1
|
Shu H, Liao Q, Chen Z, Liang M, Zhang S, Liu J, Wu Y, Hu P, Luo M, Zhu W, Zhu X, Yang L, Yan T. Flavonoids serve as a promising therapeutic agent for ischemic stroke. Brain Res 2025; 1853:149528. [PMID: 39999903 DOI: 10.1016/j.brainres.2025.149528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemic stroke (IS) continues to be a major public health concern and is characterized by significantly high mortality and disabling rates. Inhibiting nerve cells death and enhancing the repair of ischemic tissue are important treatment concepts for IS. Currently, the mainstream treatment strategies mainly focus on short-term care, which underscores the urgent need for novel therapeutic strategies for long-term care. Emerging data reveal that flavonoids have surfaced as promising candidates for IS patients' long-term care. Flavonoids can alleviate neuroinflammation and anti-apoptosis due to their characteristic pharmacological mechanisms. Clinical evidence suggests that long-term flavonoids intake improves IS patients' long-term outcomes. Though the effect of flavonoids in IS treatment has been explored for decades, the neuroprotective pharmacodynamics have not been well established. Thereby, the aim of current review is to summarize the pathways involved in neuroprotective effect of flavonoids. This review will also advance the potential of flavonoids as a viable clinical candidate for the treatment of IS.
Collapse
Affiliation(s)
- Hongxin Shu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiuye Liao
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhihao Chen
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mingyu Liang
- School of life sciences, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si Zhang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhe Liu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanze Wu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Hu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming Luo
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenping Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xingen Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Li Yang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tengfeng Yan
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Frezza C, Sciubba F, Giampaoli O, De Salvador FR, Lucarini M, Engel P, Patriarca A, Spagnoli M, Gianferri R, Delfini M, Di Cocco ME, De Vita D. Comparison of the metabolic profile of pecan nuts cultivars [ Carya illinoinensis (Wangenh.) K. Koch] by NMR spectroscopy. Nat Prod Res 2025; 39:2023-2028. [PMID: 37904525 DOI: 10.1080/14786419.2023.2275738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023]
Abstract
Pecan nuts (Carya illinoinensis (Wangenh.) K. Koch) contain the highest number of phytochemicals of all nuts, are a natural source of unsaturated fatty acids and other nutrients and can be considered an important addition to the Mediterranean diet al.though several studies have been carried out on pecans, employing several analytical techniques, no systematic study of the metabolic profile is available in literature. In this study, the metabolic profile of pecan nuts of three different cultivars was analysed by Nuclear Magnetic Resonance Spectroscopy. The cultivars compared were Wichita, Stuart, and Sioux, all grown in Italy in the same pedoclimatic conditions. 31 metabolites were identified and 28 were quantified and the three species were differentiated based on multivariate PCA analysis. The differences among them, and the levels of scutellarein and GABA, in particular, were attributed to the adaptation of the plants to the climate in their original areas.
Collapse
Affiliation(s)
- Claudio Frezza
- Department of Environmental Biology, University of Rome Sapienza, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, University of Rome Sapienza, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), "Sapienza" University of Rome, Roma, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, University of Rome Sapienza, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), "Sapienza" University of Rome, Roma, Italy
| | | | - Massimo Lucarini
- Research Centre for Food and Nutrition, Council for Research in Agriculture (CREA), Rome, Italy
| | - Petra Engel
- Council for Research in Agriculture (CREA), Office for International and institutional cooperation, Rome, Italy
| | | | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Italy
| | | | - Maurizio Delfini
- Department of Chemistry, University of Rome Sapienza, Rome, Italy
| | | | - Daniela De Vita
- Department of Environmental Biology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
3
|
Nie S, Zhang S, Wu R, Zhao Y, Wang Y, Wang X, Zhu M, Huang P. Scutellarin: pharmacological effects and therapeutic mechanisms in chronic diseases. Front Pharmacol 2024; 15:1470879. [PMID: 39575387 PMCID: PMC11578714 DOI: 10.3389/fphar.2024.1470879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Scutellarin (SCU), a flavonoid glucuronide derived from Scutellaria barbata and Erigeron breviscapus, exhibits broad pharmacological effects with promising therapeutic potential in treating various chronic diseases. It has demonstrated efficacy in modulating multiple biological pathways, including antioxidant, anti-inflammatory, anti-apoptotic, and vasodilatory mechanisms. These protective roles make SCU a valuable compound in treating chronic diseases such as cerebrovascular diseases, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases. Despite its multi-targeted effects, SCU faces challenges such as low bioavailability and limited clinical data, which hinder its widespread therapeutic application. Current research supports its potential to prevent oxidative stress, reduce inflammatory responses, and enhance cell survival in cells and rats. However, more comprehensive studies are required to clarify its molecular mechanisms and to develop strategies that enhance its bioavailability for clinical use. SCU could emerge as a potent therapeutic agent for the treatment of chronic diseases with complex pathophysiological mechanisms. This review examines the current literature on Scutellarin to provide a comprehensive understanding of its pharmacological activity, mechanisms of action, and therapeutic potential in treating chronic diseases.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Lai J, Li C. Review on the pharmacological effects and pharmacokinetics of scutellarein. Arch Pharm (Weinheim) 2024; 357:e2400053. [PMID: 38849327 DOI: 10.1002/ardp.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024]
Abstract
Scutellarein is a flavonoid from Scutellaria baicalensis Georgi that has been shown to have a variety of pharmacological activities. This review aims to summarize the pharmacological and pharmacokinetic studies on scutellarein and provide useful information for relevant scholars. Pharmacological studies indicate that scutellarein possesses a diverse range of pharmacological properties, including but not limited to anti-inflammatory, antioxidant, antiviral, neuroprotective, hypoglycemic, hypolipidemic, anticancer, and cardiovascular protective effects. Further investigation reveals that the pharmacological effects of scutellarein are driven by multiple mechanisms. These mechanisms encompass the scavenging of free radicals, inhibition of the activation of inflammatory signaling pathways and expression of inflammatory mediators, inhibition of the activity of crucial viral proteins, suppression of gluconeogenesis, amelioration of insulin resistance, improvement of cerebral ischemia-reperfusion injury, induction of apoptosis in cancer cells, and prevention of myocardial hypertrophy, among others. In summary, these pharmacological studies suggest that scutellarein holds promise for the treatment of various diseases. It is imperative to conduct clinical studies to further elucidate the therapeutic effects of scutellarein. However, it is worth noting that studies on the pharmacokinetics reveal an inhibitory effect of scutellarein on uridine 5'-diphosphate glucuronide transferases and cytochrome P450 enzymes, potentially posing safety risks.
Collapse
Affiliation(s)
- Jiang Lai
- Department of Anorectal Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | - Chunxiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Dong Y, Wang F, Wen J, Mao Y, Zhang S, Long T, Yang Z, Li L, Zhang J, Dong L, Liu G, Xu J. Synthesis and bioevaluation of Scutellarein-Tertramethylpyrazine hybrid molecules for the treatment of ischemic stroke. Bioorg Chem 2024; 142:106978. [PMID: 37984102 DOI: 10.1016/j.bioorg.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Ischemic stroke caused by insufficient blood supply to the brain may produce a sequence of cascade reactions, leading to oxidative stress and ultimately inducing nerve cell damage. Therefore, hybrid molecules with multiple therapeutic effects have irreplaceable advantages for the treatment of ischemic stroke. Based on the previous works, two types of Scutellarein and Tertramethylpyrazine hybrid molecules were designed and synthesized according to the PepT 1-based design. After systematic research, all synthesized hybrid molecules exhibited more excellent neuroprotective effect and antiplatelet activity compared to the original drugs. Among them, the selected compound 1e with superior neuroprotective and antiplatelet effects could significantly enhance the permeability on the Caco-2 monolayer membrane and inhibit the Gly-Sar uptake on Caco-2 cells. Meanwhile, the result of intestinal perfusion has also confirmed that the absorption of the selected compound 1e is indeed increased. Further, the selected compound 1e significantly reduce the cerebral infarction volume of middle cerebral artery occlusion/reperfusion rats. Especially, the cerebral infarction volume of the high-dose 1e group reduced to one fourth of the model group. Meanwhile, results of hematoxylin-eosin staining also indicated that the damage in the hippocampus CA1 region was significantly alleviated after treatment with the compound 1e. Accordingly, molecular hybridization strategy is one of the simple and feasible ways to improve the therapeutic effect of single targeted drug.
Collapse
Affiliation(s)
- Yongxi Dong
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China.
| | - Fang Wang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Jinlan Wen
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Yongqing Mao
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Shanhui Zhang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Tiemei Long
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Zhangxiang Yang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Lei Li
- Guizhou provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, China
| | - Jiquan Zhang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Li Dong
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Gang Liu
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & School of Basic Medicine, Guizhou Medical University, Guian New District 550025, Guizhou, China.
| | - Jianwei Xu
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China; Tissue Engineering and Stem Cell Research Center of Guizhou Medical University & School of Basic Medicine, Guizhou Medical University, Guian New District 550025, Guizhou, China.
| |
Collapse
|
6
|
Liu L, Zhang Y, Wang L, Liu Y, Chen H, Hu Q, Xie C, Meng X, Shen X. Scutellarein alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis by chelating iron and interacting with arachidonate 15-lipoxygenase. Phytother Res 2023; 37:4587-4606. [PMID: 37353982 DOI: 10.1002/ptr.7928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Ferroptosis, an iron-dependent cell death characterized by lethal lipid peroxidation, is involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, ferroptosis inhibition represents an attractive strategy for COPD therapy. Herein, we identified natural flavonoid scutellarein as a potent ferroptosis inhibitor for the first time, and characterized its underlying mechanisms for inhibition of ferroptosis and COPD. In vitro, the anti-ferroptotic activity of scutellarein was investigated through CCK8, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and transmission electron microscope (TEM). In vivo, COPD was induced by lipopolysaccharide (LPS)/cigarette smoke (CS) and assessed by changes in histopathological, inflammatory, and ferroptotic markers. The mechanisms were investigated by RNA-sequencing (RNA-seq), electrospray ionization mass spectra (ESI-MS), local surface plasmon resonance (LSPR), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and molecular dynamics. Our results showed that scutellarein significantly inhibited Ras-selective lethal small molecule (RSL)-3-induced ferroptosis and mitochondria injury in BEAS-2B cells, and ameliorated LPS/CS-induced COPD in mice. Furthermore, scutellarein also repressed RSL-3- or LPS/CS-induced lipid peroxidation, GPX4 down-regulation, and overactivation of Nrf2/HO-1 and JNK/p38 pathways. Mechanistically, scutellarein inhibited RSL-3- or LPS/CS-induced Fe2+ elevation through directly chelating Fe2+ . Moreover, scutellarein bound to the lipid peroxidizing enzyme arachidonate 15-lipoxygenase (ALOX15), which resulted in an unstable state of the catalysis-related Fe2+ chelating cluster. Additionally, ALOX15 overexpression partially abolished scutellarein-mediated anti-ferroptotic activity. Our findings revealed that scutellarein alleviated COPD by inhibiting ferroptosis via directly chelating Fe2+ and interacting with ALOX15, and also highlighted scutellarein as a candidate for the treatment of COPD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Lun Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yue Liu
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Rizou AEI, Nasi GI, Paikopoulos Y, Bezantakou DS, Vraila KD, Spatharas PM, Dimaki VD, Papandreou NC, Lamari FN, Chondrogianni N, Iconomidou VA. A Multilevel Study of Eupatorin and Scutellarein as Anti-Amyloid Agents in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051357. [PMID: 37239029 DOI: 10.3390/biomedicines11051357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Today, Alzheimer's disease (AD)-the most common neurodegenerative disorder, which affects 50 million people-remains incurable. Several studies suggest that one of the main pathological hallmarks of AD is the accumulation of abnormal amyloid beta (Aβ) aggregates; therefore, many therapeutic approaches focus on anti-Aβ aggregation inhibitors. Taking into consideration that plant-derived secondary metabolites seem to have neuroprotective effects, we attempted to assess the effects of two flavones-eupatorin and scutellarein-on the amyloidogenesis of Aβ peptides. Biophysical experimental methods were employed to inspect the aggregation process of Aβ after its incubation with each natural product, while we monitored their interactions with the oligomerized Aβ through molecular dynamics simulations. More importantly, we validated our in vitro and in silico results in a multicellular organismal model-namely, Caenorhabditis elegans-and we concluded that eupatorin is indeed able to delay the amyloidogenesis of Aβ peptides in a concentration-dependent manner. Finally, we propose that further investigation could lead to the exploitation of eupatorin or its analogues as potential drug candidates.
Collapse
Affiliation(s)
- Aikaterini E I Rizou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Yiorgos Paikopoulos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Dimitra S Bezantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Konstantina D Vraila
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Panagiotis M Spatharas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Virginia D Dimaki
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Rion, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504 Rion, Greece
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| |
Collapse
|
8
|
Chen HL, Yang L, Zhang XLN, Jia QY, Duan ZD, Li JJ, Zheng LY, Liu TT, Qi Z, Yuan Y, Wu CY. Scutellarin Acts via MAPKs Pathway to Promote M2 Polarization of Microglial Cells. Mol Neurobiol 2023:10.1007/s12035-023-03338-3. [PMID: 37086342 DOI: 10.1007/s12035-023-03338-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Scutellarin, an herbal agent, is known to possess anti-oxidant and anti-inflammatory properties. In activated microglia, it has been reported that this is achieved through acting on the MAPKs, a key pathway that regulates microglia activation. This study sought to determine if scutellarin would affect the commonly described microglia phenotypes, namely, M1 and M2, thought to contribute to pro- and anti-inflammatory roles, respectively. This is in consideration of its potential effect on the polarization of microglia phenotypes that are featured prominently in cerebral ischemia. For this purpose, we have used an experimentally induced cerebral ischemia rat model and LPS-stimulated BV-2 cell model. Thus, by Western blot and immunofluorescence, we show here a noticeable increase in expression of M2 microglia markers, namely, CD206, Arg1, YM1/2, IL-4 and IL-10 in activated microglia both in vivo and in vitro. Besides, we have confirmed that Scutellarin upregulated expression of Arg1, IL-10 and IL-4 in medium supernatants of BV-2 microglia. Remarkably, scutellarin treatment markedly augmented the increased expression of the respective markers in activated microglia. It is therefore suggested scutellarin can exert the polarization of activated microglia from M1 to M2 phenotype. Because M1 microglia are commonly known to be proinflammatory, while M2 microglia are anti-inflammatory and neuroprotective effect, it stands to reason therefore that with the increase of M2 microglia which became predominant by scutellarin, the local inflammatory response is ameliorated. More importantly, we have found that scutellarin promotes the M2 polarization through inhibiting the JNK and p38 signaling pathways, and concomitantly augmenting the ERK1/2 signaling pathway. This lends its strong support from observations in LPS activated BV-2 microglia treated with p38 and JNK inhibitors in which expression of M2 markers was increased; on the other hand, in cells subjected to ERK1/2 inhibitor treatment, the expression was suppressed. In light of the above, MAPKs pathway is deemed to be a potential therapeutic target of scutellarin in mitigating microglia mediated neuroinflammation in activated microglia.
Collapse
Affiliation(s)
- Hao-Lun Chen
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Li Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Xiao-Li-Na Zhang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
- Department of Pain Management, No.1 Affiliated Hospital, Kunming Medical University, 295 Xichang Road, Kunming, 650101, People's Republic of China
| | - Qiu-Ye Jia
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Zhao-Da Duan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Li-Yang Zheng
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Teng-Teng Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
| | - Zhi Qi
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China
- School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, People's Republic of China.
- Department of Neurology, No.2 Affiliated Hospital, Kunming Medical University, 374 Dianmian Road, Kunming, 650101, People's Republic of China.
| |
Collapse
|
9
|
Ren J, Barton CD, Zhan J. Engineered production of bioactive polyphenolic O-glycosides. Biotechnol Adv 2023; 65:108146. [PMID: 37028465 DOI: 10.1016/j.biotechadv.2023.108146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Polyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds. Therefore, polyphenolic glycosides can be used as food additives, therapeutics, and nutraceuticals. Engineered biosynthesis provides an environmentally friendly and cost-effective approach to generate polyphenolic glycosides through the use of various glycosyltransferases (GTs) and sugar biosynthetic enzymes. GTs transfer the sugar moieties from nucleotide-activated diphosphate sugar (NDP-sugar) donors to sugar acceptors such as polyphenolic compounds. In this review, we systematically review and summarize the representative polyphenolic O-glycosides with various bioactivities and their engineered biosynthesis in microbes with different biotechnological strategies. We also review the major routes towards NDP-sugar formation in microbes, which is significant for producing unusual or novel glycosides. Finally, we discuss the trends in NDP-sugar based glycosylation research to promote the development of prodrugs that positively impact human health and wellness.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105, USA.
| |
Collapse
|
10
|
Sun J, Meng M. Chemoprotective Effect of Scutellarin against Gastric Cancer in Rats: An in vitro and in vivo Study. J Oleo Sci 2022; 71:1003-1012. [PMID: 35781253 DOI: 10.5650/jos.ess21399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study evaluated the chemoprotective effect of scutellarin (SC) in vitro and in vivo against gastric carcinogenesis in rats and celllines and examined the underlying mechanism. Gastric cancer celllines (AGS) was used for the in vitro study and lactate dehydrogenase (LDH) profile, histone deacetylase (HDAC) assay, cell cycle & apoptosis ratio and antioxidant parameters were measured. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was used to induce gastric carcinogenesis in rats and the rats received the different doses of SC (10, 20 and 30 mg/kg). The body weight and tumor incidence were measured at regular time intervals. The antioxidant and pro-inflammatory cytokines were estimated. The finding of data showed that the drug was effective against AGS cell line. Supplementation of scutellarin revealed an upregulation in body weight compared with the MNNG group rats. Moreover, it also reduced the incidence of tumor. It also altered the significant DNA density, LDH content, mucus content and acidity. Scutellarin treated rats showed improved activity in enzymatic and non-enzymatic antioxidant profile and reversed the content of cytokines compared with MNNG induced gastric cancer group rats. This research reveals the chemoprotective property of the scutellarin and highlights the promising role of drug by alteration of inflammatory pathway by minimizing its adverse effect.
Collapse
Affiliation(s)
- Jiu Sun
- Department of General Surgery, The first people's Hospital of Yibin
| | - Meng Meng
- Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Shandong University
| |
Collapse
|
11
|
Yang C, Zhao Q, Yang S, Wang L, Xu X, Li L, Al-Jamal WT. Intravenous Administration of Scutellarin Nanoparticles Augments the Protective Effect against Cerebral Ischemia-Reperfusion Injury in Rats. Mol Pharm 2022; 19:1410-1421. [PMID: 35441510 PMCID: PMC9066406 DOI: 10.1021/acs.molpharmaceut.1c00942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
This
study investigates the protective effect of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with
scutellarin (SCU), a flavone isolated from the traditional Chinese
medicineErigeron breviscapus (Vant.)
Hand.-Mazz., in reducing cerebral ischemia/reperfusion (I/R) injury in vivo. The focal cerebral I/R injury model was established
by occluding the middle cerebral artery for 1 h in male Sprague-Dawley
(SD) rats. Our SCU-PLGA NPs exhibited an extended in vitro release profile and prolonged blood circulation in rats with cerebral
ischemia. More importantly, when administered intravenously once a
day for 3 days, SCU-PLGA NPs increased the SCU level in the ischemic
brain, compared to free SCU, resulting in a significant reduction
of the cerebral infarct volume after cerebral I/R. Furthermore, SCU-PLGA
NPs reversed the histopathological changes caused by cerebral I/R
injury, as well as attenuated cell apoptosis in the brain tissue,
as confirmed by hematoxylin and eosin, and TUNEL staining. Our findings
have revealed that our injectable SCU-PLGA NPs provide promising protective
effects against cerebral I/R injury, which could be used in combination
with the existing conventional thrombolytic therapies to improve stroke
management.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China.,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Qing Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Libin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xingyuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
12
|
Pang HQ, Zhou P, Meng XW, Yang H, Li Y, Xing XD, Wang HY, Yan FR, Li P, Gao W. An image-based fingerprint-efficacy screening strategy for uncovering active compounds with interactive effects in Yindan Xinnaotong soft capsule. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153911. [PMID: 35026505 DOI: 10.1016/j.phymed.2021.153911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Yindan Xinnaotong soft capsule (YDXNT) is a clinically effective herbal prescription used for the treatment of cardiovascular and cerebrovascular diseases. Since Chinese medicines (CMs) exert their effects via a "multiple-components and multiple-targets" mode, discovery of the active compounds with interactive effects may contribute to reveal their mechanisms of action. PURPOSE This study aimed to establish an image-based fingerprint-efficacy screening strategy to identify active compounds with interaction effects from CM prescription, using YDXNT to inhibit microglia-mediated neuroinflammation as an instance. METHODS A multi-component random content-oriented chemical library of YDXNT was constructed by uniform design, and their chemical fingerprint was profiled by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Then the neuroinflammation activities of chemical library members of YDXNT were determined by image-based dual phenotypic quantification. Subsequently, fingerprint-efficacy correlation and random forest analysis were applied to predict the potentially active compounds with interactive effects. Finally, the interactive effects among the active compounds were confirmed by quantitative polymerase chain reaction (qPCR) and apoptosis analysis, and network pharmacology was applied to explore the possible mechanisms. RESULTS Image-based fingerprint-efficacy correlation analysis revealed that six tanshinones (TNs) and four flavonoids (FAs) were potential anti-neuroinflammatory compounds. The inter-family of TNs and FAs possessed obvious interactive effects (combination index ≤ 0.825). Moreover, the combination of scutellarein and tanshinone I (2:1, w/w) was discovered as the possible interactive combinatorial components, which, comparing with individual scutellarein or tanshinone I, shown more powerful effects on anti-inflammatory and anti-apoptotic effects in lipopolysaccharide (LPS)-induced BV2 cells. Network pharmacology showed that the active compounds might suppress microglia-mediated neuroinflammation via multiple targets in the T cell receptor, Jak-STAT, and Toll-like receptor signaling pathways. CONCLUSION The image-based fingerprint-efficacy strategy simplifies the screening process of efficacious component combinations in CMs for complex diseases, which also offers a promising approach to explore the integrative therapeutic mechanisms of CMs.
Collapse
Affiliation(s)
- Han-Qing Pang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Ping Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Meng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Xu-Dong Xing
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Hui-Ying Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Fang-Rong Yan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No.24, Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
13
|
Scutellarein protects against cardiac hypertrophy via suppressing TRAF2/NF-κB signaling pathway. Mol Biol Rep 2022; 49:2085-2095. [PMID: 34988890 DOI: 10.1007/s11033-021-07026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Scutellarein, a widely studied ingredient of scutellaria herbs, has higher bioavailability and solubility than that of scutellarin. Although the scutellarein had been reported to modulate numerous biological functions, its ability in suppressing cardiac hypertrophy remains unclear. Hence, the present study attempted to investigate whether scutellarein played critical roles in preventing phenylephrine (PE)-induced cardiac hypertrophy. METHODS AND RESULTS Immunocytochemistry (ICC) was employed for evaluating the morphology of the treated cardiomyocytes. Real-time PCR and western blot were respectively applied to assess the mRNA levels and protein expression of the relevant molecules. Bioinformatics analyses were carried out to investigate the potential mechanisms by which scutellarein modulated the PE-induced cardiac hypertrophy. The results showed that Scutellarein treatment significantly inhibited PE-induced increase in H9c2 and AC16 cardiomyocyte size. Besides, scutellarein treatment also dramatically suppressed the expression of the cardiac hypertrophic markers: ANP, BNP and β-MHC. Furthermore, the effects of scutellarein on attenuating the cardiac hypertrophy might be mediated by suppressing the activity of TRAF2/NF-κB signaling pathway. CONCLUSIONS Collectively, our data indicated that scutellarein could protect against PE-induced cardiac hypertrophy via regulating TRAF2/NF-κB signaling pathway using in vitro experiments.
Collapse
|
14
|
Tawfeek SE, Shalaby AM, Alabiad MA, Albackoosh AAAA, Albakoush KMM, Omira MMA. Metanil yellow promotes oxidative stress, astrogliosis, and apoptosis in the cerebellar cortex of adult male rat with possible protective effect of scutellarin: A histological and immunohistochemical study. Tissue Cell 2021; 73:101624. [PMID: 34419739 DOI: 10.1016/j.tice.2021.101624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
Metanil yellow is a food dye that has harmful impacts on different body systems. Scutellarin has antioxidant, antiapoptotic, and anti-inflammatory activities. The aim of the current research was to study the effect of chronic administration of metanil yellow on the cerebellar cortex of rats and to evaluate the protective effect of scutellarin. Forty adult male rats were allocated into four groups: group I acted as control, group II was administrated scutellarin (100 mg/kg/day), group III was administrated metanil yellow (200 mg/kg/day), and group IV was administrated scutellarin and metanil yellow as in group II and group III. The agents were administered via oral gavage for 8 weeks. Metanil yellow induced a significant rise in the malondialdehyde coupled with a significant reduction in the superoxide dismutase and glutathione peroxidase. The Purkinje cells were irregular and shrunken with condensed nuclei. A significant elevation in glial fibrillary acidic protein (GFAP) and cleaved caspase-3 as well as a significant reduction of synaptophysin expression were revealed in comparison with the control group. Interestingly, few changes were noticed in rats given metanil yellow concomitant with scutellarin. In conclusion, scutellarin could protect against metanil yellow-induced alterations in the cerebellar cortex by reducing oxidative stress and minimizing gliosis.
Collapse
Affiliation(s)
- Shereen Elsayed Tawfeek
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Egypt; Anatomy Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | | | | | | |
Collapse
|
15
|
Scutellarin ameliorates neonatal hypoxic-ischemic encephalopathy associated with GAP43-dependent signaling pathway. Chin Med 2021; 16:105. [PMID: 34663387 PMCID: PMC8524967 DOI: 10.1186/s13020-021-00517-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background Neonatal hypoxic-ischemic encephalopathy (HIE) refers to the perinatal asphyxia caused by the cerebral hypoxic-ischemic injury. The current study was aimed at investigating the therapeutic efficacy of Scutellarin (Scu) administration on neurological impairments induced by hypoxic-ischemic injury and exploring the underlying mechanisms. Methods Primary cortical neurons were cultured and subjected to oxygen–glucose deprivation (OGD), and then treated with Scu administration. The growth status of neurons was observed by immunofluorescence staining of TUJ1 and TUNEL. Besides, the mRNA level of growth-associated protein 43 (GAP43) in OGD neurons with Scu treatment was detected by quantitative real-time polymerase chain reaction (qRT-PCR). To further verify the role of GAP43 in Scu treatment, GAP43 siRNA and knockout were applied in vitro and in vivo. Moreover, behavioral evaluations were performed to elucidate the function of GAP43 in the Scu-ameliorated long-term neurological impairments caused by HI insult. The underlying biological mechanism of Scu treatment was further elucidated via network pharmacological analysis. Finally, the interactive genes with GAP43 were identified by Gene MANIA and further validated by qRT-PCR. Results Our data demonstrated that Scu treatment increased the number of neurons and axon growth, and suppressed cell apoptosis in vitro. And the expression of GAP43 was downregulated after OGD, but reversed by Scu administration. Besides, GAP43 silencing aggravated the Scu-ameliorated neuronal death and axonal damage. Meanwhile, GAP43 knockout enlarged brain infarct area and deteriorated the cognitive and motor dysfunctions of HI rats. Further, network pharmacological analysis revealed the drug targets of Scu participated in such biological processes as neuronal death and regulation of neuronal death, and apoptosis-related pathways. GAP43 exhibited close relationship with PTN, JAK2 and STAT3, and GAP43 silencing upregulated the levels of PTN, JAK2 and STAT3. Conclusions Collectively, our findings revealed Scu treatment attenuated long-term neurological impairments after HI by suppressing neuronal death and enhancing neurite elongation through GAP43-dependent pathway. The crucial role of Scutellarin in neuroprotection provided a novel possible therapeutic agent for the treatment of neonatal HIE. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00517-z.
Collapse
|
16
|
Huo Y, Mijiti A, Cai R, Gao Z, Aini M, Mijiti A, Wang Z, Qie R. Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice. Hum Exp Toxicol 2021; 40:S460-S474. [PMID: 34610774 DOI: 10.1177/09603271211045948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes is a serious global health concern which severely affected public health as well as socio-economic growth worldwide. Scutellarin (SCU), a bioactive flavonoid, is known for its efficacious action against a range of ailments including cardiovascular problems. The present study was conducted to find out possible protective effect and its associated mechanisms of SCU on experimental type 2 diabetes-induced cardiac injury. METHODS Type 2 diabetes was induced by treating animals with high fat diet for 4 weeks and a single intraperitoneal dose (35 mg/kg body weight) of streptozotocin and diabetic animals received SCU (10 or 20 mg/kg/day) for 6 weeks. RESULTS Scutellarin attenuated type 2 diabetes-induced hyperglycemia, bodyweight loss, hyperlipidaemia, cardiac functional damage with histopathological alterations and fibrosis. Scutellarin treatment to type 2 diabetic mice ameliorated oxidative stress, inflammatory status and apoptosis in heart. Furthermore, the underlying mechanisms for such mitigation of oxidative stress, inflammation and apoptosis in heart involved modulation of Nrf2/Keap1 pathway, TLR4/MyD88/NF-κB mediated inflammatory pathway and intrinsic (mitochondrial) apoptosis pathway, respectively. CONCLUSIONS The current findings suggest that SCU is effective in protecting type 2 diabetes-induced cardiac injury by attenuating oxidative stress and inflammatory responses and apoptosis, and it is also worth considering the efficacious potential of SCU to treat diabetic cardiomyopathy patients.
Collapse
Affiliation(s)
- Yan Huo
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Abudureheman Mijiti
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Ruonan Cai
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Zhaohua Gao
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Maierpu Aini
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Abudukadier Mijiti
- Department of Emergency Medicine, The First People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Zhaoling Wang
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Rui Qie
- Department of Emergency, 118437First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Haerbin, Heilongjiang, China
| |
Collapse
|
17
|
Liu D, Zhang C, Hu M, Su K. Scutellarein relieves the death and inflammation of tubular epithelial cells in ischemic kidney injury by degradation of COX-2 protein. Int Immunopharmacol 2021; 101:108193. [PMID: 34619498 DOI: 10.1016/j.intimp.2021.108193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Acute kidney injury (AKI) is a clinical syndrome that usually caused by ischemia/reperfusion (I/R). Previous studies have revealed the protection of scutellarein against ischemia in nervous system. This study aimed to demonstrate the potential of scutellarein in ischemic AKI. METHODS Animal model of ischemic AKI was established by clamping bilateral kidney pedicles in Sprague-Dawley rats. HK-2 cells were exposed to oxygen glucose deprivation/reoxygenation (OGD/R) to induce a cell model of AKI. The effects of scutellarein pre-treatment were detected by H&E staining, TUNEL, ELISA, CCK-8, LDH activity assay, ROS generation, flow cytometry, qRT-PCR and western blotting. Bioinformatic analysis was performed to probe the targets of scutellarein. RESULTS The blood urea nitrogen (BUN) and serum creatinine (SCr) levels in rats treated with scutellarein were lower than that in model groups. Scutellarein suppressed the pathological injury of kidney, and dose-dependently inhibited the apoptosis and pro-inflammatory cytokines release (IL-1β, IL-6 and IL-18). Scutellarein prevented OGD/R-induced HK-2 cell loss and cytotoxicity. ROS generation, apoptosis, and inflammation induced by OGD/R were all inhibited by scutellarein. By searching on the TCMSP and Symmap databases, COX-2 was screened out as a target of scutellarein. Scutellarein has no significant impacts on COX-2 mRNA expression, but could inhibit its protein level. Scutellarein promoted COX-2 protein degradation via enhancing autophagy. Furthermore, overexpression of COX-2 partly eliminated the renal protection of scutellarein in HK-2 cells. CONCLUSIONS Scutellarein was suggested as a renal protective agent against ischemia-induced damage in AKI. The protective properties of scutellarein may be through inhibition of COX-2.
Collapse
Affiliation(s)
- Dong Liu
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China.
| | - Cuijie Zhang
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China
| | - Min Hu
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China
| | - Kangle Su
- Department of Nephrology, The first affiliated hospital of Zhengzhou university, Zhengzhou, Henan, 450052, PR China
| |
Collapse
|
18
|
da Cunha LNOL, Tizziani T, Souza GB, Moreira MA, Neto JSS, Dos Santos CVD, de Carvalho MG, Dalmarco EM, Turqueti LB, Scotti MT, Scotti L, de Assis FF, Braga A, Sandjo LP. Natural Products with tandem Anti-inflammatory, Immunomodulatory and Anti-SARS-CoV/2 effects: A Drug Discovery Perspective against SARS-CoV-2. Curr Med Chem 2021; 29:2530-2564. [PMID: 34313197 DOI: 10.2174/0929867328666210726094955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 is still causing victims with long-term health consequences, mass deaths, and collapsing healthcare systems around the world. The disease has no efficient drugs. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be significant in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHOD The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed in previous studies immunomodulatory effects. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidate for the search of antibiotics against COVID-19.
Collapse
Affiliation(s)
- Luana N O Leal da Cunha
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tiago Tizziani
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriella B Souza
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Monalisa A Moreira
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José S S Neto
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carlos V D Dos Santos
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Maryelle G de Carvalho
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo M Dalmarco
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leonardo B Turqueti
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marcus Tullius Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Program in Natural and Synthetic Bioactive Products Federal University of Paraíba Cidade Universitária-Castelo Branco III, João Pessoa, PB, Brazil
| | - Francisco F de Assis
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Antonio Braga
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Programa de Pós-Graduação em Química, CFM, Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
19
|
Wang Z, Yang L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113869. [PMID: 33485973 PMCID: PMC7825841 DOI: 10.1016/j.jep.2021.113869] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a highly pathogenic virus that has spread rapidly across the entire world. There is a critical need to develop safe and effective drugs, especially broad-spectrum antiviral and organ protection agents in order to treat and prevent this dangerous disease. It is possible that Chinese herbal medicine may play an essential role in the treatment of patients with SARS-CoV-2 infection. AIM OF THE REVIEW We aim to review the use of Chinese herbal medicine in the treatment of COVID-19 both in vitro and in clinical practice. Our goal was to provide a better understanding of the potential therapeutic effects of Chinese herbal medicine and to establish a "Chinese protocol" for the treatment of COVID-19. MATERIALS AND METHODS We systematically reviewed published research relating to traditional Chinese herbal medicines and the treatment of SARS-CoV-2 from inception to the 6th January 2021 by screening a range of digital databases (Web of Science, bioRxiv, medRxiv, China National Knowledge Infrastructure, X-MOL, Wanfang Data, Google Scholar, PubMed, Elsevier, and other resources) and public platforms relating to the management of clinical trials. We included the active ingredients of Chinese herbal medicines, monomer preparations, crude extracts, and formulas for the treatment of COVID-19. RESULTS In mainland China, a range of Chinese herbal medicines have been recognized as very promising anti-SARS-CoV-2 agents, including active ingredients (quercetagetin, osajin, tetrandrine, proscillaridin A, and dihydromyricetin), monomer preparations (xiyanping injection, matrine-sodium chloride injection, diammonium glycyrrhizinate enteric-coated capsules, and sodium aescinate injection), crude extracts (Scutellariae Radix extract and garlic essential oil), and formulas (Qingfei Paidu decoction, Lianhuaqingwen capsules, and Pudilan Xiaoyan oral liquid). All these agents have potential activity against SARS-CoV-2 and have attracted significant attention due to their activities both in vitro and in clinical practice. CONCLUSIONS As a key component of the COVID-19 treatment regimen, Chinese herbal medicines have played an irreplaceable role in the treatment of SARS-CoV-2 infection. The "Chinese protocol" has already demonstrated clear clinical importance. The use of Chinese herbal medicines that are capable of inhibiting SARS-Cov-2 infection may help to address this immediate unmet clinical need and may be attractive to other countries that are also seeking new options for effective COVID-19 treatment. Our analyses suggest that countries outside of China should also consider protocols involving Chinese herbal medicines combat this fast-spreading viral infection.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
20
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Fan H, Lin P, Kang Q, Zhao ZL, Wang J, Cheng JY. Metabolism and Pharmacological Mechanisms of Active Ingredients in Erigeron breviscapus. Curr Drug Metab 2021; 22:24-39. [PMID: 33334284 DOI: 10.2174/1389200221666201217093255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Erigeron breviscapus (Vant.) Hand-Mazz. is a plant species in the Compositae family. More than ten types of compounds-such as flavonoids, caffeinate esters, and volatile oils-have been identified in Erigeron breviscapus; however, it remains unknown as to which compounds are associated with clinical efficacy. In recent years, flavonoids and phenolic acids have been considered as the main effective components of Erigeron breviscapus. The metabolism and mechanisms of these compounds in vivo have been extensively studied to improve our understanding of the drug. METHODS In the present review, we summarize the relationships among these compounds, their metabolites, and their pharmacodynamics. Many methods have been implemented to improve the separation and bioavailability of these compounds from Erigeron breviscapus. RESULTS In China, Erigeron breviscapus has been used for many years. In recent years, through the study of its metabolism and the mechanisms of its effective components, the effects of Erigeron breviscapus in the treatment of various diseases have been extensively studied. Findings have indicated that Erigeron breviscapus improves cardiovascular and cerebrovascular function and that one of its ingredients, scutellarin, has potential value in the treatment of Alzheimer's disease, cancer, diabetic vascular complications, and other conditions. In addition, phenolic acid compounds and their metabolites also play an important role in anti-oxidation, anti-inflammation, and improving blood lipids. CONCLUSION Erigeron breviscapus plays an important role in the prevention and treatment of cardiovascular/ cerebrovascular diseases, neuroprotection, and cancer through many different mechanisms of action. Further investigation of its efficacious components and metabolites may provide more possibilities for the clinical application of traditional Chinese medicine and the development of novel drugs.
Collapse
Affiliation(s)
- Hua Fan
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Peng Lin
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Qiang Kang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Zhi-Long Zhao
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Ji Wang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Jia-Yi Cheng
- Liaoning University of Traditional Chinese Medicine, Shenyang110847, China
| |
Collapse
|
22
|
Xiong LL, Tan YX, Du RL, Peng Y, Xue LL, Liu J, Al-Hawwas M, Bobrovskaya L, Liu DH, Chen L, Wang TH, Zhou XF. Effect of Sutellarin on Neurogenesis in Neonatal Hypoxia–Ischemia Rat Model: Potential Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:677-703. [PMID: 33704029 DOI: 10.1142/s0192415x21500312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the therapeutic efficacy of Scutellarin (SCU) on neurite growth and neurological functional recovery in neonatal hypoxic-ischemic (HI) rats. Primary cortical neurons were cultured to detect the effect of SCU on cell viability of neurons under oxygen-glucose deprivation (OGD). Double immunofluorescence staining of Tuj1 and TUNEL then observed the neurite growth and cell apoptosis in vitro,and double immunofluorescence staining of NEUN and TUNEL was performed to examine the neuronal apoptosis and cell apoptosis in brain tissues after HI in vivo. Pharmacological efficacy of SCU was also evaluated in HI rats by neurobehavioral tests, triphenyl tetrazolium chloride staining, Hematoxylin and eosin staining and Nissl staining. Astrocytes and microglia expression in damaged brain tissues were detected by immunostaining of GFAP and Iba1. A quantitative real-time polymerase chain reaction and western blot were applied to investigate the genetic expression changes and the protein levels of autophagy-related proteins in the injured cortex and hippocampus after HI. We found that SCU administration preserved cell viability, promoted neurite outgrowth and suppressed apoptosis of neurons subjected to OGD both in vitroand in vivo. Meanwhile, 20 mg/kg SCU treatment improved neurological functions and decreased the expression of astrocytes and microglia in the cortex and hippocampus of HI rats. Additionally, SCU treatment depressed the elevated levels of autophagy-related proteins and the p75 neurotrophin receptor (p75NTR) in both cortex and hippocampus. This study demonstrated the potential therapeutic efficacy of SCU by enhancing neurogenesis and restoring long-term neurological dysfunctions, which might be associated with p75NTR depletion in HI rats.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 550000, P. R. China
| | - Ya-Xin Tan
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Yuan Peng
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Lu-Lu Xue
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Mohammed Al-Hawwas
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Larisa Bobrovskaya
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Dong-Hui Liu
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| |
Collapse
|
23
|
Zhang P, Cui J. Neuroprotective Effect of Fisetin Against the Cerebral Ischemia-Reperfusion Damage via Suppression of Oxidative Stress and Inflammatory Parameters. Inflammation 2021; 44:1490-1506. [PMID: 33616827 DOI: 10.1007/s10753-021-01434-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
It is well established that inflammatory reactions and oxidative stress play an imperial role in cerebral ischemia-reperfusion pathogenesis. Fisetin is a flavonoid and has an antioxidant and anti-inflammatory effect on various diseases. In this study, we have been working to examine the neuroprotective effect of fisetin in brain injuries triggered by cerebral ischemic-reperfusion and explore the potential role of nuclear factor kappa B (NF-κB) signaling. In vitro, fisetin was examined against the cell viability, lactate dehydrogenase (LDH) leakage, cytokines, and apoptosis after ischemia/reperfusion (I/R) induced in the cells. In vivo, I/R injury was induced in the brain via transient middle cerebral artery occlusion (2 h) and reperfusion (20 h). The infarction area, brain water content, and neurofunctional parameters were also estimated. Inflammatory cytokines and brain injury markers were scrutinized at the end of the study. Fisetin treatment alleviated cell injury and suppressed the inflammatory cytokines (interleukin-1 (IL-1), tumor necrosis factor- α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), interleukin-16 (IL-6), and prostaglandin E2 (PGE2)) and antioxidant parameters in a dose-dependent manner. Fisetin significantly (P < 0.001) reduced the infarct volume, brain water content. Fisetin significantly (P < 0.001) suppressed the neurological parameters and inflammatory cytokines such as IL-1, TNF-α, iNOS, IL-1β, COX-2, IL-6, PGE2, and oxidative markers in a dose-dependent manner. Fisetin significantly (P < 0.001) reduced the inflammatory mediators including NF-κB and intercellular adhesion molecule 1 (ICAM-1). Further studies also showed that fisetin significantly inhibited the NF-κB activity via inflammatory and antioxidant pathways. In conclusion, by suppressing inflammatory cytokines, fisetin protected the brain tissue against I/R injury, and this effect could be due to reduced NF-κB activity.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou City, 450003, Henan Province, China
| | - Jian Cui
- Department of Neurosurgery, Xi'an No.1 Hospital, No.30 South Street Powder Lane, Beilin District, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|
24
|
Yuan S, Zhang T. Boeravinone B Protects Brain against Cerebral Ichemia Reperfusion Injury in Rats: Possible Role of Anti-inflammatory and Antioxidant. J Oleo Sci 2021; 70:927-936. [PMID: 34193669 DOI: 10.5650/jos.ess21037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well known that inflammatory reactions and oxidative stress play a key role in the pathogenesis of cerebral ischemia and secondary injury. Boeravinone B (BB) proofed their anti-inflammatory and antioxidant effect, but their neuroprotective effects still unknown. In this experimental study, we explore the neuro-protective effect of Boeravinone B on the ischemia/reperfusion and explore the possible mechanism. Male Wistar rats were used for the current experimental study. First induces natural I/R injury in rats and treated with BB and nifedipine, respectively. Rats were subjected to ischemia after 6 consecutive days by occlusion of the bilateral common carotid arteries (BCCAO). Neurological score, biochemical, antioxidant, pro-inflammatory cytokines and inflammatory parameters were estimated in the serum and brain tissue. BB treatment significantly (p < 0.001) suppressed neuronal injury, dose-dependently decreased the cerebral water content. BB treatment altered the pro-inflammatory cytokines, antioxidant and inflammatory mediators in the serum and brain tissue. BB regulated the expression of glycine (Gly), glutamic acid (Glu), taurine (Tau), aspartic acid (Asp) and γ-aminobutyric acid (GABA) and enhanced the activity of Na+, K+ ATPase and Ca2+ ATPase. BB significantly (p < 0.001) reduced antioxidant enzymes such as glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), malondialdehyde (MDA), glutathione reductase (GR); inflammatory cytokines include interleukin-4 (IL-4), interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), interleukin-6 (IL-6) and interleukin-1β (IL-1β); inflammatory mediators include prostaglandin (PGE2), nuclear kappa factor B (NF-κB) and cyclooxygenase-2 (COX-2), respectively. In this study, we have found that Boeravinone B exhibited protection against cerebral I/R by reducing oxidative stress and inflammatory reaction.
Collapse
Affiliation(s)
- Shaojie Yuan
- Department of Neurology, Xingtai People's Hospital
| | - Tong Zhang
- Department of Neurology, Xingtai People's Hospital
| |
Collapse
|
25
|
Li H, Mei XY, Wang MN, Zhang TY, Zhang Y, Lu B, Sheng YC. Scutellarein alleviates the dysfunction of inner blood-retinal-barrier initiated by hyperglycemia-stimulated microglia cells. Int J Ophthalmol 2020; 13:1538-1545. [PMID: 33078102 DOI: 10.18240/ijo.2020.10.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the alleviation of scutellarein (SN) against inner blood-retinal-barrier (iBRB) dysfunction in microglia cells stimulated by hyperglycemia and to elucidate the engaged mechanism. METHODS Microglia BV2 cells were stimulated by using 25 mmol/L D-glucose. The same concentration of mannitol (25 mmol/L) was applied as an isotonic contrast. Real-time PCR, Western-blot assay and immunofluorescence staining assay was performed. The dysfunction of iBRB in vitro was detected by using transendothelial electrical resistance (TEER) assay. Additionally, the leakage of fluorescein isothiocyanate (FITC)-conjugated dextran (70 kDa) was detected. RESULTS SN abrogated microglia BV2 cells activation and reduced the phosphorylated activation of extracellular signal-regulated protein kinase (ERK)1/2. SN also decreased the transcriptional activation of nuclear factor κB (NFκB) and the elevated expression of tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1β in BV2 cells treated with D-glucose (25 mmol/L). SN attenuated iBRB dysfunction in human retinal endothelial cells (HRECs) or choroid-retinal endothelial RF/6A cells when those cells were treated with TNFα, IL-1β or IL-6, or co-cultured with microglia cells stimulated by D-glucose. Moreover, SN restored the decreased protein expression of tight junctions (TJs) in TNFα-treated HRECs and RF/6A cells. CONCLUSION SN not only alleviate iBRB dysfunction via directly inhibiting retinal endothelial injury caused by TNFα, IL-1β or IL-6, but also reduce the release of TNFα, IL-1β and IL-6 from microglia cells by abrogating hyperglycemia-mediated the activation of microglia cells.
Collapse
Affiliation(s)
- Han Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi-Yu Mei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng-Na Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Yu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Chen Sheng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
26
|
Wang P, Huang H, Chen B, Su Y, Shi P, Yao H. Systems Pharmacology Dissection of Mechanisms of Dengzhan Xixin Injection against Cardiovascular Diseases. Chem Pharm Bull (Tokyo) 2020; 68:837-847. [PMID: 32879224 DOI: 10.1248/cpb.c20-00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dengzhan Xixin injection (DZXXI), a herbal product prepared from a Chinese herb called Erigeron breviscapus, is a classical and traditional therapeutic for cadiovascular diseases (CVDs), including coronary heart disease (CHD), angina, and stroke, etc. However, its potential pharmacology mechanism against CVDs remains unclear. In this paper, a systems pharmacology-based strategy is presented for predicting drug targets and understanding therapeutic mechanisms of DZXXI against CVDs. The main ingredients were identified by HPLC-diode array detector (DAD). The target fishing was performed on the PharmMapper Server (http://lilab-ecust.cn/pharmmapper/). Potential targets were confirmed by two molecular docking tools, Sybyl-X 1.3 and Ledock to ensure the accuracy. The resulting target proteins were applied as baits to fish their related diseases and pathways from the molecular annotation system (MAS 3.0, http://bioinfo.capitalbio.com/mas3/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/). Network generation and topological analysis were performed in Cytoscape 3.6.0. 15 main ingredients from DZXXI were identified. Forty five putative drug targets and 50 KEGG pathways, which have highly relevance to the therapeutic effects of DZXXI against CVDs, were then obtained. The systems analysis suggested that DZXXI could attenuate cardiac fibrosis, regulate cardiac contractility, and preserve heart function in adverse cardiac remodeling; meanwhile DZXXI also could have the function of activating blood circulation and dilating blood vessels. DZXXI exerts its therapeutic effects on CVDs possibly through multi-targets including CMA1, epidermal growth factor receptor (EGFR), phenylalanine-4-hydroxylase (PAH), SRC, F7, etc., and multi-pathways including Focal adhesion, mitogen-activated protein kinase (MAPK) signaling pathway, complement and coagulation cascades, Wnt signaling pathway, vascular endothelial growth factor (VEGF) signaling pathway, Renin-angiotensin system, etc.
Collapse
Affiliation(s)
- Panpan Wang
- Department of Traditional Chinese Medicine Resource, Fujian Agriculture and Forestry University.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Hui Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Ya Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource, Fujian Agriculture and Forestry University
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University
| |
Collapse
|
27
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
28
|
Proença C, Oliveira A, Freitas M, Ribeiro D, Sousa JLC, Ramos MJ, Silva AMS, Fernandes PA, Fernandes E. Structural Specificity of Flavonoids in the Inhibition of Human Fructose 1,6-Bisphosphatase. JOURNAL OF NATURAL PRODUCTS 2020; 83:1541-1552. [PMID: 32364726 DOI: 10.1021/acs.jnatprod.0c00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liver fructose 1,6-bisphosphatase (FBPase) is a recognized regulatory enzyme of the gluconeogenesis pathway, which has emerged as a valid target to control gluconeogenesis-mediated overproduction of glucose. As such, the management of diabetes with FBPase inhibitors represents a potential alternative for the currently used antidiabetic agents. In this study, the FBPase inhibition of a panel of 55 structurally related flavonoids was tested, through a microanalysis screening system. Then, a subset of seven active inhibitors and their close chemical relatives were further evaluated by molecular dynamics (MD) simulations using a linear interaction energy (LIE) approach. The results obtained showed that D14 (herbacetin) was the most potent inhibitor, suggesting that the presence of -OH groups at the C-3, C-4', C-5, C-7, and C-8 positions, as well as the double bond between C-2 and C-3 and the 4-oxo function at the pyrone ring, are favorable for the intended effect. Furthermore, D14 (herbacetin) is stabilized by a strong interaction with the Glu30 side chain and the Thr24 backbone of FBPase. This is the first investigation studying the in vitro inhibitory effect of a panel of flavonoids against human liver FBPase, thus representing a potentially important step for the search and design of novel inhibitors of this enzyme.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Oliveira
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana L C Sousa
- LAQV-REQUIMTE & QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE & QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Scutellarin inhibits the uninduced and metal-induced aggregation of α-Synuclein and disaggregates preformed fibrils: implications for Parkinson's disease. Biochem J 2020; 477:645-670. [DOI: 10.1042/bcj20190705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
The aggregation of the protein alpha synuclein (α-Syn), a known contributor in Parkinson's disease (PD) pathogenesis is triggered by transition metal ions through occupational exposure and disrupted metal ion homeostasis. Naturally occurring small molecules such as polyphenols have emerged as promising inhibitors of α-Syn fibrillation and toxicity and could be potential therapeutic agents against PD. Here, using an array of biophysical tools combined with cellular assays, we demonstrate that the novel polyphenolic compound scutellarin efficiently inhibits the uninduced and metal-induced fibrillation of α-Syn by acting at the nucleation stage and stabilizes a partially folded intermediate of α-Syn to form SDS-resistant, higher-order oligomers (∼680 kDa) and also disaggregates preformed fibrils of α-Syn into similar type of higher-order oligomers. ANS binding assay, fluorescence lifetime measurements and cell-toxicity experiments reveal scutellarin-generated oligomers as compact, low hydrophobicity structures with modulated surface properties and significantly reduced cytotoxicity than the fibrillation intermediates of α-Syn control. Fluorescence spectroscopy and isothermal titration calorimetry establish the binding between scutellarin and α-Syn to be non-covalent in nature and of moderate affinity (Ka ∼ 105 M−1). Molecular docking approaches suggest binding of scutellarin to the residues present in the NAC region and C-terminus of monomeric α-Syn and the C-terminal residues of fibrillar α-Syn, demonstrating inhibition of fibrillation upon binding to these residues and possible stabilization of the autoinhibitory conformation of α-Syn. These findings reveal interesting insights into the mechanism of scutellarin action and establish it as an efficient modulator of uninduced as well as metal-induced α-Syn fibrillation and toxicity.
Collapse
|
30
|
Ibrahim MAA, Elwan WM, Elgendy HA. Role of Scutellarin in Ameliorating Lung Injury in a Rat Model of Bilateral Hind Limb Ischemia–Reperfusion. Anat Rec (Hoboken) 2019; 302:2070-2081. [DOI: 10.1002/ar.24175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Marwa A. A. Ibrahim
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Walaa M. Elwan
- Histology and Cell Biology Department, Faculty of MedicineTanta University Tanta Egypt
| | - Hanan A. Elgendy
- Anatomy and Embryology Department, Faculty of MedicineMansoura University Mansoura Egypt
| |
Collapse
|
31
|
Sang Eun H, Seong Min K, Ho Jeong L, Vetrivel P, Venkatarame Gowda Saralamma V, Jeong Doo H, Eun Hee K, Sang Joon L, Gon Sup K. Scutellarein Induces Fas-Mediated Extrinsic Apoptosis and G2/M Cell Cycle Arrest in Hep3B Hepatocellular Carcinoma Cells. Nutrients 2019; 11:nu11020263. [PMID: 30682875 PMCID: PMC6412708 DOI: 10.3390/nu11020263] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Scutellarein (SCU), a flavone found in the perennial herb Scutellaria baicalensis, is known for a wide range of biological activities. In the present study, we investigated the effects of treatment with SCU flavonoids on inducing apoptosis via the extrinsic pathway in Hep3B cells. SCU treatment significantly inhibited Hep3B cell proliferation and induced G2/M phase cell cycle arrest by inhibiting the expression level of the proteins Cdc25C, cdk1 and Cyclin B1. Allophycocyanin (APC)/Annexin V and propidium iodide (PI) double-staining showed upregulation of apoptotic cell death fraction. We further confirmed apoptosis by 4′-6-diamidino-2-phenylindole (DAPI) fluorescent staining and observed DNA fragmentation with agarose gel electrophoresis. Further, immunoblotting results showed that treatment with SCU showed no changes in Bax and Bcl-xL protein levels. In addition, SCU treatment did not affect the mitochondrial membrane potential (MMP) in Hep3B cells. On the contrary, treatment with SCU increased the expression of Fas and Fas ligand (FasL), which activated cleaved caspase-8, caspase-3, and polymeric adenosine diphosphate ribose (PARP), whereas the expression level of death receptor 4 (DR4) decreased. We confirmed that the proteins expressed upon treatment with SCU were involved in the Fas-mediated pathway of apoptosis in Hep3B cells. Thus, our findings in the current study strongly imply that SCU can be a basic natural source for developing potent anti-cancer agents for hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Ha Sang Eun
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Kim Seong Min
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Lee Ho Jeong
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea.
| | - Preethi Vetrivel
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | | | - Heo Jeong Doo
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea.
| | - Kim Eun Hee
- Department of Nursing Science, International University of Korea, Jinju 52833, Korea.
| | - Lee Sang Joon
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Korea.
| | - Kim Gon Sup
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
32
|
Dual Effect of Glucuronidation of a Pyrogallol-Type Phytophenol Antioxidant: A Comparison between Scutellarein and Scutellarin. Molecules 2018; 23:molecules23123225. [PMID: 30563286 PMCID: PMC6321565 DOI: 10.3390/molecules23123225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022] Open
Abstract
To explore whether and how glucuronidation affects pyrogallol-type phytophenols, scutellarein and scutellarin (scutellarein-7-O-glucuronide) were comparatively investigated using a set of antioxidant analyses, including spectrophotometric analysis, UV-vis spectra analysis, and ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. In spectrophotometric analyses of the scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•), and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radicals (PTIO•) and the reduction of Cu2+ ions, scutellarein showed lower IC50 values than scutellarin. However, in •O₂--scavenging spectrophotometric analysis, scutellarein showed higher IC50 value than scutellarin. The analysis of UV-Vis spectra obtained after the Fe2+-chelating reaction of scutellarin showed a typical UV-Vis peak (λmax = 611 nm), while scutellarein showed no typical peak. In UPLC-ESI-Q-TOF-MS/MS analysis, mixing of scutellarein with DPPH• yielded MS peaks (m/z 678, 632, 615, 450, 420, 381, 329, 300, 288, 227, 196, 182, 161, and 117) corresponding to the scutellarein-DPPH adduct and an MS peak (m/z 570) corresponding to the scutellarein-scutellarein dimer. Scutellarin, however, generated no MS peak. On the basis of these findings, it can be concluded that glucuronidation of pyrogallol-type phytophenol antioxidants has a dual effect. On the one hand, glucuronidation can decrease the antioxidant potentials (except for •O₂- scavenging) and further lower the possibility of radical adduct formation (RAF), while on the other hand, it can enhance the •O₂--scavenging and Fe2+-chelating potentials.
Collapse
|
33
|
Wu WY, Zhong Y, Lu YT, Sun Y, Li NG, Shi ZH, Dong ZX, Gu T, Xue X, Fang F, Li HM, Tang YP, Duan JA. Protective effect of 6-O-methyl-scutellarein on repeated cerebral ischemia/reperfusion in rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:1167-1181. [PMID: 28971689 DOI: 10.1080/10286020.2017.1383396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Scutellarin (1) possesses protective effects against neuronal injury, while 6-O-methyl-scutellarein (3), as the main metabolite of scutellarin in vivo, has not been reported about its protective effects previously. The present study mainly investigated whether the neural injury caused by ischemia/reperfusion would be influenced by different doses of 6-O-methyl-scutellarein (3). The results of behavioral, neurological, and histological examinations indicated that 6-O-methyl-scutellarein (3) could improve neuronal injury, and exhibit significant difference among the various doses. More importantly, 6-O-methyl-scutellarein (3) had better protective effects than scutellarin in rat cerebral ischemia.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Yue Zhong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Yu-Ting Lu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Ying Sun
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
- b Department of Organic Chemistry , China Pharmaceutical University , Nanjing 211198 , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Fang Fang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - He-Min Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
- c Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Shaanxi University of Chinese Medicine , Xianyang 712083 , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| |
Collapse
|
34
|
Li HM, Gu T, Wu WY, Yu SP, Fan TY, Zhong Y, Li NG. Synthesis and Biological Evaluation of Scutellarein Alkyl Derivatives as Preventing Neurodegenerative Agents with Improved Lipid Soluble Properties. Med Chem 2018; 15:771-780. [PMID: 30324887 DOI: 10.2174/1573406414666181015143551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exogenous antioxidants are considered as a promising therapeutic approach to treat neurodegenerative diseases since they could prevent and/or minimize the neuronal damage by oxidation. OBJECTIVE Three series of lipophilic compounds structurally based on scutellarein (2), which is one metabolite of scutellarin (1) in vivo, have been designed and synthesized. METHODS Their antioxidant activity was evaluated by detecting the 2-thiobarbituric acid reactive substance (TBARS) produced in the ferrous salt/ascorbate-induced autoxidation of lipids, which were present in microsomal membranes of rat hepatocytes. The lipophilicity of these compounds indicated as partition coefficient between n-octanol and buffer was investigated by ultraviolet (UV) spectrophotometer. RESULTS This study indicated that compound 5e which had a benzyl group substituted at the C4'- OH position showed a potent antioxidant activity and good lipophilicity. CONCLUSION 5e could be an effective candidate for preventing or reducing the oxidative status associated with the neurodegenerative processes.
Collapse
Affiliation(s)
- He-Min Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ting Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wen-Yu Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Shao-Peng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Tian-Yuan Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yue Zhong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Nian-Guang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
35
|
Alara OR, Abdurahman NH, Ukaegbu CI, Azhari NH, Kabbashi NA. Metabolic profiling of flavonoids, saponins, alkaloids, and terpenoids in the extract from Vernonia cinerea leaf using LC-Q-TOF-MS. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1511995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Oluwaseun Ruth Alara
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | - Nour Hamid Abdurahman
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | - Chinonso Ishmael Ukaegbu
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Malaysia
| | - Nour Hamid Azhari
- Faculty of Pure and Applied Sciences, International University of Africa, Khartoum, Sudan
| | - Nassereldeen Ahmed Kabbashi
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering (BTE), Kulliyyah of Engineering (KOE), International Islamic University Malaysia, Gombak, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther 2018; 190:105-127. [PMID: 29742480 DOI: 10.1016/j.pharmthera.2018.05.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Hu X, Teng S, He J, Sun X, Du M, Kou L, Wang X. Pharmacological basis for application of scutellarin in Alzheimer's disease: Antioxidation and antiapoptosis. Mol Med Rep 2018; 18:4289-4296. [PMID: 30221730 PMCID: PMC6172399 DOI: 10.3892/mmr.2018.9482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Scutellarin (SC), mainly extracted from the Chinese herb Erigeron breviscapus (vant.), has been reported to possess various pharmacological activities; however, its effects on Alzheimer's disease (AD) have not been systemically reported. The protective effects of SC on AD were investigated using an L‑glutamic acid (L‑Glu)‑damaged HT22 cell apoptosis model and an aluminum chloride plus D‑galactose‑induced AD mouse model. In L‑Glu‑damaged HT22 cells, SC significantly increased cell viability, inhibited lactate dehydrogenase release, reduced caspase‑3 activity and suppressed apoptosis, which were determined via an MTT assay, an in vitro Toxicology Assay kit, a Caspase‑3 activity assay kit, and propidium iodide and Annexin V staining. Furthermore, SC suppressed the accumulation of intracellular reactive oxygen species (ROS), restored the dissipation of mitochondrial membrane potential, enhanced the expression of antiapoptotic proteins and reduced the expression of pro‑apoptotic proteins, as determined by immunofluorescence assays and western blotting. In AD mice, SC enhanced vertical and horizontal movements in an autonomic activity test, and reduced the escape latency time in the water maze test. SC reduced the deposition of amyloid β1‑42 (Aβ1‑42) and the expression of phosphorylated‑Tau in the hippocampus as determined by immunohistochemistry analysis, but enhanced the serum levels of Aβ1‑42 of AD mice as determined by ELISA. ELISA analyses also revealed that SC enhanced the levels of acetylcholine, and superoxide dismutase in serum and brain lysate, whereas reduced the levels of ROS in brain lysate of AD mice. The present study confirmed that the protective effects of SC in AD in vitro and in vivo are associated with its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Xinyu Hu
- Faculty of Clinical Medicine, Changchun Medical College, Changchun, Jilin 130031, P.R. China
| | - Shanshan Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Jiawei He
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Xiaoqi Sun
- Faculty of Clinical Medicine, Changchun Medical College, Changchun, Jilin 130031, P.R. China
| | - Mingzhao Du
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Ling Kou
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| | - Xiaofeng Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 13001, P.R. China
| |
Collapse
|
38
|
Qing R, Huang Z, Tang Y, Xiang Q, Yang F. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway. Int Immunopharmacol 2018; 60:18-25. [PMID: 29702279 DOI: 10.1016/j.intimp.2018.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023]
Abstract
AIMS The present study is to investigate the protective effect of cordycepin on inflammatory reactions in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS), as well as the underlying mechanism. METHODS Wistar rat model of ALI was induced by intravenous injection of LPS (30 mg/kg body weight). One hour later, intravenous injection of cordycepin (1, 10 or 30 mg/kg body weight) was administered. The wet-to-dry weight ratio of lung tissues and myeloperoxidase activity in the lung tissues were measured. The contents of nitrite and nitrate were measured by reduction method, while chemiluminescence was used to determine the content of superoxide. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression of mRNA and protein, respectively. Colorimetry was performed to determine the enzymatic activity of heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 was identified by Western blotting. The plasma contents of cytokines were measured by enzyme-linked immunosorbent assay. RESULTS Cordycepin enhanced the expression and enzymatic activity of HO-1 in ALI rats, and activated Nrf2 by inducing the translocation of Nrf2 from cytoplasm to nucleus. In addition, cordycepin regulated the secretion of TNF-α, IL-6 and IL-10 via HO-1, and suppressed inflammation in lung tissues of ALI rats by inducing the expression of HO-1. HO-1 played important roles in the down-regulation of superoxide levels in lung tissues by cordycepin, and HO-1 expression induced by cordycepin affected nitrite and nitrate concentrations in plasma and iNOS protein expression in lung tissues. Cordycepin showed protective effect on injuries in lung tissues. CONCLUSION The present study demonstrates that cordycepin alleviates inflammation induced by LPS via the activation of Nrf2 and up-regulation of HO-1 expression.
Collapse
Affiliation(s)
- Rui Qing
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Zezhi Huang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Yufei Tang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Qingke Xiang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Fan Yang
- Department of Basic Medicine, Xiangnan University, Chenzhou, PR China.
| |
Collapse
|
39
|
Herbal Compounds Play a Role in Neuroprotection through the Inhibition of Microglial Activation. J Immunol Res 2018; 2018:9348046. [PMID: 29850641 PMCID: PMC5932434 DOI: 10.1155/2018/9348046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Since microglia possess both neuroprotective and neurotoxic potential, they play a crucial role in the central nervous system (CNS). Excessive microglial activation induces inflammation-mediated neuronal damage and degeneration. At present, numerous herbal compounds are able to suppress neurotoxicity via inhibiting microglial activation. Therefore, many researchers focus on pharmacological inhibitors of microglial activation to ameliorate neurodegenerative disorders. Further work should concentrate on the exploration of new herbal compounds, which characteristically inhibit microglial neurotoxicity, rather than modulating neuroprotection alone. In this review, we summarize these herbal compounds, which in the past several years have been shown to exert potential neuroprotective activity by inhibiting microglial activation. The therapeutic targets and pharmacological mechanisms of these compounds have also been discussed.
Collapse
|
40
|
Synthesis and biological evaluation of N-alkyl-1,4-dihydroquinoline prodrugs of scutellarin methyl ester as neuroprotective agents. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2134-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Chledzik S, Strawa J, Matuszek K, Nazaruk J. Pharmacological Effects of Scutellarin, An Active Component of Genus Scutellaria and Erigeron: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:319-337. [PMID: 29433387 DOI: 10.1142/s0192415x18500167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Flavonoid compound scutellarin (Scu) is quite frequently met in the plant kingdom, particularly in the genus Scutellaria (Lamiaceae) and Erigeron (Asteraceae). The extract of the herb of Erigeron breviscapus, containing this component in high amount, has been used for many years in traditional Chinese medicine. In recent years, studies have made great progress on the usefulness of Scu for treating various diseases by testing its mechanism of action. They support the traditional use of Scu rich plant in heart and cerebral ischemia. Scu can potentially be applied in Alzheimer's disease, Helicobacter pylori infection, vascular complications of diabetes and as an inhibitor of certain carcinomas. Various methods were designed to improve its isolation from plant material, solubility, absorption and bioavailability. On the basis of recent studies, it is suggested that Scu could be a promising candidate for new natural drug and deserves particular attention in further research and development.
Collapse
Affiliation(s)
- Sebastian Chledzik
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jakub Strawa
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Matuszek
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Nazaruk
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
42
|
Dias C, Matos AM, Rauter AP. Chemical Approaches Towards Neurodegenerative Disease Prevention: The Role of Coupling Sugars to Phenolic Biomolecular Entities. COUPLING AND DECOUPLING OF DIVERSE MOLECULAR UNITS IN GLYCOSCIENCES 2018:167-194. [DOI: 10.1007/978-3-319-65587-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Sun JB, Li Y, Cai YF, Huang Y, Liu S, Yeung PK, Deng MZ, Sun GS, Zilundu PL, Hu QS, An RX, Zhou LH, Wang LX, Cheng X. Scutellarin protects oxygen/glucose-deprived astrocytes and reduces focal cerebral ischemic injury. Neural Regen Res 2018; 13:1396-1407. [PMID: 30106052 PMCID: PMC6108207 DOI: 10.4103/1673-5374.235293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxidative effects and has been used to treat cardiovascular and cerebrovascular diseases in China. However, the mechanisms by which scutellarin mediates neuroprotection in cerebral ischemia remain unclear. The interaction between scutellarin and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) was assessed by molecular docking study, which showed that scutellarin selectively binds to NOX2 with high affinity. Cultures of primary astrocytes isolated from the cerebral cortex of neonatal Sprague-Dawley rats were pretreated with 2, 10 or 50 μM scutellarin for 30 minutes. The astrocytes were then subjected to oxygen/glucose deprivation by incubation for 2 hours in glucose-free Dulbecco's modified Eagle's medium in a 95% N2/5% CO2 incubator, followed by simulated reperfusion for 22 hours. Cell viability was assessed by cell counting kit-8 assay. Expression levels of NOX2, connexin 43 and caspase-3 were assessed by western blot assay. Reactive oxygen species were measured spectrophotometrically. Pretreatment with 10 or 50 μM scutellarin substantially increased viability, reduced the expression of NOX2 and caspase-3, increased the expression of connexin 43, and diminished the levels of reactive oxygen species in astrocytes subjected to ischemia-reperfusion. We also assessed the effects of scutellarin in vivo in the rat transient middle cerebral artery occlusion model of cerebral ischemia-reperfusion injury. Rats were given intraperitoneal injection of 100 mg/kg scutellarin 2 hours before surgery. The Bederson scale was used to assess neurological deficit, and 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct size. Western blot assay was used to assess expression of NOX2 and connexin 43 in brain tissue. Enzyme-linked immunosorbent assay was used to detect 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosin (3-NT) in brain tissue. Immunofluorescence double staining was used to determine the co-expression of caspase-3 and NeuN. Pretreatment with scutellarin improved the neurological function of rats with focal cerebral ischemia, reduced infarct size, diminished the expression of NOX2, reduced levels of 8-OHdG, 4-HNE and 3-NT, and reduced the number of cells co-expressing caspase-3 and NeuN in the injured brain tissue. Furthermore, we examined the effect of the NOX2 inhibitor apocynin. Apocynin substantially increased connexin 43 expression in vivo and in vitro. Collectively, our findings suggest that scutellarin protects against ischemic injury in vitro and in vivo by downregulating NOX2, upregulating connexin 43, decreasing oxidative damage, and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Jing-Bo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Li
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Shu Liu
- Department of Anatomy, An Hui Medical University, Hefei, Anhui Province, China
| | - Patrick Kk Yeung
- Department of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min-Zhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Guang-Shun Sun
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Prince Lm Zilundu
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qian-Sheng Hu
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rui-Xin An
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Hua Zhou
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Xin Wang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
44
|
Withania coagulans Protects Striatum from Oxidative Damages Induced by Global Brain Ischemia in Rat. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.65051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Gowda Saralamma VV, Lee HJ, Raha S, Lee WS, Kim EH, Lee SJ, Heo JD, Won C, Kang CK, Kim GS. Inhibition of IAP's and activation of p53 leads to caspase-dependent apoptosis in gastric cancer cells treated with Scutellarein. Oncotarget 2017; 9:5993-6006. [PMID: 29464049 PMCID: PMC5814189 DOI: 10.18632/oncotarget.23202] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. South Korea is in first place with 9,180 death alone attributed to gastric cancer in 2013. Plenty of literature suggests the evasion of apoptosis is implicated in neurodegeneration, autoimmune diseases, and tumors development due to dysregulation in the apoptotic mechanism. Reduced apoptosis or its resistance in cancer cells plays a significant role in carcinogenesis. It’s imperative to understand apoptosis, which provides the basis for novel targeted therapies that can induce cancer cell death or sensitize them to cytotoxic agents by regulating key factors like IAPs, MDM2, p53, caspases and much more. Studies have demonstrated that Scutellarein have the ability to inhibit several cancer cells by inducing apoptosis with both: Scutellarein monomers as well as scutellarein containing flavonoids. MTT results revealed that scutellarein inhibited cell viability in both dose and time dependent manner. Flow cytometry and western blot analysis showed that scutellarein induces apoptosis in both AGS and SNU-484 human gastric cancer cells and G2/M phase cell cycle arrest in SNU-484 cells. This study demonstrated that the Scutellarein on AGS and SNU-484 cells significantly inhibits cell proliferation and induces apoptotic cell death via down regulating MDM2 and activated the tumor suppresser protein p53, subsequently down regulating the IAP family proteins (cIAP1, cIAP2, and XIAP) leading to caspase-dependent apoptosis in AGS and SNU-484 cells.
Collapse
Affiliation(s)
- Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Suchismita Raha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chang Keun Kang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| |
Collapse
|
46
|
Gu T, Zhong Y, Lu YT, Sun Y, Dong ZX, Wu WY, Shi ZH, Li NG, Xue X, Fang F, Li HM, Tang YP. Synthesis and Bioactivity Characterization of Scutellarein Sulfonated Derivative. Molecules 2017. [PMID: 28635646 PMCID: PMC6152701 DOI: 10.3390/molecules22061028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Scutellarin (1) has been widely used to treat acute cerebral infarction in clinic, but poor aqueous solubility decreases its bioavailability. Interestingly, scutellarin (1) could be metabolized into scutellarein (2) in vivo. In this study, a sulfonic group was introduced at position C-8 of scutellarein (2) to enhance the aqueous solubility of the obtained derivative (3). DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging ability and antithrombic activity were also conducted to determine its bioactivity. The result showed that scutellarein derivate (3) could be a better agent for ischemic cerebrovascular disease treatment.
Collapse
Affiliation(s)
- Ting Gu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yu-Ting Lu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Ying Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Ze-Xi Dong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Wen-Yu Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Fang Fang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
- Department of Medicinal Chemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yu-Ping Tang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
47
|
Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, Guan HS, Wang CY. Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep 2017; 7:40318. [PMID: 28074863 PMCID: PMC5225497 DOI: 10.1038/srep40318] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Herb pair Danggui-Honghua has been frequently used for treatment of blood stasis syndrome (BSS) in China, one of the most common clinical pathological syndromes in traditional Chinese medicine (TCM). However, its therapeutic mechanism has not been clearly elucidated. In the present study, a feasible system pharmacology model based on chemical, pharmacokinetic and pharmacological data was developed via network construction approach to clarify the mechanisms of this herb pair. Thirty-one active ingredients of Danggui-Honghua possessing favorable pharmacokinetic profiles and biological activities were selected, interacting with 42 BSS-related targets to provide potential synergistic therapeutic actions. Systematic analysis of the constructed networks revealed that these targets such as HMOX1, NOS2, NOS3, HIF1A and PTGS2 were mainly involved in TNF signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway and neurotrophin signaling pathway. The contribution index of every active ingredient also indicated six compounds, including hydroxysafflor yellow A, safflor yellow A, safflor yellow B, Z-ligustilide, ferulic acid, and Z-butylidenephthalide, as the principal components of this herb pair. These results successfully explained the polypharmcological mechanisms underlying the efficiency of Danggui-Honghua for BSS treatment, and also probed into the potential novel therapeutic strategies for BSS in TCM.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Ya-Chu Fan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Shu-Jiao Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu-Ping Tang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| |
Collapse
|
48
|
Lu H, Li Y, Bo B, Yuan L, Lu X, Li H, Tong S. Hemodynamic effects of intraoperative anesthetics administration in photothrombotic stroke model: a study using laser speckle imaging. BMC Neurosci 2017; 18:10. [PMID: 28056813 PMCID: PMC5217600 DOI: 10.1186/s12868-016-0327-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/24/2016] [Indexed: 12/19/2022] Open
Abstract
Background
Previous neuroimaging studies have shown the hemodynamic effect of either preconditioning or postconditioning anesthesia in ischemic stroke model. However, the anesthetic effect in hemodynamics during and immediately after the stroke modeling surgery remains unknown due to the lack of appropriate anesthesia-free stroke model and intraoperative imaging technology. In the present study, we utilized our recently developed photothrombotic model of focal cerebral ischemia in conscious and freely moving rats, and investigated transient hemodynamic changes with or without isoflurane administration. Laser speckle imaging was applied to acquire real-time two-dimensional full-field cerebral blood flow (CBF) information throughout the surgical operations and early after. Results Significantly larger CBF reduction area was observed in conscious rats from 8 min immediately after the onset of stroke modeling, compared with anesthetized rats. Stroke rats without isoflurane administration also showed larger lesion volume identified by magnetic resonance imaging 3 h post occlusion (58.9%), higher neurological severity score 24 h post occlusion (28.3%), and larger infarct volume from 2,3,5-triphenyltetrazolium chloride staining 24 h post occlusion (46.9%). Conclusions Our results demonstrated that the hemodynamic features were affected by anesthetics at as early as during the stroke induction. Also, our findings about the neuroprotection of intraoperative anesthetics administration bring additional insights into understanding the translational difficulty in stroke research.
Collapse
Affiliation(s)
- Hongyang Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Bin Bo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lu Yuan
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Xiaodan Lu
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Hangdao Li
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
49
|
Yao H, Huang X, Shi P, Lin Z, Zhu M, Liu A, Lin X, Tang Y. DPPH·-luminol chemiluminescence system and its application in the determination of scutellarin in pharmaceutical injections and rat plasma with flow injection analysis. LUMINESCENCE 2016; 32:588-595. [PMID: 27860193 DOI: 10.1002/bio.3225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
Abstract
In this article, a DPPH·-luminol chemiluminescence (CL) system was reported and the CL mechanism was discussed according to the CL kinetic properties after sequence injecting DPPH· into the DPPH·-luminol reaction mixture. It was observed that scutellarin could inhibit the CL response of the DPPH·-luminol system. Based on this observation, a simple and rapid flow injection CL method was developed for the determination of scutellarin using the inhibition effect in alkaline medium. The optimized chemical conditions for the CL reaction were 5 × 10-6 mol/L DPPH· and 1.0 × 10-4 mol/L luminol in 0.01 mol/L NaOH. Under optimized conditions, the CL intensity was inversely proportional to the concentration of scutellarin over the ranges 5-2000 and 40-3200 ng/ml in pharmaceutical injection and rat plasma, respectively. The limits of detection (S/N = 3) were 5 and 40 ng/ml in preparations and rat plasma, respectively. Furthermore, the precision, recovery and stability of the validated method were acceptable for the determination of scutellarin in both pharmaceutical injections and rat plasma. The presented method was successfully applied in the determination of scutellarin in pharmaceutical injections and real rat plasma samples.
Collapse
Affiliation(s)
- Hong Yao
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China.,Institute of Analytical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaomei Huang
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Lin
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Meilan Zhu
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| | - Yuhai Tang
- Institute of Analytical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
50
|
Zhang W, Li NG, Tang YP, Dong ZX, Gu T, Wu WY, Zhang PX, Yu SP, Duan JA, Shi ZH. Investigation of 6-O-methyl-scutellarein metabolites in rats by ultra-flow liquid chromatography/quadrupole-time-of-flight mass spectrometry. PHARMACEUTICAL BIOLOGY 2016; 54:2158-2167. [PMID: 26955854 DOI: 10.3109/13880209.2016.1149495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Scutellarin (1) has been widely used in China to treat acute cerebral infarction and paralysis induced by cerebrovascular diseases. However, scutellarin (1) has unstable metabolic characteristics. Objective The metabolic profile of 6-O-scutellarein was studied to determine its metabolic stability in vivo. Materials and methods In this study, a method of UFLC/Q-TOF MS was used to study the 6-O-methyl-scutellarein metabolites in rat plasma, urine, bile and faeces after oral administration of 6-O-methyl-scutellarein (3). One hour after oral administration of 6-O-methyl-scutellarein (3) (34 mg/kg), approximately 1 mL blood samples were collected in EP tubes from all groups. Bile, urine and faeces samples were collected from eight SD rats during 0-24 h after oral administration. The mass defect filtering, dynamic background subtraction and information dependent acquisition techniques were also used to identify the 6-O-methyl-scutellarein metabolites. Results The parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces. The glucuronide conjugate of 6-O-methyl-scutellarein (M1, M2), diglucuronide conjugate of 6-O-methyl-scutellarein (M3), sulphate conjugate of 6-O-methyl-scutellarein (M4), glucuronide and sulphate conjugate of 6-O-methyl-scutellarein (M5), methylated conjugate of 6-O-methyl-scutellarein (M6) were detected in rat urine. M1, M2 and M3 were detected in rat bile. M1 was found in rat plasma and M7 was detected in faeces. Discussion and conclusion Because the parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces, we speculate that 6-O-methyl-scutellarein (3) had good metabolic stability in vivo. This warrants further study to develop it as a promising candidate for the treatment of ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Wei Zhang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Peng-Xuan Zhang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Shao-Peng Yu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China
| | - Zhi-Hao Shi
- b Department of Organic Chemistry , China Pharmaceutical University , Nanjing , P.R. China
| |
Collapse
|