1
|
Liu Y, Dai J, Song H, Zeng Z, Wu M, Huang Y, Wang L, Chen P, Zhang C, Zhao J, Yang X, Chen X. Characterization of glucans from diverse sources and their influence on fat and carbohydrate absorption, digestion in vitro, and glucose tolerance in vivo. Int J Biol Macromol 2025; 308:142025. [PMID: 40086541 DOI: 10.1016/j.ijbiomac.2025.142025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Glucan, a recognized prebiotic primarily derived from fungi, bacteria, and plants, possesses significant nutritional value and biological activity. It serves as a thickener and emulsifier stabilizer, enhancing the texture and sensory properties of food. This study aimed to compare the inhibitory effects of glucans from yeast, oats, and bacteria on energy intake by characterizing their physicochemical properties and evaluating their impact on fat and glucose adsorption, starch and fat digestion in vitro, and glucose tolerance in vivo. The findings revealed that despite sharing similar active groups, the glucans exhibited distinct structures, viscosities, water solubilities, thermal degradation behaviors, and micromorphologies. All three sources demonstrated effectiveness in adsorbing fat and glucose, inhibiting starch and fat digestion, and improving glucose tolerance in mice, albeit with notable differences. Among these, Salecan glucan, derived from bacterial sources, exhibited superior performance in fat absorption, inhibition of starch and fat digestion, and enhancement of glucose tolerance. This is likely attributable to its higher viscosity, greater water solubility, and linear molecular structure. These results highlight the functional significance of glucans from different sources and underscore their potential application in developing functional foods aimed at managing energy intake.
Collapse
Affiliation(s)
- Yao Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Huajuan Song
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Zheng Zeng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Mengxia Wu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China
| | - Chisong Zhang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 610500, PR China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu 610000, PR China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China; Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, PR China; Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| |
Collapse
|
2
|
Li X, Wu Y, Duan R, Yu H, Liu S, Bao Y. Research Progress in the Extraction, Structural Characteristics, Bioactivity, and Commercial Applications of Oat β-Glucan: A Review. Foods 2024; 13:4160. [PMID: 39767105 PMCID: PMC11675617 DOI: 10.3390/foods13244160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Oats (Avena sativa L.) are an important cereal crop with diverse applications in both food and forage. Oat β-glucan has gained attention for its beneficial biological activities, such as reducing cardiovascular risk, preventing diabetes, and enhancing intestinal health. Despite its potential, more comprehensive research is required to explore its preparation, modification, bioactivities, and applications. This review highlights recent advancements in the determination and preparation of oat β-glucan, explores its biological activities and mechanisms, and examines the impact of food processing techniques on its properties. This review is intended to provide a theoretical foundation and reference for the development and application of oat β-glucan in the functional food industry.
Collapse
Affiliation(s)
- Xiaolu Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yicheng Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruilin Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoran Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Qi BJ, Ji MX, He ZQ. Using transcriptome sequencing (RNA-Seq) to screen genes involved in β-glucan biosynthesis and accumulation during oat seed development. PeerJ 2024; 12:e17804. [PMID: 39346057 PMCID: PMC11438436 DOI: 10.7717/peerj.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/03/2024] [Indexed: 10/01/2024] Open
Abstract
Oat (Avena sativa L.) is an annual grass that has a high nutritional value and therapeutic benefits. β-glucan is one of the most important nutrients in oats. In this study, we investigated two oat varieties with significant differences in β-glucan content (high β-glucan oat varieties BY and low β-glucan content oat variety DY) during different filling stages. We also studied the transcriptome sequencing of seeds at different filling stages. β-glucan accumulation was highest at days 6-16 in the filling stage. Differentially expressed genes (DEGs) were selected from the dataset of transcriptome sequencing. Among them, three metabolic pathways were closely related to the biosynthesis of β-glucan by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, including xyloglucan:xyloglucosyl transferase activity, starch and sucrose metabolism, and photosynthesis. By analyzing the expression patterns of DEGs, we identified one CslF2 gene and 32 transcription factors. Five modules were thought to be positively correlated with β-glucan accumulation by weighted gene co-expression network analysis (WGCNA). Moreover, the expression levels of candidate genes obtained from the transcriptome sequencing were further validated by quantitative real-time PCR (RT-qPCR) analysis. Our study provides a novel way to identify the regulatory mechanism of β-glucan synthesis and accumulation in oat seeds and offers a possible pathway for the genetic engineering of oat breeding for higher-quality seeds.
Collapse
Affiliation(s)
- Bing jie Qi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ming xue Ji
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhu qing He
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Mathews R, Chu Y. An encompassing review of meta-analyses and systematic reviews of the effect of oats on all-cause mortality, cardiovascular risk, diabetes risk, body weight/adiposity and gut health. Crit Rev Food Sci Nutr 2024; 65:2587-2608. [PMID: 39137936 DOI: 10.1080/10408398.2024.2382352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The ability of oats to reduce blood cholesterol is well established but there is increasing evidence that its health benefits extend well beyond that. The purpose of this review was to critically evaluate the state of the science of oats in relation to all-cause mortality, cardiovascular and diabetes risk and the effects of oats on blood lipids, blood glucose, blood pressure, weight management and gut health from meta-analyses and systematic reviews. Limited epidemiological data indicated a possible beneficial effect of oats on all-cause mortality and incident diabetes when high versus low oat consumers were compared, but its effect on cardiovascular events was not adequately discerned. Observational data also showed an inverse association between oat intake and blood cholesterol, blood pressure, body weight and obesity variables in different populations. Randomized controlled oat intervention studies demonstrated a significant reduction in postprandial blood glucose in both diabetic and non-diabetic subjects, fasting blood glucose in diabetic subjects, blood pressure in prehypertensive individuals, and body weight and adiposity in overweight individuals. Increased fecal bulk was observed but clinical data for a potential gut barrier effect is lacking. The mechanism of action of each health effect was reviewed. While beta-glucan viscosity was once considered the only mode of action, it is evident that the fermentation products of beta-glucan and the associated gut microbial changes, as well as other components in oats (i.e., avenanthramides etc.) also play an important role.
Collapse
Affiliation(s)
| | - YiFang Chu
- Nutrition Sciences, PepsiCo Global R&D, Chicago, Illinois, USA
| |
Collapse
|
5
|
Chen J, Chen Z, Wang W, Wang L, Zheng J, Wu S, Pan Y, Li S, Zhao J, Cai Z. Effects of Commonly used Surfactants, Poloxamer 188 and Tween 80, on the Drug Transport Capacity of Intestinal Glucose Transporters. AAPS PharmSciTech 2024; 25:163. [PMID: 38997614 DOI: 10.1208/s12249-024-02881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Some glycoside drugs can be transported through intestinal glucose transporters (IGTs). The surfactants used in oral drug preparations can affect the function of transporter proteins. This study aimed to investigate the effect of commonly used surfactants, Poloxamer 188 and Tween 80, on the drug transport capacity of IGTs. Previous studies have shown that gastrodin is the optimal drug substrate for IGTs. Gastrodin was used as a probe drug to evaluate the effect of these two surfactants on intestinal absorption in SD rats through pharmacokinetic and in situ single-pass intestinal perfusion. Then, the effects of the two surfactants on the expression of glucose transporters and tight-junction proteins were examined using RT-PCR and western blotting. Additionally, the effect of surfactants on intestinal permeability was evaluated through hematoxylin-eosin staining. The results found that all experimental for Poloxamer 188 (0.5%, 2.0% and 8.0%) and Tween 80 (0.1% and 2.0%) were not significantly different from those of the blank group. However, the AUC(0-∞) of gastrodin increased by approximately 32% when 0.5% Tween 80 was used. The changes in IGT expression correlated with the intestinal absorption of gastrodin. A significant increase in the expression of IGTs was observed at 0.5% Tween 80. In conclusion, Poloxamer 188 had minimal effect on the drug transport capacity of IGTs within the recommended limits of use. However, the expression of IGTs increased in response to 0.5% Tween 80, which significantly enhanced the drug transport capacity of IGTs. However, 0.1% and 2.0% Tween 80 had no significant effect.
Collapse
Affiliation(s)
- Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wentao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liyang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqiong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuru Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
6
|
Marcobal AM, McConnell BR, Drexler RA, Ng KM, Maldonado-Gomez MX, Conner AMS, Vierra CG, Krishnakumar N, Gerber HM, Garcia JKA, Cerney JP, Amicucci MJ. Highly Soluble β-Glucan Fiber Modulates Mechanisms of Blood Glucose Regulation and Intestinal Permeability. Nutrients 2024; 16:2240. [PMID: 39064683 PMCID: PMC11279855 DOI: 10.3390/nu16142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
β-glucans found in cereal grains have been previously demonstrated to improve blood glucose control; however, current understanding points to their high viscosity as the primary mechanism of action. In this work, we present a novel, highly soluble, low-viscosity β-glucan fiber (HS-BG fiber) and a preclinical dataset that demonstrates its impact on two mechanisms related to the prevention of hyperglycemia. Our results show that HS-BG inhibits the activity of two key proteins involved in glucose metabolism, the α-glucosidase enzyme and the SGLT1 transporter, thereby having the potential to slow starch digestion and subsequent glucose uptake. Furthermore, we demonstrate in a multi-donor fecal fermentation model that HS-BG is metabolized by several different members of the gut microbiome, producing high amounts of short-chain fatty acids (SCFAs), known agonists of GPR43 receptors in the gut related to GLP-1 secretion. The production of SCFAs was verified in the translational gut model, SHIME®. Moreover, HS-BG fiber fermentation produces compounds that restored permeability in disrupted epithelial cells, decreased inflammatory chemokines (CXCL10, MCP-1, and IL-8), and increased anti-inflammatory marker (IL-10), which could improve insulin resistance. Together, these data suggest that the novel HS-BG fiber is a promising new functional ingredient that can be used to modulate postprandial glycemic responses while the high solubility and low viscosity enable easy formulation in both beverage and solid food matrices.
Collapse
|
7
|
Wu Y, Liu Y, Jia Y, Feng C, Zhang H, Ren F. Strategic exploration of whole grain cereals in modulating the glycaemic response. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38976377 DOI: 10.1080/10408398.2024.2374055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In the current context, diabetes presents itself as a widespread and complex global health issue. This study explores the significant influence of food microstructure and food matrix components interaction (protein, lipid, polyphenols, etc.) on the starch digestibility and the glycaemic response of post-prandial glycemia, focusing on the potential effectiveness of incorporating bioactive components from whole grain cereals into dietary strategies for the management and potential prevention of diabetes. This study aims to integrate the regulation of postprandial glycaemic homeostasis, including the complexities of starch digestion, the significant potential of bioactive whole grain components and the impact of food processing, to develop a comprehensive framework that combines these elements into a strategic approach to diabetes nutrition. The convergence of these nutritional strategies is analyzed in the context of various prevalent dietary patterns, with the objective of creating an accessible approach to mitigate and prevent diabetes. The objective remains to coalesce these nutritional paradigms into a coherent strategy that not only addresses the current public health crisis but also threads a preventative approach to mitigate future prevalence and impact.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
8
|
Skurk T, Bosy-Westphal A, Grünerbel A, Kabisch S, Keuthage W, Kronsbein P, Müssig K, Nussbaumer H, Pfeiffer AFH, Simon MC, Tombek A, Weber KS, Rubin D. Dietary Recommendations for Persons with Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2024; 132:182-215. [PMID: 38286422 DOI: 10.1055/a-2166-6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anja Bosy-Westphal
- Institute of Human Nutrition, Faculty of Agriculture and Nutritional Sciences, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Stefan Kabisch
- German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Winfried Keuthage
- Specialist Practice for Diabetes and Nutritional Medicine, Münster, Germany
| | - Peter Kronsbein
- Faculty of Nutrition and Food Sciences, Niederrhein University of Applied Sciences, Mönchengladbach Campus, Mönchengladbach, Germany
| | - Karsten Müssig
- Department of Internal Medicine, Gastroenterology and Diabetology, Niels Stensen Hospitals, Franziskus Hospital Harderberg, Georgsmarienhütte, Germany
| | | | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Astrid Tombek
- Diabetes Centre Bad Mergentheim, Bad Mergentheim, Germany
| | - Katharina S Weber
- Institute for Epidemiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany
- Vivantes Humboldt Hospital, Berlin, Germany
| |
Collapse
|
9
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
10
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [PMID: 37797345 DOI: 10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oat (Avena sativa L.), an annual herbaceous plant belonging to the Gramineae family, is widely grown in various regions including EU, Canada, America, Australia, etc. Due to the nutritional and pharmacological values, oats have been developed into various functional food including fermented beverage, noodle, cookie, etc. Meanwhile, numerous studies have demonstrated that oats may effectively improve metabolic syndrome, such as dyslipidemia, hyperglycemia, atherosclerosis, hypertension, and obesity. However, the systematic pharmacological mechanisms of oats on metabolic syndrome have not been fully revealed. Therefore, in order to fully explore the benefits of oat in food industry and clinic, this review aims to provide up-to-date information on oat and its constituents, focusing on the effects on metabolic syndrome.
Collapse
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People's Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
12
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [DOI: https:/doi.org/10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People’s Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
13
|
Frias JP, Lee ML, Carter MM, Ebel ER, Lai RH, Rikse L, Washington ME, Sonnenburg JL, Damman CJ. A microbiome-targeting fibre-enriched nutritional formula is well tolerated and improves quality of life and haemoglobin A1c in type 2 diabetes: A double-blind, randomized, placebo-controlled trial. Diabetes Obes Metab 2023; 25:1203-1212. [PMID: 36594522 DOI: 10.1111/dom.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
AIMS To investigate a prebiotic fibre-enriched nutritional formula on health-related quality of life and metabolic control in type 2 diabetes. MATERIALS AND METHODS This was a 12-week, double-blind, placebo-controlled study with an unblinded dietary advice only comparator arm. Participants were randomized 2:1:1 to a prebiotic fibre-enriched nutritional formula (Active), a placebo fibre-absent nutritional formula (Placebo), or non-blinded dietary advice alone (Diet). Primary endpoint was change in core Type 2 Diabetes Distress Assessment System (cT2-DDAS) at week 12. Glycated haemoglobin (HbA1c) change was a key secondary endpoint. RESULTS In total, 192 participants were randomized. Mean age was 54.3 years, HbA1c 7.8%, and body mass index 35.9 kg/m2 . At week 12, cT2-DDAS reduced significantly in Active versus Placebo (-0.4, p = .03), and HbA1c was reduced significantly in Active vs Placebo (-0.64%, p = .01). Gut microbiome sequencing revealed that the relative abundance of two species of butyrate-producing bacteria (Roseburia faecis and Anaerostipes hadrus) increased significantly in Active vs. Placebo. CONCLUSIONS A microbiome-targeting nutritional formula significantly improved cT2-DDAS and HbA1c, suggesting the potential for prebiotic fibre as a complement to lifestyle and/or pharmaceutical interventions for managing type 2 diabetes.
Collapse
Affiliation(s)
- Juan P Frias
- Velocity Clinical Research, Los Angeles, California, USA
| | - Martin L Lee
- UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Matthew M Carter
- Department of Microbiology and Immunology, Stanford University School Medicine, Palo Alto, California, USA
| | - Emily R Ebel
- Department of Microbiology and Immunology, Stanford University School Medicine, Palo Alto, California, USA
| | | | | | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
14
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
The importance of molecular weight in determining the minimum dose of oat β-glucan required to reduce the glycaemic response in healthy subjects without diabetes: a systematic review and meta-regression analysis. Eur J Clin Nutr 2023; 77:308-315. [PMID: 35768556 PMCID: PMC10017511 DOI: 10.1038/s41430-022-01176-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
To determine the minimum amount of oat β-glucan (OBG) required to reduce glycaemic responses (MinDose), we conducted a systematic review and meta-regression analysis of acute, crossover, single-meal feeding trials that examined the effects of adding OBG or oat bran to a carbohydrate-containing test-meal versus a control test-meal containing an equivalent amount of available-carbohydrate (avCHO) from the same or similar source. Medline, Embase, and Cochrane Library were searched up to 18 August 2021. The primary outcome was glucose incremental-area-under-the-curve (iAUC). Secondary outcomes included insulin iAUC, and glucose and insulin incremental peak-rise (iPeak). Two independent reviewers extracted data. Results were expressed as ratio-of-means (RoM) with 95% confidence intervals (CIs). Linear associations were assessed by random effects meta-regression. MinDose was defined as the dose at which the upper 95% CI of the regression line cut the line of no effect (i.e., RoM = 1). Fifty-nine comparisons (n = 340) were included; 57 in healthy subjects without diabetes and two in subjects with diabetes; 24 high-MW (>1000 kg/mol), 22 medium-MW (300-1,000 kg/mol), and 13 low-MW (<300 kg/mol). In healthy subjects without diabetes the associations between OBG dose and glucose iAUC and iPeak were linear (non-linear p value >0.05). MinDoses for glucose iAUC for high-MW, medium-MW and low-MW OBG, respectively, were estimated to be 0.2 g, 2.2 g and 3.2 g per 30 g avCHO; MinDoses for glucose iPeak were less than those for iAUC. Insufficient data were available to assess MinDose for insulin, however, there was no evidence of a disproportionate increase in insulin. More high-quality trials are needed to establish MinDose in individuals with diabetes.
Collapse
|
16
|
Gotteland M, Zazueta A, Pino JL, Fresard A, Sambra V, Codoceo J, Cires MJ, López X, Vivanco JP, Magne F. Modulation of Postprandial Plasma Concentrations of Digestive Hormones and Gut Microbiota by Foods Containing Oat ß-Glucans in Healthy Volunteers. Foods 2023; 12:foods12040700. [PMID: 36832775 PMCID: PMC9955387 DOI: 10.3390/foods12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 02/09/2023] Open
Abstract
Cereal β-glucans are beneficial health ingredients that reduce cholesterolemia and postprandial glycaemia. However, their impact on digestive hormones and gut microbiota is not yet fully established. Two randomized, double-blind, controlled studies were conducted. In the first study, 14 subjects ingested a breakfast with or without β-glucan from oats (5.2 g). Compared to the control, β-glucan increased orocecal transit time (p = 0.028) and decreased mean appetite score (p = 0.014) and postprandial plasma ghrelin (p = 0.030), C-peptide (p = 0.001), insulin (p = 0.06), and glucose (p = 0.0006). β-glucan increased plasma GIP (p = 0.035) and PP (p = 0.018) without affecting leptin, GLP-1, PYY, glucagon, amylin, or 7α-hydroxy-4-cholesten-3-one, a biomarker of bile acid synthesis. In the second study, 32 subjects were distributed into 2 groups to ingest daily foods with (3 g/day) or without β-glucan for 3 weeks; stools were collected before/after treatment. No changes in fecal microbiota composition/diversity (deep sequencing) were detected with β-glucans. These results indicate that acute intake of 5 g β-glucan slows transit time and decreases hunger sensation and postprandial glycaemia without affecting bile-acid synthesis, these changes being associated with decreased plasma insulin, C-peptide, and ghrelin, and increased plasma GIP and PP. However, regular daily intake of 3 g β-glucan is not sufficient to have an effect on fecal microbiota composition.
Collapse
Affiliation(s)
- Martin Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Macul, Santiago 7830489, Chile
- Correspondence: (M.G.); (F.M.)
| | - Alejandra Zazueta
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - José Luis Pino
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Andrea Fresard
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Juana Codoceo
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - María José Cires
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Ximena López
- Consorcio de Cereales Funcionales (CCF), Huechuraba, Santiago 8590871, Chile
| | - Juan Pablo Vivanco
- Granotec Chile S.A., Huechuraba, Santiago 8590871, Chile
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Independencia, Santiago 8380494, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
- Correspondence: (M.G.); (F.M.)
| |
Collapse
|
17
|
Klammer C, Schindler K, Bugl R, Plazek D, Vötter M, Kirchner T, Martino C, Klammer-Martin J, Brix J, Dämon S, Hoppichler F, Kautzky-Willer A, Kruschitz R, Toplak H, Clodi M, Ludvik B. [Nutrition for diabetic patients (Update 2023)]. Wien Klin Wochenschr 2023; 135:62-77. [PMID: 37101026 PMCID: PMC10133079 DOI: 10.1007/s00508-023-02170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/28/2023]
Abstract
All patients with diabetes require individual and personalized nutritional consultation with professionals. The patient's needs should be the primary focus of the dietary therapy, taking their lifestyle and the type of diabetes into consideration. With the recommendations to the patient's diet, there need to be specific metabolic goals to reduce the disease's progression and to avoid long term health effects. Therefore, practical guidelines such as portion size and meal planning tips should be the main focus.According to the latest national and international standards, patients suffering from diabetes should have access to nutrition consulting and nutritional training. During consultation they can be supported on- how to manage their health condition and choosing food and beverage to improve their health.These practical recommendations sum up the latest literature on nutritional aspects of diabetes treatment.
Collapse
Affiliation(s)
- Carmen Klammer
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich
- ICMR - Institute of Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Österreich
| | - Karin Schindler
- Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz, Wien, Österreich
- Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Rita Bugl
- Wiener Gesundheitsverband Klinik Ottakring, Wien, Österreich
| | | | | | - Tanja Kirchner
- Österreichische Gesundheitskasse Mein Peterhof Baden, Baden, Österreich
| | - Claudia Martino
- Österreichische Gesundheitskasse Mein Gesundheitszentrum Floridsdorf, Wien, Österreich
| | | | - Johanna Brix
- Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Klinik Landstraße, Wien, Österreich
| | - Sabine Dämon
- Special Institute for Preventive Cardiology and Nutrition, SIPCAN - Initiative für ein gesundes Leben, Elsbethen/Salzburg, Österreich
| | - Friedrich Hoppichler
- Special Institute for Preventive Cardiology and Nutrition, SIPCAN - Initiative für ein gesundes Leben, Elsbethen/Salzburg, Österreich
- Abteilung für Innere Medizin, Krankenhaus der Barmherzigen Brüder Salzburg, Salzburg, Österreich
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Renate Kruschitz
- Abteilung für Innere Medizin, Krankenhaus der Elisabethinen, Klagenfurt, Österreich
| | - Hermann Toplak
- Klinische Abteilung für Endokrinologie und Diabetologie, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
| | - Martin Clodi
- Abteilung für Innere Medizin, Konventhospital der Barmherzigen Brüder Linz, Linz, Österreich.
- ICMR - Institute of Cardiovascular and Metabolic Research, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040, Linz, Österreich.
| | - Bernhard Ludvik
- Medizinische Abteilung mit Diabetologie, Endokrinologie und Nephrologie, Klinik Landstraße, Wien, Österreich
| |
Collapse
|
18
|
Bhoite R, Satyavrat V, Premasudha Sadananda M. Clinical benefits of β-glucan supplementation in children: a review. DISCOVER FOOD 2022. [PMCID: PMC9793387 DOI: 10.1007/s44187-022-00038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractMalnutrition is a global concern since it affects 130 million children under the age of 5 worldwide. The child’s immunity is brutally compromised, making them susceptible to various diseases and infections, leading to a high mortality rate. Multiple strategies have been implemented to strengthen immunity in children with compromised immunity, such as rendering a balanced diet, fortifying food, dietary supplements, and introducing potential natural dietary fibers to maintain good nutrition status, such as β-glucan. A class of biologically active polysaccharides, sourced from yeast, mushroom, bacteria, and cereals with versatile immunomodulatory benefits that potentially primes the host immune system, drives several metabolic health effects, increases infection resistance, shields against the damaging effects of stress, and maintains healthy energy levels. This review focuses on the capabilities, underlying mechanisms, immune-stimulating potency, and clinically meaningful shreds of evidence to substantiate the multiple health benefits of β-glucan in children. Although, more clinical studies are required, current findings confirms the various biological response modifying abilities of β-glucan that may notably aid in the development of a strong immune system in children for their overall health and wellbeing.
Collapse
Affiliation(s)
- Rachana Bhoite
- Dr Reddy’s Laboratories Pvt Ltd, Ameerpet, Hyderabad, India
| | | | | |
Collapse
|
19
|
Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14588-14599. [PMID: 36376030 DOI: 10.1021/acs.jafc.2c06518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oat is classified as a whole grain and contains high contents of protein, lipids, carbohydrates, vitamins, minerals, and phytochemicals (such as polyphenols, flavonoids, and saponins). In recent years, studies have focused on the effects of oat consumption on reducing the risk of a variety of diseases. Reports have indicated that an oat diet exerts certain biological functions, such as preventing cardiovascular diseases, reducing blood glucose, and promoting intestinal health, along with antiallergy, antioxidation, and cancer preventive effects. At present, cancer is the second leading cause of death worldwide. The natural products of oat are an important breakthrough for developing new strategies of cancer prevention, and their ability to interact with multiple cellular targets helps to combat the complexity of cancer pathogenesis. In addition, the comprehensive study of the cancer prevention activity and potential mechanism of oat nutrients and phytochemicals has become a research hotspot. In this Review, we focused on the potential functions of peptides, dietary fiber, and phytochemicals in oats on cancer prevention and further revealed novel mechanisms and prospects for clinical application. These findings might provide a novel approach to deeply understand the functions and mechanisms for cancer prevention of oat consumption.
Collapse
Affiliation(s)
- Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
20
|
Olagunju AI. Multigrain porridge possesses superior nutritional quality, its consumption alleviates hyperglycemia, hypercholesterolemia and oxidative stress in obese-diabetic wistar rats. J Food Biochem 2022; 46:e14309. [PMID: 35796287 DOI: 10.1111/jfbc.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022]
Abstract
There is an increased utilization of wholegrain cereals in food formulations considering their richness in essential nutritional and biological properties. In this study, each component (amaranth, acha and pearl millet) of the multigrain blend was individually pre-fermented. Thereafter, the pre-fermented grain flours were optimized to obtain two unique blends (90:5:5 and 47.98: 26.68:25.34) containing high protein content (~23% and 17%) and low glycemic index (~43). The optimum blends were processed into instant porridges (PR1, PR2) and analyzed for its nutritional composition, blood glucose lowering ability, antioxidant enzyme and tissue/serum biochemical makers modulatory ability in obese-diabetic animals. The porridge showed significant nutritional profile, consumption of formulated multigrain porridge reduced blood glucose level (by 62% and 66%), upregulated the antioxidant defense system to near normal levels likewise, significantly reduced serum biochemical parameters. Thus, suggests that the multigrain blends/porridge is nutrient-dense possessing beneficial effect to maintain antioxidant levels in the diabetic condition with potential to attenuate oxidative damage. PRACTICAL APPLICATIONS: Prolonged feeding with high-fat diet induces hypercholesterolemia in experimental animals. Further interperitoneal injection of streptozotocin induces experimental diabetes with a cascade of oxidative stress related complications in serum and tissue parameters. Porridge is a traditional meal while multigrain porridge is a nutrient dense meal which may exert curative effect. In this work, it was shown that dietary intervention with multigrain porridge product promoted positive weight control, portrayed hepatoprotective effect as shown by the elevated levels of biomarker (ALT, AST, ALP) and antioxidant enzymes (CAT, SOD, GPx) as well as modulation of serum lipid profile (total cholesterol, triglycerides, high density lipoprotein-cholesterol). Thus, the multigrain porridge may be a functional food product to combat hypercholesterolemia and hyperglycemia especially PR1 which appeared to be more efficient than PR2 in modulating oxidative stress, conferring hypoglycemic effect and lowering lipid levels in obese-diabetic rats model studied.
Collapse
Affiliation(s)
- Aderonke I Olagunju
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
21
|
Escobar-Sáez D, Montero-Jiménez L, García-Herrera P, Sánchez-Mata M. Plant-based drinks for vegetarian or vegan toddlers: Nutritional evaluation of commercial products, and review of health benefits and potential concerns. Food Res Int 2022; 160:111646. [DOI: 10.1016/j.foodres.2022.111646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023]
|
22
|
Wu Z, Xu C, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. A critical role of AMP-activated protein kinase in regulating intestinal nutrient absorption, barrier function, and intestinal diseases. J Cell Physiol 2022; 237:3705-3716. [PMID: 35892164 DOI: 10.1002/jcp.30841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023]
Abstract
As one of the most important organs in animals, the intestine is responsible for nutrient absorption and acts as a barrier between the body and the environment. Intestinal physiology and function require the participation of energy. 5'-adenosine monophosphate-activated protein kinase (AMPK), a classical and highly expressed energy regulator in intestinal cells, regulates the process of nutrient absorption and barrier function and is also involved in the therapy of intestinal diseases. Studies have yielded findings that AMPK regulates the absorption of glucose, amino acids, and fatty acids in the intestine primarily by regulating transportation systems, as we detailed here. Moreover, AMPK is involved in the regulation of the intestinal mechanical barrier and immune barrier through manipulating the expression of tight junctions, antimicrobial peptides, and secretory immunoglobulins. In addition, AMPK also participates in the regulation of intestinal diseases, which indicates that AMPK is a promising therapeutic target for intestinal diseases and cancer. In this review, we summarized the current understanding regarding how AMPK regulates intestinal nutrient absorption, barrier function, and intestinal diseases.
Collapse
Affiliation(s)
- Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengfei Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Chen C, Huang X, Wang H, Geng F, Nie S. Effect of β-glucan on metabolic diseases: A review from the gut microbiota perspective. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Yang B, Luo Y, Wei X, Kan J. Polysaccharide from Hovenia dulcis (Guaizao) improves pancreatic injury and regulates liver glycometabolism to alleviate STZ-induced type 1 diabetes mellitus in rats. Int J Biol Macromol 2022; 214:655-663. [PMID: 35764168 DOI: 10.1016/j.ijbiomac.2022.06.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Hovenia dulcis is a traditional medicinal and edible plant and has a major geographical presence in China. In this study, a polysaccharide purified from H. dulcis (HDPs-2A) was found to ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin-induced diabetic rat. HDPs-2A treatment resulted in significantly lower fasting blood glucose levels, but higher body weight, plasma insulin, and liver glycogen levels. Moreover, HDPs-2A improved dyslipidemia, pancreatic oxidative stress, and reduced serum pro-inflammatory factors. In addition, HDPs-2A up-regulated PDX-1, activated and up-regulated IRS2 expression, and regulated apoptosis and regeneration of islet β cells to recover islet β-cell function injury in TIDM rats. HDPs-2A also up-regulated the expression of pancreatic GK and GLUT2 to improve insulin secretion ability of islet β-cells, ultimately improving the glucose metabolism disorder of T1DM rats. Moreover, HDPs-2A significantly up-regulated the expression of GK and down-regulated the expression of G6Pase in liver to improve liver glycogen synthesis, inhibit liver gluconiogenesis, and improve liver glucose metabolism disorder of T1DM rats. In summary, the hypoglycemic mechanisms of HDPs-2A may include regulating the regeneration and apoptosis of islet β-cells and activating liver glycometabolism-related signaling pathways in T1DM rats.
Collapse
Affiliation(s)
- Bing Yang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China; College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Yuxin Luo
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xunyu Wei
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
25
|
Skurk T, Bosy-Westphal A, Grünerbel A, Kabisch S, Keuthage W, Kronsbein P, Müssig K, Pfeiffer AFH, Simon MC, Tombek A, Weber KS, Rubin D. Dietary recommendations for persons with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2022; 130:S151-S184. [PMID: 35359013 DOI: 10.1055/a-1624-5095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany.,Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Anja Bosy-Westphal
- Institute for Human Nutrition, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Stefan Kabisch
- German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Center for Diabetes Research (DZD), Munich, Germany
| | - Winfried Keuthage
- Focus Practice for Diabetes and Nutritional Medicine, Münster, Germany
| | - Peter Kronsbein
- Department of Ecotrophology, Niederrhein University of Applied Sciences, Mönchengladbach Campus, Germany
| | - Karsten Müssig
- Department of Internal Medicine, Gastroenterology and Diabetology, Niels Stensen Hospitals, Franziskus Hospital Harderberg, Georgsmarienhütte, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marie-Christine Simon
- Institute of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | | | - Katharina S Weber
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Diana Rubin
- Vivantes Hospital Spandau, Berlin, Germany.,Vivantes Humboldt Hospital, Berlin, Germany
| |
Collapse
|
26
|
Xu D, Fu L, Pan D, Lu Y, Yang C, Wang Y, Wang S, Sun G. Role of Whole Grain Consumption in Glycaemic Control of Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 14:109. [PMID: 35010985 PMCID: PMC8746707 DOI: 10.3390/nu14010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Observational studies have indicated beneficial effects of whole grain consumption on human health. However, no evidence based on randomized controlled trials has been established. Our objective was to perform a systematic review and meta-analysis of randomized controlled trials to assess the effects of whole grain consumption in glycaemic control of diabetic patients. METHODS A comprehensive search in four databases (Web of Science, Pubmed, Scopus and Cochrane library) was conducted to collect potential articles which measured the roles of whole grain consumption on glycaemic control up to October 2021. RESULTS A total of 16 eligible trials involving 1068 subjects were identified to evaluate the pooled effect. The overall results indicated that compared with the control group, whole grain intake presented a significantly reduced concentration in fast plasma glucose (WMD = -0.51 mmol/L, 95% CI: -0.73, -0.28; I2 = 88.6%, p < 0.001), a homeostasis model assessment of insulin resistance (WMD = -0.39 μU × mol/L2, 95% CI: -0.73, -0.04; I2 = 58.4%, p = 0.014), and glycosylated haemoglobin (WMD = -0.56%, 95% CI: -0.88, -0.25, I2 = 88.5%, p < 0.001), while no significant difference was observed in fast plasma insulin level between groups (SMD = -0.05, 95% CI: -0.25, 0.14; I2 = 40.7%, p = 0.120). In terms of incremental area under the curve (iAUC), data suggested that whole grain effected a significant decrease in Glucose-iAUC (WMD = -233.09 min × mmol/L, 95% CI: -451.62, -14.57; I2 = 96.1%, p < 0.001) and Insulin-iAUC (SMD = -4.80, 95% CI: -8.36, -1.23; I2 = 89.9%, p = 0.002), although only in a small number of studies. Of note, there is evidence for modest unexplained heterogeneity in the present meta-analysis. CONCLUSION Whole grain consumption confers a beneficial effect on glucose metabolism in patients with diabetes. Regrettably, since relevant studies were scarce, we failed to provide confident evidence of whole grain consumption on acute effects including Glucose-iAUC and Insulin-iAUC, which should be addressed in further trials.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Lingmeng Fu
- Department of Quality Management, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China;
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| |
Collapse
|
27
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
28
|
Skurk T, Bosy-Westphal A, Grünerbel A, Kabisch S, Keuthage W, Kronsbein P, Müssig K, Pfeiffer AFH, Simon MC, Tombek A, Weber KS, Rubin D. Empfehlungen zur Ernährung von Personen mit Typ-2-Diabetes mellitus. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1543-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thomas Skurk
- ZIEL- Institute for Food & Health, Technische Universität München, Freising
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising
| | - Anja Bosy-Westphal
- Institut für Humanernährung, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel
| | | | - Stefan Kabisch
- Abt. Endokrinologie, Diabetes und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Berlin
- Deutsche Zentrum für Diabetesforschung (DZD), München
| | | | - Peter Kronsbein
- Fachbereich Oecotrophologie, Hochschule Niederrhein, Campus Mönchengladbach
| | - Karsten Müssig
- Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken, Franziskus-Hospital Harderberg, Georgsmarienhütte
| | - Andreas F. H. Pfeiffer
- Abt. Endokrinologie, Diabetes und Ernährungsmedizin, Charité Universitätsmedizin Berlin, Berlin
| | - Marie-Christine Simon
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn
| | | | - Katharina S. Weber
- Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel
| | - Diana Rubin
- Vivantes Klinikum Spandau, Berlin
- Vivantes Humboldt Klinikum, Berlin
| | | |
Collapse
|
29
|
[Role of dairy and alternative plant products in a healthy and sustainable diet]. NUTR HOSP 2021; 38:40-43. [PMID: 34323087 DOI: 10.20960/nh.03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Dairy products and plant alternatives are two food groups that are part of the Spanish population's diet. Both have a very different nutritional composition - unlike plant products, the high nutritional density of dairy products makes it easier to meet nutrient requirements at different stages of life. Although the environmental impact of dairy production is greater than that of plant-based products, it falls below that of other food groups such as red meat, including pork and beef. Dairy and plant alternatives meet critical points of the sustainable diet definition, and several food guides from countries around the world are including them within healthy and sustainable eating patterns. For this reason, it is necessary to clarify that both products can be part of a healthy and sustainable diet, although they belong to different food groups, which are not interchangeable and should not be used alternatively.
Collapse
|
30
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
31
|
Tosh SM, Bordenave N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr Rev 2021; 78:13-20. [PMID: 32728756 DOI: 10.1093/nutrit/nuz085] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to review the major mechanisms by which consumption of whole grain oats and barley, and β-glucans, reduces the risk of coronary heart disease, type 2 diabetes, and other noncommunicable chronic conditions. These effects have been predominantly explained by the role of soluble dietary fibers and smaller bioactive compounds, such as phenolic compounds, in oats and barley. These help to reduce the level of serum low-density lipoprotein cholesterol, decreasing postprandial blood glucose and modulating gut microbiota. In the present review, the role of viscosity development of the intestinal content by β-glucans in these mechanisms is discussed, as well as the impact of processing conditions altering the composition or the physicochemical characteristics of β-glucans.
Collapse
Affiliation(s)
- Susan M Tosh
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
32
|
Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type 2 diabetes: A randomized, double-blind, controlled clinical trial. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
33
|
Lin X, Xu W, Liu L, Ou S, Peng X. In vitro fermentation of flaxseed polysaccharide by fecal bacteria inhibits energy intake and adipogenesis at physiological concentration. Food Res Int 2021; 139:109920. [PMID: 33509487 DOI: 10.1016/j.foodres.2020.109920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 11/21/2020] [Indexed: 12/26/2022]
Abstract
Obesity and its related metabolic disorders have been a global pandemic. Recently, we found an anti-obesity effect of flaxseed polysaccharide (FP) that could be achieved by regulating intestinal microbiota. The anti-obesity effect of FP is mainly attributed to the metabolites produced by the interaction with FP, which remains to be elucidated. In this research, the in vitro effects of metabolites of FP fermented by fecal bacteria on energy metabolism and adipogenesis were investigated. The effect of energy metabolism was analyzed by mRNA and protein expression of the intestinal glucose transporters, including sodium dependent glucose transporter (SGLT1) and glucose transporter 2 (GLUT2), and glucose uptake in intestinal Caco-2 cells. The lipogenic effect were evaluated by Oil red O staining of intracellular lipid droplets and the mRNA and protein expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT-enhancer-binding proteins (C/EBP) α and β in 3T3-L1 cells. The results showed the metabolites significantly inhibited glucose intake through downregulating the mRNA and protein expression of GLUT2 and SGLT1 in Caco-2 cells. Besides, they also led to the decrease of lipid accumulation through downregulating the mRNA and protein expression of PPARγ, C/EBPα, and C/EBPβ in differentiating adipocytes. The inhibitory effects on energy intake and adipogenesis were concentration dependent, and metabolites at physiological concentration showed the most significant effect. Metabolites of fecal bacteria fermenting FP inhibited energy intake and adipogenesis at physiological concentration, which might be one of the weight-loss mechanisms of FP-diet.
Collapse
Affiliation(s)
- Xiaohong Lin
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Weiye Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
34
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
35
|
Ferguson JJA, Stojanovski E, MacDonald-Wicks L, Garg ML. High molecular weight oat β-glucan enhances lipid-lowering effects of phytosterols. A randomised controlled trial. Clin Nutr 2020; 39:80-89. [DOI: 10.1016/j.clnu.2019.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 02/04/2019] [Indexed: 01/03/2023]
|
36
|
de Sales Guilarducci J, Marcelino BAR, Konig IFM, Orlando TM, Varaschin MS, Pereira LJ. Therapeutic effects of different doses of prebiotic (isolated from S accharomyces cerevisiae) in comparison to n-3 supplement on glycemic control, lipid profiles and immunological response in diabetic rats. Diabetol Metab Syndr 2020; 12:69. [PMID: 32793305 PMCID: PMC7418400 DOI: 10.1186/s13098-020-00576-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The regular intake of fiber generates numerous health benefits. However, the efficacy depends on the duration of consumption and the ingested dose. Studies investigating the optimal dose are of interest to enable the inclusion of fiber in the routine treatment of diabetic patients. OBJECTIVE We aimed to evaluate the effects of different doses of β-glucan (BG-isolated from Saccharomyces cerevisiae), in comparison to n-3 supplement, on the inflammatory and metabolic parameters of Wistar rats induced to diabetes by streptozotocin. METHODS Forty animals were randomly divided into six groups receiving 0 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg BG daily for 4 weeks or fish oil derivative [1000 mg/kg of omega-3 fatty acids (n-3)] for the same period. One additional group was composed of healthy controls. Serum metabolic and immunological parameters were evaluated by colorimetric and ELISA assays respectively. Histopathological analysis of the liver, small intestine and pancreas were also conducted. Significant changes due to BG intake were set into regression models with second-degree fit in order to estimate the optimal BG dose to achieve health benefits. RESULTS The animals that ingested BG had lower food and water intake (p < 0.05) than the negative control group (0 mg/kg). However, consumption was still elevated in comparison to healthy controls. Blood glucose and serum levels of total cholesterol, LDL-c, and TG (p < 0.05) reduced in comparison to diabetic animals without treatment (better or similar to n-3 group depending on dose), but did not reach normal levels (in comparison to healthy controls). HDL-c was not different (p > 0.05) among all groups. These reductions were already seen with the lowest dose of 10 mg/kg. On average, the serum levels of the hepatic enzymes ALT and AST were 40% and 60% lower in the BG groups in comparison to diabetic animals without treatment (better results than n-3 group). The group receiving 40 mg/kg reached similar values of healthy controls for ALT; whereas the same result occurred from the dose of 10 mg/kg for AST. The ideal dose, estimated from the mean of all metabolic parameters was approximately 30 mg/kg/day. Regarding the immunological profile, TNF-α significantly decreased in the BG groups compared to controls (p < 0.05), reaching better values than n-3 group and similar to healthy controls. No significant differences were found between the groups in IL-1β or IL-10 (p > 0.05). No histological changes were found in the pancreas, liver, or intestine due to treatment among diabetic animals. CONCLUSIONS BG significantly reduced blood glucose as well as serum total cholesterol, LDL-c and TG. There was a hepatoprotective effect due to the reduction in ALT and AST and a reduction in TNF-α, indicating a modulation of the immune response. In general, BG effects were better than n-3 supplement (or at least comparable) depending on the dose.
Collapse
Affiliation(s)
- Janina de Sales Guilarducci
- Departamento de Ciências da Saúde – DSA, Universidade Federal de Lavras – UFLA, 3037, Lavras, 37200-000 Brazil
| | | | - Isaac Filipe Moreira Konig
- Departamento de Ciências da Saúde – DSA, Universidade Federal de Lavras – UFLA, 3037, Lavras, 37200-000 Brazil
| | - Tamira Maria Orlando
- Departamento de Ciências da Saúde – DSA, Universidade Federal de Lavras – UFLA, 3037, Lavras, 37200-000 Brazil
| | - Mary Suzan Varaschin
- Departamento de Ciências da Saúde – DSA, Universidade Federal de Lavras – UFLA, 3037, Lavras, 37200-000 Brazil
- Departamente de Medicina Veterinária – DMV, Universidade Federal de Lavras – UFLA, 3037, Lavras, 37200-000 Brazil
| | - Luciano José Pereira
- Departamento de Ciências da Saúde – DSA, Universidade Federal de Lavras – UFLA, 3037, Lavras, 37200-000 Brazil
| |
Collapse
|
37
|
Storz MA, Küster O. Hypocaloric, plant-based oatmeal interventions in the treatment of poorly-controlled type 2 diabetes: A review. Nutr Health 2019; 25:281-290. [PMID: 31500515 DOI: 10.1177/0260106019874683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Lifestyle interventions, including dietary modifications, play a key role in the treatment of type 2 diabetes. By the second half of the last century, dietary oatmeal interventions had frequently been used in patients with diabetes; however, with the widespread introduction of insulin, this practice gradually fell into disuse. Within the last decades, the original oatmeal intervention, first described in 1903, has been modified towards a hypocaloric, low-fat, and plant-based intervention. AIM The aim of this review was to investigate the current role of these adapted short-term dietary oatmeal interventions in the treatment of patients suffering from poorly-controlled type 2 diabetes. A special focus was put on opportunities for and barriers to its clinical implementation and its potential mechanisms of action. METHODS The electronic databases of PubMed and Google Scholar were searched using the keywords "oat," "oats," "oatmeal," and "diabetes." RESULTS While there are a limited number of clinical studies including hypocaloric short-term dietary oatmeal interventions, there is evidence that these interventions may lead to a significant decrease in mean blood glucose levels and a significant reduction of insulin dosage in patients suffering from poorly-controlled type 2 diabetes. CONCLUSION Modified short-term dietary oatmeal interventions are an effective and economical tool in the treatment of patients suffering from poorly-controlled type 2 diabetes.
Collapse
Affiliation(s)
- Maximilian Andreas Storz
- Department of Internal Medicine and Gastroenterology, Die Filderklinik, Filderstadt-Bonlanden, Germany
| | - Onno Küster
- Department of Internal Medicine and Gastroenterology, Die Filderklinik, Filderstadt-Bonlanden, Germany
| |
Collapse
|
38
|
Cassanye A, Martín-Gari M, Portero-Otin M, Serrano JCE. Adipose Tissue Mitochondrial Factors Profile after Dietary Bioactive Compound Weight Reduction Treatments in a Mice Obesity Model. Int J Mol Sci 2019; 20:E5870. [PMID: 31771102 PMCID: PMC6928597 DOI: 10.3390/ijms20235870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/02/2023] Open
Abstract
Prolonged caloric intake above energy needs disturbs the body's ability to store and manage the excess of energy intake, leading to the onset of chronic degenerative diseases. This study aimed to compare the effect of three foods, which contain demonstrated bioactive compounds in the treatment of obesity and as an adjuvant in obesity energy restriction treatments. In a mice obesity model induced through a high-fat diet; fish oil, soluble fibre, and soy were incorporated to evaluate its capacity to modulate metabolic factors in adipose tissue during a continued fat intake or weight reduction through a normocaloric diet. As a result, fish oil improved mitochondrial related, adipose tissue hormone expression, and oxidation products when high-fat diets are consumed; while soluble fibre improved glucose and inflammation pathways during high-fat diet intake. In weight reduction treatments few differential features, as a treatment adjuvant, were observed for fish oil and soy; while soluble fibre was able to improve the weight reduction effects induced by a normocaloric diet. As a conclusion, soluble fibre supplementation compared to an energy reduction program, was the only treatment able to induce a significant additional effect in the improvement of weight loss and adipose tissue metabolism.
Collapse
Affiliation(s)
| | | | | | - José CE Serrano
- Department of Experimental Medicine, NUTREN-Nutrigenomics, University of Lleida, 25198 Lleida, Spain; (A.C.); (M.M.-G.); (M.P.-O.)
| |
Collapse
|
39
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Qi W, Wang Y, Song G, Sun H, Pang S, Li A. Effects of four coarse cereals on blood glucose levels in rats with STZ-induced hyperglycemia. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1596070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Wentao Qi
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Yong Wang
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Ge Song
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Hui Sun
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Shaojie Pang
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Aike Li
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| |
Collapse
|
41
|
Morkos M, Nensey NK, Bindal A. Micafungin-Induced Hypoglycemia in a Patient With Type 1 Diabetes: A Case Report and Review of Literature. J Clin Endocrinol Metab 2019; 104:981-984. [PMID: 30398618 DOI: 10.1210/jc.2018-02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Patients with type 1 diabetes mellitus (T1DM) are insulin dependent. Infection increases insulin resistance and subsequently increases insulin needs. We are reporting a case of a patient with T1DM and severe infection who has reduced insulin needs after starting micafungin therapy. PARTICIPANT A 29-year-old Hispanic woman with known history of long-standing, uncontrolled T1DM presented for evaluation of worsening dysphagia and dyspnea. She was found to have cervical necrotizing fasciitis extending into the mediastinum and required several debridement surgeries along with broad-spectrum antibiotics and antifungal therapy. She had uncontrolled diabetes with a glycosylated hemoglobin of 13.4% (18.8 mM) on admission. Her insulin requirements progressively increased as a result of worsening infection, continuous tube feeds, and multiple debridement surgeries. She was started on micafungin, a potent 1,3-β-D glucan synthase inhibitor, to broaden antimicrobial coverage when her insulin requirement decreased to zero for >48 hours. Right after discontinuation of micafungin and her switch to a different antifungal, insulin requirements increased back to her baseline needs. RESULTS This is a report of decreased insulin requirements in a patient with T1DM correlating with micafungin administration. The mechanism of micafungin-induced hypoglycemia is not yet established. Oral administration of linear 1,3-β-D glucan has been documented to decrease blood glucose levels significantly by inhibition of expression of sodium-glucose transporter 1 (SGLT1) in intestinal mucosa. CONCLUSION We hypothesize that micafungin may inhibit SGLT-1 function and decrease insulin requirements in patient with T1DM.
Collapse
Affiliation(s)
- Michael Morkos
- Division of Endocrinology and Diabetes, Rush University Medical Center, Chicago, Illinois
- Division of Endocrinology and Diabetes, Indiana University, Avon, Indiana
| | - Nasha K Nensey
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Anila Bindal
- Division of Endocrinology and Diabetes, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
42
|
Shi J, Zhao XH. Effect of caseinate glycation with oligochitosan and transglutaminase on the intestinal barrier function of the tryptic caseinate digest in IEC-6 cells. Food Funct 2019; 10:652-664. [DOI: 10.1039/c8fo01785a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oligochitosan-glycated caseinate digest has higher activity than the caseinate digest to strengthen the intestinal barrier function of IEC-6 cells.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| |
Collapse
|
43
|
Shi J, Zhao XH. Influence of the Maillard-type caseinate glycation with lactose on the intestinal barrier activity of the caseinate digest in IEC-6 cells. Food Funct 2019; 10:2010-2021. [DOI: 10.1039/c8fo02607f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycated caseinate digest of the Maillard-type shows lower capability than the caseinate digest to enhance the intestinal barrier function of IEC-6 cells.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| |
Collapse
|
44
|
Bian C, Bai B, Gao Q, Li S, Zhao Y. 17β-Estradiol Regulates Glucose Metabolism and Insulin Secretion in Rat Islet β Cells Through GPER and Akt/mTOR/GLUT2 Pathway. Front Endocrinol (Lausanne) 2019; 10:531. [PMID: 31447779 PMCID: PMC6691154 DOI: 10.3389/fendo.2019.00531] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Aims: To explore the molecular mechanism by which 17β-estradiol (estrogen 2, E2) regulates glucose transporter 2 (GLUT2) and insulin secretion in islet β cells through G protein-coupled estrogen receptor (GPER) via Akt/mTOR pathway. Methods: SPF-grade SD male rats were used to establish an in vivo type 2 diabetes model treated with E2. Rat insulinoma cells (INS-1) were cultured in normal or high glucose media with or without E2. Immunofluorescence double staining was used to detect GPER, GLUT2, insulin, and glucagon immunolocalization in rat islet tissues. Western blot was used to detect GPER, Akt, mTOR, and GLUT2 protein immunocontent. Real-time PCR detected Slc2a2 and glucose kinase (GK) content, and ELISA was used to detect insulin levels. Glucose uptake, GK activity and pyruvate dehydrogenase (PDH) activity were analyzed with glucose detection, GK activity and PDH activity assay kit. Results: Immunofluorescence double staining confocal indicated that E2 treatment up-regulated expression levels of GPER, GLUT2, and insulin, while down-regulated glucagon. Western blot results revealed E2 increased GPER, Akt/mTOR pathway, and GLUT2 protein immunocontent. Real-time PCR showed E2 elevated Slc2a2, GK content. Moreover, E2 improved insulin secretion, glucose uptake, GK activity, and PDH activity. Conclusion: Our findings indicated that exogenous E2 up-regulated GPER via the Akt/mTOR pathway to increase GLUT2 protein content and insulin secretion in islet β cells.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Bai
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qian Gao
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyi Li
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuyan Zhao
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yuyan Zhao
| |
Collapse
|
45
|
Bozbulut R, Sanlier N. Promising effects of β-glucans on glyceamic control in diabetes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Brede S, Lehnert H. [Nutrition in type 2 diabetes mellitus]. Internist (Berl) 2018; 60:49-58. [PMID: 30560369 DOI: 10.1007/s00108-018-0531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The increasing incidence of metabolic diseases, such as type 2 diabetes mellitus, poses a major problem for the healthcare system. Healthy food habits represent an important therapeutic measure to prevent health sequelae, such as cardiovascular diseases. According to recent data these are less due to individual dietary components and more to the composition of nutrition. A positive effect on glucose and fat metabolism in type 2 diabetes has been confirmed for various forms of nutrition. In addition to the type of nutrition, the so-called glycemic index of foodstuffs is also decisive for blood glucose control. Additionally, beneficial effects for particular foodstuffs, such as coffee, could be determined in patients with diabetes.
Collapse
Affiliation(s)
- S Brede
- Medizinische Klinik 1, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| | - H Lehnert
- Medizinische Klinik 1, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.,Deutsches Zentrum für Diabetesforschung e. V. (DZD), Lübeck, Deutschland
| |
Collapse
|
47
|
Hypoglycaemic effect of capsaicinoids via elevation of insulin level and inhibition of glucose absorption in streptozotocin-induced diabetic rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
48
|
Transcriptomic analysis reveals effects of fucoxanthin on intestinal glucose transport. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
49
|
Goff HD, Repin N, Fabek H, El Khoury D, Gidley MJ. Dietary fibre for glycaemia control: Towards a mechanistic understanding. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Cao Y, Chen X, Sun Y, Shi J, Xu X, Shi YC. Hypoglycemic Effects of Pyrodextrins with Different Molecular Weights and Digestibilities in Mice with Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2988-2995. [PMID: 29446938 DOI: 10.1021/acs.jafc.8b00404] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pyrodextrin shares some properties of resistant starch, which is metabolically beneficial, and has potential applications as a functional food. In this study, we report that the oral administration of pyrodextrin (50 mg/kg/d for 7 weeks) decreased blood glucose (from 9.18 ± 1.47 to 7.67 ± 0.42 mmol/L), serum HbA1c, triglycerides, adipocyte size, and body weight (from 24.4 ± 1.2 to 22.5 ± 1.2 g) in mice with high-fat-diet-induced obesity. Western-blotting analysis suggested that pyrodextrins decreased intestinal SGLT-1 and GLUT-2 expression to ∼70 and ∼60% of the obese control, respectively, which slowed down glucose transportation from the gut into the blood and tentatively improved hepatic metabolism. Moreover, the pyrodextrin with a lower molecular weight of 44 kDa, a more branched structure, and increased nondigestible starch of 46.2 ± 0.3% showed stronger hypoglycemic activity. This work provides important information for developing pyrodextrins as a functional food and dietary supplement for the management of obesity and diabetes.
Collapse
Affiliation(s)
- Yan Cao
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiaoli Chen
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
- College of Food Science and Technology, Modern Biochemistry Experimental Center , Guangdong Ocean University , Zhanjiang 524088 , China
| | - Ying Sun
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Jialiang Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry , Kansas State University , Manhattan , Kansas 66506 , United States
| |
Collapse
|