D, Bhaskar S. In-hospital acute stroke workflow in acute stroke - Systems-based approaches. Acta Neurol Scand 2021; 143:111-120. [PMID: 32882056 DOI: 10.1111/ane.13343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
Clinical outcomes of acute ischaemic stroke patients have significantly improved with the advent of reperfusion therapy. However, time continues to be a critical factor. Reducing treatment delays by improving workflows can improve the efficacy of acute reperfusion therapy. Systems-based approaches have improved in-hospital temporal parameters, maximizing the utility of reperfusion therapies and improving clinical benefit to patients. However, studies aimed at optimizing and hence reducing treatment delays in emergency department (ED) settings are limited. The aim of this article is to discuss existing systems-based approaches to optimize ED acute stroke workflows and its value in reducing treatment delays and identify gaps in existing workflows that need optimization. Identifying gaps in acute stroke workflow, variations in processes and challenges in implementation, in the in-hospital settings, is essential for systems-based interventions to be effective in delivering improved outcomes for patients with acute ischaemic stroke.
Collapse
Affiliation(s)
- Prithvi Santana Baskar
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
- Neurovascular Imaging Laboratory Ingham Institute for Applied Medical Research, Clinical Sciences Stream Sydney NSW Australia
- Thrombolysis and Endovascular WorkFLOw Network (TEFLON) Sydney NSW Australia
| | - Dennis Cordato
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
- Thrombolysis and Endovascular WorkFLOw Network (TEFLON) Sydney NSW Australia
- Department of Neurology and Neurophysiology Liverpool Hospital and South West Sydney Local Health District (SWSLHD) Sydney NSW Australia
- Stroke and Neurology Research Group Ingham Institute for Applied Medical Research Sydney NSW Australia
| | - Daniel Wardman
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
- Thrombolysis and Endovascular WorkFLOw Network (TEFLON) Sydney NSW Australia
- Department of Neurology and Neurophysiology Liverpool Hospital and South West Sydney Local Health District (SWSLHD) Sydney NSW Australia
- Stroke and Neurology Research Group Ingham Institute for Applied Medical Research Sydney NSW Australia
| | - Sonu Bhaskar
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
- Neurovascular Imaging Laboratory Ingham Institute for Applied Medical Research, Clinical Sciences Stream Sydney NSW Australia
- Thrombolysis and Endovascular WorkFLOw Network (TEFLON) Sydney NSW Australia
- Department of Neurology and Neurophysiology Liverpool Hospital and South West Sydney Local Health District (SWSLHD) Sydney NSW Australia
- Stroke and Neurology Research Group Ingham Institute for Applied Medical Research Sydney NSW Australia
| |
Collapse
|
34
|
Tsui CT, MacGillivray SR, Weber SM, McAllister L, Churchward MA, Dennison CR, Todd KG. Applying a novel 3D hydrogel cell culture to investigate activation of microglia due to rotational kinematics associated with mild traumatic brain injury. J Mech Behav Biomed Mater 2020; 114:104176. [PMID: 33184015 DOI: 10.1016/j.jmbbm.2020.104176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Many investigations on mild traumatic brain injury (mTBI) aim to further understand how cells in the brain react to the mechanical forces associated with the injury. While it is known that rapid head rotation is a mechanism contributing to mTBI, establishing definitive thresholds for head rotation has proved challenging. One way to advance determining mechanisms and thresholds for injury is through in vitro models. Here, an apparatus has been designed that is capable of delivering rotational forces to three-dimensional (3D) hydrogel cell cultures. Using an in vitro model, we test the hypothesis that rotational kinematics can activate microglia suspended in a 3-dimensional mixed glia environment (absent neurons). The impact apparatus was able to deliver peak angular velocities of approximately 45 rad/s, a magnitude for angular velocity that in select literature is associated with diffuse brain injury. However, no measurable glial cell reactivity was observed in response to the rotational kinematics through any of the chosen metrics (nitric oxide, pro-inflammatory cytokine release and proportion of amoeboid activated microglia). The results generated from this study suggest that rotation of the glia alone did not cause activation - in future work we will investigate the effect of neuronal contributions in activating glia.
Collapse
Affiliation(s)
- Christopher T Tsui
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| | - Samantha R MacGillivray
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Savannah M Weber
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Lowell McAllister
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Christopher R Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.
| |
Collapse
|
35
|
Gutierre MU, Telles JPM, Welling LC, Rabelo NN, Teixeira MJ, Figueiredo EG. Biomarkers for traumatic brain injury: a short review. Neurosurg Rev 2020; 44:2091-2097. [PMID: 33078327 DOI: 10.1007/s10143-020-01421-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022]
Abstract
Cellular response to TBI is a mixture of excitotoxicity, neuroinflammation, and cell death. Biomarkers that can track these lesions and inflammatory processes are being explored for their potential to provide objective measures in the evaluation of TBI, from prehospital care to rehabilitation. By understanding the pathways involved, we could be able to improve diagnostic accuracy, guide management, and prevent long-term disability. We listed some of the recent advances in this translational, intriguing, fast-growing field. Although the knowledge gaps are still significant, some markers are showing promising results and could be helping patients in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | - Eberval Gadelha Figueiredo
- Division of Neurosurgery, University of São Paulo, São Paulo, Brazil. .,, Rua Eneas Aguiar, 255, 05403-010, São Paulo, Brazil.
| |
Collapse
|
36
|
Thompson HJ, Rivara F, Becker KJ, Maier R, Temkin N. Impact of aging on the immune response to traumatic brain injury (AIm:TBI) study protocol. Inj Prev 2020; 26:471-477. [PMID: 31481600 PMCID: PMC8026101 DOI: 10.1136/injuryprev-2019-043325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/13/2019] [Accepted: 08/18/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) in older adults leads to considerable morbidity and mortality. Outcomes among older adults with TBI are disparately worse than in younger adults. Differences in immunological response to injury may account for at least some of this disparity. Understanding how ageing differentially affects the immune response to TBI and how older age and these immunological changes affect the natural history of recovery following TBI are the goals of this study. DESIGN/METHODS A prospective multiple cohort design is being used to assess the effects of ageing and TBI on immune makers and to test predictors of impairment and disability in older adults following mild TBI. Older adults (>55 years) with mild TBI are enrolled with three comparison groups: younger adults (21-54 years) with mild TBI, non-injured older adults (>55 years) and non-injured young adults (21-54 years). For the primary analysis, we will assess the association between immune markers and Glasgow Outcome Scale-Extended at 6 months, using logistic regression. Predictors of interest will be inflammatory biomarkers. Multivariate linear regression will be used to evaluate associations between biomarkers and other outcomes (symptoms, function and quality of life) at 3 and 6 months. Exploratory analyses will investigate the utility of biomarkers to predict outcome using receiver-operating characteristic curves. DISCUSSION A better understanding of the recovery trajectory and biological rationale for disparate outcomes following TBI in older adults could allow for development of specific interventions aimed at reducing or eliminating symptoms. Such interventions could reduce impairment and healthcare costs.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| | - Frederick Rivara
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kyra J Becker
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Ronald Maier
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Nancy Temkin
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
37
|
Selvakumar GP, Ahmed ME, Iyer SS, Thangavel R, Kempuraj D, Raikwar SP, Bazley K, Wu K, Khan A, Kukulka K, Bussinger B, Zaheer S, Burton C, James D, Zaheer A. Absence of Glia Maturation Factor Protects from Axonal Injury and Motor Behavioral Impairments after Traumatic Brain Injury. Exp Neurobiol 2020; 29:230-248. [PMID: 32565489 PMCID: PMC7344375 DOI: 10.5607/en20017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) causes disability and death, accelerating the progression towards Alzheimer's disease and Parkinson's disease (PD). TBI causes serious motor and cognitive impairments, as seen in PD that arise during the period of the initial insult. However, this has been understudied relative to TBI induced neuroinflammation, motor and cognitive decline that progress towards PD. Neuronal ubiquitin-C-terminal hydrolase- L1 (UCHL1) is a thiol protease that breaks down ubiquitinated proteins and its level represents the severity of TBI. Previously, we demonstrated the molecular action of glia maturation factor (GMF); a proinflammatory protein in mediating neuroinflammation and neuronal loss. Here, we show that the weight drop method induced TBI neuropathology using behavioral tests, western blotting, and immunofluorescence techniques on sections from wild type (WT) and GMF-deficient (GMF-KO) mice. Results reveal a significant improvement in substantia nigral tyrosine hydroxylase and dopamine transporter expression with motor behavioral performance in GMF-KO mice following TBI. In addition, a significant reduction in neuroinflammation was manifested, as shown by activation of nuclear factor-kB, reduced levels of inducible nitric oxide synthase, and cyclooxygenase- 2 expressions. Likewise, neurotrophins including brain-derived neurotrophic factor and glial-derived neurotrophic factor were significantly improved in GMF-KO mice than WT 72 h post-TBI. Consistently, we found that TBI enhances GFAP and UCHL-1 expression and reduces the number of dopaminergic TH-positive neurons in WT compared to GMF-KO mice 72 h post-TBI. Interestingly, we observed a reduction of THpositive tanycytes in the median eminence of WT than GMF-KO mice. Overall, we found that absence of GMF significantly reversed these neuropathological events and improved behavioral outcome. This study provides evidence that PD-associated pathology progression can be initiated upon induction of TBI.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Kieran Bazley
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Kristopher Wu
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Asher Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Klaudia Kukulka
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Bret Bussinger
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Smita Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
38
|
Kunker K, Peters DM, Mohapatra S. Long-term impact of mild traumatic brain injury on postural stability and executive function. Neurol Sci 2020; 41:1899-1907. [PMID: 32095948 DOI: 10.1007/s10072-020-04300-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/14/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A substantial number of individuals present with prolonged symptoms after a mild traumatic brain injury (mTBI) or concussion. This has warranted the development of assessment tools that can reliably detect prolonged symptoms after an mTBI. At present, a gold standard diagnostic tool for accurately identifying such prolonged symptoms is not available. The purpose of this study is to utilize specific measures of standing balance, cognitive function, and bimanual coordination to examine persisting long-term deficits in individuals with mTBI. METHODS A total of 18 (medically diagnosed with an mTBI within the last year) and 14 (healthy age-matched controls) individuals participated in the study. Assessment tools included NIH Toolbox Cognition Battery (NIHTB-CB), TEMPA, and Purdue pegboard (bimanual coordination) and standing balance on a force platform. RESULTS Individuals with mTBI demonstrated lower scores in all measures of cognition with statistically significant difference (p = 0.03) in executive function. The clinical tests of bimanual coordination did not show any statistically significant differences between groups. Postural stability was significantly reduced (p = 0.039) in the mTBI group. CONCLUSION Our results show long-term performance deficits (cognition and postural stability) that persist in individuals with mTBI. In addition, to the best of our knowledge, this is the first study to identify cognitive deficits in individuals with mTBI by utilizing NIHTB-CB. Knowledge gained from this study might affect decisions of return-to-play or return-to-learn in individuals with a history of mTBI(s).
Collapse
Affiliation(s)
- Katrina Kunker
- Department of Rehabilitation and Movement Sciences, University of Vermont, Burlington, VT, USA
| | - Denise M Peters
- Department of Rehabilitation and Movement Sciences, University of Vermont, Burlington, VT, USA
| | - Sambit Mohapatra
- Department of Rehabilitation and Movement Sciences, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
39
|
Huguenard CJC, Cseresznye A, Evans JE, Oberlin S, Langlois H, Ferguson S, Darcey T, Nkiliza A, Dretsch M, Mullan M, Crawford F, Abdullah L. Plasma Lipidomic Analyses in Cohorts With mTBI and/or PTSD Reveal Lipids Differentially Associated With Diagnosis and APOE ε4 Carrier Status. Front Physiol 2020; 11:12. [PMID: 32082186 PMCID: PMC7005602 DOI: 10.3389/fphys.2020.00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
The differential diagnosis between mild Traumatic Brain Injury (mTBI) sequelae and Post-Traumatic Stress Disorder (PTSD) is challenging due to their symptomatic overlap and co-morbidity. As such, there is a need to develop biomarkers which can help with differential diagnosis of these two conditions. Studies from our group and others suggest that blood and brain lipids are chronically altered in both mTBI and PTSD. Therefore, examining blood lipids presents a minimally invasive and cost-effective approach to identify promising biomarkers of these conditions. Using liquid chromatography-mass spectrometry (LC-MS) we examined hundreds of lipid species in the blood of healthy active duty soldiers (n = 52) and soldiers with mTBI (n = 21), PTSD (n = 34) as well as co-morbid mTBI and PTSD (n = 13) to test whether lipid levels were differentially altered with each. We also examined if the apolipoprotein E (APOE) ε4 allele can affect the association between diagnosis and peripheral lipid levels in this cohort. We show that several lipid classes are altered with diagnosis and that there is an interaction between diagnosis and the ε4 carrier status on these lipids. Indeed, total lipid levels as well as both the degree of unsaturation and chain lengths are differentially altered with diagnosis and ε4 status, specifically long chain unsaturated triglycerides (TG) and both saturated and mono-unsaturated diglycerides (DG). Additionally, an examination of lipid species reveals distinct profiles in each diagnostic group stratified by ε4 status, mainly in TG, saturated DG species and polyunsaturated phosphatidylserines. In summary, we show that peripheral lipids are promising biomarker candidates to assist with the differential diagnosis of mTBI and PTSD. Further, ε4 carrier status alone and in interaction with diagnosis has a strong influence on peripheral lipid levels. Therefore, examining ε4 status along with peripheral lipid levels could help with differential diagnosis of mTBI and PTSD.
Collapse
Affiliation(s)
- Claire J C Huguenard
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Adam Cseresznye
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - James E Evans
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Sarah Oberlin
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Heather Langlois
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Teresa Darcey
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Aurore Nkiliza
- The Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Michael Dretsch
- US Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Tacoma, WA, United States.,U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Laila Abdullah
- The Roskamp Institute, Sarasota, FL, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| |
Collapse
|
40
|
Rickard JJS, Di-Pietro V, Smith DJ, Davies DJ, Belli A, Oppenheimer PG. Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy. Nat Biomed Eng 2020; 4:610-623. [DOI: 10.1038/s41551-019-0510-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
|
41
|
Rusiecki J, Levin LI, Wang L, Byrne C, Krishnamurthy J, Chen L, Galdzicki Z, French LM. Blast traumatic brain injury and serum inflammatory cytokines: a repeated measures case-control study among U.S. military service members. J Neuroinflammation 2020; 17:20. [PMID: 31931830 PMCID: PMC6958571 DOI: 10.1186/s12974-019-1624-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background There is a paucity of human data on exposure to blast traumatic brain injury (bTBI) and the corresponding systemic cytokine immune response at later time points (i.e., months, years) post-injury. Methods We conducted a repeated measures, case-control study, examining associations of serum levels of pro- and anti-inflammatory cytokines, measured both pre- and post-deployment with having mild and moderate/severe bTBI. Utilizing serum from the Department of Defense Serum Repository cytokines were measured via an ELISA-based array for 15 cytokines. We compared pre- vs. post-levels among mild cases, moderate/severe cases, and controls and carried out case-control comparisons, using paired t- tests and generalized linear models. Results The average time between bTBI and post-deployment/bTBI serum among cases was 315.8 days. From pre- to post-deployment/bTBI, levels of interleukin 8 (IL-8) were decreased among both mild cases (μ = − 83.43 pg/ml; s.e. = 21.66) and moderate/severe cases (μ = − 107.67 pg/ml; s.e. = 28.74 pg/ml), while levels increased among controls (μ = 32.86 pg/ml; s.e. = 30.29). The same pattern occurred for matrix metallopeptidase 3 (MMP3), with levels decreasing for moderate/severe cases (μ = − 3369.24 pg/ml; s.e. = 1701.68) and increasing for controls (μ = 1859.60 pg/ml; s.e. = 1737.51) from pre- to post-deployment/bTBI. Evidence was also suggestive of case-control differences, from pre- to post-deployment/bTBI for interleukin 1 alpha (IL-1α), interleukin 4 (IL-4), and interleukin 6 (IL-6) among moderate/severe cases. Conclusion The findings of this longitudinal study indicate that in the chronic phase of bTBI, levels of IL-8 and MMP3 may be substantially lower than pre-injury. These results need confirmation in other studies, potentially those that account for treatment differences, which was not possible in our study.
Collapse
Affiliation(s)
- Jennifer Rusiecki
- Department of Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.
| | - Lynn I Levin
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Li Wang
- Department of Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Jayasree Krishnamurthy
- Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Ligong Chen
- Department of Preventive Medicine and Biostatistics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Louis M French
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
42
|
Toomey LM, Bartlett CA, Gavriel N, McGonigle T, Majimbi M, Gopalasingam G, Rodger J, Fitzgerald M. Comparing modes of delivery of a combination of ion channel inhibitors for limiting secondary degeneration following partial optic nerve transection. Sci Rep 2019; 9:15297. [PMID: 31653948 PMCID: PMC6814709 DOI: 10.1038/s41598-019-51886-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022] Open
Abstract
Injury to the central nervous system is exacerbated by secondary degeneration. Previous research has shown that a combination of orally and locally administered ion channel inhibitors following partial optic nerve injury protects the myelin sheath and preserves function in the ventral optic nerve, vulnerable to secondary degeneration. However, local administration is often not clinically appropriate. This study aimed to compare the efficacy of systemic and local delivery of the ion channel inhibitor combination of lomerizine, brilliant blue G (BBG) and YM872, which inhibits voltage-gated calcium channels, P2X7 receptors and Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors respectively. Following a partial optic nerve transection, adult female PVG rats were treated with BBG and YM872 delivered via osmotic mini pump directly to the injury site, or via intraperitoneal injection, both alongside oral administration of lomerizine. Myelin structure was preserved with both delivery modes of the ion channel inhibitor combination. However, there was no effect of treatment on inflammation, either peripherally or at the injury site, or on the density of oligodendroglial cells. Taken together, the data indicate that even at lower concentrations, the combinatorial treatment may be preserving myelin structure, and that systemic and local delivery are comparable at improving outcomes following neurotrauma.
Collapse
Affiliation(s)
- Lillian M Toomey
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Nikolas Gavriel
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Gopana Gopalasingam
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
- Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
| |
Collapse
|
43
|
Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and Biomarker Discovery in Traumatic Brain Injury. J Neurotrauma 2019; 35:1831-1848. [PMID: 29587568 DOI: 10.1089/neu.2017.5326] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality worldwide. The TBI pathogenesis can induce broad pathophysiological consequences and clinical outcomes attributed to the complexity of the brain. Thus, the diagnosis and prognosis are important issues for the management of mild, moderate, and severe forms of TBI. Metabolomics of readily accessible biofluids is a promising tool for establishing more useful and reliable biomarkers of TBI than using clinical findings alone. Metabolites are an integral part of all biochemical and pathophysiological pathways. Metabolomic processes respond to the internal and external stimuli resulting in an alteration of metabolite concentrations. Current high-throughput and highly sensitive analytical tools are capable of detecting and quantifying small concentrations of metabolites, allowing one to measure metabolite alterations after a pathological event when compared to a normal state or a different pathological process. Further, these metabolic biomarkers could be used for the assessment of injury severity, discovery of mechanisms of injury, and defining structural damage in the brain in TBI. Metabolic biomarkers can also be used for the prediction of outcome, monitoring treatment response, in the assessment of or prognosis of post-injury recovery, and potentially in the use of neuroplasticity procedures. Metabolomics can also enhance our understanding of the pathophysiological mechanisms of TBI, both in primary and secondary injury. Thus, this review presents the promising application of metabolomics for the assessment of TBI as a stand-alone platform or in association with proteomics in the clinical setting.
Collapse
Affiliation(s)
| | - Colin Casault
- 1 Department of Critical Care Medicine, University of Calgary , Alberta, Canada
| | | | - Brent W Winston
- 2 Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
44
|
El-Menyar A, Asim M, Ramzee AF, Nabir S, Ahmed MN, Al-Thani A, Al-Abdulmalek A, Al-Thani H. Bio-Shock Index: Proposal and Rationale for a New Predictive Tool for In-Hospital Mortality in Patients with Traumatic Brain Injury. World Neurosurg 2019; 132:e169-e177. [PMID: 31505291 DOI: 10.1016/j.wneu.2019.08.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND We proposed a novel prognostic tool for the prediction of in-hospital mortality based on a combination of hemodynamic parameters and biomarkers in patients with traumatic brain injury (TBI). We hypothesized that a combination of shock index (SI) with high sensitive troponin T (HsTnT), the Bio-Shock Index (Bio-SI), has better prognostic power than its individual components. METHODS A retrospective chart review was conducted (2011-2018) for patients with TBI. Patients were categorized into 2 groups (low and high Bio-SI) based on the receiver operating characteristic curve. RESULTS A total of 2619 patients were admitted with TBI, and 1471 fulfilled the inclusion criteria and 73% had high Bio-SI (≥10). High Bio-SI values were associated with more intraventricular hemorrhage (P = 0.001), brain edema (P = 0.001), and had lower mean arterial pressure (P = 0.001), admission Glasgow Coma Scale score (P = 0.001), and higher SI (P = 0.001), serum lactate (P = 0.001), HsTnT values (P = 0.001), and Rotterdam score (P = 0.03). Patients with high Bio-SI had a prolonged hospital (P = 0.003) and intensive care unit stay (P = 0.001); longer ventilatory days (P = 0.001) and had higher rates of pneumonia (P = 0.001), sepsis (P = 0.001), and in-hospital mortality (P = 0.001). The Bio-SI showed high sensitivity and negative predictive value (91.4% and 94.4%, respectively) as compared with elevated SI (50.2% and 87.6%, respectively) and positive troponin (79.7% and 93.7%, respectively). CONCLUSIONS The Bio-SI is potentially a better tool than its individual components to predict in-hospital mortality among patients with TBI; however, HsTnT alone outperforms SI. Prospective studies and multicenter trials studying troponin levels and SI in all patients with TBI with the inclusion of outcome scores will prove or disprove the predictability of the new index.
Collapse
Affiliation(s)
- Ayman El-Menyar
- Clinical Medicine, Weill Cornell Medical College, Doha, Qatar; Clinical Research, Trauma and Vascular Surgery Section, Hamad General Hospital (HGH), Doha, Qatar.
| | - Mohammad Asim
- Clinical Research, Trauma and Vascular Surgery Section, Hamad General Hospital (HGH), Doha, Qatar
| | | | - Syed Nabir
- Department of Radiology, Hamad General Hospital (HGH), Doha, Qatar
| | | | | | | | - Hassan Al-Thani
- Department of Trauma Surgery Section, Hamad General Hospital (HGH), Doha, Qatar
| |
Collapse
|
45
|
Detection of S-100β Protein in Plasma and Urine After a Mild Traumatic Brain Injury. Can J Neurol Sci 2019; 46:599-602. [PMID: 31317855 DOI: 10.1017/cjn.2019.61] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study assessed whether S-100β protein could be measured in urine when detectable in plasma after a mild traumatic brain injury (mTBI). Clinical data, plasma and urine samples were collected for the 46 adult patients prospectively enrolled in the emergency department (ED) of a Level 1 trauma center. S-100β protein concentrations were analysed using ELISA. S-100β protein was detectable in 91% and 71% of plasma and urine samples, but values were not correlated (r = 0.002). Urine sampling would have been a non-invasive procedure, but it does not appear to be useful in the ED during the acute phase after an mTBI.
Collapse
|
46
|
Zou J, Wang X, Huang L, Liu J, Kong Y, Li S, Lu Q. Kininogen Level in the Cerebrospinal Fluid May Be a Potential Biomarker for Predicting Epileptogenesis. Front Neurol 2019; 10:37. [PMID: 30804871 PMCID: PMC6371036 DOI: 10.3389/fneur.2019.00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: Epilepsy is a highly disabling neurological disorder. Brain insult is the most critical cause of epilepsy in adults. This study aimed to find reliable and efficient biomarkers for predicting secondary epilepsy. Materials and methods: The LiCl-pilocarpine (LiCl-Pilo) chronic epilepsy rat model was used, and rat cerebrospinal fluid (CSF) was collected 5 days after status epilepticus (SE). The CSF was analyzed using the label-free LC-ESI-Q-TOF-MS/MS. Differential expression of proteins was confirmed using enzyme-linked immunosorbent assay (ELISA) and Western blotting. The corresponding protein level in the CSF of patients with encephalitis in the postacute phase was determined using ELISA and compared between patients with and without symptomatic epilepsy after encephalitis during a 2-year follow-up. Results: The proteomics and ELISA results showed that the protein level of kininogen (KNG) was obviously elevated in both CSF and hippocampus, but not in serum, 5 days after the onset of SE in LiCl-Pilo chronic epilepsy model rats. In patients with encephalitis, the protein level of KNG in the CSF in the postacute phase was significantly elevated in patients with a recurrent epileptic seizure during a 2-year follow-up than in patients without a recurrent seizure. Conclusion: KNG in the CSF may serve as a potential biomarker for predicting epileptogenesis in patients with encephalitis.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxin Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ligang Huang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Liu
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Kong
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengtian Li
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qinchi Lu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Martinez BI, Stabenfeldt SE. Current trends in biomarker discovery and analysis tools for traumatic brain injury. J Biol Eng 2019; 13:16. [PMID: 30828380 PMCID: PMC6381710 DOI: 10.1186/s13036-019-0145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, causing lifelong functional deficits in cognition and behavior. The complex pathophysiology of neural injury is a primary barrier to developing sensitive and specific diagnostic tools, which consequentially has a detrimental effect on treatment regimens. Biomarkers of other diseases (e.g. cancer) have provided critical insight into disease emergence and progression that lend to developing powerful clinical tools for intervention. Therefore, the biomarker discovery field has recently focused on TBI and made substantial advancements to characterize markers with promise of transforming TBI patient diagnostics and care. This review focuses on these key advances in neural injury biomarkers discovery, including novel approaches spanning from omics-based approaches to imaging and machine learning as well as the evolution of established techniques.
Collapse
Affiliation(s)
- Briana I. Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| |
Collapse
|
48
|
Cheng Y, Pereira M, Raukar N, Reagan JL, Queseneberry M, Goldberg L, Borgovan T, LaFrance WC, Dooner M, Deregibus M, Camussi G, Ramratnam B, Quesenberry P. Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. J Cell Physiol 2019; 234:14377-14388. [PMID: 30644102 PMCID: PMC6478516 DOI: 10.1002/jcp.28139] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a common cause of death and acquired disability in adults and children. Identifying biomarkers for mild TBI (mTBI) that can predict functional impairments on neuropsychiatric and neurocognitive testing after head trauma is yet to be firmly established. Extracellular vesicles (EVs) are known to traffic from the brain to the oral cavity and can be detected in saliva. We hypothesize the genetic profile of salivary EVs in patients who have suffered head trauma will differ from normal healthy controls, thus constituting a unique expression signature for mTBI. We enrolled a total of 54 subjects including for saliva sampling, 23 controls with no history of head traumas, 16 patients enrolled from an outpatient concussion clinic, and 15 patients from the emergency department who had sustained a head trauma within 24 hr. We performed real‐time PCR of the salivary EVs of the 54 subjects profiling 96 genes from the TaqMan Human Alzheimer's disease array. Real‐time PCR analysis revealed 57 (15 genes, p < 0.05) upregulated genes in emergency department patients and 56 (14 genes,
p < 0.05) upregulated genes in concussion clinic patients when compared with controls. Three genes were upregulated in both the emergency department patients and concussion clinic patients: CDC2, CSNK1A1, and CTSD (
p < 0.05). Our results demonstrate that salivary EVs gene expression can serve as a viable source of biomarkers for mTBI. This study shows multiple Alzheimer's disease genes present after an mTBI.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mandy Pereira
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Neha Raukar
- Department of Emergency Medicine, Rhode Island Hospital, Providence, Rhode Island
| | - John L Reagan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Mathew Queseneberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Laura Goldberg
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Theodor Borgovan
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - W Curt LaFrance
- Department of Psychiatry/Neurology, Rhode Island Hospital, Providence, Rhode Island
| | - Mark Dooner
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| | - Maria Deregibus
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Bharat Ramratnam
- Department of Medicine Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island
| | - Peter Quesenberry
- Department of Medicine Division of Hematology/Oncology, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
49
|
Ojo JO, Crynen G, Reed JM, Ajoy R, Vallabhaneni P, Algamal M, Leary P, Rafi NG, Mouzon B, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Unique and Coincidental Plasma Biomarkers in Repetitive mTBI and AD Pathogenesis. Front Aging Neurosci 2018; 10:405. [PMID: 30618712 PMCID: PMC6305374 DOI: 10.3389/fnagi.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between repetitive mild traumatic brain injury (r-mTBI) and Alzheimer's disease (AD) is well-recognized. However, the precise nature of how r-mTBI leads to or precipitates AD pathogenesis is currently not understood. Plasma biomarkers potentially provide non-invasive tools for detecting neurological changes in the brain, and can reveal overlaps between long-term consequences of r-mTBI and AD. In this study we address this by generating time-dependent molecular profiles of response to r-mTBI and AD pathogenesis in mouse models using unbiased proteomic analyses. To model AD, we used the well-validated hTau and PSAPP(APP/PS1) mouse models that develop age-related tau and amyloid pathological features, respectively, and our well-established model of r-mTBI in C57BL/6 mice. Plasma were collected at different ages (3, 9, and 15 months-old for hTau and PSAPP mice), encompassing pre-, peri- and post-"onset" of the cognitive and neuropathological phenotypes, or at different timepoints after r-mTBI (24 h, 3, 6, 9, and 12 months post-injury). Liquid chromatography/mass spectrometry (LC-MS) approaches coupled with Tandem Mass Tag labeling technology were applied to develop molecular profiles of protein species that were significantly differentially expressed as a consequence of mTBI or AD. Mixed model ANOVA after Benjamini-Hochberg correction, and a stringent cut-off identified 31 proteins significantly changing in r-mTBI groups over time and, when compared with changes over time in sham mice, 13 of these were unique to the injured mice. The canonical pathways predicted to be modulated by these changes were LXR/RXR activation, production of nitric oxide and reactive oxygen species and complement systems. We identified 18 proteins significantly changing in PSAPP mice and 19 proteins in hTau mice compared to their wild-type littermates with aging. Six proteins were found to be significantly regulated in all three models, i.e., r-mTBI, hTau, and PSAPP mice compared to their controls. The top canonical pathways coincidently changing in all three models were LXR/RXR activation, and production of nitric oxide and reactive oxygen species. This work suggests potential biomarkers for TBI and AD pathogenesis and for the overlap between these two, and warrant targeted investigation in human populations. Data are available via ProteomeXchange with identifier PXD010664.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Rosa Ajoy
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Prashanthi Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Naomi G. Rafi
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
50
|
El-Menyar A, Asim M, Latifi R, Bangdiwala SI, Al-Thani H. Predictive value of positive high-sensitivity troponin T in intubated traumatic brain injury patients. J Neurosurg 2018; 129:1541-1549. [PMID: 29303440 DOI: 10.3171/2017.7.jns17675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThe clinical relevance of high-sensitivity troponin T (HsTnT) in trauma patients is not well explored. In this study, the authors aimed to study the predictive value of serum HsTnT in intubated patients who had sustained traumatic brain injury (TBI).METHODSA retrospective analysis was conducted for all intubated TBI patients between 2010 and 2014 at a national level 1 trauma center. Data were analyzed and compared based on the HsTnT status on admission (group 1, negative results; and group 2, positive results). Receiver operating characteristic curves were used to determine sensitivity, specificity, and cutoff level of HsTnT to predict mortality. Time to earlier discharge from hospital or death was modeled using Cox proportional hazard models to describe the relationship between HsTnT and in-hospital mortality.RESULTSOf the 826 intubated TBI patients, 490 underwent HsTnT testing; 65.7% had positive HsTnT results. Patients in group 2 had a higher Injury Severity Score (p = 0.001) and head Abbreviated Injury Scale (AIS) score (p = 0.004) than those in group 1. In addition, group 2 patients were more likely to have lower Glasgow Coma Scale scores (p = 0.001) and more likely to experience intraventricular hemorrhage, brain edema, pneumonia, and sepsis (p = 0.001). HsTnT values positively correlated with head AIS score (r = 0.19, p = 0.001) and varied by the type of lesion and time to death. Ventilator days and length of hospital stay were more prolonged in group 2 patients (p = 0.001). Area under the curve (AUC) analysis showed that HsTnT ≥ 26.5 ng/L predicted all-cause mortality (AUC 0.75, 95% CI 0.699-0.801) with 80% sensitivity. Positive HsTnT was an independent predictor of mortality in multivariate models (adjusted OR 3.10, 95% CI 1.308-7.351) even after excluding chest injury (adjusted OR 4.18, 95% CI 1.320-13.231).CONCLUSIONSPositive HsTnT results are associated with poor outcomes in intubated patients with TBI. In this subset of patients, measuring serum HsTnT on admission is a useful tool for early risk stratification and expedited care; however, further prospective studies are warranted.
Collapse
Affiliation(s)
- Ayman El-Menyar
- 1Department of Surgery, Trauma Surgery Section, Clinical Research, Hamad General Hospital
- 2Department of Clinical Medicine, Weill Cornell Medical School-Qatar, Doha, Qatar
| | - Mohammad Asim
- 1Department of Surgery, Trauma Surgery Section, Clinical Research, Hamad General Hospital
| | - Rifat Latifi
- 3Department of Surgery, Westchester Medical Center, Valhalla, New York
- 4Department of Surgery, University of Arizona, Tucson, Arizona
| | - Shrikant I Bangdiwala
- 5Department of Biostatistics, University of North Carolina, Gillings School of Global Public Health, Chapel Hill, North Carolina; and
| | - Hassan Al-Thani
- 6Department of Surgery, Trauma Surgery Section, Hamad General Hospital, Doha, Qatar
| |
Collapse
|