1
|
Tutas Günaydın N, Barut Selver O. Pediatric limbal stem cell deficiency: An overview of a rarely studied pathology. Eur J Ophthalmol 2025; 35:821-833. [PMID: 39473431 DOI: 10.1177/11206721241291995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The cornea is the outermost transparent layer of the eye, and the continuous renewal of the corneal epithelium is important for its transparency. This process is primarily facilitated by corneal stem cells, most of which are found at the limbus. However, any deterioration or damage in this region leads to corneal conjunctivalization and consequent limbal stem cell deficiency (LSCD), which compromises corneal transparency. LSCD is an important condition, especially in the pediatric population, as it can lead to corneal vascularization, opacity and ultimately loss of vision and subsequent amblyopia, unlike adults. Although pediatric LSCD is often due to chemical injuries, as in adults, it is also caused by conditions such as congenital aniridia, Steven Johnson Syndrome and various other immunological disorders. Appropriate and timely treatment in pediatric LSCD is of particular importance in preventing progression to amblyopia, unlike adults. Accurate staging of the disease is essential for the necessary medical and surgical treatment decision. While medical approaches are at the forefront to eliminate the causative agent and improve the ocular surface in reversible cases, it is essential to replace the limbal stem cells lost in advanced disease. For these replacement procedures, it is noteworthy that there is a tendency for minimally invasive methods compared to adults to avoid possible complications due to long life expectancy in children. In conclusion, although there are various reviews on limbal stem cell deficiency (LSCD) in adults, we believe that this review for childhood LSCD will make an important contribution to the literature, since the relevant literature currently reported for the pediatric population is limited.
Collapse
Affiliation(s)
- Nesrin Tutas Günaydın
- Department of Ophtalmology, Istanbul Arel University, Bahçelievler Memorial Hospital, Istanbul, Turkey
| | - Ozlem Barut Selver
- Department of Ophthalmology, School of Medicine, Ege University, Izmir, Turkey
- Stem Cell Department, Graduate School of Health Sciences, Ege University, Izmir, Turkey
- Limbustem R&D Medical Products Ltd & Ocular Surface Research Laboratory, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2025; 145:766-779. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Bothra N, Agarwal P, Ali MJ. Lacrimal Drainage Anomalies in Goldenhar, Rubinstein-Taybi, and Ectodermal-Ectrodactyly-Clefting Syndromes. Semin Ophthalmol 2025; 40:120-127. [PMID: 38775226 DOI: 10.1080/08820538.2024.2355310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 01/24/2025]
Abstract
OBJECTIVE To describe in detail the lacrimal drainage system anomalies and review of literature in patients with Goldenhar syndrome, Rubinstein-Taybi syndrome (RTS), and Ectodermal-Ectrodactyly-Clefting syndrome (EECS), their management and outcomes. METHODS A retrospective chart review from January 2011-June 2023 of all cases presenting to the Dacryology clinic with Goldenhar syndrome, RTS, and EECS was obtained. Data collected included demographics, laterality, clinical presentations, proximal and distal lacrimal drainage anomalies, associated systemic features, management, and outcomes. RESULTS Eight children with Goldenhar syndrome (n = 13), three with RTS (n = 5) and three with EECS (n = 5) presented with lacrimal drainage system involvement. Cases with Goldenhar syndrome showed male predominance (5/8), and the mean age at presentation was 14.75 months. Four cases had simple CNLDO, seven cases with complex CNLDO (4 - buried probe and 3 - atonic sacs) and a single neonate presented with bilateral dacryocele. Patients with RTS presented with mean age of 36.33 months with male predominance. Probing under endoscopic guidance explored the anatomy thoroughly and those with altered nasal anatomy increased the probability of complex CNLDO. Those with EECS (n = 5) presented with a greater involvement of proximal lacrimal drainage system compared with Goldenhar syndrome and RTS, including anomalies like punctal agenesis, incomplete punctal canalization (IPC), ectopic puncta, canalicular stenosis, and complex CNLDO. CONCLUSIONS A step-wise approach to assessing the proximal and lacrimal drainage system in those affected with craniofacial malformations and addressing them can result in satisfactory outcomes for the majority of patients.
Collapse
Affiliation(s)
- Nandini Bothra
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India
| | - Purva Agarwal
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India
| | - Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
4
|
Bizheva K, Hosseinaee Z, Carter K, Hileeto D, Ballios BG, Sorbara L, Chew HF. In Vivo Contactless, Cellular-Resolution Imaging of the Healthy and Pathological Human Limbus With 250-kHz Point-Scanning SD-OCT. Transl Vis Sci Technol 2024; 13:29. [PMID: 39688850 DOI: 10.1167/tvst.13.12.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Purpose To demonstrate that high-seed, ultra-high-resolution spectral-domain optical coherence tomography (SD-OCT) technology can image in vivo fine morphological features in the healthy and pathological human limbus. Methods A compact, fiberoptic SD-OCT system was developed for imaging the human limbus. It combines ∼1.5-µm isotropic spatial resolution in ocular tissue and an acquisition rate of 250,000 A-scans per second. The imaging probe was outfitted with two microscope objectives to provide flexibility in the choice of wide field of view and extended depth of focus versus high lateral resolution. The clinical potential of the system was evaluated by imaging subjects with limbal stem cell dysfunction (LSCD; n = 4) and healthy controls (n = 6). Results Limbus images acquired from the healthy controls showed normal cellular structure of the limbal crypts, palisades of Vogt (POVs), and vasculature of the underlying scleral tissue. Images acquired from the LSCD subjects showed distortions or absence of POVs, invasion of highly scattering conjunctival tissue over the limbal and peripheral corneal epithelium, scarring and thinning of the limbal epithelium, and neovascularization. Conclusions The combination of high OCT spatial resolution and rapid image acquisition rate allows for in vivo, contactless, volumetric visualization of fine morphological details that could be beneficial for the precise diagnosis and grading of LSCD, planning of treatment, and evaluation of the effectiveness of the treatment approaches. Translational Relevance The OCT technology described here could improve the clinical diagnostics and grading of LSCD, preoperative planning, and postoperative evaluation of LSCD subjects, in addition to monitoring the effectiveness of various LSCD treatments.
Collapse
Affiliation(s)
- Kostadinka Bizheva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Department of System Design Engineering, University of Waterloo, Waterloo, ON, Canada
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Zohreh Hosseinaee
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Department of System Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Kirsten Carter
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Brian G Ballios
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Luigina Sorbara
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Hall F Chew
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Zhang C, Lin Z, Yu Y, Wu S, Huang H, Huang Y, Liu J, Mo K, Tan J, Han Z, Li M, Zhao W, Ouyang H, Chen X, Wang L. Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system. LIFE MEDICINE 2024; 3:lnae033. [PMID: 39872440 PMCID: PMC11749776 DOI: 10.1093/lifemedi/lnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 01/30/2025]
Abstract
The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the in vitro differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages. Key marker gene expression, transcription factor activity, and signaling pathway insights revealed stepwise transitions from undifferentiated ESCs to fate-specified cell types, including a PAX6 + TP63 + population indicative of OSE precursors. Comparative analysis with mouse embryonic development confirmed the model's accuracy in mimicking in vivo epiblast-to-surface ectoderm dynamics. By integrating temporal dynamics of transcription factor activation and cell-cell communication, we constructed a comprehensive molecular atlas of the differentiation pathway from ESCs to distinct ectodermal lineages. This study provides new insights into the cellular heterogeneity and regulatory mechanisms of OSE development, aiding the understanding of ocular surface biology and the design of cell-based therapies for ocular surface disorders.
Collapse
Affiliation(s)
- Canwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Yankun Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi 832002, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| |
Collapse
|
6
|
Hizem S, Maamouri R, Zaouak A, Rejeb I, Karoui S, Sebai M, Jilani H, Elaribi Y, Fenniche S, Cheour M, Bilan F, Ben Jemaa L. Absent meibomian glands and cone dystrophy in ADULT syndrome: identification by whole exome sequencing of pathogenic variants in two causal genes TP63 and CNGB3. Ophthalmic Genet 2024; 45:84-94. [PMID: 37158316 DOI: 10.1080/13816810.2023.2206891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Ectrodactyly is a rare congenital limb malformation characterized by a deep median cleft of the hand and/or foot due to the absence of central rays. It could be isolated or depicts a part of diverse syndromic forms. Heterozygous pathogenic variants in the TP63 gene are responsible for at least four rare syndromic human disorders associated with ectrodactyly. Among them, ADULT (Acro-Dermato-Ungual-Lacrimal-Tooth) syndrome is characterized by ectodermal dysplasia, excessive freckling, nail dysplasia, and lacrimal duct obstruction, in addition to ectrodactyly and/or syndactyly. Ophthalmic findings are very common in TP63-related disorders, consisting mainly of lacrimal duct hypoplasia. Absent meibomian glands have also been well documented in EEC3 (Ectrodactyly Ectodermal dysplasia Cleft lip/palate) syndrome but not in ADULT syndrome. METHODS We report a case of syndromic ectrodactyly consistent with ADULT syndrome, with an additional ophthalmic manifestation of agenesis of meibomian glands. The proband, as well as her elder sister, presented with congenital cone dystrophy.The molecular investigation was performed in the proband using Whole Exome Sequencing. Family segregation of the identified variants was confirmed by Sanger sequencing. RESULTS Two clinically relevant variants were found in the proband: the novel de novo heterozygous missense c.931A > G (p.Ser311Gly) in the TP63 gene classified as pathogenic, and the homozygous nonsense pathogenic c.1810C > T (p.Arg604Ter) in the CNGB3 gene. The same homozygous CNGB3 variation was also found in the sister, explaining the cone dystrophy in both cases. CONCLUSIONS Whole Exome Sequencing allowed dual molecular diagnoses: de novo TP63-related syndromic ectrodactyly and familial CNGB3-related congenital cone dystrophy.
Collapse
Affiliation(s)
- Syrine Hizem
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Human genetics laboratory, LR99ES10- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rym Maamouri
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Ophthalmology, Habib Thameur hospital, Tunis, Tunisia
| | - Anissa Zaouak
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Dermatology, Genodermatosis and Cancers Laboratory LR12SP03, Habib Thameur Hospital, Tunis, Tunisia
| | - Imen Rejeb
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Maternal and Child health laboratory, LR22SP01- Mongi Slim Hospital, Tunis, Tunisia
| | - Sana Karoui
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Maternal and Child health laboratory, LR22SP01- Mongi Slim Hospital, Tunis, Tunisia
| | - Molka Sebai
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Human genetics laboratory, LR99ES10- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houweyda Jilani
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yasmina Elaribi
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sami Fenniche
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Dermatology, Genodermatosis and Cancers Laboratory LR12SP03, Habib Thameur Hospital, Tunis, Tunisia
| | - Monia Cheour
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Ophthalmology, Habib Thameur hospital, Tunis, Tunisia
| | - Frédéric Bilan
- Laboratoire de Génétique, Service de Génétique, CHU Poitiers, Poitiers, France
| | - Lamia Ben Jemaa
- Department of congenital and hereditary diseases, Mongi Slim hospital, La Marsa, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Maternal and Child health laboratory, LR22SP01- Mongi Slim Hospital, Tunis, Tunisia
| |
Collapse
|
7
|
Altshuler A, Amitai-Lange A, Nasser W, Dimri S, Bhattacharya S, Tiosano B, Barbara R, Aberdam D, Shimmura S, Shalom-Feuerstein R. Eyes open on stem cells. Stem Cell Reports 2023; 18:2313-2327. [PMID: 38039972 PMCID: PMC10724227 DOI: 10.1016/j.stemcr.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023] Open
Abstract
Recently, the murine cornea has reemerged as a robust stem cell (SC) model, allowing individual SC tracing in living animals. The cornea has pioneered seminal discoveries in SC biology and regenerative medicine, from the first corneal transplantation in 1905 to the identification of limbal SCs and their transplantation to successfully restore vision in the early 1990s. Recent experiments have exposed unexpected properties attributed to SCs and progenitors and revealed flexibility in the differentiation program and a key role for the SC niche. Here, we discuss the limbal SC model and its broader relevance to other tissues, disease, and therapy.
Collapse
Affiliation(s)
- Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ramez Barbara
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Daniel Aberdam
- Université Paris-Cité, INSERM U1138, Centre des Cordeliers, 75270 Paris, France
| | - Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Tokyo, Japan
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
8
|
Smits JGA, Cunha DL, Amini M, Bertolin M, Laberthonnière C, Qu J, Owen N, Latta L, Seitz B, Roux LN, Stachon T, Ferrari S, Moosajee M, Aberdam D, Szentmary N, van Heeringen SJ, Zhou H. Identification of the regulatory circuit governing corneal epithelial fate determination and disease. PLoS Biol 2023; 21:e3002336. [PMID: 37856539 PMCID: PMC10586658 DOI: 10.1371/journal.pbio.3002336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity.
Collapse
Affiliation(s)
- Jos G. A. Smits
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Dulce Lima Cunha
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | | | - Camille Laberthonnière
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Jieqiong Qu
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, UKS, Homburg, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, UKS, Homburg, Germany
| | | | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | | | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniel Aberdam
- INSERM U976, Paris, France
- Université de Paris, INSERM U1138, Centre des Cordeliers, Paris, France
| | - Nora Szentmary
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
| | - Simon J. van Heeringen
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Huiqing Zhou
- Faculty of Science, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
10
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
11
|
Moshirfar M, Masud M, Harvey DH, Payne C, Bruce E, Ronquillo YC, Hoopes PC. The Multifold Etiologies of Limbal Stem Cell Deficiency: A Comprehensive Review on the Etiologies and Additional Treatment Options for Limbal Stem Cell Deficiency. J Clin Med 2023; 12:4418. [PMID: 37445454 DOI: 10.3390/jcm12134418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Given the various ocular manifestations of limbal stem cell insufficiency, an awareness of the genetic, acquired, and immunological causes and associated additional treatments of limbal stem cell deficiency (LSCD) is essential for providers. We performed a comprehensive review of the literature on the various etiologies and specific therapies for LSCD. The resources utilized in this review included Medline (PubMed), Embase, and Google Scholar. All English-language articles and case reports published from November 1986 through to October 2022 were reviewed in this study. There were collectively 99 articles on these topics. No other exclusion criteria were applied. Depending on the etiology, ocular manifestations of limbal stem cell deficiency range from dry eye syndrome and redness to more severe outcomes, including corneal ulceration, ocular surface failure, and vision loss. Identifying the source of damage for LSCD is critical in the treatment process, given that therapy may extend beyond the scope of the standard protocol, including artificial tears, refractive surgery, and allogeneic stem cell transplants. This comprehensive review of the literature demonstrates the various genetic, acquired, and immunological causes of LSCD and the spectrum of supplemental therapies available.
Collapse
Affiliation(s)
- Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
- John A. Moran Eye Center, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Utah Lions Eye Bank, Murray, UT 84107, USA
| | - Maliha Masud
- School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Devon Hori Harvey
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Carter Payne
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
| | - Elayna Bruce
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Philip C Hoopes
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT 84020, USA
| |
Collapse
|
12
|
Labunski A, Carrasquillo KG, Brocks D. Treatment and Management of Ectrodactyly-Ectodermal Dysplasia-Clefting Syndrome With Scleral Prosthetic Devices. Eye Contact Lens 2023; 49:262-265. [PMID: 37053073 DOI: 10.1097/icl.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
ABSTRACT This case report highlights the unique application and long-term benefits of customized scleral devices in a patient with ocular complications from ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome over the span of 10 years. A 13-year-old girl with a history of EEC syndrome and ocular manifestations, including severe bilateral dry eye disease, corneal neovascularization and scarring, progressive fibrous pannus, and limbal stem cell deficiency, was examined and fitted with scleral devices. The goal of treatment was to stabilize the ocular surface, enhance vision, and improve ocular comfort. Throughout the course of treatment, there was minimal progression in ocular signs, despite interruptions in scleral device wear from application and removal challenges secondary to ectrodactyly. Customized scleral devices provided an optimal environment to support the ocular surface, improve comfort, and improve visual acuity. Further studies are required to demonstrate the benefits of scleral devices in larger populations of patients with EEC syndrome.
Collapse
Affiliation(s)
- Andrea Labunski
- New England College of Optometry (A.L., K.G.C.), Cornea and Contact Lens Department, Boston, MA; and BostonSight (K.G.C., D.B.), BostonSight Clinic, Needham, MA
| | | | | |
Collapse
|
13
|
Mohd Jais MF, Wan Dien T, Ang WJ, Raja Omar RN, Mohamad NF. Ocular Manifestations of Ectrodactyly-Ectodermal Dysplasia-Cleft Palate (EEC) Syndrome: A Case Report. Cureus 2023; 15:e36086. [PMID: 37065317 PMCID: PMC10095601 DOI: 10.7759/cureus.36086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 03/14/2023] Open
Abstract
Ocular manifestations are common associations of ectrodactyly-Ectodermal dysplasia-cleft palate (EEC) syndrome. We would like to report a case of a 48-year-old patient with EEC syndrome who manifested ocular and extraocular signs and symptoms. The ophthalmic findings in this patient included chronic blepharitis and absence of meibomian gland. There was also a presence of hazy cornea with vascularized corneal stroma and symblepharon involving the lower lid. Systemic conditions showed generalized dry and scaly skin with hand-foot split deformity. Therefore, ophthalmologists should be alert to spot and diagnose this condition as prompt treatment should be commenced considering this can be sight-threatening.
Collapse
|
14
|
Helenius K, Ojala L, Kainulainen L, Peltonen S, Hietala M, Pohjola P, Parikka V. Overlap between EEC and AEC syndrome and immunodeficiency in a preterm infant with a TP63 variant. Eur J Med Genet 2023; 66:104735. [PMID: 36863510 DOI: 10.1016/j.ejmg.2023.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Pathogenic variants in the transcription factor TP63 gene cause a variety of clinical phenotypes, such as ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome and ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome. Historically, TP63-related phenotypes have been divided into several syndromes based on both the clinical presentation and location of the pathogenic variant on the TP63 gene. This division is complicated by significant overlap between syndromes. Here we describe a patient with clinical characteristics of different TP63-associated syndromes (cleft lip and palate, split feet, ectropion, erosions of the skin and corneas), associated with a de novo heterozygous pathogenic variant c.1681 T>C, p.(Cys561Arg) in exon 13 of the TP63 gene. Our patient also developed enlargement of the left-sided cardiac compartments and secondary mitral insufficiency, which is a novel finding, and immune deficiency, which has only rarely been reported. The clinical course was further complicated by prematurity and very low birth weight. We illustrate the overlapping features of EEC and AEC syndrome and multidisciplinary care needed to address the various clinical challenges.
Collapse
Affiliation(s)
- Kjell Helenius
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland.
| | - Liisa Ojala
- Department of Ophthalmology, Turku University Hospital, Turku, Finland
| | - Leena Kainulainen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, Turku University Hospital and University of Turku, Turku, Finland; Department of Dermatology and Venereology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marja Hietala
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Pia Pohjola
- Department of Genomics and Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Vilhelmiina Parikka
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
15
|
Innovative Therapeutic Approaches for the Treatment of the Ocular Morbidities in Patients with EEC Syndrome. Cells 2023; 12:cells12030495. [PMID: 36766837 PMCID: PMC9914602 DOI: 10.3390/cells12030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is caused by heterozygous missense point mutations in the p63 gene, an important transcription factor during embryogenesis and for stem cell differentiation in stratified epithelia. Most of the cases are sporadic, related to de novo mutations arising during early-stage development. Familial cases show an autosomic dominant inheritance. The major cause of visual morbidity is limbal stem cell failure, which develops in the second to third decade of life. Patients often show ocular surface alterations, such as recurrent blepharitis and conjunctivitis, superficial microlesions of the cornea, and spontaneous corneal perforation and ulceration, leading to progressive corneal clouding and eventually visual loss. No definitive cures are currently available, and treatments to alleviate symptoms are only palliative. In this review, we will discuss the proposed therapeutic strategies that have been tested or are under development for the management of the ocular defects in patients affected by EEC syndrome: (i) gene therapy-based approaches by means of Allele-Specific (AS) siRNAs to correct the p63 mutations; (ii) cell therapy-based approaches to replenish the pool of limbal stem cells; and (iii) drug therapy to correct/bypass the genetic defect. However, as the number of patients with EEC syndrome is too limited, further studies are still necessary to prove the effectiveness (and safety) of these innovative therapeutic approaches to counteract the premature differentiation of limbal stem cells.
Collapse
|
16
|
Masood F, Chang JH, Akbar A, Song A, Hu WY, Azar DT, Rosenblatt MI. Therapeutic Strategies for Restoring Perturbed Corneal Epithelial Homeostasis in Limbal Stem Cell Deficiency: Current Trends and Future Directions. Cells 2022; 11:3247. [PMID: 36291115 PMCID: PMC9600167 DOI: 10.3390/cells11203247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023] Open
Abstract
Limbal stem cells constitute an important cell population required for regeneration of the corneal epithelium. If insults to limbal stem cells or their niche are sufficiently severe, a disease known as limbal stem cell deficiency occurs. In the absence of functioning limbal stem cells, vision-compromising conjunctivalization of the corneal epithelium occurs, leading to opacification, inflammation, neovascularization, and chronic scarring. Limbal stem cell transplantation is the standard treatment for unilateral cases of limbal stem cell deficiency, but bilateral cases require allogeneic transplantation. Herein we review the current therapeutic utilization of limbal stem cells. We also describe several limbal stem cell markers that impact their phenotype and function and discuss the possibility of modulating limbal stem cells and other sources of stem cells to facilitate the development of novel therapeutic interventions. We finally consider several hurdles for widespread adoption of these proposed methodologies and discuss how they can be overcome to realize vision-restoring interventions.
Collapse
Affiliation(s)
- Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Anosh Akbar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy Song
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Extended Overview of Ocular Phenotype with Recent Advances in Hypohidrotic Ectodermal Dysplasia. CHILDREN 2022; 9:children9091357. [PMID: 36138666 PMCID: PMC9497858 DOI: 10.3390/children9091357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The term ectodermal dysplasias (EDs) describes a heterogeneous group of inherited developmental disorders that affect several tissues of ectodermal origin. The most common form of EDs is hypohidrotic ectodermal dysplasia (HED), which is characterized by hypodontia, hypotrichosis, and partial or total eccrine sweat gland deficiency. HED is estimated to affect at least 1 in 17,000 people worldwide. Patients with HED have characteristic facies with periorbital hyperpigmentation, depressed nasal bridge, malar hypoplasia, and absent or sparse eyebrows and eyelashes. The common ocular features of HED include madarosis, trichiasis, and ocular chronic surface disease due to dry eye syndrome, which manifests clinically with discomfort, photophobia, and redness. Dry eye is common in HED and results from a combination of ocular surface defects: mucus abnormalities (abnormal conjunctival mucinous glands), aqueous tear deficiency (abnormalities in the lacrimal gland) and lipid deficiency (due to the partial or total absence of the meibomian glands; modified sebaceous glands with the tarsal plate). Sight-threatening complications result from ocular surface disease, including corneal ulceration and perforation with subsequent corneal scarring and neovascularization. Rare ocular features have been reported and include bilateral or unilateral congenital cataracts, bilateral glaucoma, chorioretinal atrophy and atresia of the nasolacrimal duct. Recognition of the ocular manifestations of HED is required to perform clinical surveillance, instigate supportive and preventative treatment, and manage ocular complications.
Collapse
|
18
|
Schneider H. Ectodermal dysplasias: New perspectives on the treatment of so far immedicable genetic disorders. Front Genet 2022; 13:1000744. [PMID: 36147498 PMCID: PMC9485875 DOI: 10.3389/fgene.2022.1000744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The past decade has witnessed an expansion of molecular approaches facilitating the differential diagnosis of ectodermal dysplasias, a group of genetic diseases characterized by the lack or malformation of hair, teeth, nails, and certain eccrine glands. Moreover, advances in translational research have increased the therapeutic opportunities for such rare diseases, and new dental, surgical, and ophthalmic treatment options are likely to offer relief to many individuals affected by ectodermal dysplasias. In X-linked hypohidrotic ectodermal dysplasia (XLHED), the genetic deficiency of the signaling molecule ectodysplasin A1 (EDA1) may even be overcome before birth by administration of a recombinant replacement protein. This has been shown at least for the key problem of male subjects with XLHED, the nearly complete absence of sweat glands and perspiration which can lead to life-threatening hyperthermia. Prenatal treatment of six boys by injection of an EDA1 replacement protein into the amniotic fluid consistently induced the development of functional sweat glands. Normal ability to sweat has so far persisted for >5 years in the two oldest boys treated in utero. Thus, timely replacement of a missing protein appears to be a promising therapeutic strategy for the most frequent ectodermal dysplasia and possibly additional congenital disorders.
Collapse
Affiliation(s)
- Holm Schneider
- Center for Ectodermal Dysplasias and Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Willems M, Wells CF, Coubes C, Pequignot M, Kuony A, Michon F. Hypolacrimia and Alacrimia as Diagnostic Features for Genetic or Congenital Conditions. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35925585 PMCID: PMC9363675 DOI: 10.1167/iovs.63.9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As part of the lacrimal apparatus, the lacrimal gland participates in the maintenance of a healthy eye surface by producing the aqueous part of the tear film. Alacrimia and hypolacrimia, which are relatively rare during childhood or young adulthood, have their origin in a number of mechanisms which include agenesia, aplasia, hypoplasia, or incorrect maturation of the gland. Moreover, impaired innervation of the gland and/or the cornea and alterations of protein secretion pathways can lead to a defective tear film. In most conditions leading to alacrimia or hypolacrimia, however, the altered tear film is only one of numerous defects that arise and therefore is commonly disregarded. Here, we have systematically reviewed all of those genetic conditions or congenital disorders that have alacrimia or hypolacrimia as a feature. Where it is known, we describe the mechanism of the defect in question. It has been possible to clearly establish the physiopathology of only a minority of these conditions. As hypolacrimia and alacrimia are rare features, this review could be used as a tool in clinical genetics to perform a quick diagnosis, necessary for appropriate care and counseling.
Collapse
Affiliation(s)
- Marjolaine Willems
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Constance F Wells
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Christine Coubes
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Montpellier University Hospital Center, Montpellier, France
| | - Marie Pequignot
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.,Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Frederic Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
20
|
Palamenghi M, De Luca M, De Rosa L. The steep uphill path leading to ex vivo gene therapy for genodermatoses. Am J Physiol Cell Physiol 2022; 323:C896-C906. [PMID: 35912986 DOI: 10.1152/ajpcell.00117.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapy, gene therapy and tissue engineering have the potential to revolutionize the field of regenerative medicine. In particular, gene therapy is understood as the therapeutical correction of mutated genes by addition of a correct copy of the gene or site-specific gene modifications. Gene correction of somatic stem cells sustaining renewing tissues is critical to ensure long-term clinical success of ex vivo gene therapy. To date, remarkable clinical outcomes arose from combined ex vivo cell and gene therapy of different genetic diseases, such as immunodeficiencies and genodermatoses. Despite the efforts of researchers around the world, only few of these advanced approaches has yet made it to routine therapy. In fact, gene therapy poses one of the greatest technical challenges in modern medicine, spanning safety and efficacy issues, regulatory constraints, registration and market access, all of which need to be addressed to make the therapy available to rare disease patients. In this review, we survey at some of the main challenges in the development of combined cell and gene therapy of genetic skin diseases.
Collapse
Affiliation(s)
- Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
21
|
Barbaro V, Orvieto A, Alvisi G, Bertolin M, Bonelli F, Liehr T, Harutyunyan T, Kankel S, Joksic G, Ferrari S, Daniele E, Ponzin D, Bettio D, Salviati L, Di Iorio E. Analysis and pharmacological modulation of senescence in human epithelial stem cells. J Cell Mol Med 2022; 26:3977-3994. [PMID: 35706382 PMCID: PMC9279594 DOI: 10.1111/jcmm.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022] Open
Abstract
Human epithelial stem cells (ESCs) are characterized by long‐term regenerative properties, much dependent on the tissue of origin and varying during their lifespan. We analysed such variables in cultures of ESCs isolated from the skin, conjunctiva, limbus and oral mucosa of healthy donors and patients affected by ectrodactyly‐ectodermal dysplasia‐clefting syndrome, a rare genetic disorder caused by mutations in the p63 gene. We cultured cells until exhaustion in the presence or in the absence of DAPT (γ‐secretase inhibitor; N‐[N‐(3, 5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine T‐butyl ester). All cells were able to differentiate in vitro but exhibited variable self‐renewal potential. In particular, cells carrying p63 mutations stopped prematurely, compared with controls. Importantly, administration of DAPT significantly extended the replicative properties of all stem cells under examination. RNA sequencing analysis revealed that distinct sets of genes were up‐ or down‐regulated during their lifetime, thus allowing to identify druggable gene networks and off‐the‐shelf compounds potentially dealing with epithelial stem cell senescence. These data will expand our knowledge on the genetic bases of senescence and potentially pave the way to the pharmacological modulation of ageing in epithelial stem cells.
Collapse
Affiliation(s)
| | - Antonio Orvieto
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | | | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia
| | - Stefanie Kankel
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Gordana Joksic
- Department of Physical Chemistry, Vinča Institue of Nuclear Sciences, University of Belgrade, Vinča, Serbia
| | | | - Elena Daniele
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy.,Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Clinical Genetics Unit, University Hospital of Padua, Padua, Italy
| |
Collapse
|
22
|
Novelli F, Ganini C, Melino G, Nucci C, Han Y, Shi Y, Wang Y, Candi E. p63 in corneal and epidermal differentiation. Biochem Biophys Res Commun 2022; 610:15-22. [DOI: 10.1016/j.bbrc.2022.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
|
23
|
Potential Risks of Corneal Refractive Surgery in Patients with Ectodermal Dysplasia. Ophthalmol Ther 2022; 11:1281-1289. [PMID: 35532881 PMCID: PMC9253218 DOI: 10.1007/s40123-022-00515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/05/2022] Open
Abstract
Ectodermal dysplasia (ED) involves the aberrant development of at least two ectodermal derivatives, such as skin, teeth, hair, sweat glands, and ocular tissue. The group of over 200 conditions is commonly classified into two major types: hypohidrotic/anhidrotic ED, in which sweat glands are either absent or significantly reduced, and hidrotic ED, in which sweat glands are normal. Ocular manifestations pertinent to patients undergoing corneal vision correction surgery include multifaceted dry eye syndrome, corneal pathology, such as recurrent erosions, scars, neovascularization, and limbal stem cell deficiency, and early-onset cataracts and glaucoma. In this article we discuss the current understanding of ED and offer factors to consider when these patients are seeking corneal refractive surgery.
Collapse
|
24
|
Portal C, Wang Z, Scott DK, Wolosin JM, Iomini C. The c-Myc Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35103750 PMCID: PMC8822362 DOI: 10.1167/iovs.63.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The transcription factor c-Myc (Myc) plays central regulatory roles in both self-renewal and differentiation of progenitors of multiple cell lineages. Here, we address its function in corneal epithelium (CE) maintenance and repair. Methods Myc ablation in the limbal–corneal epithelium was achieved by crossing a floxed Myc mouse allele (Mycfl/fl) with a mouse line expressing the Cre recombinase gene under the keratin (Krt) 14 promoter. CE stratification and protein localization were assessed by histology of paraffin and plastic sections and by immunohistochemistry of frozen sections, respectively. Protein levels and gene expression were determined by western blot and real-time quantitative PCR, respectively. CE wound closure was tracked by fluorescein staining. Results At birth, mutant mice appeared indistinguishable from control littermates; however, their rates of postnatal weight gain were 67% lower than those of controls. After weaning, mutants also exhibited spontaneous skin ulcerations, predominantly in the tail and lower lip, and died 45 to 60 days after birth. The mutant CE displayed an increase in stratal thickness, increased levels of Krt12 in superficial cells, and decreased exfoliation rates. Accordingly, the absence of Myc perturbed protein and mRNA levels of genes modulating differentiation and proliferation processes, including ΔNp63β, Ets1, and two Notch target genes, Hey1 and Maml1. Furthermore, Myc promoted CE wound closure and wound-induced hyperproliferation. Conclusions Myc regulates the balance among CE stratification, differentiation, and surface exfoliation and promotes the transition to the hyperproliferative state during wound healing. Its effect on this balance may be exerted through the control of multiple regulators of cell fate, including isoforms of tumor protein p63.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Donald K Scott
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
25
|
Savukyne E, Machtejeviene E, Bajeruniene K, Asmoniene V. Prenatal diagnosis of ectrodactyly-ectodermal dysplasia clefting syndrome ‒ a case report with literature review. CASE REPORTS IN PERINATAL MEDICINE 2022; 11:20210076. [PMID: 40041233 PMCID: PMC11800666 DOI: 10.1515/crpm-2021-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/16/2022] [Indexed: 03/06/2025]
Abstract
Objectives The ectrodactyly-ectodermal dysplasia clefting (EEC) syndrome is a rare genetic anomaly described as ectrodactyly (hands and feet), ectodermal dysplasia, and facial cleft with an incidence of around 1 in 90,000 in the population. This syndrome belongs to the TP63 gene's mutation family. Ectrodactyly is described as the absence of the central toes or fingers or parts of these appendages. Ectodermal dysplasia usually includes changes in the skin, teeth, hair, nails, endocrine glands, nasolacrimal ducts, genitourinary system, conductive hearing loss. Case presentation This is a unique case of a 40-year-old second gravida, suspected of having a sporadic form of EEC syndrome. Routine transabdominal ultrasound at 14 weeks of gestation revealed malformation of the limbs. The two-dimensional and three-dimensional ultrasound at 16 weeks showed a fetus with ectrodactyly of right hand and foot and cleft palate presence. Diagnostic amniocentesis was performed at 17 weeks of gestation. A molecular genetics test using the Sanger sequencing method from amniotic fluid was performed by scanning TP63 gene sequences and revealed a heterozygous pathogenic variant in TP63. The patient decided on feticide. Conclusions The heredity of the syndrome is autosomal dominant with high variable expression. More than 300 clinical cases of this syndrome are described in the literature, including both sexes, but the actual etiology is unknown.
Collapse
Affiliation(s)
- Egle Savukyne
- Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Egle Machtejeviene
- Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Kotryna Bajeruniene
- Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Virginija Asmoniene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
26
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
27
|
Koch PJ, Koster MI. Rare Genetic Disorders: Novel Treatment Strategies and Insights Into Human Biology. Front Genet 2021; 12:714764. [PMID: 34422015 PMCID: PMC8378213 DOI: 10.3389/fgene.2021.714764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The last decade has seen a dramatic increase in innovative ideas for the treatment of genetic disorders for which no curative therapies exist. Gene and protein replacement therapies stand out as novel approaches to treat a select group of these diseases, such as certain tissue fragility disorders. Further, the advent of stem cell approaches, such as induced pluripotent stem cells (iPSC) technology, has led to the development of new methods of creating replacement tissues for regenerative medicine. This coincided with the discovery of genome editing techniques, which allow for the correction of disease-causing mutations. The culmination of these discoveries suggests that new and innovative therapies for monogenetic disorders affecting single organs or tissues are on the horizon. Challenges remain, however, especially with diseases that simultaneously affect several tissues and organs during development. Examples of this group of diseases include ectodermal dysplasias, genetic disorders affecting the development of tissues and organs such as the skin, cornea, and epithelial appendages. Gene or protein replacement strategies are unlikely to be successful in addressing the multiorgan phenotype of these diseases. Instead, we believe that a more effective approach will be to focus on correcting phenotypes in the most severely affected tissues. This could include the generation of replacement tissues or the identification of pharmaceutical compounds that correct disease pathways in specific tissues.
Collapse
Affiliation(s)
- Peter J Koch
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), Greenville, NC, United States
| | - Maranke I Koster
- Department of Anatomy and Cell Biology, Brody School of Medicine (BSOM) at East Carolina University (ECU), Greenville, NC, United States
| |
Collapse
|
28
|
Wu J, Wu T, Zheng S, Huang Y, Wang L. Low-dose repeated exposure to chemical surfactant impairs corneal epithelium: When personal cleaning products entering the eye. Exp Eye Res 2021; 210:108696. [PMID: 34228968 DOI: 10.1016/j.exer.2021.108696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023]
Abstract
Studies have reported that the incidence of ocular discomfort in people who often wear makeup is higher than that in the normal population. The incidence of ocular discomfort of these people may be also related to the daily ocular exposure to chemical surfactants during cleaning. The objectives of this study were to explore morphological and pathological changes in the murine ocular surface after low-dose repeated exposure to disodium cocoamphodiacetate (DC), a kind of chemical surfactant widely used in personal cleaning products, and to investigate the possible mechanisms. DC was administered in low dose (0.1%) to the ocular surface of C56BL/6 once daily for two weeks. We found that there were an increase of sodium fluorescein staining on the cornea, a significant thinning of corneal epithelial thickness, and increased TUNEL-positive cells in corneal epithelium in vivo. DC treatment also modulated the distribution of K14+ and P63+ epithelia from the limbal to the center on the cornea. In cultured murine corneal epithelial progenitor cell line (TKE2), DC treatment induced cell detachment and decreased the activation of Ak strain transforming protein (AKT), and extracellular signal-regulated kinase (ERK). And DC increased TUNEL-positive cells in vitro with increased expression of cleaved Caspase3 and B-cell lymphoma-2 associated X protein (Bax). Our results indicated that repeated low-dose DC exposure on ocular surface caused significant impairment on the structure and viability of the corneal epithelium by inhibiting epithelial proliferation and inducing apoptosis. It provides the foundations to understand the harmful effects of cleaning products daily exposure on the ocular surface.
Collapse
Affiliation(s)
- Jie Wu
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Tengyun Wu
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Shuo Zheng
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China.
| |
Collapse
|
29
|
Tong CM, He B, Iovieno A, Yeung SN. Diagnosis and management of limbal stem cell deficiency, challenges, and future prospects. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1933441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- C. Maya Tong
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Bonnie He
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Alfonso Iovieno
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Bonnet C, Roberts JS, Deng SX. Limbal stem cell diseases. Exp Eye Res 2021; 205:108437. [PMID: 33571530 PMCID: PMC8044031 DOI: 10.1016/j.exer.2021.108437] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022]
Abstract
The function of limbal stem/progenitor cells (LSCs) is critical to maintain corneal epithelial homeostasis. Many external insults and intrinsic defects can be deleterious to LSCs and their niche microenvironment, resulting in limbal stem cell dysfunction or deficiency (LSCD). Ocular comorbidities, frequent in eyes with LSCD, can exacerbate the dysfunction of residual LSCs, and limit the survival of transplanted LSCs. Clinical presentation and disease evolution vary among different etiologies of LSCD. New ocular imaging modalities and molecular markers are now available to standardize the diagnosis criteria and stage the severity of the disease. Medical therapies may be sufficient to reverse the disease if residual LSCs are present. A stepwise approach should be followed to optimize the ocular surface, eliminate the causative factors and treat comorbid conditions, before considering surgical interventions. Furthermore, surgical options are selected depending on the severity and laterality of the disease. The standardized diagnostic criteria to stage the disease is necessary to objectively evaluate and compare the efficacy of the emerging customized therapies.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014, Paris, France.
| | - JoAnn S Roberts
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Adil MT, Henry JJ. Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems. Genesis 2021; 59:e23411. [PMID: 33576188 DOI: 10.1002/dvg.23411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
32
|
Isoform-Specific Roles of Mutant p63 in Human Diseases. Cancers (Basel) 2021; 13:cancers13030536. [PMID: 33572532 PMCID: PMC7866788 DOI: 10.3390/cancers13030536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The protein p63 belongs to the family of the p53 tumor suppressor. Mouse models have, however, shown that it is not a classical tumor suppressor but instead involved in developmental processes. Mutations in the p63 gene cause several developmental defects in human patients characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia due to p63’s role as a master regulator of epidermal development. In addition, p63 plays a key role as a quality control factor in oocytes and p63 mutations can result either in compromised genetic quality control or premature cell death of all oocytes. Abstract The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.
Collapse
|
33
|
Hall MN, Moshirfar M, Amin-Javaheri A, Ouano DP, Ronquillo Y, Hoopes PC. Lipid Keratopathy: A Review of Pathophysiology, Differential Diagnosis, and Management. Ophthalmol Ther 2020; 9:833-852. [PMID: 33058067 PMCID: PMC7708541 DOI: 10.1007/s40123-020-00309-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipid keratopathy is a disease in which fat deposits accumulate in the cornea, leading to opacification and decrease of visual acuity. This condition can be idiopathic without signs of previous corneal disease or secondary to ocular or systemic diseases. Lipid keratopathy is usually associated with abnormal vascularization of the cornea, and the lipid classically deposits adjacent to these vessels. Treatment of this condition usually aims to eliminate or prevent abnormal vessel formation, and several modalities have been described. In this review we summarize the etiology, pathophysiology, and clinical presentation of lipid keratopathy and describe current and emerging treatment regimens.
Collapse
Affiliation(s)
- MacGregor N Hall
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT, USA.
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Utah Lions Eye Bank, Murray, UT, USA.
| | | | | | | | | |
Collapse
|
34
|
Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res 2020; 202:108363. [PMID: 33221371 DOI: 10.1016/j.exer.2020.108363] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The optical clarity of the cornea is essential for maintaining good visual acuity. Corneal neovascularization, which is a major cause of vision loss worldwide, leads to corneal opacification and often contributes to a cycle of chronic inflammation. While numerous factors prevent angiogenesis within the cornea, infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation can all disrupt these homeostatic safeguards to promote neovascularization. Here, we summarize its etiopathogenesis and discuss the molecular biology of angiogenesis within the cornea. We then review the clinical assessment and diagnostic evaluation of corneal neovascularization. Finally, we describe current and emerging therapies.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA
| | - Naveen Mysore
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA.
| |
Collapse
|
35
|
Wang F, Tao H, Han C, Bai F, Wang P, Zhou XB, Wang LH, Liu C. Preliminary report on screening IGSF3 gene mutation in families with congenital absence of lacrimal puncta and canaliculi. Int J Ophthalmol 2020; 13:1351-1355. [PMID: 32953570 DOI: 10.18240/ijo.2020.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the variation of IGSF3 gene in three families with congenital absence of lacrimal puncta and canaliculi, and to lay a foundation for further research on the pathogenic gene of congenital lacrimal duct agenesis. METHODS The members of the three families were recruited. The ophthalmologic examinations in details, including slit-lamp biomicroscope, intraocular pressure and fundus examination, etc. were carried out. All patients were checked with paracentesis of puncta membrane and lacrimal duct probing, as well as the computed tomography-dacryocystography (CT-DCG). Peripheral blood of 14 participants (3 normal) from three families were collected, 4 mL each, for genomic DNA extraction, and 11 exon fragments of IGSF3 gene were amplified and sequenced by polymerase chain reaction (PCR) to determine whether there were IGSF3 genetic variation. RESULTS A total of 14 members from three families were screened for 4 synonymous variants: c.930C>T (p.Pro366=), c.1359T>C (p.Ser709=), c.1797G>A (p.Ser855=), c.1539G>A (p.Ser769=), and 6 missense variants: c.1507G>A (p.Gly759Ser), c.1783T>C (p.Trp851Arg), c.1952G>T (p.Ser 907Ile), c.3120C>G (p.Asp1040Glu), c.3123C>G (p.Asp1041Glu), c.3139_3140insGAC (p.Asp1046_Pro1047insAsp), and the latter three were only found in two patients with absence of lacrimal puncta and canaliculi combined with congenital osseous nasolacrimal canal obstruction from the first family. CONCLUSION The same IGSF3 gene mutation c.3139_3140insGAC is found in the patients with congenital absence of lacrimal puncta and canaliculi combine with osseous nasolacrimal canal obstruction.
Collapse
Affiliation(s)
- Fei Wang
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hai Tao
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Cui Han
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Fang Bai
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Peng Wang
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xi-Bin Zhou
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Li-Hua Wang
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Chuan Liu
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
36
|
He J, Ou S, Ren J, Sun H, He X, Zhao Z, Wu H, Qu Y, Liu T, Jeyalatha V, Zhang L, Li Q, Reinach PS, Quantock A, Hao J, Liu Z, Li W. Tissue engineered corneal epithelium derived from clinical-grade human embryonic stem cells. Ocul Surf 2020; 18:672-680. [PMID: 32710961 DOI: 10.1016/j.jtos.2020.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To construct tissue engineered corneal epithelium from a clinical-grade human embryonic stem cells (hESCs) and investigate the dynamic gene profile and phenotypic transition in the process of differentiation. METHODS A stepwise protocol was applied to induce differentiation of clinical-grade hESCs Q-CTS-hESC-1 and construct tissue engineered corneal epithelium. Single cell RNA sequencing (scRNA-seq) analysis was performed to monitor gene expression and phenotypic changes at different differentiation stages. Immunostaining, real-time quantitative PCR and Western blot analysis were conducted to detect gene and protein expressions. After subcutaneous transplantation into nude mice to test the biosafety, the epithelial construct was transplanted in a rabbit corneal limbal stem cell deficiency (LSCD) model and followed up for eight weeks. RESULTS The hESCs were successfully induced into epithelial cells. scRNA-seq analysis revealed upregulation of ocular surface epithelial cell lineage related genes such as TP63, Pax6, KRT14, and activation of Wnt, Notch, Hippo, and Hedgehog signaling pathways during the differentiation process. Tissue engineered epithelial cell sheet derived from hESCs showed stratified structure and normal corneal epithelial phenotype with presence of clonogenic progenitor cells. Eight weeks after grafting the cell sheet onto the ocular surface of LSCD rabbit model, a full-thickness continuous corneal epithelium developed to fully cover the damaged areas with normal limbal and corneal epithelial phenotype. CONCLUSION The tissue engineered corneal epithelium generated from a clinical-grade hESCs may be feasible in the treatment of limbal stem cell deficiency.
Collapse
Affiliation(s)
- Jia He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Shangkun Ou
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Jun Ren
- School of Informatics, Xiamen University, Xiamen, Fujian, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huimin Sun
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Xin He
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Zhongyang Zhao
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Han Wu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Yangluowa Qu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Tingting Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Vimalin Jeyalatha
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Liying Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Qiyuan Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China
| | - Peter Sol Reinach
- Wenzhou Medical University, Department of Ophthalmology, Wenzhou, Zhejiang, China; Wenzhou Medical University, Department of Optometry, Wenzhou, Zhejiang, China
| | - Andrew Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China.; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| | - Wei Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, China.; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| |
Collapse
|
37
|
Lucero Saá F, Cremona FA, Mínguez NX, Rinaudo CP, Chiaradía P. Ectodermal Dysplasia: Association with Anti-Basement Membrane Autoantibodies. Ocul Immunol Inflamm 2020; 28:703-707. [PMID: 31268817 DOI: 10.1080/09273948.2019.1609526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ectodermal dysplasia (ED) is a group of several genetic conditions with absence or dysgenesis of at least two ectodermal derivatives: teeth, skin and its appendages including hair, nails, eccrine and sebaceous glands. The most important clinical findings in patients with ED are hypodontia, hypotrichosis, and hypohidrosis, which can lead to episodes of hyperthermia. Few reports have focused on the progressive keratopathy in ED. Cicatrizing conjunctivitis associated with anti-basement membrane autoantibodies has been described. We report a series of three ectodermal dysplasia patients with an ocular phenotype typically seen in ocular mucous membrane pemphigoid; conjunctival immunohistopathology revealed anti-basement membrane autoantibodies in all of them, and systemic immunosuppression proved to be effective in improving symptoms and helping to stabilize ocular surface disease.
Collapse
Affiliation(s)
- Francisco Lucero Saá
- Department of Ophthalmology, Hospital de Clínicas José de San Martin, Universidad de Buenos Aires (UBA) , Buenos Aires, Argentina
| | - Federico Andrés Cremona
- Department of Ophthalmology, Hospital de Clínicas José de San Martin, Universidad de Buenos Aires (UBA) , Buenos Aires, Argentina
| | - Natalia Ximena Mínguez
- Department of Ophthalmology, Hospital de Clínicas José de San Martin, Universidad de Buenos Aires (UBA) , Buenos Aires, Argentina
| | - Carina Paola Rinaudo
- Department of Ophthalmology, Hospital de Clínicas José de San Martin, Universidad de Buenos Aires (UBA) , Buenos Aires, Argentina
| | - Pablo Chiaradía
- Department of Ophthalmology, Hospital de Clínicas José de San Martin, Universidad de Buenos Aires (UBA) , Buenos Aires, Argentina
| |
Collapse
|
38
|
Di Iorio E, Barbaro V, Alvisi G, Trevisan M, Ferrari S, Masi G, Nespeca P, Ghassabian H, Ponzin D, Palù G. New Frontiers of Corneal Gene Therapy. Hum Gene Ther 2019; 30:923-945. [PMID: 31020856 DOI: 10.1089/hum.2019.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Corneal diseases are among the most prevalent causes of blindness worldwide. The transparency and clarity of the cornea are guaranteed by a delicate physiological, anatomic, and functional balance. For this reason, all the disorders, including those of genetic origin, that compromise this state of harmony can lead to opacity and eventually vision loss. Many corneal disorders have a genetic etiology, and some are associated with rather rare and complex syndromes. Conventional treatments, such as corneal transplantation, are often ineffective, and to date, many of these disorders are still incurable. Gene therapy carries the promise of being a potential cure for many of these diseases, with solutions and strategies that did not seem possible until a few years ago. With its potential to treat genetic disease by means of deletion, replacement, or editing of a defective gene, the challenge can also be extended to corneal disorders in order to achieve long-term, if not definitive, relief. The aim of this paper is to review the state of the art of the different gene therapy approaches as potential treatments for corneal diseases and the future perspectives for the development of personalized gene-based medicine.
Collapse
Affiliation(s)
- Enzo Di Iorio
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Vanessa Barbaro
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Gualtiero Alvisi
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Ferrari
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Giulia Masi
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Patrizia Nespeca
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Hanieh Ghassabian
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Diego Ponzin
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Giorgio Palù
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
39
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2019. [PMCID: PMC6476998 DOI: 10.1002/sctm.19-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Sonam S, Srnak JA, Perry KJ, Henry JJ. Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs. Exp Eye Res 2019; 184:107-125. [PMID: 30981716 DOI: 10.1016/j.exer.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for maintaining the integrity and transparency of the cornea. These stem cells (SCs) are widely used in corneal transplants and ocular surface reconstruction. Molecular markers are essential to identify, isolate and enrich for these cells, yet no definitive CESC marker has been established. An extensive literature survey shows variability in the expression of putative CESC markers among vertebrates; being attributed to species-specific variations, or other differences in developmental stages of these animals, approaches used in these studies and marker specificity. Here, we expanded the search for CESC markers using the amphibian model Xenopus laevis. In previous studies we found that long-term label retaining cells (suggestive of CESCs and TACs) are present throughout the larval basal corneal epithelium. In adult frogs, these cells become concentrated in the peripheral cornea (limbal region). Here, we used immunofluorescence to characterize the expression of nine proteins in the corneas of both Xenopus larvae and adults (post-metamorphic). We found that localization of some markers change between larval and adult stages. Markers such as p63, Keratin 19, and β1-integrin are restricted to basal corneal epithelial cells of the larvae. After metamorphosis their expression is found in basal and intermediate layer cells of the adult frog corneal epithelium. Another protein, Pax6 was expressed in the larval corneas, but surprisingly it was not detected in the adult corneal epithelium. For the first time we report that Tcf7l2 can be used as a marker to differentiate cornea vs. skin in frogs. Tcf7l2 is present only in the frog skin, which differs from reports indicating that the protein is expressed in the human cornea. Furthermore, we identified the transition between the inner, and the outer surface of the adult frog eyelid as a key boundary in terms of marker expression. Although these markers are useful to identify different regions and cellular layers of the frog corneal epithelium, none is unique to CESCs or TACs. Our results confirm that there is no single conserved CESC marker in vertebrates. This molecular characterization of the Xenopus cornea facilitates its use as a vertebrate model to understand the functions of key proteins in corneal homeostasis and wound repair.
Collapse
Affiliation(s)
- Surabhi Sonam
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jennifer A Srnak
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
41
|
Deng SX, Borderie V, Chan CC, Dana R, Figueiredo FC, Gomes JAP, Pellegrini G, Shimmura S, Kruse FE. Global Consensus on Definition, Classification, Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea 2019; 38:364-375. [PMID: 30614902 PMCID: PMC6363877 DOI: 10.1097/ico.0000000000001820] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Despite extensive knowledge gained over the last 3 decades regarding limbal stem cell deficiency (LSCD), the disease is not clearly defined, and there is lack of agreement on the diagnostic criteria, staging, and classification system among treating physicians and research scientists working on this field. There is therefore an unmet need to obtain global consensus on the definition, classification, diagnosis, and staging of LSCD. METHODS A Limbal Stem Cell Working Group was first established by The Cornea Society in 2012. The Working Group was divided into subcommittees. Four face-to-face meetings, frequent email discussions, and teleconferences were conducted since then to obtain agreement on a strategic plan and methodology from all participants after a comprehensive literature search, and final agreement was reached on the definition, classification, diagnosis, and staging of LSCD. A writing group was formed to draft the current manuscript, which has been extensively revised to reflect the consensus of the Working Group. RESULTS A consensus was reached on the definition, classification, diagnosis, and staging of LSCD. The clinical presentation and diagnostic criteria of LSCD were clarified, and a staging system of LSCD based on clinical presentation was established. CONCLUSIONS This global consensus provides a comprehensive framework for the definition, classification, diagnosis, and staging of LSCD. The newly established criteria will aid in the correct diagnosis and formulation of an appropriate treatment for different stages of LSCD, which will facilitate a better understanding of the condition and help with clinical management, research, and clinical trials in this area.
Collapse
Affiliation(s)
- Sophie X. Deng
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles
| | - Vincent Borderie
- Quinze-Vingts National Eye Hospital, Faculté de Médecine Sorbonne Université, Paris, France
| | - Clara C. Chan
- University of Toronto Department of Ophthalmology & Vision Sciences Toronto, Ontario
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary, Harvard Medical School
| | - Francisco C. Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary and Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - José A. P. Gomes
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), Brazil
| | - Graziella Pellegrini
- Centre for Regenerative Medicine, University of Modena and Reggio Emilia; Holostem Terapie Avanzate, Modena, Italy
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Friedrich E. Kruse
- Department of Ophthalmology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
42
|
Bhattacharya S, Serror L, Nir E, Dhiraj D, Altshuler A, Khreish M, Tiosano B, Hasson P, Panman L, Luxenburg C, Aberdam D, Shalom-Feuerstein R. SOX2 Regulates P63 and Stem/Progenitor Cell State in the Corneal Epithelium. Stem Cells 2019; 37:417-429. [PMID: 30548157 PMCID: PMC6850148 DOI: 10.1002/stem.2959] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/07/2018] [Accepted: 11/24/2018] [Indexed: 11/22/2022]
Abstract
Mutations in key transcription factors SOX2 and P63 were linked with developmental defects and postnatal abnormalities such as corneal opacification, neovascularization, and blindness. The latter phenotypes suggest that SOX2 and P63 may be involved in corneal epithelial regeneration. Although P63 has been shown to be a key regulator of limbal stem cells, the expression pattern and function of SOX2 in the adult cornea remained unclear. Here, we show that SOX2 regulates P63 to control corneal epithelial stem/progenitor cell function. SOX2 and P63 were co‐expressed in the stem/progenitor cell compartments of the murine cornea in vivo and in undifferentiated human limbal epithelial stem/progenitor cells in vitro. In line, a new consensus site that allows SOX2‐mediated regulation of P63 enhancer was identified while repression of SOX2 reduced P63 expression, suggesting that SOX2 is upstream to P63. Importantly, knockdown of SOX2 significantly attenuated cell proliferation, long‐term colony‐forming potential of stem/progenitor cells, and induced robust cell differentiation. However, this effect was reverted by forced expression of P63, suggesting that SOX2 acts, at least in part, through P63. Finally, miR‐450b was identified as a direct repressor of SOX2 that was required for SOX2/P63 downregulation and cell differentiation. Altogether, we propose that SOX2/P63 pathway is an essential regulator of corneal stem/progenitor cells while mutations in SOX2 or P63 may disrupt epithelial regeneration, leading to loss of corneal transparency and blindness. Stem Cells2019;37:417–429
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Laura Serror
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eshkar Nir
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dalbir Dhiraj
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Anna Altshuler
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maroun Khreish
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lia Panman
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Aberdam
- INSERM U976 and Université Paris-Diderot, Hôpital St-Louis, Paris, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
43
|
Update on the Surgical Reconstruction of Ocular Surface in Eyes with Limbal Stem Cell Deficiency. CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Evolution of Acquired Middle Ear Cholesteatoma in Patients With Ectrodactyly, Ectodermal Dysplasia, Cleft Lip/Palate (EEC) Syndrome. Otol Neurotol 2018; 39:e679-e682. [PMID: 30113563 DOI: 10.1097/mao.0000000000001921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To review an institutional experience with the surgical and clinical management of acquired middle ear cholesteatoma in patients with ectrodactyly, ectodermal dysplasia, cleft lip/palate (EEC) syndrome. STUDY DESIGN Retrospective chart review. SETTING Tertiary referral center. PATIENTS Eight patients with medical history significant for EEC syndrome who underwent surgery for acquired middle ear cholesteatoma between 1996 and 2016. INTERVENTION(S) Appropriate surgical interventions at the time of admission. MAIN OUTCOME MEASURE(S) History of ventilation tube insertion, status of the contralateral ear, surgical technique, cholesteatoma recidivism, presence of postoperative external auditory canal stenosis, pre and postoperative audiograms. RESULTS Cholesteatoma was diagnosed in all patients, 3 (37.5%) unilateral and 5 (62.5%) bilateral, totalizing 13 ears. Six ears (46.2%) underwent a canal wall up mastoidectomy but required conversion to a canal wall down technique in a second procedure due to recurrent cholesteatoma. In the remaining seven ears (53.8%) a canal wall down mastoidectomy was performed. Of all meatoplasty performed, seven (53.8%) evolved with stenosis of the external auditory canal. CONCLUSIONS Our results suggest that most patients with EEC syndrome and middle ear cholesteatoma should be considered for a canal wall down mastoidectomy due to extensive disease and a high rate of recidivism. In addition, a high percentage of postoperative stenosis of the external auditory canal was found in this group.
Collapse
|
45
|
Garza-Leon M, León-Cachón RBR, Villafuerte-de la Cruz R, Martínez-Treviño DA. Infrared meibography and molecular assessment of p63 gene mutations in a Mexican patient with EEC syndrome. ACTA ACUST UNITED AC 2018; 93:562-566. [PMID: 30025988 DOI: 10.1016/j.oftal.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To report the finding of infrared meibography in a Mexican patient with EEC syndrome (Ectrodactyly-ectodermal dysplasia-cleft syndrome) confirmed by molecular analysis of the p63 gene. CLINICAL CASE A 31 year-old male patient was seen due to a history of progressive visual loss in both eyes associated with long-term photophobia. The patient was born with cleft lip and palate, ectrodactyly of right hand, and afterwards, displayed nail dysplasia, anodontia and alopecia, with which ectodermal dysplasia was diagnosed. The ophthalmological findings were limited to the adnexa and the ocular surface. In vivo infrared meibography showed total absence of Meibomian glands in the lower eyelids and severe deficiency in the upper eyelids. In addition, it was shown that the patient was a heterozygous carrier of a missense mutation R304W (C → T) in exon 8 of the p63 gene. DISCUSSION The R304W mutation in the p63 gene region is definitely related to characteristics such as the absence of Meibomian glands.
Collapse
Affiliation(s)
- M Garza-Leon
- Departamento de Ciencias Clínicas, División de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Nuevo León, México; Destellos de Luz IBP, San Pedro Garza García, Nuevo León, México.
| | - R B R León-Cachón
- Centro de Diagnóstico Molecular y Medicina Personalizada, Departamento de Ciencias Básicas, División de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Nuevo León, México
| | - R Villafuerte-de la Cruz
- Biología del desarrollo, Facultad de Medicina, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - D A Martínez-Treviño
- Centro de Diagnóstico Molecular y Medicina Personalizada, Departamento de Ciencias Básicas, División de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Nuevo León, México
| |
Collapse
|
46
|
Sasamoto Y, Ksander BR, Frank MH, Frank NY. Repairing the corneal epithelium using limbal stem cells or alternative cell-based therapies. Expert Opin Biol Ther 2018; 18:505-513. [PMID: 29471701 PMCID: PMC6317528 DOI: 10.1080/14712598.2018.1443442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The corneal epithelium is maintained by limbal stem cells (LSCs) that reside in the basal epithelial layer of the tissue surrounding the cornea termed the limbus. Loss of LSCs results in limbal stem cell deficiency (LSCD) that can cause severe visual impairment. Patients with partial LSCD may respond to conservative therapies designed to rehabilitate the remaining LSCs. However, if these conservative approaches fail or, if complete loss of LSCs occurs, transplantation of LSCs or their alternatives is the only option. While a number of clinical studies utilizing diverse surgical and cell culture techniques have shown favorable results, a universal cure for LSCD is still not available. Knowledge of the potential risks and benefits of current approaches, and development of new technologies, is essential for further improvement of LSCD therapies. AREAS COVERED This review focuses on cell-based LSCD treatment approaches ranging from current available clinical therapies to preclinical studies of novel promising applications. EXPERT OPINION Improved understanding of LSC identity and development of LSC expansion methods will influence the evolution of successful LSCD therapies. Ultimately, future controlled clinical studies enabling direct comparison of the diverse employed approaches will help to identify the most effective treatment strategies.
Collapse
Affiliation(s)
- Yuzuru Sasamoto
- Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R. Ksander
- Mass Eye & Ear, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Western School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Natasha Y. Frank
- Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
47
|
Soares E, Zhou H. Master regulatory role of p63 in epidermal development and disease. Cell Mol Life Sci 2018; 75:1179-1190. [PMID: 29103147 PMCID: PMC5843667 DOI: 10.1007/s00018-017-2701-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 01/19/2023]
Abstract
The transcription factor p63 is a master regulator of epidermal development. Mutations in p63 give rise to human developmental diseases that often manifest epidermal defects. In this review, we summarize major p63 isoforms identified so far and p63 mutation-associated human diseases that show epidermal defects. We discuss key roles of p63 in epidermal keratinocyte proliferation and differentiation, emphasizing its master regulatory control of the gene expression pattern and epigenetic landscape that define epidermal fate. We subsequently review the essential function of p63 during epidermal commitment and transdifferentiation towards epithelial lineages, highlighting the notion that p63 is the guardian of the epithelial lineage. Finally, we discuss current therapeutic development strategies for p63 mutation-associated diseases. Our review proposes future directions for dissecting p63-controlled mechanisms in normal and diseased epidermal development and for developing therapeutic options.
Collapse
Affiliation(s)
- Eduardo Soares
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 274, Postbus 9101, 6500HB, Nijmegen, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 274, Postbus 9101, 6500HB, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, 855, Postbus 9101, 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Le Q, Xu J, Deng SX. The diagnosis of limbal stem cell deficiency. Ocul Surf 2018; 16:58-69. [PMID: 29113917 PMCID: PMC5844504 DOI: 10.1016/j.jtos.2017.11.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/24/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Limbal stem cells (LSCs) maintain the normal homeostasis and wound healing of corneal epithelium. Limbal stem cell deficiency (LSCD) is a pathologic condition that results from the dysfunction and/or an insufficient quantity of LSCs. The diagnosis of LSCD has been made mainly based on medical history and clinical signs, which often are not specific to LSCD. Methods to stage the severity of LSCD have been lacking. With the application of newly developed ocular imaging modalities and molecular methods as diagnostic tools, standardized quantitative criteria for the staging of LSCD can be established. Because of these recent advancements, effective patient-specific therapy for different stages of LSCD may be feasible.
Collapse
Affiliation(s)
- Qihua Le
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA; Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Sophie X Deng
- Stein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
49
|
Gonzalez G, Sasamoto Y, Ksander BR, Frank MH, Frank NY. Limbal stem cells: identity, developmental origin, and therapeutic potential. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29105366 DOI: 10.1002/wdev.303] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/22/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022]
Abstract
The cornea is our window to the world and our vision is critically dependent on corneal clarity and integrity. Its epithelium represents one of the most rapidly regenerating mammalian tissues, undergoing full-turnover over the course of approximately 1-2 weeks. This robust and efficient regenerative capacity is dependent on the function of stem cells residing in the limbus, a structure marking the border between the cornea and the conjunctiva. Limbal stem cells (LSC) represent a quiescent cell population with proliferative capacity residing in the basal epithelial layer of the limbus within a cellular niche. In addition to LSC, this niche consists of various cell populations such as limbal stromal fibroblasts, melanocytes and immune cells as well as a basement membrane, all of which are essential for LSC maintenance and LSC-driven regeneration. The LSC niche's components are of diverse developmental origin, a fact that had, until recently, prevented precise identification of molecularly defined LSC. The recent success in prospective LSC isolation based on ABCB5 expression and the capacity of this LSC population for long-term corneal restoration following transplantation in preclinical in vivo models of LSC deficiency underline the considerable potential of pure LSC formulations for clinical therapy. Additional studies, including genetic lineage tracing of the developmental origin of LSC will further improve our understanding of this critical cell population and its niche, with important implications for regenerative medicine. WIREs Dev Biol 2018, 7:e303. doi: 10.1002/wdev.303 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuzuru Sasamoto
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Bruce R Ksander
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1142] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|