1
|
He Q, Li M, Diao H, Zheng Q, Li M, Zhu Q, Cui W. Association of Dietary Live Microbe Intake With Mortality: Results From the National Health and Nutrition Examination Survey, 1999-2018. J Acad Nutr Diet 2025:S2212-2672(25)00109-1. [PMID: 40147756 DOI: 10.1016/j.jand.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The association between dietary intake of live microbes and mortality remains unclear. OBJECTIVE This study aims to investigate the relationship between dietary live microbial intake and all-cause and cause-specific mortality among adults in the United States. DESIGN This is a cross-sectional study of adults aged 20 years or older who participated in the 1999-2018 National Health and Nutrition Examination Survey. PARTICIPANTS AND SETTING The study utilized data from adults aged 20 years and older with complete dietary and mortality data from the National Health and Nutrition Examination Survey from 1999 to 2018. MAIN OUTCOME MEASURES Deaths from any cause are defined as all-cause mortality. The International Statistical Classification of Diseases, 10th Revision, and the National Center for Health Statistics classifications of heart disease (054-064) and malignant neoplasms (019-043) were used to identify disease-specific causes of death. STATISTICAL ANALYSES PERFORMED Cox proportional hazard regression was utilized to examine the associations between the consumption of dietary live microbes and all-cause and cause-specific mortality. Restricted cubic spline regression modeling was used to assess potential linear associations between dietary live microorganism intake and mortality. In addition, stratified analyses and sensitivity analyses of the association of dietary live microorganism intake with all-cause and cardiovascular deaths were performed to validate the robustness of the results. RESULTS The study included 31 836 participants, of whom 4160 died, including 1109 cardiovascular deaths and 915 cancer deaths. The study found that consuming live microbes from the diet was linked to a lower rate of all-cause and cardiovascular mortality, respectively (hazard ratio 0.80, 95% CI 0.72 to 0.89; P < .001; hazard ratio 0.79, 95% CI 0.65 to 0.95; P = .014). However, there was no significant association observed between microbial intake and cancer mortality (hazard ratio 0.93, 95% CI 0.75 to 1.17; P = .545). Restricted cubic spline demonstrates a linear association between dietary live microorganism intake and all-cause and cardiovascular mortality (P < .001). Furthermore, sensitivity analyses indicated that a high intake of live dietary microorganisms was associated with a lower risk of all-cause mortality and cardiovascular mortality (P < .05). CONCLUSIONS The study found that consuming live microbes through diet was linked to a lower rate of all-cause and cardiovascular mortality but not cancer mortality.
Collapse
Affiliation(s)
- Qingzhen He
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, PR China
| | - Mingshuo Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, PR China
| | - Houze Diao
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, PR China
| | - Qingzhao Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, PR China
| | - Mingyuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, PR China
| | - Qing Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, PR China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, PR China.
| |
Collapse
|
2
|
Yoo Y, Kim S, Lee W, Kim J, Son B, Lee KJ, Shin H. The prebiotic potential of dietary onion extracts: shaping gut microbial structures and promoting beneficial metabolites. mSystems 2025; 10:e0118924. [PMID: 39714164 PMCID: PMC11748487 DOI: 10.1128/msystems.01189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Onions are well-known vegetables that offer various health benefits. This study explores the impact of onion extracts on gut microbiome using an in vitro fecal incubation model and metabolome analysis. Fecal samples were collected from 19 healthy donors and incubated in the presence or absence of onion extracts for 24 h. To reduce inter-individual variability in the gut microbiome, we employed enterotyping based on baseline fecal microbiota: 14 subjects with a Bacteroides-dominant type (enterotype B) and 5 subjects with Prevotella-dominant type (enterotype P). Alpha diversity was significantly reduced in the onion-treated group compared to the non-treated control group in both Bacteroides- and Prevotella-dominant types. However, significant structural differences in bacterial communities were observed based on weighted UniFrac distance. Notably, short-chain fatty acid (SCFA)-producing bacteria, such as Bifidobacterium_388775, Feacalibacterium, and Fusicatenibacter, were overrepresented in response to onion extracts in enterotype B. Furthermore, genes related to butyrate production were significantly overrepresented in the onion-treated group within enterotype B. Consistent with the enriched taxa and the predicted metabolic pathways, SCFAs and their related metabolites were significantly enriched in the onion-treated group. Additionally, tryptophan metabolism-derived metabolites, including indolelactate (ILA) and indolepropionate (IPA), were elevated by 4- and 32-fold, respectively, in the onion-treated group compared to the control group. In vitro growth assays showed an increase in lactobacilli strains in the presence of onion extracts. These results provide evidence that onion extracts could serve as promising prebiotics by altering gut microbial structure and promoting the production of beneficiary metabolites, including SCFAs and indole derivatives, and enhancing the growth of probiotics.IMPORTANCEThis study is significant as it provides compelling evidence that onion extracts have the potential to serve as effective prebiotics. Utilizing an in vitro fecal incubation model and enterotyping to reduce inter-individual variability, the research demonstrates how onion extracts can alter gut microbial structure and promote the production of beneficial metabolites, including SCFAs and indole derivatives like ILA and IPA. Additionally, onion extract treatment enhances the growth of beneficial probiotics. The findings underscore the potential of onion extracts to improve gut health by enriching specific beneficial bacteria and metabolic pathways, thereby supporting the development of functional foods aimed at improving gut microbiota composition and metabolic health.
Collapse
Affiliation(s)
- Yebeen Yoo
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Seongok Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - WonJune Lee
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - Jinwoo Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Kwang Jun Lee
- Division of Zoonotic and Vector Borne Diseases Research, Center for Infectious Diseases Research, National Institute of Health, Cheongju, South Korea
| | - Hakdong Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| |
Collapse
|
3
|
Beheshtian N, Karimi E, Oskoueian E, Shokryazdan P, Faseleh Jahromi M. Lactic acid bacteria supplementation: A bioprotective approach to mitigating cadmium-induced toxicity and modulating gene expression in murine models. Food Chem Toxicol 2024; 193:115043. [PMID: 39413950 DOI: 10.1016/j.fct.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to assess the effects of different strains of lactic acid bacteria, namely LeviLactobacillus brevis (AC10), Lacticaseibacillus rhamnosus (AC11), and Pediococcus acidilactici (AC15), on mice exposed to cadmium-induced oxidative stress. The study assessed weight gain, liver enzymes, antioxidant enzymes, immunoglobulin factors, lipid peroxidation, and gene expression in liver and brain of mice. The findings revealed that the AC10 and AC11 strains had a higher ability to absorb Cd as compared to AC15. The in vivo analysis demonstrated that the dietary dual supplementation of AC10 and AC11 resulted in significant (p < 0.05) improvements, including increased body weight and food intake, reduced cadmium tissue deposition, decreased lipid peroxidation, enhanced cellular antioxidant redox potential, suppressed inflammation genes in the liver and brain tissues, and improved morpho-characteristics of the jejunum in mice challenged by cadmium-induced toxicity. The multiple mechanisms of action, including heavy metal sequestration, antioxidant enhancement, and maintenance of intestinal integrity, highlight the potential of these probiotics' intervention as a viable approach to counteract the deleterious effects of cadmium exposure.
Collapse
Affiliation(s)
- Nadia Beheshtian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | | | |
Collapse
|
4
|
Pinitchun C, Panpetch W, Bhunyakarnjanarat T, Udompornpitak K, Do HT, Visitchanakun P, Wannigama DL, Udomkarnjananun S, Sukprasansap M, Tencomnao T, Tangtanatakul P, Leelahavanichkul A. Aging-induced dysbiosis worsens sepsis severity but is attenuated by probiotics in D-galactose-administered mice with cecal ligation and puncture model. PLoS One 2024; 19:e0311774. [PMID: 39423218 PMCID: PMC11488720 DOI: 10.1371/journal.pone.0311774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION Despite the well-established effects of aging on brain function and gut dysbiosis (an imbalance in gut microbiota), the influence of aging on sepsis-associated encephalopathy (SAE) and the role of probiotics in this context remain less understood. METHODS C57BL/6J mice (8-week-old) were subcutaneously administered with 8 weeks of D-galactose (D-gal) or phosphate buffer solution (PBS) for aging and non-aging models, respectively, with or without 8 weeks of oral Lacticaseibacillus rhamnosus GG (LGG). Additionally, the impact of the condition media from LGG (LCM) was tested in macrophages (RAW 264.7 cells), microglia (BV-2 cells), and hippocampal cells (HT-22 cells). RESULT Fecal microbiome analysis demonstrated D-gal-induced dysbiosis (reduced Firmicutes and Desulfobacterota with increased Bacteroidota and Verrucomicrobiota), which LGG partially neutralized the dysbiosis. D-gal also worsens cecal ligation and puncture (CLP) sepsis severity when compared with PBS-CLP mice, as indicated by serum creatinine (Scr) and alanine transaminase (ALT), but not mortality, neurological characteristics (SHIRPA score), and serum cytokines (TNF-α and IL-6). Additionally, D-gal-induced aging was supported by fibrosis in the liver, kidney, and lung; however, CLP sepsis did not worsen fibrosis. Interestingly, LGG attenuated all parameters (mortality, Scr, ALT, SHIRPA, and cytokines) in non-aging sepsis (PBS-CLP) while improving all these parameters, except for mortality and serum IL-6, in aging sepsis (D-gal CLP). For the in vitro test using lipopolysaccharide (LPS) stimulation, LCM attenuated inflammation in some parameters on RAW264.7 cells but not BV-2 and HT-22 cells, implying a direct anti-inflammatory effect of LGG on macrophages, but not in cells from the brain. CONCLUSION D-gal induced fecal dysbiosis and worsened sepsis severity as determined by Scr and ALT, and LGG could alleviate most of the selected parameters of sepsis, including SAE. However, the impact of LGG on SAE was not a direct delivery of beneficial molecules from the gut to the brain but partly due to the attenuation of systemic inflammation through the modulation of macrophages.
Collapse
Affiliation(s)
- Chalisa Pinitchun
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Department of Transfusion Sciences and Clinical Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Faculty of Science, Department of Microbiology, Burapha University, Chonburi, Thailand
| | - Thansita Bhunyakarnjanarat
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Kanyarat Udompornpitak
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Huy Thanh Do
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Infectious Diseases and Infection Control, Pathogen Hunter’s Research Collaborative Team, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Perth, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
| | - Suwasin Udomkarnjananun
- Faculty of Medicine, Department of Medicine, Division of Nephrology, Chulalongkorn University, Bangkok, Thailand
| | - Monruedee Sukprasansap
- Institute of Nutrition, Food Toxicology Unit, Mahidol University, Salaya Campus, Phutthamonthon, Na-khonpathom, Salaya, Thailand
| | - Tewin Tencomnao
- Faculty of Allied Health Sciences, Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Chulalongkorn University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Department of Clinical Chemistry, Chulalongkorn University, Bangkok, Thailand
| | - Pattarin Tangtanatakul
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Department of Transfusion Sciences and Clinical Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
- Faculty of Medicine, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Department of Microbiology, Burapha University, Chonburi, Thailand
| |
Collapse
|
5
|
Gao Y, Liu L, Cui Y, Zhang J, Wu X. The causality of gut microbiota on onset and progression of sepsis: a bi-directional Mendelian randomization analysis. Front Immunol 2024; 15:1266579. [PMID: 38698853 PMCID: PMC11063379 DOI: 10.3389/fimmu.2024.1266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Several observational studies have proposed a potential link between gut microbiota and the onset and progression of sepsis. Nevertheless, the causality of gut microbiota and sepsis remains debatable and warrants more comprehensive exploration. Methods We conducted a two-sample Mendelian randomization (MR) analysis to test the causality between gut microbiota and the onset and progression of sepsis. The genome-wide association study (GWAS) summary statistics for 196 bacterial traits were extracted from the MiBioGen consortium, whereas the GWAS summary statistics for sepsis and sepsis-related outcomes came from the UK Biobank. The inverse-variance weighted (IVW) approach was the primary method used to examine the causal association. To complement the IVW method, we utilized four additional MR methods. We performed a series of sensitivity analyses to examine the robustness of the causal estimates. Results We assessed the causality of 196 bacterial traits on sepsis and sepsis-related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence interval (CI) (0.69-0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74-0.97, p = 0.016) had a protective effect on sepsis, whereas genus Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01-1.20, p = 0.024) increased the risk of sepsis. When it came to sepsis requiring critical care, genus Anaerostipes (OR 0.49, 95% CI 0.31-0.76, p = 0.002), genus Coprococcus1 (OR 0.65, 95% CI 0.43-1.00, p = 0.049), and genus Lachnospiraceae UCG004 (OR 0.51, 95% CI 0.34-0.77, p = 0.001) emerged as protective factors. Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI 0.48-0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27-0.86, p = 0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52-0.95, p = 0.023), and genus Victivallis (OR 0.82, 95% CI 0.68-0.99, p = 0.042) presented a protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95% CI 1.00-2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04-1.50, p = 0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02-2.02, p = 0.040) presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI 0.19-0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14-0.83, p = 0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22-0.83, p = 0.012) were associated with a lower 28-day mortality of sepsis requiring critical care. Conclusion This MR analysis unveiled a causality between the 21 bacterial traits and sepsis and sepsis-related outcomes. Our findings may help the development of novel microbiota-based therapeutics to decrease the morbidity and mortality of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Wu
- Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Huang Y, Huang Y, Xia D, Liu L, Xiong X, Ouyang Y, Deng Y. Lactobacillus rhamnosus ameliorates acne vulgaris in SD rats via changes in gut microbiota and associated tryptophan metabolism. Front Immunol 2024; 14:1293048. [PMID: 38250060 PMCID: PMC10796797 DOI: 10.3389/fimmu.2023.1293048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Background The depletion of beneficial bacteria in the gut has been found in patients with acne vulgaris, and in previous studies, the supplement of Lactobacillus rhamnosus led to the improvement of adult acne. Nevertheless, the potential mechanism of L. rhamnosus in the amelioration of acne vulgaris has not been elucidated yet. Methods To mimic the human intestinal environment, a pseudo-germ-free rat model was used, and then gut microbiota from healthy individuals and acne patients were transplanted into rats. The effects of L. rhamnosus and tryptophan (Trp) metabolites on a rat acne model were investigated by gavage. Then, 16S rRNA analysis and targeted measurement of metabolites were performed to discover the differences in gut microbiota and metabolites between groups. Finally, HaCaT cells pretreated with Cutibacterium acnes were employed to validate the effect and mechanism of Trp metabolites on acne. Results L. rhamnosus significantly improved acne-like symptoms in rats by suppressing the level of inflammatory cytokines such as IL-1β, IL-6, and TNF-α. L. rhamnosus induced an increase in the production of indole-3-acetic acid (IAA) and indole via targeted Trp metabolic analyses. Furthermore, L. rhamnosus promoted bacterial diversity and also enhanced the Firmicutes/Bacteroidota (F/B) ratio, which was positively related to both IAA and indole. Finally, the roles of IAA and indole in alleviating acne vulgaris were confirmed both in vitro and in vivo, which could be reversed by AhR inhibitors. Conclusion Our study demonstrated that L. rhamnosus could exert its therapeutic effects on acne vulgaris by modulating the gut microbiota and regulating associated Trp metabolites.
Collapse
Affiliation(s)
- Yukun Huang
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yaxin Huang
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Dengmei Xia
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Liu
- Department of Burn and Plastic Surgery, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongliang Ouyang
- Department of Health Management, Luzhou People’s Hospital, Luzhou, Sichuan, China
| | - Yongqiong Deng
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology, Chengdu First People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Cao X, Zhao H, Liang Z, Cao Y, Min M. Long-term administration of probiotics prevents gastrointestinal mucosal barrier dysfunction in septic mice partly by upregulating the 5-HT degradation pathway. Open Med (Wars) 2023; 18:20230869. [PMID: 38152336 PMCID: PMC10751891 DOI: 10.1515/med-2023-0869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023] Open
Abstract
Sepsis can impair gastrointestinal (GI) barrier integrity. Oral probiotics (PT) can maintain the balance of GI microflora and improve GI function. 5-Hydroxytryptamine (5-HT) is a key promoter of GI injury caused by sepsis. However, the mechanism by which PT attenuates sepsis by regulating 5-HT is not fully understood. In this study, C57BL6 mice were intragastric administrated with normal saline (NC) or PT once a day for 4 weeks before cecal ligation and puncture (CLP). Compared with NC-CLP mice, PT-CLP mice had lower clinical score, higher body temperature. The survival rate of PT-CLP mice was significantly improved. The levels of inflammatory cytokines and 5-HT were obviously decreased in PT-CLP mice, and GI peristalsis and barrier function were enhanced. Moreover, sepsis downregulated the expression of tight junction proteins, while PT pretreatment could maintain them at the level of sham operation group. Furthermore, PT pretreatment increased the expression of serotonin transporter and monoamine oxidase A. PT administration could inhibit NF-κB activity, and activate ERK activity. In conclusion, long-term supplementation of PT before CLP can prevent sepsis-induced GI mucosal barrier dysfunction in mice, which may be partially mediated by upregulating the 5-HT degradation pathway via activating ERK signaling.
Collapse
Affiliation(s)
- Xiaopeng Cao
- Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing, 100048China
| | - Hui Zhao
- Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing, 100048China
| | - Zhimin Liang
- Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing, 100048China
| | - Yi Cao
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, WashingtonDC, 20052USA
| | - Min Min
- Department of Gastroenterology, The Fifth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100039China
| |
Collapse
|
8
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR. Bio surfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit Rev Food Sci Nutr 2023; 64:10925-10949. [PMID: 37401803 DOI: 10.1080/10408398.2023.2230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, Tamil Nadu, India
| | | | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arti Gaur
- Department of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Lou X, Xue J, Shao R, Mo C, Wang F, Chen G. Postbiotics as potential new therapeutic agents for sepsis. BURNS & TRAUMA 2023; 11:tkad022. [PMID: 37334140 PMCID: PMC10271603 DOI: 10.1093/burnst/tkad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/01/2023] [Indexed: 06/20/2023]
Abstract
Sepsis is the main cause of death in critically ill patients and gut microbiota dysbiosis plays a crucial role in sepsis. On the one hand, sepsis leads to the destruction of gut microbiota and induces and aggravates terminal organ dysfunction. On the other hand, the activation of pathogenic gut flora and the reduction in beneficial microbial products increase the susceptibility of the host to sepsis. Although probiotics or fecal microbiota transplantation preserve gut barrier function on multiple levels, their efficacy in sepsis with intestinal microbiota disruptions remains uncertain. Postbiotics consist of inactivated microbial cells or cell components. They possess antimicrobial, immunomodulatory, antioxidant and antiproliferative activities. Microbiota-targeted therapy strategies, such as postbiotics, may reduce the incidence of sepsis and improve the prognosis of patients with sepsis by regulating gut microbial metabolites, improving intestinal barrier integrity and changing the composition of the gut microbiota. They offer a variety of mechanisms and might even be superior to more conventional 'biotics' such as probiotics and prebiotics. In this review, we present an overview of the concept of postbiotics and summarize what is currently known about postbiotics and their prospective utility in sepsis therapy. Overall, postbiotics show promise as a viable adjunctive therapy option for sepsis.
Collapse
Affiliation(s)
- Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming 650500, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming 650034, China
| |
Collapse
|
11
|
Wang X, Liu D, Li D, Yan J, Yang J, Zhong X, Xu Q, Xu Y, Xia Y, Wang Q, Cao H, Zhang F. Combined treatment with glucosamine and chondroitin sulfate improves rheumatoid arthritis in rats by regulating the gut microbiota. Nutr Metab (Lond) 2023; 20:22. [PMID: 37016458 PMCID: PMC10071728 DOI: 10.1186/s12986-023-00735-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND To investigate the ameliorative effects of glucosamine (GS), chondroitin sulphate (CS) and glucosamine plus chondroitin sulphate (GC) on rheumatoid arthritis (RA) in rats, and to explore the mechanism of GS, CS and GC in improving RA based on the gut microbiota. METHODS RA rat models were effectively developed 14 days after CFA injection, and then garaged with GS, CS and GC. Body weight and paw volume of rats were monitored at multiple time points at the beginning of CFA injection. Until D36, serum and ankle tissue specimens were used to measure levels of circulating inflammatory factors (TNF-α, IL-1β, MMP-3, NO and PGE2) and local inflammatory indicators (TLR-4 and NF-κB). On D18, D25, and D36, intergroup gut microbiota was compared using 16S rRNA gene sequencing and bioinformatics analysis. We also performed the correlation analysis of gut bacteria, joint swelling and inflammatory indicators. RESULTS GC, rather than GS and CS, could reduce right paw volumes, levels of TLR-4 and NF-κB in synovial tissues. In addition, enriched genera in RA model rats screened out by LEfSe analysis could be inhibited by GC intervention, including potential LPS-producing bacteria (Enterobacter, Bacteroides, Erysipelotrichaceae_unclassified and Erysipelotrichaceae_uncultured) and some other opportunistic pathogens (Esherichia_Shigella, Nosocomiicoccus, NK4A214_group, Odoribacter, Corynebacterium and Candidatus_Saccharimonas.etc.) that positively correlated with pro-inflammatory cytokines, right paw volume, and pathology scores. Furthermore, the gut microbiota dysbiosis was observed to recover before alleviating joint swelling after interventions. CONCLUSIONS GC could inhibit potential LPS-producing bacteria and the activation of TLR-4/NF-κB pathway in RA rats, thus alleviating RA-induced joint injury.
Collapse
Affiliation(s)
- Xuesong Wang
- Affiliated Hospital of Jiangnan University, Wuxi, China
- School of Medicine, Nantong University, Nantong, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongsong Liu
- Affiliated Hospital of Jiangnan University, Wuxi, China
- School of Medicine, Nantong University, Nantong, China
| | - Dan Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiai Yan
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ju Yang
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qin Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanze Xu
- School of Medicine, Nantong University, Nantong, China
| | - Yanping Xia
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qinyue Wang
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Cao
- Affiliated Hospital of Jiangnan University, Wuxi, China.
- School of Medicine, Nantong University, Nantong, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Feng Zhang
- Affiliated Hospital of Jiangnan University, Wuxi, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
12
|
Gowen R, Gamal A, Di Martino L, McCormick TS, Ghannoum MA. Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology 2023; 164:828-840. [PMID: 36702360 PMCID: PMC10152883 DOI: 10.1053/j.gastro.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023]
Abstract
The central role of the gut microbiota in the regulation of health and disease has been convincingly demonstrated. Polymicrobial interkingdom interactions between bacterial (the bacteriome) and fungal (the mycobiome) communities of the gut have become a prominent focus for development of potential therapeutic approaches. In addition to polymicrobial interactions, the complex gut ecosystem also mediates interactions between the host and the microbiota. These interactions are complex and bidirectional; microbiota composition can be influenced by host immune response, disease-specific therapeutics, antimicrobial drugs, and overall ecosystems. However, the gut microbiota also influences host immune response to a drug or therapy by potentially transforming the drug's structure and altering bioavailability, activity, or toxicity. This is especially true in cases where the gut microbiota has produced a biofilm. The negative ramifications of biofilm formation include alteration of gut permeability, enhanced antimicrobial resistance, and alteration of host immune response effectiveness. Natural modulation of the gut microbiota, using probiotic and prebiotic approaches, may also be used to affect the host microbiome, a type of "natural" modulation of the host microbiota composition. In this review, we discuss potential bidirectional interactions between microbes and host, and we describe the changes in gut microbiota induced by probiotic and prebiotic approaches as well as their potential clinical consequences, including biofilm formation. We outline a systematic approach to designing probiotics capable of altering the host microbiota in disease states, using Crohn's disease as a model chronic disease. Understanding how the effective changes in the microbiome may enhance treatment efficacy may unlock the possibility of modulating the gut microbiome to improve treatment using a natural approach.
Collapse
Affiliation(s)
- Rachael Gowen
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Ahmed Gamal
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Luca Di Martino
- University Hospitals Cleveland Medical Center, Cleveland, Ohio; Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Case Digestive Health Research Institute, Case Western Reserve University, Cleveland Ohio
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
13
|
Niu Z, Zou M, Bei T, Zhang N, Li D, Wang M, Li C, Tian H. Effect of fructooligosaccharides on the colonization of Lactobacillus rhamnosus AS 1.2466T in the gut of mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Xiao K, Sun Y, Song J, Li L, Mao W, Jiang C. Gut microbiota involved in myocardial dysfunction induced by sepsis. Microb Pathog 2023; 175:105984. [PMID: 36638851 DOI: 10.1016/j.micpath.2023.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Myocardial dysfunction is an important complication of sepsis and an important cause of death in sepsis patients. Sepsis will significantly change the composition of gut microbiota, and the destruction of gut microbiota also creates conditions for the occurrence and progression of sepsis. Gut microbiota is an important player in myocardial injury in sepsis. This review elaborates on the possible mechanisms of gut microbiota affecting myocardial injury in sepsis, including short-chain fatty acids, trimethylamine and trimethylamine oxides, various cytokines, and mitochondrial dysfunction. A better understanding of the mechanism could help improve the treatment of sepsis and get a better prognosis for sepsis patients.
Collapse
Affiliation(s)
- Kaihao Xiao
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China
| | - Yan Sun
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiayu Song
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China
| | - Lei Li
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Mao
- Department of Neonatology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chunming Jiang
- Department of Neonatology, Zhuhai Women and Children' s Hospital, Zhuhai, 519060, China.
| |
Collapse
|
15
|
Lactobacillus rhamnosus GG Promotes Recovery of the Colon Barrier in Septic Mice through Accelerating ISCs Regeneration. Nutrients 2023; 15:nu15030672. [PMID: 36771378 PMCID: PMC9921111 DOI: 10.3390/nu15030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Disruption of the intestinal barrier is both the cause and result of sepsis. The proliferation and differentiation of intestinal stem cells (ISCs) promote the regenerative nature of intestinal epithelial cells, repairing the injured intestinal mucosal barrier; however, it is uncertain whether the recovery effects mediated by the ISCs are related to the gut microbiota. This research found that the survival rate of septic mice was improved with a Lactobacillus rhamnosus GG (LGG) treatment. Furthermore, an increased proliferation and decreased apoptosis in colon epithelial cells were observed in the LGG-treated septic mice. In vitro, we found that a LGG supernatant was effective in maintaining the colonoid morphology and proliferation under the damage of TNF-α. Both in the mice colon and the colonoid, the LGG-induced barrier repair process was accompanied by an increased expression of Lgr5+ and lysozyme+ cells. This may be attributed to the upregulation of the IL-17, retinol metabolism, NF-kappa B and the MAPK signaling pathways, among which, Tnfaip3 and Nfkbia could be used as two potential biomarkers for LGG in intestinal inflammation therapy. In conclusion, our finding suggests that LGG protects a sepsis-injured intestinal barrier by promoting ISCs regeneration, highlighting the protective mechanism of oral probiotic consumption in sepsis.
Collapse
|
16
|
Xie A, Chen A, Chen Y, Luo Z, Jiang S, Chen D, Yu R. Lactobacillus for the treatment and prevention of atopic dermatitis: Clinical and experimental evidence. Front Cell Infect Microbiol 2023; 13:1137275. [PMID: 36875529 PMCID: PMC9978199 DOI: 10.3389/fcimb.2023.1137275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, accompanied by itching and swelling. The main pathological mechanism of AD is related to the imbalance between Type 2 helper cells (Th2 cells) and Type 1 helper cells (Th1 cells). Currently, no safe and effective means to treat and prevent AD are available; moreover, some treatments have side effects. Probiotics, such as some strains of Lactobacillus, can address these concerns via various pathways: i) facilitating high patient compliance; ii) regulating Th1/Th2 balance, increasing IL-10 secretion, and reducing inflammatory cytokines; iii) accelerating the maturation of the immune system, maintaining intestinal homeostasis, and improving gut microbiota; and iv) improving the symptoms of AD. This review describes the treatment and prevention of AD using 13 species of Lactobacillus. AD is commonly observed in children. Therefore, the review includes a higher proportion of studies on AD in children and fewer in adolescents and adults. However, there are also some strains that do not improve the symptoms of AD and even worsen allergies in children. In addition, a subset of the genus Lactobacillus that can prevent and relieve AD has been identified in vitro. Therefore, future studies should include more in vivo studies and randomized controlled clinical trials. Given the advantages and disadvantages mentioned above, further research in this area is urgently required.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuqing Chen
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| |
Collapse
|
17
|
Pan WJ, Shi LL, Ren YR, Yao CY, Lu YM, Chen Y. Polysaccharide ORP-1 isolated from Oudemansiella raphanipes ameliorates age-associated intestinal epithelial barrier dysfunction in Caco-2 cells monolayer. Food Res Int 2022; 162:112038. [DOI: 10.1016/j.foodres.2022.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/04/2022]
|
18
|
In Vitro and In Vivo Evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 Against Avian Pathogenic Escherichia coli and Identification of Novel Probiotic-Derived Bioactive Peptides. Probiotics Antimicrob Proteins 2022; 14:1012-1028. [PMID: 34458959 DOI: 10.1007/s12602-021-09840-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Avian pathogenic E. coli (APEC), an extra-intestinal pathogenic E. coli (ExPEC), causes colibacillosis in poultry and is also a potential foodborne zoonotic pathogen. Currently, APEC infections in poultry are controlled by antibiotic medication; however, the emergence of multi-drug-resistant APEC strains and increased restrictions on the use of antibiotics in food-producing animals necessitate the development of new antibiotic alternative therapies. Here, we tested the anti-APEC activity of multiple commensal and probiotic bacteria in an agar-well diffusion assay and identified Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 producing strong zone of inhibition against APEC. In co-culture assay, L. rhamnosus GG and B. lactis Bb12 completely inhibited the APEC growth by 24 h. Further investigation revealed that antibacterial product(s) in the culture supernatants of L. rhamnosus GG and B. lactis Bb12 were responsible for the anti-APEC activity. The analysis of culture supernatants using LC-MS/MS identified multiple novel bioactive peptides (VQAAQAGDTKPIEV, AFDNTDTSLDSTFKSA, VTDTSGKAGTTKISNV, and AESSDTNLVNAKAA) in addition to the production of lactic acid. The oral administration (108 CFU/chicken) of L. rhamnosus GG significantly (P < 0.001) reduced the colonization (~ 1.6 logs) of APEC in the cecum of chickens. Cecal microbiota analysis revealed that L. rhamnosus GG moderated the APEC-induced alterations of the microbial community in the cecum of chickens. Further, L. rhamnosus GG decreased (P < 0.05) the abundance of phylum Proteobacteria, particularly those belonging to Enterobacteriaceae (Escherichia-Shigella) family. These studies indicate that L. rhamnosus GG is a promising probiotic to control APEC infections in chickens. Further studies are needed to optimize the delivery of L. rhamnosus GG in feed or water and in conditions simulating the field to facilitate its development for commercial applications.
Collapse
|
19
|
Han S, Zheng H, Han F, Zhang X, Zhang G, Ma S, Liu K, Qin W, Wu G. Lactobacillus johnsonii 6084 alleviated sepsis-induced organ injury by modulating gut microbiota. Food Sci Nutr 2022; 10:3931-3941. [PMID: 36348793 PMCID: PMC9632218 DOI: 10.1002/fsn3.2989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/18/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is a public cause of death in intensive care unit patients. Probiotics were widely used to increase the survival rate of sepsis by a series of clinical research. The purpose of this research was to investigate the therapeutic effects of Lactobacillus johnsonii 6084 in septic mice. Sepsis mouse model was induced by LPS treatment. The influence of L. johnsonii 6084 on the protection of organ injury induced by sepsis was explored. Moreover, the composition of gut microbiota was studied to clarify the mechanism of L. johnsonii 6084 therapeutic effect on sepsis. L. johnsonii 6084 treatment could conspicuously decrease the mortality and organ injury of sepsis. The reduction of gut microbial diversity and richness in septic mice were moderated by the administration of 6084. The abundance of Bacteroidetes and Proteobacteria were change by LPS treatment while restored by L. johnsonii 6084. To conclude, probiotic 6084 may has optimistic result on reducing mortality of sepsis through rebalancing gut microbiota.
Collapse
Affiliation(s)
- Shichao Han
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Haotian Zheng
- BGI Education CenterUniversity of Chinese Academy of SciencesShenzhenChina
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Xiaowei Zhang
- Department of Obstetrics and GynecologyPeking University Shenzhen HospitalShenzhenChina
| | - Geng Zhang
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Shuaijun Ma
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kepu Liu
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Weijun Qin
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
20
|
Application of metabolomics analysis to aid in understanding the pathogenicity of different lineages and different serotypes of Listeria monocytogenes. Int J Food Microbiol 2022; 373:109694. [DOI: 10.1016/j.ijfoodmicro.2022.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
21
|
Olimpio F, da Silva JRM, Vieira RP, Oliveira CR, Aimbire F. Lacticaseibacillus rhamnosus modulates the inflammatory response and the subsequent lung damage in a murine model of acute lung inflammation. Clinics (Sao Paulo) 2022; 77:100021. [PMID: 35303586 PMCID: PMC8931357 DOI: 10.1016/j.clinsp.2022.100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The present study investigated the anti-inflammatory effect of the probiotic Lacticaseibacillus rhamnosus (Lr) on lung inflammation induced by Lipopolysaccharide (LPS) of Escherichia coli in C57BL/6 mice. METHODS C57BL/6 mice were divided into four groups: control, LPS, Lr (1 day) + LPS, and Lr (14 days) + LPS. Total and differential cells from Bronchoalveolar Lavage Fluid (BALF) were counted in a Neubauer 40X chamber, and pro-and anti-inflammatory cytokines (IL-1β, IL-6, CXCL-1, TNF-α, TGF-β, and IL-10) were measured by ELISA assay. The analysis of whole leukocytes in blood was performed using the automated system Sysmex 800i. Morphometry of pulmonary tissue evaluated alveolar hemorrhage, alveolar collapse, and inflammatory cells. Pulmonary vascular permeability was assessed by Evans blue dye extravasation, and bronchoconstriction was evaluated in a tissue bath station. The transcription factor NF-kB was evaluated by ELISA, and its gene expression and TLR-2, TLR-4, MMP-9, MMP-12, and TIMP by PCR. RESULTS The probiotic Lr had a protective effect against the inflammatory responses induced by LPS. Lr significantly reduced pro-inflammatory cells in the airways, lung parenchyma, and blood leukocytes. Furthermore, Lr reduced the production of pro-inflammatory cytokines and chemokines in BALF and the expression of TLRs, MMPs, and NF-kB in lung tissue and maintained the expression of TIMP in treated animals promoting a protective effect on lung tissue. CONCLUSIONS The results of the study indicate that pre-treatment with the probiotic Lr may be a promising way to mitigate lung inflammation in endotoxemia.
Collapse
Affiliation(s)
- Fabiana Olimpio
- Department of Medicine, Programa de Pós-graduação em Medicina Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - José Roberto Mateus da Silva
- Institute of Science and Technology, Programa de Pós-graduação em Engenharia Biomédica, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rodolfo P Vieira
- Department of Human Movement Sciences, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Carlos R Oliveira
- Institute of Science and Technology, Programa de Pós-graduação em Engenharia Biomédica, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Flavio Aimbire
- Department of Medicine, Programa de Pós-graduação em Medicina Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Institute of Science and Technology, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
22
|
Green PG, Alvarez P, Levine JD. Probiotics attenuate alcohol-induced muscle mechanical hyperalgesia: Preliminary observations. Mol Pain 2022; 18:17448069221075345. [PMID: 35189754 PMCID: PMC8874179 DOI: 10.1177/17448069221075345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder (AUD) is a major health problem that causes millions of deaths annually world-wide. AUD is considered to be a chronic pain disorder, that is exacerbated by alcohol withdrawal, contributing to a high (∼80%) relapse rate. Chronic alcohol consumption has a marked impact on the gut microbiome, recognized to have a significant effect on chronic pain. We tested the hypothesis that modulating gut microbiota through feeding rats with probiotics can attenuate alcohol-induced muscle mechanical hyperalgesia. To test this hypothesis, rats were fed alcohol (6.5%, 4 days on 3 days off) for 3 weeks, which induced skeletal muscle mechanical hyperalgesia. Following alcohol feeding, at which time nociceptive thresholds were ∼37% below pre-alcohol levels, rats received probiotics in their drinking water, either Lactobacillus Rhamnosus GG (Culturelle) or De Simone Formulation (a mixture of 8 bacterial species) for 8 days; control rats received plain water to drink. When muscle mechanical nociceptive threshold was evaluated 1 day after beginning probiotic feeding, nociceptive thresholds were significantly higher than rats not receiving probiotics. Mechanical nociceptive thresholds continued to increase during probiotic feeding, with thresholds approaching pre-alcohol levels 5 days after starting probiotics; nociceptive threshold in rats not receiving probiotics remained low. After probiotics were removed from the drinking water, nociceptive thresholds gradually decreased in these two groups, although they remained higher than the group not treated with probiotic (21 days after ending alcohol feeding). These observations suggest that modification of gut microbiota through probiotic feeding has a marked effect on chronic alcohol-induced muscle mechanical hyperalgesia. Our results suggest that administration of probiotics to individuals with AUD may reduce pain associated with alcohol consumption and withdrawal, and may be a novel therapeutic intervention to reduce the high rate of relapse seen in individuals with AUD attempting to abstain from alcohol.
Collapse
Affiliation(s)
- Paul G Green
- Departments of Oral and Maxillofacial Surgery, 8785University of California San Francisco, San Francisco, CA, USA.,Departments of Preventative and Restorative Dental Sciences, 8785University of California San Francisco, San Francisco, CA, USA.,Division of Neuroscience, 8785University of California San Francisco, San Francisco, CA, USA
| | - Pedro Alvarez
- Departments of Oral and Maxillofacial Surgery, 8785University of California San Francisco, San Francisco, CA, USA.,Division of Neuroscience, 8785University of California San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- Departments of Oral and Maxillofacial Surgery, 8785University of California San Francisco, San Francisco, CA, USA.,Division of Neuroscience, 8785University of California San Francisco, San Francisco, CA, USA.,Departments of Medicine, 8785University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Schuurman AR, Kullberg RFJ, Wiersinga WJ. Probiotics in the Intensive Care Unit. Antibiotics (Basel) 2022; 11:antibiotics11020217. [PMID: 35203819 PMCID: PMC8868307 DOI: 10.3390/antibiotics11020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
The understanding of the gut microbiome in health and disease has shown tremendous progress in the last decade. Shaped and balanced throughout life, the gut microbiome is intricately related to the local and systemic immune system and a multitude of mechanisms through which the gut microbiome contributes to the host’s defense against pathogens have been revealed. Similarly, a plethora of negative consequences, such as superinfections and an increased rate of hospital re-admissions, have been identified when the gut microbiome is disturbed by disease or by the iatrogenic effects of antibiotic treatment and other interventions. In this review, we describe the role that probiotics may play in the intensive care unit (ICU). We discuss what is known about the gut microbiome of the critically ill, and the concept of probiotic intervention to positively modulate the gut microbiome. We summarize the evidence derived from randomized clinical trials in this context, with a focus on the prevention of ventilator-associated pneumonia. Finally, we consider what lessons we can learn in terms of the current challenges, efficacy and safety of probiotics in the ICU and what we may expect from the future. Throughout the review, we highlight studies that have provided conceptual advances to the field or have revealed a specific mechanism; this narrative review is not intended as a comprehensive summary of the literature.
Collapse
Affiliation(s)
- Alex R. Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
| | - Robert F. J. Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
24
|
Ji X, Zhu L, Chang K, Zhang R, Chen Y, Yin H, Jin J, Zhao L. Chitooligosaccahrides: Digestion characterization and effect of the degree of polymerization on gut microorganisms to manage the metabolome functional diversity in vitro. Carbohydr Polym 2022; 275:118716. [PMID: 34742440 DOI: 10.1016/j.carbpol.2021.118716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023]
Abstract
Consumption of chitooligosaccharides (COS) prevents intestinal microecological disorder. The mechanisms for the effects of different COS on the gut microbiota are currently unclear. This study examined the impact of COS with different degrees of polymerization (DPs) on the gut microbial community and metabolic profile. COS significantly promoted the growth of Bacteroidetes, and inhibited that of Proteobacteria, which were significantly correlated with DPs. COS3 and COS2 enriched the butyrate production in microbial communities composed of Clostridium and Parabacteroides. Microbial communities enriched by DPs 4-6 COS displayed increased diversity in differential metabolite function. Several biomarkers were distinguished significantly, including unsaturated fatty acids, bile acids, indoles and amines, which are mainly related to processes such as fatty acid synthesis and decomposition, bile acid modification, and tryptophan metabolism. The results display the relationship among COS structure-gut microbes-metabolomics, providing a new perspective for COS as a functional food to improve intestinal health.
Collapse
Affiliation(s)
- Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liangliang Zhu
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Zhang
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Yijia Chen
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Chang-Zheng Hospital, Shanghai 200003, China
| | - Jiayang Jin
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
25
|
Tsui K, Yen T, Huang C, Hong K. Lactobacillus rhamnosus GG as dietary supplement improved survival from lipopolysaccharides-induced sepsis in mice. Food Sci Nutr 2021; 9:6786-6793. [PMID: 34925807 PMCID: PMC8645706 DOI: 10.1002/fsn3.2630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a state of host immune response triggered by virus or bacterial infection, in which the extent of regional and systemic inflammation and companion counter-inflammatory reactions determines disease outcomes. Probiotics are known for the immunomodulatory effect on allergic disorders, but it is not clear whether the beneficiary effect extends to sepsis and increases survival. In this mouse model, we injected intraperitoneally lipopolysaccharides (LPS) to induce sepsis, and investigated whether the pretreatment of Lactobacillus rhamnosus GG (LGG) contributed to host survival and examined the alteration of the gut microbiota and blood cytokines/chemokines profile before sepsis induction. Four-week-old male BALB/c mice were divided into two groups: one group were fed daily with LGG as a dietary supplement for fourteen days, whereas the other group with sterile water. Before sepsis induction, some mice from each group were killed to collect stool in the intestine and blood for microbial metagenomic and cytokine/chemokine analyses, respectively, and the rest were monitored afterward for mortality. The relative abundance of several families in the gut microbiota after LGG treatment was altered as well as the ratio of Firmicutes/Bacteroidetes. In addition, several pro-inflammatory cytokines such as G-CSF, IL7, IL15, and MCP1 were lower in the LGG group than in the control group. The survival rate following LPS-induced sepsis improved with LGG treatment. Our results indicated that dietary supplement of probiotic LGG improved survival from LPS-induced sepsis, most likely through pre-septic changes in the gut microbial constituents by LGG with reciprocal alteration of host immune system to a less reactive state to incoming pathogens.
Collapse
Affiliation(s)
- Ko‐Chung Tsui
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
- Division of Infectious DiseasesDepartment of Internal MedicineCathay General HospitalTaipeiTaiwan
- Department of Clinical PathologyCathay General HospitalTaipeiTaiwan
- School of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Ting‐Lin Yen
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
| | - Chi‐Jung Huang
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
| | - Kun‐Jing Hong
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
- Department of Oral Hygiene CareChing Kuo Institute of Management and HealthKeelungTaiwan
| |
Collapse
|
26
|
Niu M, Chen P. Crosstalk between gut microbiota and sepsis. BURNS & TRAUMA 2021; 9:tkab036. [PMID: 34712743 PMCID: PMC8547143 DOI: 10.1093/burnst/tkab036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is an overwhelming inflammatory response to microbial infection. Sepsis management remains a clinical challenge. The role of the gut microbiome in sepsis has gained some attention. Recent evidence has demonstrated that gut microbiota regulate host physiological homeostasis mediators, including the immune system, gut barrier function and disease susceptibility pathways. Therefore, maintenance or restoration of microbiota and metabolite composition might be a therapeutic or prophylactic target against critical illness. Fecal microbiota transplantation and supplementation of probiotics are microbiota-based treatment methods that are somewhat limited in terms of evidence-based efficacy. This review focuses on the importance of the crosstalk between the gastrointestinal ecosystem and sepsis to highlight novel microbiota-targeted therapies to improve the outcomes of sepsis treatment.
Collapse
Affiliation(s)
- Mengwei Niu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Hung YP, Lee CC, Lee JC, Tsai PJ, Hsueh PR, Ko WC. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10091086. [PMID: 34572668 PMCID: PMC8470257 DOI: 10.3390/antibiotics10091086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotic supplements have been used to decrease the gut carriage of antimicrobial-resistant Enterobacterales through changes in the microbiota and metabolomes, nutrition competition, and the secretion of antimicrobial proteins. Many probiotics have shown Enterobacterales-inhibiting effects ex vivo and in vivo. In livestock, probiotics have been widely used to eradicate colon or environmental antimicrobial-resistant Enterobacterales colonization with promising efficacy for many years by oral supplementation, in ovo use, or as environmental disinfectants. In humans, probiotics have been used as oral supplements for infants to decease potential gut pathogenic Enterobacterales, and probiotic mixtures, especially, have exhibited positive results. In contrast to the beneficial effects in infants, for adults, probiotic supplements might decrease potentially pathogenic Enterobacterales, but they fail to completely eradicate them in the gut. However, there are several ways to improve the effects of probiotics, including the discovery of probiotics with gut-protection ability and antimicrobial effects, the modification of delivery methods, and the discovery of engineered probiotics. The search for multifunctional probiotics and synbiotics could render the eradication of “bad” Enterobacterales in the human gut via probiotic administration achievable in the future.
Collapse
Affiliation(s)
- Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Ching-Chi Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| |
Collapse
|
28
|
Wu T, Zhang Y, Li W, Zhao Y, Long H, Muhindo EM, Liu R, Sui W, Li Q, Zhang M. Lactobacillus rhamnosus LRa05 Ameliorate Hyperglycemia through a Regulating Glucagon-Mediated Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8797-8806. [PMID: 34340304 DOI: 10.1021/acs.jafc.1c02925] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we aimed to explore the antidiabetic effects of Lactobacillus rhamnosus LRa05 on glucose metabolism and gut microbiota in type 2 diabetes mellitus (T2DM) mice. Our data indicated that the fasting blood glucose levels were reduced by 53.5% after treatment with LRa05 at a dose of 109 CFU·day-1. Meanwhile, LRa05 attenuated insulin resistance, relieved hepatic oxidative stress, and alleviated metabolic lipopolysaccharide-related inflammation in T2DM mice. LRa05 promoted the expression of glucose transporter 2, while it inhibited the expression of glucagon receptor, glucose-6-phosphatase, cellular adenosine-3'-5'-cyclic monophosphate-dependent protein kinase, and phosphoenolpyruvate carboxykinase in diabetic mice. Meanwhile, LRa05 reshaped gut microbiota, resulting in increased short-chain fatty acid bacteria (Alloprevotella and Bacteroides) and decreased proinflammatory bacteria (Odoribacter and Mucispirillum). Thus, LRa05 may be used as a functional food supplement for modulating the disorder glucose metabolism and gut microbiota in T2DM.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongli Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hairong Long
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | | | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Li
- Tianjin Agricultural University, Tianjin 300384, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
29
|
Probiotics for the Management of Sepsis: Advances in Animal Models and Intensive Care Unit Environments. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sepsis frequently leads to multiple organ failure and is a major cause of morbidity and mortality in critically ill patients. Although intensive care protocols and antibiotic therapy have improved sepsis treatment, specific management is lacking with respect to efficient protection from tissue damage and long-term outcomes. Probiotics are live microbes that modulate the immune system and inflammation and colonize the gut. In this narrative review, we have traced the evolution of the administration of probiotics in an animal model of sepsis and treatment alternatives in the intensive care unit setting. First, probiotics are categorized by species before describing their modulation of the microbiota, repair of tissue-specific damage, immune response, and molecular pathways to prevent complications. The impact on therapy for infant and adult patients is also addressed. Finally, we have emphasized the challenges and gaps in current studies as well as future perspectives for further investigation. The present review can open up avenues for new strategies that employ promising probiotic strains for the treatment of sepsis and discusses their ability to prevent disease-associated long-term complications.
Collapse
|
30
|
Geng T, He F, Su S, Sun K, Zhao L, Zhao Y, Bao N, Pan L, Sun H. Probiotics Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01 induce cytokine alterations by the production of TCDA, DHA, and succinic and palmitic acids, and enhance immunity of weaned piglets. Res Vet Sci 2021; 137:56-67. [PMID: 33932824 DOI: 10.1016/j.rvsc.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 01/20/2023]
Abstract
Probiotics, including Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01, can improve growth performance and immunity of piglets, and relieve weaning stress-related immune disorders such as intestinal infections and inflammation. This study aimed to evaluate the ability of co-administration of the probiotics L. rhamnosus GG ATCC53103 and L. plantarum JL01 to stimulate immune responses and improve gut health during the critical weaning period in piglets. Forty-eight weaned piglets were randomly divided into four groups, and fed daily for 28 days either without, or with the two probiotics independently, or in combination. On day 28, we analyzed the cytokine and bacterial changes in intestinal mucosa and the hepatic portal vein blood metabolites of the weaned piglets. Our results showed that combined L. rhamnosus GG ATCC53103 and L. plantarum JL01 significantly increased (p < 0.05) the growth performance and expression of IL-10 and TGF-β1 mRNAs. In contrast, this treatment significantly decreased (p < 0.05) IL-1β mRNA level in the jejunum, ileum, and cecum. Furthermore, the secretion of IL-6 in the cecum, IL-1β in the jejunum, ileum, and cecum, and TNF-α in the jejunum and ileum was significantly decreased (p < 0.05). The relative abundance of Prevotella_9 and Enterococcus in ileum and cecum was significantly increased (p < 0.05). The relative abundance of Ruminococcus_1 and Ruminococcaceae_UCG-005 in cecum was significantly decreased (p < 0.05). Prevotella_9 and Enterococcus may increase the accumulation of (4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-docosahexaenoic acid (DHA) and tauroursodeoxycholic acid (TCDA) in portal vein blood, while Ruminococcus_1 and Ruminococcaceae_UCG-005 may decrease the accumulation of succinic and palmitic acids. These results indicate that L. rhamnosus GG ATCC53103 and L. plantarum JL01 may regulate cytokine levels by reducing the accumulation of succinic and palmitic acids and increasing the accumulation of TCDA and DHA, thereby enhancing the immunity of weaned piglets.
Collapse
Affiliation(s)
- Tingting Geng
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Feng He
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Shuai Su
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Kecheng Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China; Ministry of Education Laboratory of Animal PRODUCTION and Quality Security, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|