1
|
Peng F, Deng X. Ubiquitin-specific protease 7 exacerbates acute pancreatitis progression by enhancing ATF4-mediated autophagy. In Vitro Cell Dev Biol Anim 2025; 61:320-330. [PMID: 39875698 DOI: 10.1007/s11626-024-01009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025]
Abstract
Acute pancreatitis (AP) is a serious inflammatory disease with high incidence rate and mortality. It was confirmed that overactivation of autophagy in acinar cells can increase the risk of AP. Nevertheless, the regulatory mechanism of autophagy in AP is unclear. The role of ubiquitin-specific peptidase 7 (USP7) in controlling autophagy during AP development was examined in this study. AR42J cells were subjected to caerulein to establish a cell model of AP. ELISA utilized to assess IL-6, IL-1β, and TNF-α secretion levels. Cell viability and death were detected using CCK8 assay and flow cytometry, respectively. The interaction between USP7 and ATF4 was analyzed by Co-IP assay. USP7 and ATF4 were abnormally overexpressed in AP patients and cellular models. Loss of function of USP7 increased cell viability, but alleviated cell death and secretions of inflammatory cytokines including IL-6, IL-1β, and TNF-α in AP cellular models. Importantly, autophagy level was activated in AP cells, and could be repressed after USP7 knockdown, and rapamycin treatment greatly diminished the beneficial functions mediated by USP7 downregulation in AP cells. Mechanically, ATF4, an activator of stress autophagy in AP, was proved to be a deubiquitination modification target downstream of USP7, and its protein stability was weakened after USP7 reduction. ATF4 upregulation abolished the protective effect of USP7 silencing on caerulein-induced autophagy, inflammation, and cell injury in AR42J cells. USP7 knockdown reduced inflammation and cell injury during AP progression by inhibiting ATF4-mediated autophagy activation.
Collapse
Affiliation(s)
- Feng Peng
- Department of Infectious Diseases, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China
| | - Xiaofeng Deng
- Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, P.R. China.
| |
Collapse
|
2
|
Ma ZH, Ma XN, Zhu HW, Cheng L, Gou LZ, Zhang DK. Clinical significance of peripheral blood DDR1 and CtBP gene methylation detection in patients with acute pancreatitis. Epigenetics 2024; 19:2421631. [PMID: 39485950 PMCID: PMC11540100 DOI: 10.1080/15592294.2024.2421631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
To investigate the clinical value of methylation levels of peripheral blood DDR1 and CtBP genes in evaluating the severity of acute pancreatitis (AP). Collect 90 blood samples from AP patients and healthy volunteers, and test methylation levels of SPINK1, STAT3, KIT, CFTR, DDR1, CtBP1, CtBP2 genes by bisulfite amplicon sequencing (BSAS). The gene methylation and clinical predictors of SAP early prediction were determined by univariate and multifactorial analysis, respectively. (1) The methylation level of CtBP1 gene and MCTSI score were independent predictors of SAP, with AUC values of 0.723 and 0.8895, respectively. (2) The methylation levels of DDR1, CtBP2, CFTR and SPINK1 genes were statistically significant in HC group vs AP group, HC group vs MAP group, and HC group vs SAP group. (3) The combined detection of CtBP1 gene methylation level and MCTSI score predicted the sensitivity, specificity, AUC, and 95%CI of SAP were 0.750, 0.957, 0.902, and 0.816-0.989, respectively. (1) The methylation level of CtBP1 gene in peripheral blood is an independent risk factor for predicting SAP and is a potentially good predictor of SAP, and the combined testing with the MCTSI score does not further significantly improve the early predictive value for SAP. (2) The methylation levels of DDR1, SPINK1, CtBP2, and CFTR genes were potential indicators for recognizing AP.
Collapse
Affiliation(s)
- Zeng-Hui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xue-Ni Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hong-Wen Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Long Cheng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ling-Zhu Gou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Key laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Zhou S, Sun Q, Gao N, Hu Z, Jia J, Song J, Xu G, Dong A, Xia W, Wu J. The Role of Inflammatory Biomarkers in Mediating the Effect of Inflammatory Bowel Disease on nonmalignant Digestive System Diseases: A Multivariable Mendelian Randomized Study. Can J Gastroenterol Hepatol 2024; 2024:1266139. [PMID: 38529201 PMCID: PMC10963109 DOI: 10.1155/2024/1266139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Background While observation studies have shown a positive correlation between inflammatory bowel disease (IBD) and the risk of nonmalignant digestive system diseases, a definitive causal relationship has not yet been clearly established. Methods Mendelian randomization (MR) was employed to investigate the potential causal association between genetic susceptibility to IBD and nonmalignant gastrointestinal diseases. Genetic variants were extracted as instrumental variables (IVs) from a genome-wide association study (GWAS) meta-analysis, which included 12,194 cases of Crohn's disease (CD) and 28,072 control cases of European ancestry. The GWAS for ulcerative colitis (UC) included 12,366 UC and 33,609 control cases of European ancestry. All IVs reached genome-wide significance (GWAS p value <5 × 10-8). Summary-level data for acute pancreatitis (AP), irritable bowel syndrome (IBS), gastroesophageal reflux disease, cholelithiasis, and CeD (celiac disease) were obtained from the GWAS meta-analysis and the FinnGen dataset. Summary-level data on relevant inflammatory factors were provided by the International Genetic Consortium. Univariate MR analysis was conducted using inverse variance weighting as the primary method for estimating causal effects. Multivariate MR analyses were also performed to detect possible mediators. Results Genetic susceptibility to UC was associated with an increased risk of AP (OR = 1.08; 95% CI = 1.03-1.13; p=0.002) and IBS odds ratio (OR] = 1.07; 95% confidence interval (CI] = 1.03-1.11; (p < 0.001). In terms of potential mediators, interleukin 6 (IL-6) had a driving effect on the association between UC and AP. There was no apparent evidence of increased risk with CD. Meanwhile, genetic susceptibility to CD increases the risk of CeD (OR = 1.14; 95% CI = 1.03-1.25; p=0.01). Conclusions The evidence suggests that UC is associated with an elevated risk of AP and IBS, and IL-6 may be responsible in AP. CD is associated with an increased risk of developing CeD. Implementing a proactive monitoring program for assessing the risk of gastrointestinal diseases in UC patients, particularly those with elevated IL-6 levels, may be of interest. In addition, the presence of AP and IBS may indicate the presence of UC. Preventing CeD is an essential consideration in the therapeutic management of patients with CD.
Collapse
Affiliation(s)
- Shu Zhou
- Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Qi Sun
- Hangzhou Ninth People's Hospital, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | - Ning Gao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zekai Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | | | - Guocong Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Aiqiang Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Xia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou 310003, China
| | - Jiafeng Wu
- Hangzhou Ninth People's Hospital, Hangzhou, China
| |
Collapse
|
4
|
Wei L, Li B, Long J, Fu Y, Feng B. circ_UTRN inhibits ferroptosis of ARJ21 cells to attenuate acute pancreatitis progression by regulating the miR-760-3p/FOXO1/GPX4 axis. 3 Biotech 2024; 14:84. [PMID: 38379665 PMCID: PMC10874922 DOI: 10.1007/s13205-023-03886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/09/2023] [Indexed: 02/22/2024] Open
Abstract
Aim To explore the function of circ_UTRN in acute pancreatitis (AP). Methods After exposing AR42J cells to caerulein, the levels of circ_UTRN, miR-760-3p, and glutathione peroxidase 4 (GPX4) were determined by quantitative polymerase chain reaction. Additionally, GPX4 and forkhead box O1 (FOXO1) protein levels were assessed by western blot. The levels of oxidative stress and ferroptosis in the supernatant of the treated AR42J cells were also assessed using commercial kits. Results circ_UTRN inhibited caerulein-induced oxidative stress and ferroptosis by binding with miR-760-3p. Additionally, miR-760-3p directly targeted FOXO1, thereby regulating GPX4 levels. Furthermore, GPX4 knockdown abolished the effect of miR-760-3p downregulation in AP. Conclusion circ_UTRN inhibited oxidative stress and ferroptosis by regulating the miR-760-3p/FOXO1/GPX4 axis. This is a potential new treatment strategy for AP.
Collapse
Affiliation(s)
- Lanlan Wei
- Department of Respiratory and Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000 Hunan Province People’s Republic of China
| | - Bowen Li
- Jishou University School of Medicine, Jishou, 416000 Hunan Province People’s Republic of China
| | - Jing Long
- Department of Ultrasonography, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000 Hunan Province People’s Republic of China
| | - Yanping Fu
- Emergency Department, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000 Hunan Province People’s Republic of China
| | - Bin Feng
- Department of Hepatobiliary Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Tianyuan District, No. 116, Changjiang South Road, Zhuzhou, 412007 Hunan Province People’s Republic of China
| |
Collapse
|
5
|
Wei H, Zhao H, Cheng D, Zhu Z, Xia Z, Lu D, Yu J, Dong R, Yue J. miR-148a and miR-551b-5p regulate inflammatory responses via regulating autophagy in acute pancreatitis. Int Immunopharmacol 2024; 127:111438. [PMID: 38159552 DOI: 10.1016/j.intimp.2023.111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Acute pancreatitis (AP) is a common inflammatory response that occurs in the pancreas with mortality rates as high as 30 %. However, there is still no consistent and effective treatment for AP now. MicroRNA-148 was reported to be involved in AP through IL-6 signaling pathway. Therefore, we aimed to further explore the detailed mechanisms of AP, to develop more therapeutic approach for AP. Exosomes were isolated from peripheral blood mononuclear cells of 20 AP patients and 20 healthy volunteers to evaluate the abnormally expressed miRNA. Then pancreatic acinar cells (PACs) were transfected with retrovirus to overexpress miR-148a/miR-551b-5p to evaluate their function. Both miR-148a and miR-551b-5p were highly expressed in AP patients than these in healthy cases. Then overexpressing miR-551b-5p in PACs could regulate autophagy through directly binding to Baculoviral IAP Repeat Containing 6, leading to the increased secretions of interleukin-1β (IL-1β) and interleukin-18 (IL-18) through interleukin-1 (IL-1) signaling pathway. Moreover, overexpressing miR-148a in PACs could decrease the secretions of IL-1β and IL-18 to modulate autophagy. The exosomal miRNA-148a and miRNA-551b-5p derived from peripheral blood mononuclear cells of AP patients may two-way mediate autophagy damage through IL-6/STAT3 signaling pathway, which participated in the AP pathogenesis. Our findings may provide new targets for the diagnosis and treatment of AP.
Collapse
Affiliation(s)
- Huiping Wei
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Hui Zhao
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China.
| | - Dongliang Cheng
- Pediatric Intensive Care Unit, Henan Provincial People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou 450000, Henan Province, China
| | - Zhenni Zhu
- Pediatric Gastroenterology Department, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Zhi Xia
- Pediatric Intensive Care Unit, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Dan Lu
- Department of Clinical Examination, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yu
- Department of General Surgery, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Ran Dong
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| | - Jing Yue
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
6
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Therapeutic potential of gene therapy for gastrointestinal diseases: Advancements and future perspectives. Mol Ther Oncolytics 2023; 30:193-215. [PMID: 37663132 PMCID: PMC10471515 DOI: 10.1016/j.omto.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Advancements in understanding the pathogenesis mechanisms underlying gastrointestinal diseases, encompassing inflammatory bowel disease, gastrointestinal cancer, and gastroesophageal reflux disease, have led to the identification of numerous novel therapeutic targets. These discoveries have opened up exciting possibilities for developing gene therapy strategies to treat gastrointestinal diseases. These strategies include gene replacement, gene enhancement, gene overexpression, gene function blocking, and transgenic somatic cell transplantation. In this review, we introduce the important gene therapy targets and targeted delivery systems within the field of gastroenterology. Furthermore, we provide a comprehensive overview of recent progress in gene therapy related to gastrointestinal disorders and shed light on the application of innovative gene-editing technologies in treating these conditions. These developments are fueling a revolution in the management of gastrointestinal diseases. Ultimately, we discuss the current challenges (particularly regarding safety, oral efficacy, and cost) and explore potential future directions for implementing gene therapy in the clinical settings for gastrointestinal diseases.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen 518000, China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong 516000, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, China
| |
Collapse
|
7
|
Li L, Liu Q, Le C, Zhang H, Liu W, Gu Y, Yang J, Zhang X. Toll-like receptor 2 deficiency alleviates acute pancreatitis by inactivating the NF-κB/NLRP3 pathway. Int Immunopharmacol 2023; 121:110547. [PMID: 37356124 DOI: 10.1016/j.intimp.2023.110547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
The early aseptic immune response is the key factor leading to the aggravation of acute pancreatitis (AP). Toll-like receptor (TLR) 2 is an important member of the TLR family, but the role of TLR2 in AP remains to be investigated. In the present study, we found that TLR2 expression was significantly increased in AP patients. In a mouse model of cerulein-induced AP, TLR2 deficiency resulted in reduced inflammation, reduced infiltration of pancreatic neutrophils and macrophages, and decreased expression of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-17 and IL-18. In addition, transcriptomic analysis revealed that nod-like receptor family pyrin domain-containing 3 (NLRP3) expression was increased in AP, and there was a significant correlation between NLRP3 and TLR2. This study found that TLR2 deficiency can lead to a decrease in the activation of the NF-κB/NLRP3 signalling pathway, and the NLRP3 inhibitor MCC950 can alleviate AP in mice. Therefore, this study confirmed that TLR2 participates in the development of AP by activating the NF-κB/NLRP3 pathway. This study suggested that TLR2 might be a novel therapeutic target for AP.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China
| | - Chenyu Le
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Wenfei Liu
- Chinese PLA 305 Hospital, Beijing 100018, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China.
| |
Collapse
|
8
|
Zhan Y, Chen C, Wu Z, Zhou F, Yu X. miR-455-3p ameliorates pancreatic acinar cell injury by targeting Slc2a1. PeerJ 2023; 11:e15612. [PMID: 37404474 PMCID: PMC10317017 DOI: 10.7717/peerj.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Objective With the number of patients with acute pancreatitis (AP) increasing year by year, it is pressing to explore new key genes and markers for the treatment of AP. miR-455-3p/solute carrier family 2 member 1 (Slc2a1) obtained through bioinformatics analysis may participate in the progression of AP. Materials and Methods The C57BL/6 mouse model of AP was constructed for subsequent studies. Through bioinformatics analysis, the differentially expressed genes related to AP were screened and hub genes were identified. A caerulein-induced AP animal model was constructed to detect the pathological changes of mouse pancreas by HE staining. The concentrations of amylase and lipase were measured. Primary mouse pancreatic acinar cells were isolated and subjected to microscopy to observe their morphology. The enzymatic activities of trypsin and amylase were detected. The secretion of inflammatory cytokines in mouse were measured with the ELISA kits of TNF-α, IL-6 and IL-1β to determine pancreatic acinar cell damage. A binding site between the Slc2a1 3' UTR region and the miR-455-3p sequence was verified by dual-luciferase reporter assay. The expression of miR-455-3p was quantified by qRT-PCR, and Slc2a1 were detected by western blot. Results A total of five (Fyn, Gadd45a, Sdc1, Slc2a1, and Src) were identified by bioinformatics analysis, and miR-455-3p/Slc2a1 were further studied. HE staining results showed that the AP models were successfully established by caerulein induction. In mice with AP, the expression of miR-455-3p was reduced, while that of Slc2a1 was increased. In the caerulein-induced cell model, the expression of Slc2a1 was significantly reduced after intervention of miR-455-3p mimics, whereas increased after miR-455-3p inhibitor treatment. miR-455-3p decreased the secretion of inflammatory cytokines in the cell supernatant, reduced the activity of trypsin and amylase, and alleviated the cell damage induced by caerulein. In addition, Slc2a1 3'UTR region was bound by miR-455-3p, and its protein expression was also regulated. Conclusion miR-455-3p alleviated caerulein-induced mouse pancreatic acinar cell damage by regulating the expression of Slc2a1.
Collapse
Affiliation(s)
- Yinchu Zhan
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Chenlin Chen
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Zhiqiang Wu
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Feng Zhou
- Department of Hepatopancreatobiliary Surgery, The Second People’s Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Xinping Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Chen H, Tu J, He L, Gao N, Yang W. Mmu_circ_0000037 inhibits the progression of acute pancreatitis by miR-92a-3p/Pias1 axis. Immun Inflamm Dis 2023; 11:e819. [PMID: 37102653 PMCID: PMC10091370 DOI: 10.1002/iid3.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disease with high mortality. Previous study has suggested that circular RNAs are dysregulated and involved in the regulation of inflammatory responses in AP. This study aimed to investigate the function and regulatory mechanism underlying mmu_circ_0000037 in caerulein-induced AP cellular model. METHODS Caerulein-treated MPC-83 cells were used as an in vitro cellular model for AP. The expression levels of mmu_circ_0000037, microRNA (miR)-92a-3p, and protein inhibitor of activated STAT1 (Pias1) were detected by quantitative real-time polymerase chain reaction. Cell viability, amylase activity, apoptosis, and inflammatory response were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Amylase Assay Kit, flow cytometry, and enzyme-linked immunosorbent assays. The protein level was quantified by western blot analysis. The target interaction between miR-92a-3p and mmu_circ_0000037 or Pias1 were predicted by StarbaseV3.0 and validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Mmu_circ_0000037 and Pias1 levels were decreased, whereas miR-92a-3p expression was elevated in caerulein-induced MPC-83 cells. Overexpression of mmu_circ_0000037 protected MPC-83 cells from caerulein-induced the decrease of cell viability, as well as the promotion of amylase activity, apoptosis and inflammation. MiR-92a-3p was targeted by mmu_circ_0000037, and miR-92a-3p overexpression rescued the effect of mmu_circ_0000037 on caerulein-induced MPC-83 cell injury. Pias1 was confirmed as a target of miR-92a-3p and mmu_circ_0000037 regulated the expression of Pias1 by sponging miR-92a-3p. CONCLUSION Mmu_circ_0000037 relieves caerulein-induced inflammatory injury in MPC-83 cells by targeting miR-92a-3p/Pias1 axis, providing a theoretical basis for the treatment of AP.
Collapse
Affiliation(s)
- Hua Chen
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Jun Tu
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Lei He
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Ning Gao
- Department of General Internal Medicine, Ping An Health InternetShanghai BranchShanghaiChina
| | - Weiqiang Yang
- Department of General SurgeryJiading District Central HospitalShanghaiChina
| |
Collapse
|
10
|
Fu R, Liu S, Zhu M, Zhu J, Chen M. Apigenin reduces the suppressive effect of exosomes derived from irritable bowel syndrome patients on the autophagy of human colon epithelial cells by promoting ATG14. World J Surg Oncol 2023; 21:95. [PMID: 36915121 PMCID: PMC10012571 DOI: 10.1186/s12957-023-02963-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBS) is a chronic disorder of the gastrointestinal tract. Exosomes have been involved in various pathological processes including IBS. Apigenin has been reported to suppress inflammatory bowel disease (IBS). However, the regulatory roles of exosomes derived from IBS patients (IBS-exos) on human colon epithelial cells are still unclear. METHODS Exosomes were collected from IBS patients (IBS-exos) and co-cultured with CACO-2 cells. Apigenin was used to treat IBS-exos-treated CACO-2 cells. By exploring the public data bank, we figured out the regulators control the autophagy of CACO-2 cells. RESULTS Administration of apigenin dose-dependently abolished the inhibitory effect of IBS-exo on the autophagy of CACO-2 cells. A mechanistic study showed that miR-148b-3p bound to 3'UTR to suppress ATG14 and decrease autophagy. Moreover, results suggested that ATG14 overexpression promoted the autophagy of CACO-2 cells in the presence of miR-148b-3p mimic. CONCLUSION The current study showed that apigenin dose-dependently abolished the inhibitory effect of IBS-exo on CACO-2 cell autophagy by regulating miR-148b-3p/ATG14 signaling.
Collapse
Affiliation(s)
- Rui Fu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Gucui Road 234, Xihu District, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Saiyue Liu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Gucui Road 234, Xihu District, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Mingjin Zhu
- Department of Adverse Drug Reaction Monitoring, Zhejiang Province Center of Adverse Drug Reaction Monitoring, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Jiajie Zhu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Gucui Road 234, Xihu District, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Mingxian Chen
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Gucui Road 234, Xihu District, Hangzhou, Zhejiang, 310012, People's Republic of China.
| |
Collapse
|
11
|
Gu P, Tao D, Xu Y, Yang Q, Bai T, Hu S, Yang X. Osteocalcin inhibits myocyte aging through promotion of starvation-induced autophagy via IL-6/STAT3 signaling. Exp Gerontol 2023; 173:112082. [PMID: 36621698 DOI: 10.1016/j.exger.2023.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
This study aimed to investigate the effects and mechanisms of osteocalcin on autophagy in myoblasts, as well as its possible therapeutic effects in aging muscle. Starved murine myoblast C2C12 cells with or without interleukin (IL)-6 siRNA were treated with osteocalcin. Expression of the autophagy protein marker LC3, as well as IL-6 and phosphorylated STAT3 were detected by immunoblotting, immunofluorescence, or immunohistochemistry. Autophagosomes were observed with transmission electron microscopy. Levels of reactive oxygen species (ROS) were detected by flow cytometry. Fasted young mice were injected intraperitoneally with osteocalcin, with or without the JAK inhibitor CP-690550 to inhibit IL-6 signaling. Older mice were treated with osteocalcin and muscle mass, grip strength and muscle structure were assessed. The results revealed that compared to control and serum-starved cells, osteocalcin treatment significantly increased the relative expression of LC3-II/LC3-I protein, the numbers of autophagosomes, and levels of intracellular ROS. Osteocalcin injection in mice also resulted in increased relative LC3-II/LC3-I protein expression and autophagosome numbers. Osteocalcin treatment significantly increased the secretion of IL-6 in muscle cells and tissue, and activated STAT3 signaling. Moreover, knockdown of IL-6 or blocking IL-6 signaling inhibited the phosphorylation of STAT3, and further inhibited autophagy in starved myoblasts and fasting-treated murine muscle tissue. In addition, osteocalcin treatment significantly increased muscle mass and grip strength in both aged mice and aged fasting mice. In conclusion, the inhibition of osteocalcin on muscle cell aging is accompanied by the induction of IL-6-STAT3-dependent autophagy, indicating osteocalcin might be a promising therapeutic candidate for aging-related myopathies.
Collapse
Affiliation(s)
- Pengying Gu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Daidi Tao
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Yuanyuan Xu
- Master of Medical Science, Anhui Medical University, Department of Infectious Diseases, The First Affiliated Hospital of USTC, Hefei, Anhui, PR China
| | - Qian Yang
- Department of Geriatrics, The Sixth Affiliated Hospital of Shanghai Jiaotong University, Shanghai 200000, PR China
| | - Tingting Bai
- Department of Geriatrics, Dongfeng General Hospital of Sinopharm, Shiyan, Hubei 442000, PR China
| | - Shilian Hu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China.
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
12
|
Zhang T, Gan Y, Zhu S. Association between autophagy and acute pancreatitis. Front Genet 2023; 14:998035. [PMID: 36793898 PMCID: PMC9923090 DOI: 10.3389/fgene.2023.998035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Autophagy pathway involves maintaining intracellular homeostasis by regulating the degradation of cytoplasmic components. Disfunction of autophagic process has been confirmed to be critical mechanism in many diseases, including cancer, inflammation, infection, degeneration and metabolic disorders. Recent studies have shown that autophagy is one of the early events in acute pancreatitis. Impaired autophagy promotes the abnormal activation of zymogen granules and results in apoptosis and necrosis of exocrine pancreas. Furthermore, multiple signal paths involve progression of acute pancreatitis by regulating autophagy pathway. This article provides a comprehensive review of the recent advances in epigenetic regulation of autophagy and the role of autophagy in acute pancreatitis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yu Gan, ; Shuai Zhu,
| | - Shuai Zhu
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China,*Correspondence: Yu Gan, ; Shuai Zhu,
| |
Collapse
|
13
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Liu Q, Li L, Xu D, Zhu J, Huang Z, Yang J, Cheng S, Gu Y, Zheng L, Zhang X, Shen H. Identification of novel immune-related targets mediating disease progression in acute pancreatitis. Front Cell Infect Microbiol 2022; 12:1052466. [PMID: 36590588 PMCID: PMC9795030 DOI: 10.3389/fcimb.2022.1052466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/29/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Acute pancreatitis (AP) is an inflammatory disease with very poor outcomes. However, the order of induction and coordinated interactions of systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS) and the potential mechanisms in AP are still unclear. Methods An integrative analysis was performed based on transcripts of blood from patients with different severity levels of AP (GSE194331), as well as impaired lung (GSE151572), liver (GSE151927) and pancreas (GSE65146) samples from an AP experimental model to identify inflammatory signals and immune response-associated susceptibility genes. An AP animal model was established in wild-type (WT) mice and Tlr2-deficient mice by repeated intraperitoneal injection of cerulein. Serum lipase and amylase, pancreas impairment and neutrophil infiltration were evaluated to assess the effects of Tlr2 in vivo. Results The numbers of anti-inflammatory response-related cells, such as M2 macrophages (P = 3.2 × 10-3), were increased with worsening AP progression, while the numbers of pro-inflammatory response-related cells, such as neutrophils (P = 3.0 × 10-8), also increased. Then, 10 immune-related AP susceptibility genes (SOSC3, ITGAM, CAMP, FPR1, IL1R1, TLR2, S100A8/9, HK3 and MMP9) were identified. Finally, compared with WT mice, Tlr2-deficient mice exhibited not only significantly reduced serum lipase and amylase levels after cerulein induction but also alleviated pancreatic inflammation and neutrophil accumulation. Discussion In summary, we discovered SIRS and CARS were stimulated in parallel, not activated consecutively. In addition, among the novel susceptibility genes, TLR2might be a novel therapeutic target that mediates dysregulation of inflammatory responses during AP progression.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Gastroenterology, Hangzhou Hospital and Institute of Digestive Diseases, Hangzhou, Zhejiang, China
| | - Lingyun Li
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Dongchao Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jianpeng Zhu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sile Cheng
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyun Zheng
- Department of Gastroenterology, Hangzhou Hospital and Institute of Digestive Diseases, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Gastroenterology, Hangzhou Hospital and Institute of Digestive Diseases, Hangzhou, Zhejiang, China,*Correspondence: Hongzhang Shen, ; Xiaofeng Zhang,
| | - Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China,*Correspondence: Hongzhang Shen, ; Xiaofeng Zhang,
| |
Collapse
|
15
|
Shao A, Hu W, Li C, Yang Y, Zhu J. Downregulation of lncRNA NEAT1 Relieves Caerulein-Induced Cell Apoptosis and Inflammatory Injury in AR42J Cells Through Sponging miR-365a-3p in Acute Pancreatitis. Biochem Genet 2022; 60:2286-2298. [PMID: 35325441 DOI: 10.1007/s10528-022-10219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Collapse
Affiliation(s)
- Anjing Shao
- Department of Gastroenterology, Chongqing Wanzhou Shanghai Hospital, Chongqing, 404100, People's Republic of China
| | - Wei Hu
- Department of Gastroenterology, Chongqing Jiulongpo District People's Hospital, 7 Metallurgical Third Village, Shipingqiao, Jiulongpo, Chongqing, 400000, People's Republic of China.
| | - Chunxia Li
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| | - Yang Yang
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| | - Jianru Zhu
- Department of Gastroenterology, Army Medical Center of PLA, Chongqing, 400042, People's Republic of China
| |
Collapse
|
16
|
Lv J, Fang M, Sun S, Wang G, Fu S, Sun B, Tong J. Blockade of the Arid5a/IL-6/STAT3 axis underlies the anti-inflammatory effect of Rbpjl in acute pancreatitis. Cell Biosci 2022; 12:95. [PMID: 35725649 PMCID: PMC9208186 DOI: 10.1186/s13578-022-00819-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/19/2022] [Indexed: 01/07/2024] Open
Abstract
Background The microarray data analysis predicted that Rbpjl is poorly expressed in acute pancreatitis (AP). Activated IL-6/STAT3 signaling is further known to contribute to the progression of AP through immune regulation, and both IL-6 and STAT3 were bioinformatically predicted to interact with Arid5a. Accordingly, we aimed to investigate the potential involvement of the Arid5a/IL-6/STAT3 axis in the regulatory role of Rbpjl in the inflammation of AP. Methods Pancreatic acinar cells were exposed to lipopolysaccharide (LPS) to induce the pancreatic cell damage, and mice were subjected to supramaximal cerulein stimulation to induce AP. Expression patterns of Rbpjl and the Arid5a/IL-6/STAT3 axis were measured in mouse and cell models. Their expression was further manipulated to explore their effects on pancreatic cell injury and inflammation, as reflected by cell viability and apoptosis as well as reactive oxygen species (ROS) accumulation and proinflammatory cytokine secretion. Moreover, ChIP, EMSA, and dual-luciferase reporter assays were carried out to identify the interactions between Rbpjl and Arid5a. Results Rbpjl was found to be down-regulated in pancreatic tissues of AP mice and LPS-induced pancreatic acinar cells, while re-expression of Rbpjl led to enhanced cell viability, suppressed LPS-induced inflammation and ROS accumulation, and alleviation of AP-induced damage. Mechanistically, Rbpjl could bind to the promoter region of Arid5a and down-regulated its expression, thus repressing the activation of the IL-6/STAT3 signal axis. Furthermore, Rbpjl impaired Arid5a-dependent IL-6/STAT3 activation, hence alleviating pancreatic acinar cell inflammation. Furthermore, these effects were validated with in vivo experiments. Conclusion Collectively, our findings highlight that Rbpjl attenuates AP by down-regulating Arid5a and inactivating the IL-6/STAT3 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00819-1.
Collapse
|
17
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
18
|
New challenges for microRNAs in acute pancreatitis: progress and treatment. J Transl Med 2022; 20:192. [PMID: 35509084 PMCID: PMC9066850 DOI: 10.1186/s12967-022-03338-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
Acute pancreatitis (AP) is a common clinical abdominal emergency, with a high and increasing incidence each year. Severe AP can easily cause systemic inflammatory response syndrome, multiple organ dysfunction and other complications, leading to higher hospitalization rates and mortality. Currently, there is no specific treatment for AP. Thus, we still need to understand the exact AP pathogenesis to effectively cure AP. With the rise of transcriptomics, RNA molecules, such as microRNAs (miRNAs) transcribed from nonprotein-coding regions of biological genomes, have been found to be of great significance in the regulation of gene expression and to be involved in the occurrence and development of many diseases. Increasing evidence has shown that miRNAs, as regulatory RNAs, can regulate pancreatic acinar necrosis and apoptosis and local and systemic inflammation and play an important role in the development and thus potentially the diagnosis and treatment of AP. Therefore, here, the current research on the relationship between miRNAs and AP is reviewed.
Collapse
|
19
|
Zhang W, Man Y, Chen Z. microRNA-148a in Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviates Cardiomyocyte Apoptosis in Atrial Fibrillation by Inhibiting SMOC2. Mol Biotechnol 2022; 64:1076-1087. [PMID: 35397056 DOI: 10.1007/s12033-022-00487-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
Exosomes-related microRNAs (miRNAs) have been considered to be the significant biomarkers contributing to the development of atrial fibrillation (AF). We observed the implicit mechanism of exosomes-miR-148a derived from bone marrow mesenchymal stem cells (BMSCs) in AF. The AF cell and mice models were established firstly. QRT-PCR and Western blot analysis were applied to detect the expression of miR-148a, SPARC-associated modular calcium-binding protein 2 (SMOC2), Bcl-2, Bax, and caspase-3. BMSCs were separated from healthy mice and exosomes were obtained from BMSCs. BMSCs were transfected with mimics and inhibitor, and HL-1 cells were treated with mimics and pcDNA3.1. MTT assay were used to detect cell viability of cells. Flow cytometric analysis and TUNEL analysis were used for detecting cell apoptosis of cells. In our study, exosomes derived from BMSCs inhibited the development of AF, and miR-148a acted a vital role in this segment. SMOC2 was a target gene of miR-148a and promoted apoptosis of HL-1 cells. Additionally, miR-148a mimics decreased cellular apoptosis, eliminated SMOC2 expression, and elevated Bcl-2 expression in AF-treated cells. Collectively, miR-148a overexpressed in BMSC-exosomes restrained cardiomyocytes apoptosis by inhibiting SMOC2.
Collapse
Affiliation(s)
- Weijuan Zhang
- Department of Cardiology, Xi'an No. 3 Hospital, the Affiliated Hospital Northwest University, Xi'an, Shanxi, 710018, P.R. China
| | - Yilong Man
- Department of Cardiology, Jinan Central Hospital, Jinan, 250013, China
| | - Zhanghu Chen
- Department of Emergency, Xi'an No. 3 Hospital, the Affiliated Hospital Northwest University, Xi'an, Shaanxi, 710018, P.R. China.
| |
Collapse
|
20
|
Protective Effect of miR-193a-5p and miR-320-5p on Caerulein-Induced Injury in AR42J Cells. Dig Dis Sci 2021; 66:4333-4343. [PMID: 33405047 DOI: 10.1007/s10620-020-06800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute pancreatitis is a common inflammatory disease. MicroRNAs have been implicated in the pathogenesis of acute pancreatitis. AIMS The purpose of this study was to investigate the precise roles of miR-193a-5p and miR-320-5p in AP. METHODS The levels of miR-193a-5p, miR-320-5p and tumor necrosis factor receptor-associated factor 3 were detected by quantitative real-time polymerase chain reaction. Cell apoptosis was determined using flow cytometry. Enzyme-linked immunosorbent assay was performed to measure TNF-α, IL-6, IL-1β and IL-8 production, amylase activity, and malondialdehyde content. Targeted relationship between miR-193a-5p or miR-320-5p and TRAF3 was confirmed by the dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Our data showed that miR-193a-5p and miR-320-5p were down-regulated in acute pancreatitis serum and caerulein-treated AR42J cells. The increased expression of miR-193a-5p or miR-320-5p alleviated caerulein-induced cell injury in AR42J cells. Tumor necrosis factor receptor-associated factor 3 was a direct target of miR-193a-5p and miR-320-5p in AR42J cells. Moreover, miR-193a-5p and miR-320-5p regulated caerulein-induced AR42J cells injury through targeting tumor necrosis factor receptor-associated factor 3. CONCLUSION The present findings demonstrated that miR-193a-5p and miR-320-5p protected AR42J cells against caerulein-induced cell injury by targeting tumor necrosis factor receptor-associated factor 3, highlighting their roles as potential therapeutic targets for acute pancreatitis treatment.
Collapse
|
21
|
Zhou X, Li S, Chao D, Chen Z, Zhang J, Lin J, Ji Y, Ji Q. Serum small extracellular vesicles promote M1 activation of microglia after cerebral ischemia/reperfusion injury. Neurosci Lett 2021; 766:136307. [PMID: 34737022 DOI: 10.1016/j.neulet.2021.136307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Microglial M1 activation is detrimental to stroke outcomes. Recent studies have shown that circulating small extracellular vesicles (sEVs) can deliver miRNAs to target cells and regulate recipient cell functions. Herein, we tested the hypothesis that miRNA delivery by serum sEVs after cerebral ischemia/reperfusion (I/R) injury promote microglial M1 activation, demonstrating that serum sEVs from middle cerebral artery occlusion (MCAO) mice promoted proliferation and M1 activation of BV2 microglia. To explore the underlying mechanism of serum sEVs-mediated microglial activation in the early phase of cerebral I/R injury, we examined the effects of ischemic brain injury on the serum sEVs miRNAs profile in a mouse MCAO model using small RNAseq. Of the 1257 detected miRNA replications, the levels of 72 were significantly modulated. Bioinformatics analysis revealed that a panel of miRNAs was closely associated with inflammation, and in vitro experiments demonstrated that serum sEVs from MCAO mice could effectively transfer inflammatory miRNAs to BV2 microglia. Collectively, our data suggested that miRNAs delivered by serum sEVs after cerebral I/R injury promoted microglial M1 activation. The identification of microglial activation regulators in future studies will give rise to more effective treatments for stroke.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Shuyuan Li
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dachong Chao
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zixin Chen
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Junyu Zhang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jianhang Lin
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yuhua Ji
- Institute of Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226019, China.
| |
Collapse
|
22
|
Huang H, Wang M, Guo Z, Wu D, Wang H, Jia Y, Liu H, Ding J, Peng J. Rutaecarpine alleviates acute pancreatitis in mice and AR42J cells by suppressing the MAPK and NF-κB signaling pathways via calcitonin gene-related peptide. Phytother Res 2021; 35:6472-6485. [PMID: 34661951 DOI: 10.1002/ptr.7301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. Previous studies have shown that rutaecarpine (RUT), an important alkaloid component of Evodia rutaecarpa, exhibits certain protective effects against AP in rats by upregulating calcitonin gene-related peptide (CGRP). However, the molecular mechanism of RUT in AP remains unknown. This study aimed to investigate the effects of RUT on cerulein-induced AP in vivo and in vitro, and to explore the underlying molecular mechanisms. In cerulein/LPS-treated wild-type mice, but not CGRP gene knock-out mice, RUT significantly ameliorated pancreatic inflammation by alleviating histopathological changes, reducing IL-6 and TNF-α levels, and increasing in IL-10 levels. Moreover, RUT improved AP by suppressing the MAPK and NF-κB signaling pathways. These effects were mostly mediated through CGRP. Cell-based studies revealed that RUT significantly improved cell viability while suppressing the apoptosis of AR42J cells with cerulein-induced AP, downregulating IL-6 and TNF-α, stimulating IL-10 release, and inhibiting MAPK, NF-κB, and STAT3 signaling activation, all in a CGRP-dependent manner. RUT ameliorated cerulein/LPS-induced AP inflammatory responses in mice and AR42J cells in a CGRP-dependent manner and thus may represent a potential therapeutic option for AP patients. Our study provides valuable insights for AP drug development.
Collapse
Affiliation(s)
- Haosu Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Zimeng Guo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanyue Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Jia
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Honghui Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Ding
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Chen L, Wang H, Ge S, Tai S. IL-6/STAT3 pathway is involved in the regulation of autophagy in chronic non-bacterial prostatitis cells, and may be affected by the NLRP3 inflammasome. Ultrastruct Pathol 2021; 45:297-306. [PMID: 34423720 DOI: 10.1080/01913123.2021.1966149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Studies have shown that the cytokine IL-6 plays an important role in the occurrence and development of chronic non-bacterial prostatitis (CNP), but the specific mechanism by which this cytokine regulates CNP is still unclear. At the same time, relevant research have also shown that autophagy is involved in regulating the occurrence and development of inflammation. The possible mechanisms are IL-6/STAT3 signaling pathway and NLRP3 inflammasome. On the basis of establishing the CNP model in rats, we found that IL-6 can regulate autophagy of CNP cells and is associated with the STAT3 pathway and NLRP3 inflammasome. Our results indicate that IL-6 is involved in the regulation of autophagy signaling pathways in CNP. IL-6/STAT3 signaling pathway can suppress cell autophagy pathway in CNP; And the NLRP3 inflammasome may regulate CNP cell autophagy by regulating the IL-6/STAT3 pathway. These findings may provide a new theoretical basis for the pathogenesis of CNP, as well as new ideas and new targets for the treatment and prevention of CNP.
Collapse
Affiliation(s)
- Lidong Chen
- Department Of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Hui Wang
- Department Of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Shengdong Ge
- Department Of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Sheng Tai
- Department Of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
24
|
Wang J, Xu Y, Jing H, Chang Q, Wu X, Zhang Z. RORγt inhibitor SR1001 alleviates acute pancreatitis by suppressing pancreatic IL-17-producing Th17 and γδ-T cells in mice with ceruletide-induced pancreatitis. Basic Clin Pharmacol Toxicol 2021; 129:357-368. [PMID: 34384137 PMCID: PMC9291878 DOI: 10.1111/bcpt.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
The management of acute pancreatitis (AP) remains a challenge to clinicians worldwide for limited effective interventions. Retinoid orphan receptor gamma t (RORγt) is a therapeutic target for several diseases; however, it is unclear whether inhibiting RORγt can ameliorate AP. The relative expression of RORγt, IL‐17 and IL‐23 in the peripheral blood mononuclear cells of AP patients was measured by RT‐PCR. An AP mouse model was induced by ceruletide, and SR1001 was injected before ceruletide administration. RORγt+ cells, T helper 17 cells (Th17), regulatory T cells (Tregs) and γδ T cells were assessed in the pancreas and spleen by flow cytometry. Higher RORγt expression in patients indicated the potential role of RORγt in AP progression. Analyses of the IL‐17/IL‐23 axis confirmed its role. SR1001 significantly alleviated AP histologically in the mouse model. Serum levels of amylase, IL‐6, TNFalpha, IL‐17 and IL‐23 decreased upon SR1001 treatment. SR1001 selectively decreased the number of RORγt+, Th17, Tregs and γδ T cells in the pancreas but not the spleen. Collectively, these results showed that SR1001 exerted therapeutic effects on AP by suppressing IL‐17‐secreting Th17 and γδ T cells in the pancreas. Thus, SR1001 may be a promising drug for the treatment of AP in the clinic.
Collapse
Affiliation(s)
- Jianfa Wang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yayun Xu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui Jing
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Qimeng Chang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xubo Wu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Ziping Zhang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
MicroRNA MiR-27a-5p Alleviates the Cerulein-Induced Cell Apoptosis and Inflammatory Injury of AR42J Cells by Targeting Traf3 in Acute Pancreatitis. Inflammation 2021; 43:1988-1998. [PMID: 32647955 DOI: 10.1007/s10753-020-01272-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acute pancreatitis (AP), a sudden inflammatory process of pancreas, is painful and may contribute to death. The aberrant expression of miR-27a-5p has been reported in many types of cancers and diseases including AP. Thus, it is urgent to manifest the functions and mechanism of miR-27a-5p in AP. The levels of miR-27a-5p, tumor necrosis factor (TNF) receptor-associated factor 3 (Traf3) in serum of AP patient, or cerulein-treated AR42J cells were detected by qRT-PCR. Functionally, the apoptotic rate, the protein levels of Bcl-2 and Bax, the caspase-3 activity, and the levels of IL-1β, IL-6, and TNF-α in cerulein-treated AR42J cells were measured by flow cytometry, Western blot, caspase-3 activity assay, and qRT-PCR and ELISA assay, respectively. In addition, the putative target of miR-27a-5p was predicted by TargetScan online database, and the dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify this interaction. Cerulein-treated mouse AP model was established to explore the role of miR-27a-5p in AP in vivo. The level of miR-27a-5p was notably downregulated in AP patients and cerulein-treated AR42J cells. The functional experiments indicated that miR-27a-5p mimics attenuated the promotion effects on cell apoptosis and the inflammatory response in AR42J cells caused by cerulein. The interaction between miR-27a-5p and Traf3 was predicted by TargetScan online database and validated by dual luciferase reporter assay and RIP assay. Following qRT-PCR results exhibited that Traf3 was apparently enhanced in cerulein-treated AR42J cells. The further functional experiments disclosed that Traf3 overexpression relieved the inhibitory effects on cell apoptosis and the inflammatory response induced by miR-27a-5p mimics in cerulein-treated AR42J cells. Moreover, miR-27a-5p alleviated cerulein-induced injury in vivo. In this study, we established the cerulein-treated AR42J cells as AP model in vitro. We validated that miR-27a-5p was significantly downregulated, and Traf3 was strikingly upregulated in AP patient and/or cerulein-treated AR42J cells. The further mechanistical and functional experiments unraveled that miR-27a-5p regulated Traf3 to relieve the cerulein-induced cell apoptosis and inflammatory injury of AR42J cells. Therefore, this novel regulatory network may provide therapeutic target for AP patients.
Collapse
|
26
|
Dysregulation of miR-192-5p in acute pancreatitis patients with nonalcoholic fatty liver and its functional role in acute pancreatitis progression. Biosci Rep 2021; 40:224146. [PMID: 32406504 PMCID: PMC7256679 DOI: 10.1042/bsr20194345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a frequent metabolic disease and has been demonstrated to contribute to the severity of acute pancreatitis (AP). The present study aimed to investigate the aberrant expression of microRNA-192-5p (miR-192-5p) in AP patients with NAFLD, and further analyze the clinical significance and biological function of miR-192-5p in AP progression. METHODS Expression of miR-192-5p was estimated using quantitative real-time PCR (qRT-PCR). Diagnostic value of miR-192-5p was evaluated by the receiver operating characteristic curve (ROC). The effects of miR-192-5p on cell proliferation, apoptosis and inflammatory response of pancreatic acinar cells were further assessed by CCK-8 assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA). RESULTS Circulating miR-192-5p was decreased in AP patients with NAFLD compared with those patients without NAFLD and healthy controls (P<0.05). The down-regulated expression of miR-192-5p had a relative high diagnostic accuracy to distinguish the AP patients with NAFLD from the cases without NAFLD. Furthermore, the overexpression of miR-192-5p in pancreatic acinar cells led to the decreased cell proliferation, increased cell apoptosis and suppressed inflammatory reaction (all P<0.05). CONCLUSION Collectively, all data indicated that serum expression of miR-192-5p in AP patients with NAFLD is significantly decreased and serves as a candidate diagnostic biomarker. The up-regulation of miR-192-5p in pancreatic acinar cell leads to increased cell apoptosis and decreased inflammatory response, suggesting the potential of miR-192-5p as a therapeutic target of AP.
Collapse
|
27
|
Zhang K, Zhang X. MiR-146b-3p protects against AR42J cell injury in cerulein-induced acute pancreatitis model through targeting Anxa2. Open Life Sci 2021; 16:255-265. [PMID: 33817317 PMCID: PMC7968541 DOI: 10.1515/biol-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute pancreatitis (AP) is a common inflammatory disorder. MicroRNAs play crucial roles in the pathogenesis of AP. In this article, we explored the detailed role and molecular mechanisms of miR-146b-3p in AP progression. Methods The rat AR42J cells were treated with cerulein to establish the AP model in vitro. The miR-146b-3p and Annexin A2 (Anxa2) mRNA levels were assessed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were tested using the Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Caspase-3 activity and the production of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay and qRT-PCR. Targeted interaction between miR-146b-3p and Anxa2 was verified by the dual-luciferase reporter and RNA immunoprecipitation assays. Western blot analysis was performed to detect the expression of Anxa2 protein. Results Our data revealed that miR-146b-3p was significantly downregulated in AP samples. The enforced expression of miR-146b-3p alleviated cerulein-induced injury in AR42J cells, as evidenced by the promotion in cell viability and the repression in cell apoptosis, as well as the reduction in IL-1β, IL-6, and TNF-α production. Anxa2 was directly targeted and inhibited by miR-146b-3p. Moreover, the alleviative effect of miR-146b-3p overexpression on cerulein-induced AR42J cell injury was mediated by Anxa2. Conclusions The current work had led to the identification of miR-146b-3p overexpression that protected against cerulein-induced injury in AR42J cells at least in part by targeting Anxa2, revealing a promising target for AP diagnosis and treatment.
Collapse
Affiliation(s)
- Kunpeng Zhang
- Department of Hepatobiliary Surgery, Xingtai People's Hospital, Xingtai, Hebei, 054001, China.,Department of Neurology, Xingtai People's Hospital, 16 Hongxing Street, Qiaodong District, Xingtai, Hebei, 054001, China
| | - Xiaoyu Zhang
- Department of Neurology, Xingtai People's Hospital, 16 Hongxing Street, Qiaodong District, Xingtai, Hebei, 054001, China
| |
Collapse
|
28
|
Ji S, Zhu C, Gao S, Shao X, Chen X, Zhang H, Tang D. Morus alba leaves ethanol extract protects pancreatic islet cells against dysfunction and death by inducing autophagy in type 2 diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153478. [PMID: 33567371 DOI: 10.1016/j.phymed.2021.153478] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Protection of pancreatic islet cells against dysfunction or death by regulating autophagy is considered to be an effective method for treatment of type 2 diabetes mellitus (T2DM). Morus alba leaves (mulberry leaves), a popular herbal medicine, have been used for prevention of T2DM since ancient times. PURPOSE This study aimed to clarify whether Morus alba leaves ethanol extract (MLE) could protect islet cells in vivo and in vitro by regulating autophagy in T2DM, and explore the possible mechanism of action. METHODS The main chemical constituents in MLE were analyzed by HPLC. The T2DM rat model was induced via high-fat diet combined with peritoneal injection of low-dose streptozotocin, and MLE was administered by oral gavage. Fasting blood glucose (FBG) and plasma insulin were measured, and homeostatic model assessment of β cell function (HOMA-β) and insulin resistance (HOMA-IR) were determined. The histomorphology of pancreas islets was evaluated by haematoxylin and eosin staining. In palmitic acid (PA)-stressed INS-1 rat insulinoma cells, cell viability was assayed by an MTT method. Expression of the autophagy-related proteins LC3 I/II, p62, p-AMPK and p-mTOR in islet tissues and INS-1 cells was evaluated by western blotting or immunohistochemistry analysis. RESULTS The four main chemical constituents in MLE were identified as chlorogenic acid, rutin, isoquercitrin and quercitrin. MLE ameliorated hyperglycemia, insulin resistance and dyslipidemia of T2DM rats with prominent therapeutic effect. Further study indicated that MLE observably improved islet function, alleviated islet injury of T2DM rats, and inhibited PA-induced INS-1 cell death. On the other hand, MLE significantly induced autophagy in islet cells both in vivo and in vitro, and autophagy inhibitors abolished its therapeutic effect on T2DM rats and protective effect on islet cells. Apart from this, MLE markedly activated the AMPK/mTOR pathway in INS-1 cells, and the AMPK inhibitor prevented the autophagy induction ability of MLE. CONCLUSION Together, MLE could protect islet cells against dysfunction and death by inducing AMPK/mTOR-mediated autophagy in T2DM, and these findings provide a new perspective for understanding the treatment mechanism of Morus alba leaves against T2DM.
Collapse
Affiliation(s)
- Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Cuicui Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Shikai Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xian Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui Zhang
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
29
|
Autophagy in Acute Pancreatitis: Organelle Interaction and microRNA Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8811935. [PMID: 33628384 PMCID: PMC7884169 DOI: 10.1155/2021/8811935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a common disorder with significant hospital admission and mortality. Due to the unclarified pathological mechanism, there is still no effective and specific treatment for AP. Recently, autophagy has been found to be closely related with occurrence and development of AP, which is crucial in determining its severity and outcomes. Emerging evidence indicates that autophagy can be regulated and influenced by microRNAs and organelles, including mitochondria, endoplasmic reticulum and lysosome, through various ways in AP. Of note, the complex interplays and close relationships among autophagy, microRNA and organelles in AP are vital for figuring out pathogenesis but not clear yet. Thus, this review summarizes the role of autophagy in the pathological mechanism of AP, especially the relationship between impaired autophagy and organelles, and discusses the regulatory mechanism of microRNA on autophagy, which could offer new insights into understanding the pathogenesis of AP and developing new potential therapeutic targets against AP.
Collapse
|
30
|
Zhen J, Chen W, Liu Y, Zang X. Baicalin Protects Against Acute Pancreatitis Involving JNK Signaling Pathway via Regulating miR-15a. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:147-161. [PMID: 33371810 DOI: 10.1142/s0192415x21500087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a kind of reversible inflammatory process of the exocrine pancreas. During the process, systemic inflammatory syndromes are involved, which relates closely to inflammatory mediators. Baicalin is a type of flavone compound extracted from Scutellaria baicalensis Georgi and exhibits anti-inflammation effect in several cancers. In this study, baicalin displayed a suppressing role on IL-1[Formula: see text], TNF[Formula: see text] and IL-6 in both cell and mice models. Necrosis was decreased in the baicalin treatment group and got a markedly lower pathological score. In this study, miR-15a is the core intermediate in baicalin regulation, which increased through baicalin treatment and protected pancreas cells and tissues, inhibiting the JNK signaling pathway by targeting MAP2K4. The long non-coding RNA MALAT1 is also a direct target of miR-15a and forms a competitive endogenous RNA (ceRNA) network with MAP2K4, which can be regulated by baicalin. In addition, upstream genes, including CDC42 and MAP3K1, were also regulated by baicalin, of which CDC42 was confirmed to form the second ceRNA network with MALAT1 and miR-15a. In conclusion, baicalin exhibits therapeutic activity towards AP by pumping up miR-15a level and inhibiting CDC42/MAP3K1, which affects AP as a brake by targeting MAP2K4 and inhibiting the JNK signaling pathway.
Collapse
Affiliation(s)
- Jie Zhen
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyilu Street, Beijing 100038, People's Republic of China
| | - Wei Chen
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyilu Street, Beijing 100038, People's Republic of China
| | - Yang Liu
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyilu Street, Beijing 100038, People's Republic of China
| | - Xuefeng Zang
- Department of Intensive Care Unit, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyilu Street, Beijing 100038, People's Republic of China
| |
Collapse
|
31
|
Quercetin inhibits caerulein-induced acute pancreatitis through regulating miR-216b by targeting MAP2K6 and NEAT1. Inflammopharmacology 2020; 29:549-559. [PMID: 33051781 DOI: 10.1007/s10787-020-00767-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease with high mortality and mortality rates. Increasing evidences clarified that Traditional Chinese Medicine (TCM) adjuvant therapy for AP can be used and it gives a positive effect. Quercetin (3,3',4',5,7-pentahydroxyflavone, QE) is a type of flavone compound with positive effect on cancer and inflammation prevention. The current study aims to identify the effect of QE on AP and potential molecular effect. In this case, caerulein (CAE) induced AP cell and mice model were used. QE alleviated inflammatory mediators TNF-α, IL-6, and IL-10 in experiments. In addition, miR-216b was increased based on QE treatment. In further study, MAP2K6 of p38/MAPK signaling pathway was identified as a direct target of miR-216b, and QE inhibited p38/MAPK signaling pathway through up-regulating miR-216b. Our study also first confirmed that long non-coding RNA NEAT1 is a direct target of miR-216b and can be suppressed by QE. Because of the target, NEAT1, miR-216b, and MAP2K6 formed a competitive endogenous RNA (ceRNA) network. Besides direct target mediated by QE, it also decreased TNF-α which down-regulated TRAF2 and MAP3K5 located on upstream of p38/MAPK signaling and formed a feedback loop. In conclusion, QE has a protective effect on AP through inhibiting p38/MAPK signaling pathway by up-regulating miR-216b and suppressing TNF-α.
Collapse
|
32
|
Shan Y, Kong W, Zhu A, Zhang J, Ying R, Zhu W. Increased levels of miR-372 correlate with disease progression in patients with hyperlipidemic acute pancreatitis. Exp Ther Med 2020; 19:3845-3850. [PMID: 32346449 DOI: 10.3892/etm.2020.8609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miRNA)-372 in the serum of patients with hyperlipidemic acute pancreatitis (HTGAP), and its clinical significance. Patients with a serum lipid concentration ≥11.3 or 5.65-11.3 mmol/l with chylous serum were included in group A (n=40). The remaining patients did not have HTGAP and were included in group B (B). A further 25 patients with hyperlipidemia, but not AP (group C), and 30 healthy volunteers (group D) were recruited as controls. The level of miR-372 in the serum of group A (4.76±2.60) was significantly increased compared with groups B (0.98±0.80), C (0.85±0.62) and D (0.76±0.44); however, there was no significant difference in the expression of miR-372 between groups B, C and D. The expression level of miR-372 was significantly increased in the severe HTGAP group (6.45±2.20) compared with the mild HTGAP group (3.08±1.74). Further experiments suggested that the expression level of miR-372 was positively correlated with the level of triacylglycerol (r=0.666; P<0.001) but not with the level of amylase (r=-0.145; P>0.05). ROC analysis indicated that the combined use of miR-372 expression levels and Acute Physiology and Chronic Health Evaluation II scoring improved the diagnostic value for HTGAP. In summary, the expression of miR-372 in HTGAP was significantly upregulated and increased with the severity of the disease. The results of the present study may provide a novel strategy for the diagnosis and severity assessment of HTGAP in the clinic.
Collapse
Affiliation(s)
- Yuqiang Shan
- Department of General Surgery, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China.,Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Akao Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jian Zhang
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Weiming Zhu
- Department of General Surgery, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
33
|
Elevated hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470 in the Human Blood: Novel Biomarkers to Early Diagnose Acute Pancreatitis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2419163. [PMID: 32149089 PMCID: PMC7049409 DOI: 10.1155/2020/2419163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Objective To explore potential biomarkers to accurately diagnose patients with acute pancreatitis (AP) at early stage and to auxiliary clinicians implement the best treatment options. Methods We selected 3 patients with AP and 3 healthy controls for microarray analysis to obtain differentially expressed circular RNAs (circRNAs). To further verify the results of the microarray analysis, the six differentially expressed circRNAs were confirmed by quantitative polymerase chain reaction (qPCR). The diagnostic accuracy and sensitivity of differentially expressed circRNAs were assessed using the receiver operating characteristic (ROC) curve. A ceRNA network was constructed based on the 6 differentially expressed circRNAs. Results There were 25 upregulated circRNAs and 26 downregulated circRNAs in the blood of patients with AP. Next, the qPCR verification results further confirmed three downregulated circRNAs, including hsa_circRNA_002532, has_circRNA_059665, and hsa_circRNA_104156, and three upregulated circRNAs including hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470. Among them, hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470 increased with the severity of the disease. ROC analysis showed that the three circRNA models show promise to diagnose AP. And a ceRNA network revealed that above six circRNAs could participate in complex regulated network. Conclusions Elevated hsa_circRNA_101015, hsa_circRNA_101211, and hsa_circRNA_103470 could be used as novel biomarkers to diagnose AP patients.
Collapse
|
34
|
Jia L, Chen H, Yang J, Fang X, Niu W, Zhang M, Li J, Pan X, Ren Z, Sun J, Pan LL. Combinatory antibiotic treatment protects against experimental acute pancreatitis by suppressing gut bacterial translocation to pancreas and inhibiting NLRP3 inflammasome pathway. Innate Immun 2019; 26:48-61. [PMID: 31615312 PMCID: PMC6974879 DOI: 10.1177/1753425919881502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gut bacterial translocation following impaired gut barrier is a critical
determinant of initiating and aggravating acute pancreatitis (AP). Antibiotic
combination (ABX; vancomycin, neomycin and polymyxin b) is capable of reducing
gut bacteria, but its efficacy in AP prevention and the underlying mechanism
have not been investigated yet. AP was induced in BALB/c mice by caerulein (CAE)
hyperstimulation. We found that ABX supplementation attenuated the severity of
AP as evidenced by reduced pancreatic oedema and myeloperoxidase activity. The
protective effect was also confirmed by improved histological morphology of the
pancreas and decreased pro-inflammatory markers (IL-1β, TNF-α, MCP-1) in
pancreas. ABX administration inhibits the activation of colonic TLR4/NLRP3
inflammasome pathway. Subsequently, down-regulated NLRP3 resulted in decreased
colonic pro-inflammation (IL-1β, IL-6, MCP-1) and enhanced gut physical barrier
as evidenced by up-regulation of tight junction proteins including occludin,
claudin-1 and ZO-1, as well as improved histological morphology of the colon.
Together, combinatory ABX therapy inhibited the translocation of gut bacteria to
pancreas and its amplification effects on pancreatic inflammation by inhibiting
the pancreatic NLRP3 pathway, and inhibiting intestinal-pancreatic inflammatory
responses. The current study provides the basis for potential clinical
application of ABX in AP.
Collapse
Affiliation(s)
- Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Hao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Yang
- Public Health Research Center and Department of General Surgery, Affiliated Hospital of Jiangnan University
| | - Xin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|