1
|
Singh BK, Jiang G, Wei Z, Sáez-Sandino T, Gao M, Liu H, Xiong C. Plant pathogens, microbiomes, and soil health. Trends Microbiol 2025:S0966-842X(25)00109-X. [PMID: 40274492 DOI: 10.1016/j.tim.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Healthy soil is vital for ecosystem sustainability and global food security. However, anthropogenic activities that promote intensive agriculture, landscape and biodiversity homogenization, and climate change disrupt soil health. The soil microbiome is a critical component of healthy soils, and increasing evidence suggests that soils with low diversity or homogenized microbial systems are more susceptible to soil pathogen invasion, but the extent and mechanisms that increase the threat of pathogen invasion (i.e., increase in prevalence of existing species and introduction of new species) remain unclear. This article aims to fill this knowledge gap by synthesizing the literature and providing novel insights for the scientific community and policy advisors. We also present the current and future global distribution of some dominant soil-borne pathogens. We argue that an improved understanding of the interplay between the soil microbiome, soil health, host, and pathogen distribution, and their responses to environmental changes is urgently needed to ensure the future of productive farms, safe food, sustainable environments, and holistic global well-being.
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Min Gao
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Hongwei Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
2
|
Hou J, Wang L, Wang J, Chen L, Han B, Yang T, Liu W. Insights on common fungicides: A national survey on farmland soils from Mainland China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138177. [PMID: 40199079 DOI: 10.1016/j.jhazmat.2025.138177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Fungicides are a growing concern owing to their ecological and human health threats. In China, which is a large fungicide-consuming country, only a few provincial studies have reported several fungicide residues in agricultural soils. Additionally, terrestrial ecological risk assessments of pesticides are limited to the single species. This study showed that fungicides were commonly found in agricultural soils in mainland China, and the Σ13fungicides concentrations ranged from 0.0548 to 3183 μg/kg, with the major contributing component being difenoconazole. Spatial variation in fungicide concentrations was significant, with the highest concentrations observed in Southern China. The Σ13fungicides concentration was higher in soils covered with plastic films compared to uncovered soils, possibly because microplastics from agro-film sources promote fungicide retention in the soil. Among the crop types, the highest fungicide residues were found in soils planted with fruits. In addition, this study was the first to use the probabilistic species sensitivity distribution (pSSD) approach to deduce the predicted no-effect concentrations of major fungicides as terrestrial safety thresholds. Particularly, soil texture conditions may influence the hazard assessment of fungicides. Finally, from the species taxa perspective, the proportions of ecological risks of carbendazim and tebuconazole in agricultural soils in China were 4.3 % and 5.9 %, respectively.
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiXi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - JinZe Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tong Yang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
3
|
Hegde V, Bhat MP, Lee JH, Kim CS, Lee KH. Bimetallic MOF -Based Hybrid Platform with Dual Stimuli-Responsiveness for Sustained Release and Enhanced Retention. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20209-20224. [PMID: 40127174 DOI: 10.1021/acsami.5c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pesticide delivery carriers provide protection against pathogens but face significant challenges, including limited loading capacity, rapid release rates, and inconsistent performance. To address these issues, this study develops a dual-stimuli-responsive pesticide delivery carrier, featuring an iron-copper bimetal-organic framework (Fe-Cu MOF) supported on diatomaceous earth (DE) and coated with lauric acid (LA). Here, DE serves as a biocompatible scaffold, enhancing the adhesion and retention of MOF particles at target sites, thereby improving the pesticide localization and delivery efficiency. The carrier exhibits a high thiabendazole (Tbz) loading capacity of 38.14% owing to its nanoporous structure. The LA coating functions as a pH- and temperature-responsive barrier, regulating pesticide release to prolong the treatment duration and minimizing the need for repeated applications. The carrier demonstrates controlled release rates of 80.73% at pH 5 and 96.55% at 40 °C, confirming its dual-stimuli responsiveness. In vitro assays reveal 92.26% inhibition of Botrytis cinerea at 1 μg mL-1, while in vivo experiments on tomato plants and fruits show complete inhibition at 200 μg mL-1. Additionally, the developed composites adhere strongly to leaves through electrostatic and hydrogen-bonding interactions, reducing the loss of pesticide due to rain erosion. Overall, DE-MOF-Tbz-LA presents a promising and efficient alternative to conventional pesticide applications.
Collapse
Affiliation(s)
- Vinayak Hegde
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mahesh P Bhat
- AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Ho Lee
- AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- AI Agri-Tech Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Korkmaz Y, Bełka M, Blumenstein K. How cryptic animal vectors of fungi can influence forest health in a changing climate and how to anticipate them. Appl Microbiol Biotechnol 2025; 109:65. [PMID: 40088282 PMCID: PMC11910412 DOI: 10.1007/s00253-025-13450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Fungal spores are usually dispersed by wind, water, and animal vectors. Climate change is accelerating the spread of pathogens to new regions. While well-studied vectors like bark beetles and moths contribute to pathogen transmission, other, less-recognized animal species play a crucial role at different scales. Small-scale dispersers, such as mites, rodents, squirrels, and woodpeckers, facilitate fungal spread within trees or entire forest regions. On a larger scale, birds contribute significantly to long-distance fungal dispersal, potentially aiding the establishment of invasive species across continents. These vectors remain underexplored and are often overlooked in fungal disease studies and are therefore called cryptic vectors. Understanding the full range of dispersal mechanisms is critical as climate change drive shifts in species distributions and increases vector activity. Expanding monitoring and detection tools to include these hidden carriers will improve our ability to track the distribution of fungal pathogens. Integrating targeted research, innovative technologies, and collaborative efforts across disciplines and borders is essential for enhancing disease management and mitigating fungal disease's ecological and economic impacts. KEY POINTS: • Cryptic animal vectors play a critical role in fungal spore dispersal across forests and continents. • Climate change accelerates fungal pathogen spread by altering species distributions, increasing vector activity, and facilitating long-distance dispersal. • Innovative monitoring tools, like eDNA sampling and predictive modelling, are essential to uncover cryptic vector contributions and mitigate fungal disease impacts.
Collapse
Affiliation(s)
- Yasin Korkmaz
- Faculty of Environment and Natural Resources, Chair of Pathology of Trees, University of Freiburg, Freiburg, Germany
| | - Marta Bełka
- Faculty of Forestry and Wood Technology, Forest Entomology and Pathology Department, Poznań University of Life Sciences, Poznań, Poland
| | - Kathrin Blumenstein
- Faculty of Environment and Natural Resources, Chair of Pathology of Trees, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:826-844. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Song JH, Kong HG. Effects of Temperature on Resistance to Streptomycin in Xanthomonas arboricola pv. pruni. THE PLANT PATHOLOGY JOURNAL 2025; 41:78-87. [PMID: 39916417 PMCID: PMC11834537 DOI: 10.5423/ppj.oa.08.2024.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Xanthomonas arboricola pv. pruni (Xap) causes the shot hole disease of stone fruits and almonds. This bacterium is a damaging, widespread pathogen distributed across the major stone fruit producing regions of the world. To control shot hole disease, antibiotics such as streptomycin are mainly used. However, as concerns about antibiotic resistance increase, many restrictions are placed on the use of antibiotics. Additionally, it has been reported that the rise in temperature due to climate change affects disease occurrence and ecology. Therefore, in this study, we determined the minimum inhibitory concentration (MIC) of streptomycin for Xap at an optimal growth temperature of 28°C and investigated the changes in MIC and the occurrence frequency of resistant bacteria at 10°C, 25°C and 30°C. The results of this study showed that the MIC was 30 µg/ml at 28°C. In addition, when the change in streptomycin resistance concentration due to temperature was confirmed, we found that the resistance concentration decreased to 10 µg/ml at 30°C. When the occurrence of resistance according to concentration and temperature conditions was investigated, the occurrence frequency of resistant strains was found to be the highest at 50 µg/ml. In the case of temperature, the occurrence frequency of resistant strains was confirmed to be high at 30°C. These results provide basic data for further reducing the problem of antibiotic resistance by suggesting the possibility of changes in the occurrence of streptomycin-resistant strains depending on the antibiotic treatment environment.
Collapse
Affiliation(s)
- Ji Ho Song
- Department of Plant Medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hyun Gi Kong
- Department of Plant Medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
7
|
Yuan Y, Ma X, Li C, Zhong X, Li Y, Zhao J, Zhang X, Zhou Z. Integration of transcriptome and metabolome reveals key regulatory defense pathways associated with high temperature stress in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2025; 25:6. [PMID: 39748295 PMCID: PMC11694469 DOI: 10.1186/s12870-024-05876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
High temperature stress seriously affects the quality and yield of vegetable crops, especially cucumber (Cucumis sativus L.). However, the metabolic dynamics and gene regulatory network of cucumber in response to high temperature stress remain poorly studied. In this study, we identified a heat-tolerant cucumber Gy14 and a heat-sensitive cucumber 32X. RNA-seq analysis of Gy14 and 32X under high temperature stress showed that some differentially expressed genes (DEGs) were related to the biosynthesis of secondary metabolites. Metabolomic analysis revealed that there were more phenylpropanoids and their downstream derivatives in Gy14 compared to that in 32X under Re_2d condition (2 normal days recovery after heat). Integrated analysis of transcriptome and metabolome revealed that these upregulated genes played a pivotal role in flavonoid biosynthesis. Moreover, high temperature stress significantly induced the expression of the gibberellin (GA) biosynthesis genes and exogenous application of GA3 alleviated the damage of high temperature to cucumber seedlings. Together, these findings provided new insights into the transcriptome response and metabolomic reprogramming of cucumber against high temperature stress.
Collapse
Affiliation(s)
- Yong Yuan
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xiao Ma
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Chuang Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xitong Zhong
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yuyan Li
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Jianyu Zhao
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Zolkiewicz K, Gruszka D. Take a deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress. PLANT PHYSIOLOGY 2024; 197:kiaf003. [PMID: 39761526 PMCID: PMC11781206 DOI: 10.1093/plphys/kiaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 02/01/2025]
Abstract
Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained. Thus, the urgent need for developing new cereal germplasm with improved stress tolerance could be fulfilled using semidwarf cereal mutants defective in brassinosteroid (BR) biosynthesis or signaling. BRs are steroid phytohormones that regulate various developmental and physiological processes throughout the plant life cycle. Mutants defective in BR biosynthesis or responses show reduced plant height (dwarfism or semi-dwarfism). Importantly, numerous reports indicate that genetic modification or biotechnological manipulation of BR biosynthesis or signaling genes in cereals such as rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), which are of crucial importance for global agriculture, may facilitate the development of cereal germplasm with improved stress tolerance. This review presents a comprehensive overview of the genetic manipulation of BR homeostasis in the above-mentioned cereal crops aimed at improving plant responses to various environmental stresses, such as drought, salinity, oxidative stress, thermal stress, and biotic stresses. We highlight target BR-related genes and the effects of genetic manipulation (gene editing, overexpression, and silencing or microRNA-mediated regulation) on plant adaptability to various stresses and provide future perspectives.
Collapse
Affiliation(s)
- Karolina Zolkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| | - Damian Gruszka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-032 Katowice, Poland
| |
Collapse
|
9
|
Rossi CAM, Patel DN, Castroverde CDM. Distinct profiles of plant immune resilience revealed by natural variation in warm temperature-modulated disease resistance among Arabidopsis accessions. PLANT, CELL & ENVIRONMENT 2024; 47:5115-5125. [PMID: 39165012 DOI: 10.1111/pce.15098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Elevated temperature suppresses the plant defence hormone salicylic acid (SA) by downregulating the expression of master immune regulatory genes CALMODULIN BINDING PROTEIN 60-LIKE G (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1 (SARD1). However, previous studies in Arabidopsis thaliana plants have primarily focused on the accession Columbia-0 (Col-0), while the genetic determinants of intraspecific variation in Arabidopsis immunity under elevated temperature remain unknown. Here we show that BASIC HELIX LOOP HELIX 059 (bHLH059), a thermosensitive SA regulator at nonstress temperatures, does not regulate immune suppression under warmer temperatures. In agreement, temperature-resilient and -sensitive Arabidopsis accessions based on disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 did not correlate with bHLH059 polymorphisms. Instead, we found that temperature-resilient accessions exhibit varying CBP60g and SARD1 expression profiles, potentially revealing CBP60g/SARD1-dependent and independent mechanisms of immune resilience to warming temperature. We identified thermoresilient accessions that exhibited either temperature-sensitive or -insensitive induction of the SA biosynthetic gene ICS1 (direct target gene of CBP60g and SARD1) and SA hormone levels. Collectively, this study has unveiled the intraspecific diversity of Arabidopsis immune responses under warm temperatures, which could aid in predicting plant responses to climate change and provide foundational knowledge for climate-resilient crop engineering.
Collapse
Affiliation(s)
- Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Dhrashti N Patel
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | |
Collapse
|
10
|
Yang J, Jia S, Li T, Zhang J, Zhang Y, Hao J, Zhao J. Delayed Sowing Reduced Verticillium Wilt by Altering Soil Temperature and Humidity to Enhance Beneficial Rhizosphere Bacteria of Sunflower. Microorganisms 2024; 12:2416. [PMID: 39770619 PMCID: PMC11676687 DOI: 10.3390/microorganisms12122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Sunflower Verticillium Wilt (SVW) caused by Verticillium dahliae is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations. Soil was collected from multiple locations with different sowing dates to understand the underlying biological mechanisms driving this phenomenon. The soil bacterial community was characterized through 16S rRNA gene amplicon sequencing performed on the Illumina MiSeq platform, followed by comprehensive bioinformatics analysis. Microsclerotia numbers in soil were detected using both NP-10 selective medium and quantitative polymerase chain reaction (qPCR). By delaying the sowing date, the number of microsclerotia in soil and the biomass of V. dahliae colonized inside sunflower roots were reduced during the early developmental stages (V2-V6) of sunflowers. Amplicon sequencing revealed an increased abundance of bacterial genera, such as Pseudomonas, Azoarcus, and Bacillus in soil samples collected from delayed sowing plots. Five bacterial strains isolated from the delayed sowing plot exhibited strong antagonistic effects against V. dahliae. The result of the pot experiments indicated that supplying two different synthetic communities (SynComs) in the pot did increase the control efficiencies on SVW by 19.08% and 37.82% separately. Additionally, soil temperature and humidity across different sowing dates were also monitored, and a significant correlation between disease severity and environmental factors was observed. In conclusion, delayed sowing appears to decrease microsclerotia levels by recruiting beneficial rhizosphere bacteria, thereby reducing the severity of SVW.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Shuo Jia
- Hinngan League Institute of Agricultural and Husbandry Sciences, Ulanhot 134000, China
| | - Tie Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Yuanyuan Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of CAAS, Hohhot 010010, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| |
Collapse
|
11
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
12
|
Student J, Weitz T, Blewett T, Yaron S, Melotto M. Lettuce Genotype-Dependent Effects of Temperature on Escherichia coli O157:H7 Persistence and Plant Head Growth. J Food Prot 2024; 87:100334. [PMID: 39074612 DOI: 10.1016/j.jfp.2024.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Lettuce has been commonly associated with the contamination of human pathogens, such as Escherichia coli O157:H7 (hereafter O157:H7), which has resulted in serious foodborne illnesses. Contamination events may happen throughout the farm-to-fork chain, when O157:H7 colonizes edible tissues and closely interacts with the plant. Environmental conditions have a significant impact on many plant-microbe interactions; however, it is currently unknown whether temperature affects O157:H7 colonization of the lettuce phyllosphere. In this study, we investigated the relationship between elevated growth temperatures, O157:H7 persistence, and lettuce head growth using 25 lettuce genotypes. Plants were grown under optimal or elevated temperatures for 3.5 weeks before being inoculated with O157:H7. The bacterial population size in the phyllosphere and lettuce head area was estimated at 0- and 10-days postinoculation (DPI) to assess bacterial persistence and head growth during contamination. We found that growing temperature can have a positive, negative, or no effect on O157:H7 persistence depending on the lettuce genotype. Furthermore, temperature had a greater effect on head area size than the presence of O157:H7. The results suggested that the combination of plant genotype and temperature level is an important factor for O157:H7 colonization of lettuce and the possibility to combine desirable food safety traits with heat tolerance into the lettuce germplasm.
Collapse
Affiliation(s)
- Joseph Student
- Department of Plant Sciences, University of California, Davis, California, USA; Horticulture and Agronomy Graduate Program, University of California, Davis, California, USA
| | - Tracy Weitz
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Theo Blewett
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, California, USA.
| |
Collapse
|
13
|
Amjadi Z, Hamzehzarghani H, Rodriguez VM, Huang YJ, Farahbakhsh F. Studying temperature's impact on Brassica napus resistance to identify key regulatory mechanisms using comparative metabolomics. Sci Rep 2024; 14:19865. [PMID: 39191882 PMCID: PMC11350117 DOI: 10.1038/s41598-024-68345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the effects of temperature on Brassica napus (canola) resistance to Leptosphaeria maculans (LM), the causal agent of blackleg disease, metabolic profiles of LM infected resistant (R) and susceptible (S) canola cultivars at 21 °C and 28 °C were analyzed. Metabolites were detected in cotyledons of R and S plants at 48- and 120-h post-inoculation with LM using UPLC-QTOF/MS. The mock-inoculated plants were used as controls. Some of the resistance-related specific pathways, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and aminoacyl-tRNA biosynthesis, were down-regulated in S plants but up-regulated in R plants at 21 °C. However, some of these pathways were down-regulated in R plants at 28 °C. Amino acid metabolism, lipid metabolism, alkaloid biosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis were the pathways linked to combined heat and pathogen stresses. By using network analysis and enrichment analysis, these pathways were identified as important. The pathways of carotenoid biosynthesis, pyrimidine metabolism, and lysine biosynthesis were identified as unique mechanisms related to heat stress and may be associated with the breakdown of resistance against the pathogen. The increased susceptibility of R plants at 28 °C resulted in the down-regulation of signal transduction pathway components and compromised signaling, particularly during the later stages of infection. Deactivating LM-specific signaling networks in R plants under heat stress may result in compatible responses and deduction in signaling metabolites, highlighting global warming challenges in crop disease control.
Collapse
Affiliation(s)
- Zahra Amjadi
- Plant Protection Department, Shiraz University, Shiraz, Iran
| | | | - Víctor Manuel Rodriguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain
| | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Farideh Farahbakhsh
- Plant Protection Research Department, Fars Agricultural and Natural Resources and Education Center, Agricultural Research, Education, and Extension Organization (AREEO), Darab, Iran
| |
Collapse
|
14
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
15
|
Zhou R, Jiang F, Liu Y, Yu X, Song X, Wu Z, Cammarano D. Environmental changes impact on vegetables physiology and nutrition - Gaps between vegetable and cereal crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173180. [PMID: 38740212 DOI: 10.1016/j.scitotenv.2024.173180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Projected changes in climate patterns, increase of weather extreme, water scarcity, and land degradation are going to challenge agricultural production and food security. Currently, studies concerning effects of climate change on agriculture mainly focus on yield and quality of cereal crops. In contrast, there has been little attention on the effects of environmental changes on vegetables that are necessary and key nutrition component for human beings, but quite sensitive to these climatic changes. Therefore, we reviewed the main changes of environmental factors under the current scenario as well as the impacts of these factors on the physiological responses and nutritional alteration of vegetables and the key findings based on modelling. The gaps between cereal crops and vegetables were pinpointed and the actions to take in the future were proposed. The review will enhance our understanding concerning the effects of environmental changes on production, physiological responses, nutrition, and modelling of vegetable plants.
Collapse
Affiliation(s)
- Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Davide Cammarano
- Department of Agroecology, iClimate, CBIO, Aarhus University, Tjele 8830, Denmark.
| |
Collapse
|
16
|
Barghi A, Jung HW. Insights into Bacillus zanthoxyli HS1-mediated systemic tolerance: multifunctional implications for enhanced plant tolerance to abiotic stresses. PHYSIOLOGIA PLANTARUM 2024; 176:e14458. [PMID: 39105251 DOI: 10.1111/ppl.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Abiotic stresses significantly impact agricultural productivity and food security. Innovative strategies, including the use of plant-derived compounds and plant growth-promoting rhizobacteria (PGPR), are necessary to enhance plant resilience. This study delved into how Bacillus zanthoxyli HS1 (BzaHS1) and BzaHS1-derived volatile organic compounds (VOC) conferred systemic tolerance against salt and heat stresses in cabbage and cucumber plants. Direct application of a BzaHS1 strain or exposure of BzaHS1-derived VOC to cabbage and cucumber plants promoted seedling growth under stressed conditions. This induced systemic tolerance was associated with increased mRNA expression and enzymatic activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), or ascorbate peroxidase (EC 1.11.1.1), leading to a reduction in oxidative stress in cabbage and cucumber plants. Plants co-cultured with BzaHS1 and exposed to BzaHS1-derived VOC triggered the accumulation of callose and minimized stomatal opening in response to high salt and temperature stresses, respectively. In contrast, exogenous treatment of azelaic acid, a well-characterized plant defense primer, had no significant impact on the seedling growth of cabbage and cucumber plants grown under abiotic stress conditions. Taken together, BzaHS1 and its VOC show potential for enhancing plant tolerance responses to salt and heat stresses through modulation of osmotic stress-regulatory networks.
Collapse
Affiliation(s)
- Anahita Barghi
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Applied Bioscience, Dong-A University, Busan, Korea
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| |
Collapse
|
17
|
Tyagi A, Ali S, Mir RA, Sharma S, Arpita K, Almalki MA, Mir ZA. Uncovering the effect of waterlogging stress on plant microbiome and disease development: current knowledge and future perspectives. FRONTIERS IN PLANT SCIENCE 2024; 15:1407789. [PMID: 38903424 PMCID: PMC11187287 DOI: 10.3389/fpls.2024.1407789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Waterlogging is a constant threat to crop productivity and ecological biodiversity. Plants face multiple challenges during waterlogging stress like metabolic reprogramming, hypoxia, nutritional depletion, reduction in gaseous exchange, pH modifications, microbiome alterations and disease promotion all of which threaten plants survival. Due to global warming and climatic change, the occurrence, frequency and severity of flooding has dramatically increased posing a severe threat to food security. Thus, developing innovative crop management technologies is critical for ensuring food security under changing climatic conditions. At present, the top priority among scientists is to find nature-based solutions to tackle abiotic or biotic stressors in sustainable agriculture in order to reduce climate change hazards to the environment. In this regard, utilizing plant beneficial microbiome is one of the viable nature based remedial tool for mitigating abiotic stressors like waterlogging. Beneficial microbiota provides plants multifaceted benefits which improves their growth and stress resilience. Plants recruit unique microbial communities to shield themselves against the deleterious effects of biotic and abiotic stress. In comparison to other stressors, there has been limited studies on how waterlogging stress affects plant microbiome structure and their functional traits. Therefore, it is important to understand and explore how waterlogging alters plant microbiome structure and its implications on plant survival. Here, we discussed the effect of waterlogging stress in plants and its microbiome. We also highlighted how waterlogging stress promotes pathogen occurrence and disease development in plants. Finally, we highlight the knowledge gaps and areas for future research directions on unwiring how waterlogging affects plant microbiome and its functional traits. This will pave the way for identifying resilient microbiota that can be engineered to promote their positive interactions with plants during waterlogging stress.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kumari Arpita
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Miller SA, Testen AL, Jacobs JM, Ivey MLL. Mitigating Emerging and Reemerging Diseases of Fruit and Vegetable Crops in a Changing Climate. PHYTOPATHOLOGY 2024; 114:917-929. [PMID: 38170665 DOI: 10.1094/phyto-10-23-0393-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Fruit and vegetable crops are important sources of nutrition and income globally. Producing these high-value crops requires significant investment of often scarce resources, and, therefore, the risks associated with climate change and accompanying disease pressures are especially important. Climate change influences the occurrence and pressure of plant diseases, enabling new pathogens to emerge and old enemies to reemerge. Specific environmental changes attributed to climate change, particularly temperature fluctuations and intense rainfall events, greatly alter fruit and vegetable disease incidence and severity. In turn, fruit and vegetable microbiomes, and subsequently overall plant health, are also affected by climate change. Changing disease pressures cause growers and researchers to reassess disease management and climate change adaptation strategies. Approaches such as climate smart integrated pest management, smart sprayer technology, protected culture cultivation, advanced diagnostics, and new soilborne disease management strategies are providing new tools for specialty crops growers. Researchers and educators need to work closely with growers to establish fruit and vegetable production systems that are resilient and responsive to changing climates. This review explores the effects of climate change on specialty food crops, pathogens, insect vectors, and pathosystems, as well as adaptations needed to ensure optimal plant health and environmental and economic sustainability.
Collapse
Affiliation(s)
- Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
| | - Anna L Testen
- U.S. Department of Agriculture-Agricultural Research Service Application Technology Research Unit, Wooster, OH 44691
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
19
|
Djalovic I, Kundu S, Bahuguna RN, Pareek A, Raza A, Singla-Pareek SL, Prasad PVV, Varshney RK. Maize and heat stress: Physiological, genetic, and molecular insights. THE PLANT GENOME 2024; 17:e20378. [PMID: 37587553 DOI: 10.1002/tpg2.20378] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/19/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.
Collapse
Affiliation(s)
- Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Sayanta Kundu
- National Agri-Food Biotechnology Institute, Mohali, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, China
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, USA
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
20
|
Zandalinas SI, Peláez-Vico MÁ, Sinha R, Pascual LS, Mittler R. The impact of multifactorial stress combination on plants, crops, and ecosystems: how should we prepare for what comes next? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1800-1814. [PMID: 37996968 DOI: 10.1111/tpj.16557] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, Missouri, 65201, USA
| |
Collapse
|
21
|
Rys M, Saja-Garbarz D, Fodor J, Oliwa J, Gullner G, Juhász C, Kornaś A, Skoczowski A, Gruszka D, Janeczko A, Barna B. Heat Pre-Treatment Modified Host and Non-Host Interactions of Powdery Mildew with Barley Brassinosteroid Mutants and Wild Types. Life (Basel) 2024; 14:160. [PMID: 38276289 PMCID: PMC10817351 DOI: 10.3390/life14010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
High temperatures associated with climate change may increase the severity of plant diseases. This study investigated the effect of heat shock treatment on host and non-host barley powdery mildew interactions using brassinosteroid (BR) mutants of barley. Brassinosteroids are plant steroid hormones, but so far little is known about their role in plant-fungal interactions. Wild type barley cultivar Bowman and its near-isogenic lines with disturbances in BR biosynthesis or signalling showed high compatibility to barley powdery mildew race A6, while cultivar Delisa and its BR-deficient mutants 522DK and 527DK were fully incompatible with this pathogen (host plant-pathogen interactions). On the other hand, Bowman and its mutants were highly resistant to wheat powdery mildew, representing non-host plant-pathogen interactions. Heat pre-treatment induced shifts in these plant-pathogen interactions towards higher susceptibility. In agreement with the more severe disease symptoms, light microscopy showed a decrease in papillae formation and hypersensitive response, characteristic of incompatible interactions, when heat pre-treatment was applied. Mutant 527DK, but not 522DK, maintained high resistance to barley powdery mildew race A6 despite heat pre-treatment. By 10 days after heat treatment and infection, a noticeable shift became apparent in the chlorophyll a fluorescence and in various leaf reflectance parameters at all genotypes.
Collapse
Affiliation(s)
- Magdalena Rys
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Diana Saja-Garbarz
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Jakub Oliwa
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 31-054 Krakow, Poland
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 31-054 Krakow, Poland
| | - Andrzej Skoczowski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 31-054 Krakow, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Herman Ottó út 15, 1022 Budapest, Hungary
| |
Collapse
|
22
|
Shao X, Wu Q, Li L, He W, He X, Cheng D, Murero A, Lin L, Wang L, Zhong C, Huang L, Qian G. Adapting the inoculation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from branch microbiome. MOLECULAR PLANT PATHOLOGY 2024; 25:e13399. [PMID: 37921929 PMCID: PMC10788592 DOI: 10.1111/mpp.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa), the bacterium that causes kiwifruit bacterial canker, is a common field occurrence that is difficult to control globally. Currently, exploring the resources for efficient biocontrol bacteria is a hot spot in the field. The common strategy for isolating biocontrol bacteria is to directly isolate biocontrol bacteria that can secrete diffusible antibacterial substances, most of which are members of Bacillus, Pseudomonas and Streptomycetaceae, from disease samples or soil. Here, we report a new approach by adapting the typical isolation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from the branch microbiome. Using this unique approach, we isolated a group of kiwifruit biocontrol agents (KBAs) from the branch microbiome of Psa-resistant varieties. Thirteen of these showed no antagonistic activity in vitro, which depends on the secretion of antibacterial compounds. However, they exhibited antibacterial activity via cell-to-cell contacts mimicked by co-culture on agar plates. Through biocontrol tests on plants, two isolates, KBA13 and KBA19, demonstrated their effectiveness by protecting kiwifruit branches from Psa infection. Using KBA19, identified as Pantoea endophytica, as a representative, we found that this bacterium uses the type VI secretion system (T6SS) as the main contact-dependent antibacterial weapon that acts via translocating toxic effector proteins into Psa cells to induce cell death, and that this capacity expressed by KBA19 is common to various Psa strains from different countries. Our findings highlight a new strategy to identify efficient biocontrol agents that use the T6SS to function in an antibacterial metabolite-independent manner to control wood diseases.
Collapse
Affiliation(s)
- Xiaolong Shao
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Qianhua Wu
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Li Li
- CAS Engineering Laboratory for Kiwifruit Industrial Technology, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhanHubei ProvinceChina
| | - Weimei He
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Xueting He
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Dongjin Cheng
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Aprodisia Murero
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Long Lin
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Limin Wang
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Caihong Zhong
- CAS Engineering Laboratory for Kiwifruit Industrial Technology, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhanHubei ProvinceChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShanxiChina
| | - Guoliang Qian
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
23
|
Peng J, Li Y, Xing Q, Huang C, Yan J. Dual RNA-Seq Reveals Temperature-Mediated Gene Reprogramming and Molecular Crosstalk between Grapevine and Lasiodiplodia theobromae. J Fungi (Basel) 2023; 9:1197. [PMID: 38132797 PMCID: PMC10745131 DOI: 10.3390/jof9121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
High temperatures associated with a fluctuating climate profoundly accelerate the occurrence of a myriad of plant diseases around the world. A comprehensive insight into how plants respond to pathogenic microorganisms under high-temperature stress is required for plant disease management, whereas the underlying mechanisms behind temperature-mediated plant immunity and pathogen pathogenicity are still unclear. Here, we evaluated the effect of high temperature on the development of grapevine canker disease and quantified the contribution of temperature variation to the gene transcription reprogramming of grapevine and its pathogenic agent Lasiodiplodia theobromae using a dual RNA-seq approach. The results showed that both grapevine and the pathogen displayed altered transcriptomes under different temperatures, and even the transcription of a plethora of genes from the two organisms responded in different directions and magnitudes. The transcription variability that arose due to temperature oscillation allowed us to identify a total of 26 grapevine gene modules and 17 fungal gene modules that were correlated with more than one gene module of the partner organism, which revealed an extensive web of plant-pathogen gene reprogramming during infection. More importantly, we identified a set of temperature-responsive genes that were transcriptionally orchestrated within the given gene modules. These genes are predicted to be involved in multiple cellular processes including protein folding, stress response regulation, and carbohydrate and peptide metabolisms in grapevine and porphyrin- and pteridine-containing compound metabolisms in L. theobromae, implying that in response to temperature oscillation, a complex web of signaling pathways in two organism cells is activated during infection. This study describes a co-transcription network of grapevine and L. theobromae in the context of considering temperature variation, which provides novel insights into deciphering the molecular mechanisms underlying temperature-modulated disease development.
Collapse
Affiliation(s)
| | | | | | | | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (Q.X.)
| |
Collapse
|
24
|
Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1097-1117. [PMID: 37824297 DOI: 10.1111/tpj.16497] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Anupriya Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Vishnu Sudha Babu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
25
|
Leisner CP, Potnis N, Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:2946-2963. [PMID: 36585762 DOI: 10.1111/pce.14532] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
26
|
Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol 2023; 21:640-656. [PMID: 37131070 PMCID: PMC10153038 DOI: 10.1038/s41579-023-00900-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Plant disease outbreaks pose significant risks to global food security and environmental sustainability worldwide, and result in the loss of primary productivity and biodiversity that negatively impact the environmental and socio-economic conditions of affected regions. Climate change further increases outbreak risks by altering pathogen evolution and host-pathogen interactions and facilitating the emergence of new pathogenic strains. Pathogen range can shift, increasing the spread of plant diseases in new areas. In this Review, we examine how plant disease pressures are likely to change under future climate scenarios and how these changes will relate to plant productivity in natural and agricultural ecosystems. We explore current and future impacts of climate change on pathogen biogeography, disease incidence and severity, and their effects on natural ecosystems, agriculture and food production. We propose that amendment of the current conceptual framework and incorporation of eco-evolutionary theories into research could improve our mechanistic understanding and prediction of pathogen spread in future climates, to mitigate the future risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with relevant intergovernmental organizations to provide effective monitoring and management of plant disease under future climate scenarios, to ensure long-term food and nutrient security and sustainability of natural ecosystems.
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante, Spain
| | - Jan E Leach
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Pankaj Trivedi
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
27
|
Gu X, Si F, Feng Z, Li S, Liang D, Yang P, Yang C, Yan B, Tang J, Yang Y, Li T, Li L, Zhou J, Li J, Feng L, Liu JY, Yang Y, Deng Y, Wu XN, Zhao Z, Wan J, Cao X, Song X, He Z, Liu J. The OsSGS3-tasiRNA-OsARF3 module orchestrates abiotic-biotic stress response trade-off in rice. Nat Commun 2023; 14:4441. [PMID: 37488129 PMCID: PMC10366173 DOI: 10.1038/s41467-023-40176-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Recurrent heat stress and pathogen invasion seriously threaten crop production, and abiotic stress often antagonizes biotic stress response against pathogens. However, the molecular mechanisms of trade-offs between thermotolerance and defense remain obscure. Here, we identify a rice thermo-sensitive mutant that displays a defect in floret development under high temperature with a mutation in SUPPRESSOR OF GENE SILENCING 3a (OsSGS3a). OsSGS3a interacts with its homolog OsSGS3b and modulates the biogenesis of trans-acting small interfering RNA (tasiRNA) targeting AUXIN RESPONSE FACTORS (ARFs). We find that OsSGS3a/b positively, while OsARF3a/b and OsARF3la/lb negatively modulate thermotolerance. Moreover, OsSGS3a negatively, while OsARF3a/b and OsARF3la/lb positively regulate disease resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and the fungal pathogen Magnaporthe oryzae (M. oryzae). Taken together, our study uncovers a previously unknown trade-off mechanism that regulates distinct immunity and thermotolerance through the OsSGS3-tasiRNA-OsARF3 module, highlighting the regulation of abiotic-biotic stress response trade-off in plants.
Collapse
Affiliation(s)
- Xueting Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhengxiang Feng
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shunjie Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Di Liang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Pei Yang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jun Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yu Yang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Tai Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Lin Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Jinling Zhou
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ji Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lili Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ji-Yun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yuanzhu Yang
- Department of Rice Breeding, Hunan Yahua Seed Scientific Research Institute, 410119, Changsha, Hunan, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xu Na Wu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Junzhong Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
| |
Collapse
|
28
|
Wu LX, Wang Y, Lyu H, Chen XD. Effects of a compound Trichoderma agent on Coptis chinensis growth, nutrients, enzyme activity, and microbial community of rhizosphere soil. PeerJ 2023; 11:e15652. [PMID: 37456883 PMCID: PMC10349559 DOI: 10.7717/peerj.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Root rot diseases are prevalent in many Coptis chinensis Franch. production areas, perhaps partially due to the overuse of synthetic fertilizers. Synthetic fertilizers can also lead to soil degradation. Trichoderma is widely used in biofertilizers and biopesticides. This study applied a combination of four Trichoderma species (compound Trichoderma agent, CTA) to C. chinensis and evaluated its effects on growth, as well as rhizosphere soil nutrients, enzyme activities, and microbial community structure. The purpose of this study was to estimate the potential of using CTA as a biofertilizer for C. chinensis, and determine if it could, at least partially, replace synthetic fertilizers to control root rot disease and maintain soil fertility. Method CTA, compound fertilizer and sterile water were applied to C. chinensis plants. After 60 days, the soluble sugar, soluble protein, chlorophyll of leaves, and individual weight of each plant were measured. The rhizosphere soil nutrient content, enzymatic activity, and the microbial community were also determined. The results were analyzed to evaluate the effect of CTA on C. chinensis growth and soil fertility. Results CTA increased the soluble protein, chlorophyll, and individual weight of C. chinensis plants while compound fertilizer decreased chlorophyll. CTA increased the activities of urease and catalase in rhizosphere soil, whereas the compound fertilizer decreased urease, catalase, and alkaline phosphatase activities. CTA elevated soil pH, while compound fertilizer reduced it. CTA had no significant effects on soil nutrients and organic matter. CTA decreased the fungal number and alpha-diversity of fungi and bacteria, and both the fungal and bacterial communities were significantly different from the other two. CTA increased B/F value, which improved the rhizosphere microbial community. Both CTA and the compound fertilizer significantly altered the soil microbial community. The relative abundance of Ascomycota was higher and Basidiomycota was lower after CTA treatment than after the other two treatments, indicating that the soil treated with CTA was healthier than that of the other two treatments. CTA decreased harmful Ilyonectria mors-panacis and Corynebacterium sp. And increased beneficial Ralstonia picketti. Trichoderma spp. could exist in C. chinensis rhizosphere soil for a long time. The functional prediction results demonstrated that CTA reduced some rhizosphere phytopathogenic fungi. Correlation analysis showed that CTA elevated rhizosphere pH and enzyme activities. In summary, synthetic fertilizers damaged soil fertility, and the overuse of them might be responsible for root rot disease, while CTA could promote C. chinensis growth, improve soil and decrease the incidence and severity of C. chinensis root rot disease. Therefore, as a biofertilizer, CTA can, at least partially, replace synthetic fertilizers in C. chinensis production. Combining it with organic fertilizer will increase the potential of Trichoderma.
Collapse
Affiliation(s)
- Li X. Wu
- Institute of Material Medical Planting, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Institute of Material Medical Planting, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Hui Lyu
- Institute of Material Medical Planting, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Xia D. Chen
- Institute of Material Medical Planting, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing, China
- Chongqing Sub-center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
29
|
Ma Z, Hu L. MicroRNA: A Dynamic Player from Signalling to Abiotic Tolerance in Plants. Int J Mol Sci 2023; 24:11364. [PMID: 37511124 PMCID: PMC10379455 DOI: 10.3390/ijms241411364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules composed of approximately 20-24 nucleotides in plants. They play an important regulatory role in plant growth and development and as a signal in abiotic tolerance. Some abiotic stresses include drought, salt, cold, high temperature, heavy metals and nutritional elements. miRNAs affect gene expression by manipulating the cleavage, translational expression or DNA methylation of target messenger RNAs (mRNAs). This review describes the current progress in the field considering two aspects: (i) the way miRNAs are produced and regulated and (ii) the way miRNA/target genes are used in plant responses to various abiotic stresses. Studying the molecular mechanism of action of miRNAs' downstream target genes could optimize the genetic manipulation of crop growth and development conditions to provide a more theoretically optimized basis for improving crop production. MicroRNA is a novel signalling mechanism in interplant communication relating to abiotic tolerance.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
30
|
Shi Y, Bao X, Song X, Liu Y, Li Y, Chen X, Hu X. The Leucine-Rich Repeat Receptor-Like Kinase Protein TaSERK1 Positively Regulates High-Temperature Seedling Plant Resistance to Puccinia striiformis f. sp. tritici by Interacting with TaDJA7. PHYTOPATHOLOGY 2023; 113:1325-1334. [PMID: 36774558 DOI: 10.1094/phyto-11-22-0429-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Somatic embryogenesis receptor kinases (SERKs) belong to the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily, and many LRR-RLKs have been proven to play a key role in plant immune signal transmission. However, the functions of SERKs in resistance to stripe rust caused by Puccinia striiformis f. sp. tritici remains unknown. Here, we identified a gene, TaSERK1, from Xiaoyan 6, a wheat cultivar possessing high-temperature seedling-plant (HTSP) resistance to the fungal pathogen P. striiformis f. sp. tritici and expresses its resistance at the seedling stage. The expression level of TaSERK1 was upregulated upon P. striiformis f. sp. tritici inoculation under relatively high temperatures. The transcriptional level of TaSERK1 was significantly increased under exogenous salicylic acid and brassinosteroids treatments. The barley stripe mosaic virus-induced gene silencing assay indicated that TaSERK1 positively regulated the HTSP resistance to stripe rust. The transient expression of TaSERK1 in tobacco leaves confirmed its subcellular localization on the plasma membrane. Furthermore, TaSERK1 interacted with and phosphorylated the chaperone protein TaDJA7, which belongs to the heat shock protein 40 subfamily. Silencing TaDJA7 compromised the HTSP resistance to stripe rust. The results indicated that when the membrane immune receptor TaSERK1 perceives the P. striiformis f. sp. tritici infection under relatively high temperatures, it transmits the signal to TaDJA7 to activate HTSP resistance to the pathogen.
Collapse
Affiliation(s)
- Yifeng Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiyue Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaopan Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- Agricultural Research Service, U.S. Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
31
|
Priyashantha AKH, Dai DQ, Bhat DJ, Stephenson SL, Promputtha I, Kaushik P, Tibpromma S, Karunarathna SC. Plant-Fungi Interactions: Where It Goes? BIOLOGY 2023; 12:809. [PMID: 37372094 PMCID: PMC10295453 DOI: 10.3390/biology12060809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Fungi live different lifestyles-including pathogenic and symbiotic-by interacting with living plants. Recently, there has been a substantial increase in the study of phytopathogenic fungi and their interactions with plants. Symbiotic relationships with plants appear to be lagging behind, although progressive. Phytopathogenic fungi cause diseases in plants and put pressure on survival. Plants fight back against such pathogens through complicated self-defense mechanisms. However, phytopathogenic fungi develop virulent responses to overcome plant defense reactions, thus continuing their deteriorative impacts. Symbiotic relationships positively influence both plants and fungi. More interestingly, they also help plants protect themselves from pathogens. In light of the nonstop discovery of novel fungi and their strains, it is imperative to pay more attention to plant-fungi interactions. Both plants and fungi are responsive to environmental changes, therefore construction of their interaction effects has emerged as a new field of study. In this review, we first attempt to highlight the evolutionary aspect of plant-fungi interactions, then the mechanism of plants to avoid the negative impact of pathogenic fungi, and fungal strategies to overcome the plant defensive responses once they have been invaded, and finally the changes of such interactions under the different environmental conditions.
Collapse
Affiliation(s)
- A. K. Hasith Priyashantha
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Darbhe J. Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Biology Division, Vishnugupta Vishwavidyapeetam, Gokarna 581326, India
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (A.K.H.P.); (D.-Q.D.)
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy 20000, Sri Lanka
| |
Collapse
|
32
|
Hongal DA, Raju D, Kumar S, Talukdar A, Das A, Kumari K, Dash PK, Chinnusamy V, Munshi AD, Behera TK, Dey SS. Elucidating the role of key physio-biochemical traits and molecular network conferring heat stress tolerance in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1128928. [PMID: 36895870 PMCID: PMC9990136 DOI: 10.3389/fpls.2023.1128928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Cucumber is an important vegetable crop grown worldwide and highly sensitive to prevailing temperature condition. The physiological, biochemical and molecular basis of high temperature stress tolerance is poorly understood in this model vegetable crop. In the present study, a set of genotypes with contrasting response under two different temperature stress (35/30°C and 40/35°C) were evaluated for important physiological and biochemical traits. Besides, expression of the important heat shock proteins (HSPs), aquaporins (AQPs), photosynthesis related genes was conducted in two selected contrasting genotypes at different stress conditions. It was established that tolerant genotypes were able to maintain high chlorophyll retention, stable membrane stability index, higher retention of water content, stability in net photosynthesis, high stomatal conductance and transpiration in combination with less canopy temperatures under high temperature stress conditions compared to susceptible genotypes and were considered as the key physiological traits associated with heat tolerance in cucumber. Accumulation of biochemicals like proline, protein and antioxidants like SOD, catalase and peroxidase was the underlying biochemical mechanisms for high temperature tolerance. Upregulation of photosynthesis related genes, signal transduction genes and heat responsive genes (HSPs) in tolerant genotypes indicate the molecular network associated with heat tolerance in cucumber. Among the HSPs, higher accumulation of HSP70 and HSP90 were recorded in the tolerant genotype, WBC-13 under heat stress condition indicating their critical role. Besides, Rubisco S, Rubisco L and CsTIP1b were upregulated in the tolerant genotypes under heat stress condition. Therefore, the HSPs in combination with photosynthetic and aquaporin genes were the underlying important molecular network associated with heat stress tolerance in cucumber. The findings of the present study also indicated negative feedback of G-protein alpha unit and oxygen evolving complex in relation to heat stress tolerance in cucumber. These results indicate that the thermotolerant cucumber genotypes enhanced physio-biochemical and molecular adaptation under high-temperature stress condition. This study provides foundation to design climate smart genotypes in cucumber through integration of favorable physio-biochemical traits and understanding the detailed molecular network associated with heat stress tolerance in cucumber.
Collapse
Affiliation(s)
- Dhananjay A. Hongal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dhandapani Raju
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Akshay Talukdar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anjan Das
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta K. Dash
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anilabha Das Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
33
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
34
|
Luan P, Yi Y, Huang Y, Cui L, Hou Z, Zhu L, Ren X, Jia S, Liu Y. Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front Microbiol 2023; 14:1149363. [PMID: 37125175 PMCID: PMC10135310 DOI: 10.3389/fmicb.2023.1149363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Bipolaris sorokiniana is the popular pathogenic fungi fungus which lead to common root rot and leaf spot on wheat. Generally, chemical fungicides are used to control diseases. However, the environmental pollution resulting from fungicides should not be ignored. It is important to study the mode of antagonistic action between biocontrol microbes and plant pathogens to design efficient biocontrol strategies. Results An antagonistic bacterium DB2 was isolated and identified as Bacillus amyloliquefaciens. The inhibition rate of cell-free culture filtrate (CF, 20%, v/v) of DB2 against B. sorokiniana reached 92.67%. Light microscopy and scanning electron microscopy (SEM) showed that the CF significantly altered the mycelial morphology of B. sorokiniana and disrupted cellular integrity. Fluorescence microscopy showed that culture filtrate destroyed mycelial cell membrane integrity, decreased the mitochondrial transmembrane potential, induced reactive oxygen species (ROS) accumulation, and nuclear damage which caused cell death in B. sorokiniana. Moreover, the strain exhibited considerable production of protease and amylase, and showed a significant siderophore and indole-3-acetic acid (IAA) production. In the detached leaves and potted plants control assay, B. amyloliquefacien DB2 had remarkable inhibition activity against B. sorokiniana and the pot control efficacy was 75.22%. Furthermore, DB2 suspension had a significant promotion for wheat seedlings growth. Conclusion B. amyloliquefaciens DB2 can be taken as a potential biocontrol agent to inhibit B. sorokiniana on wheat and promote wheat growth.
Collapse
Affiliation(s)
- Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
- *Correspondence: Yanjie Yi,
| | - Yifan Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Liuqing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Lijuan Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Xiujuan Ren
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Shao Jia
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
35
|
Xu Q, He H, He B, Li T, Liu Y, Zhu S, Zhang G. Nitrogen Allocation Tradeoffs Within-Leaf between Photosynthesis and High-Temperature Adaptation among Different Varieties of Pecan ( Carya illinoinensis [Wangenh.] K. Koch). PLANTS (BASEL, SWITZERLAND) 2022; 11:2828. [PMID: 36365281 PMCID: PMC9657520 DOI: 10.3390/plants11212828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Interpreting leaf nitrogen (N) allocation is essential to understanding leaf N cycling and the economy of plant adaptation to environmental fluctuations, yet the way these mechanisms shift in various varieties under high temperatures remains unclear. Here, eight varieties of pecan (Carya illinoinensis [Wangenh.] K. Koch), Mahan, YLC10, YLC12, YLC13, YLC29, YLC35, YLJ042, and YLJ5, were compared to investigate the effects of high temperatures on leaf N, photosynthesis, N allocation, osmolytes, and lipid peroxidation and their interrelations. Results showed that YLC35 had a higher maximum net photosynthetic rate (Pmax) and photosynthetic N-use efficiency (PNUE), while YLC29 had higher N content per area (Na) and lower PNUE. YLC35, with lower malondialdehyde (MDA), had the highest proportions of N allocation in rubisco (Pr), bioenergetics (Pb), and photosynthetic apparatus (Pp), while YLC29, with the highest MDA, had the lowest Pr, Pb, and Pp, implying more leaf N allocated to the photosynthetic apparatus for boosting PNUE or to non-photosynthetic apparatus for alleviating damage. Structural equation modeling (SEM) demonstrated that N allocation was affected negatively by leaf N and positively by photosynthesis, and their combination indirectly affected lipid peroxidation through the reverse regulation of N allocation. Our results indicate that different varieties of pecan employ different resource-utilization strategies and growth-defense tradeoffs for homeostatic balance under high temperatures.
Collapse
|
36
|
Pascual LS, Segarra-Medina C, Gómez-Cadenas A, López-Climent MF, Vives-Peris V, Zandalinas SI. Climate change-associated multifactorial stress combination: A present challenge for our ecosystems. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153764. [PMID: 35841741 DOI: 10.1016/j.jplph.2022.153764] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 05/28/2023]
Abstract
Humans negatively influence Earth ecosystems and biodiversity causing global warming, climate change as well as man-made pollution. Recently, the number of different stress factors have increased, and when impacting simultaneously, the multiple stress conditions cause dramatic declines in plant and ecosystem health. Although much is known about how plants and ecosystems are affected by each individual stress, recent research efforts have diverted into how these biological systems respond to several of these stress conditions applied together. Studies of such "multifactorial stress combination" concept have reported a severe decrease in plant survival and microbiome biodiversity along the increasing number of factors in a consistent directional trend. In addition, these results are in concert with studies about how ecosystems and microbiota are affected by natural conditions imposed by climate change. Therefore, all this evidence should serve as an important warning in order to decrease pollutants, create strategies to deal with global warming, and increase the tolerance of plants to multiple stressful factors in combination. Here we review recent studies focused on the impact of abiotic stresses on plants, agrosystems and different ecosystems including forests and microecosystems. In addition, different strategies to mitigate the impact of climate change in ecosystems are discussed.
Collapse
Affiliation(s)
- Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Clara Segarra-Medina
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María F López-Climent
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Vicente Vives-Peris
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain.
| |
Collapse
|
37
|
Trivedi P, Batista BD, Bazany KE, Singh BK. Plant-microbiome interactions under a changing world: responses, consequences and perspectives. THE NEW PHYTOLOGIST 2022; 234:1951-1959. [PMID: 35118660 DOI: 10.1111/nph.18016] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/19/2022] [Indexed: 05/07/2023]
Abstract
Climate change is increasing global temperatures and the frequency and severity of droughts in many regions. These anthropogenic stresses pose a significant threat to plant performance and crop production. The plant-associated microbiome modulates the impacts of biotic and abiotic stresses on plant fitness. However, climate change-induced alteration in composition and activities of plant microbiomes can affect host functions. Here, we highlight recent advancements in our understanding of the impact of climate change (warming and drought) on plant-microbiome interactions and on their ecological functions from genome to ecosystem scales. We identify knowledge gaps, propose new concepts and make recommendations for future research directions. It is proposed that in the short term (years to decades), the adaptation of plants to climate change is mainly driven by the plant microbiome, whereas in the long term (century to millennia), the adaptation of plants will be driven equally by eco-evolutionary interactions between the plant microbiome and its host. A better understanding of the response of the plant and its microbiome interactions to climate change and the ways in which microbiomes can mitigate the negative impacts will better inform predictions of climate change impacts on primary productivity and aid in developing management and policy tools to improve the resilience of plant systems.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Bruna D Batista
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2751, Australia
| | - Kathryn E Bazany
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, NSW, 2751, Australia
| |
Collapse
|
38
|
Qiu J, Xie J, Chen Y, Shen Z, Shi H, Naqvi NI, Qian Q, Liang Y, Kou Y. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. MOLECULAR PLANT 2022; 15:723-739. [PMID: 35217224 DOI: 10.1016/j.molp.2022.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 05/20/2023]
Abstract
Changes in global temperatures profoundly affect the occurrence of plant diseases. It is well known that rice blast can easily become epidemic in relatively warm weather. However, the molecular mechanism remains unclear. In this study, we show that enhanced blast development at a warm temperature (22°C) compared with the normal growth temperature (28°C) is rice plant-determined. Comparative transcriptome analysis revealed that jasmonic acid (JA) biosynthesis and signaling genes in rice could be effectively induced by Magnaporthe oryzae at 28°C but not at 22°C. Phenotypic analyses of the osaoc1 and osmyc2 mutants, OsCOI1 RNAi lines, and OsMYC2-OE plants further demonstrated that compromised M. oryzae-induced JA biosynthesis and signaling lead to enhanced blast susceptibility at the warm temperature. Consistent with these results, we found that exogenous application of methyl jasmonate served as an effective strategy for improving blast resistance under the warm environmental conditions. Furthermore, decreased activation of JA signaling resulted in the downregulated expression of some key basal resistance genes at 22°C when compared with 28°C. Among these affected genes, OsCEBiP (chitin elicitor-binding protein precursor) was found to be directly regulated by OsMYB22 and its interacting protein OsMYC2, a key component of JA signaling, and this contributed to temperature-modulated blast resistance. Taken together, these results suggest that warm temperature compromises basal resistance in rice and enhances M. oryzae infection by reducing JA biosynthesis and signaling, providing potential new strategies for managing rice blast disease under warm climate conditions.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Junhui Xie
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Ya Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhenan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yan Liang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
39
|
Yu B, Ming F, Liang Y, Wang Y, Gan Y, Qiu Z, Yan S, Cao B. Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions. Int J Mol Sci 2022; 23:ijms23031817. [PMID: 35163740 PMCID: PMC8837171 DOI: 10.3390/ijms23031817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress.
Collapse
Affiliation(s)
- Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Fangyan Ming
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yixi Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (B.Y.); (F.M.); (Y.L.); (Y.W.); (Y.G.); (Z.Q.)
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.Y.); (B.C.)
| |
Collapse
|
40
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
41
|
The Application of Phytohormones as Biostimulants in Corn Smut Infected Hungarian Sweet and Fodder Corn Hybrids. PLANTS 2021; 10:plants10091822. [PMID: 34579355 PMCID: PMC8472417 DOI: 10.3390/plants10091822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
The main goal of this research was to investigate the effects of corn smut (Ustilago maydis DC. Corda) infection on the morphological (plant height, and stem diameter), and biochemical parameters of Zea mays L. plants. The biochemical parameters included changes in the relative chlorophyll, malondialdehyde (MDA), and photosynthesis pigments' contents, as well as the activities of antioxidant enzymes-ascorbate peroxidase (APX), guaiacol peroxidase (POD), and superoxide dismutase (SOD). The second aim of this study was to evaluate the impact of phytohormones (auxin, cytokinin, gibberellin, and ethylene) on corn smut-infected plants. The parameters were measured 7 and 11 days after corn smut infection (DACSI). Two hybrids were grown in a greenhouse, one fodder (Armagnac) and one a sweet corn (Desszert 73). The relative and the absolute amount of photosynthetic pigments were significantly lower in the infected plants in both hybrids 11 DACSI. Activities of the antioxidant enzymes and MDA content were higher in both infected hybrids. Auxin, cytokinin, and gibberellin application diminished the negative effects of the corn smut infection (CSI) in the sweet corn hybrid. Phytohormones i.e., auxin, gibberellin, and cytokinin can be a new method in protection against corn smut.
Collapse
|
42
|
Allwood JW, Williams A, Uthe H, van Dam NM, Mur LAJ, Grant MR, Pétriacq P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021; 11:558. [PMID: 34436499 PMCID: PMC8398504 DOI: 10.3390/metabo11080558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant-insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant-insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.
Collapse
Affiliation(s)
- James William Allwood
- Environmental and Biochemical Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Alex Williams
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Department of Animal and Plant Sciences, Biosciences, The University of Sheffield Western Bank, Sheffield S10 2TN, UK
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Murray R. Grant
- Gibbet Hill Campus, School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Pierre Pétriacq
- UMR 1332 Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, University of Bordeaux, 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, 33140 Villenave d’Ornon, France
| |
Collapse
|
43
|
Wang Q, Ren X, Liu P, Li J, Lv J, Wang J, Zhang H, Wei W, Zhou Y, He Y, Li J. Improved genome assembly of Chinese shrimp (Fenneropenaeus chinensis) suggests adaptation to the environment during evolution and domestication. Mol Ecol Resour 2021; 22:334-344. [PMID: 34240531 DOI: 10.1111/1755-0998.13463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
A high-quality reference genome is necessary to determine the molecular mechanisms underlying important biological phenomena; therefore, in the present study, a chromosome-level genome assembly of the Chinese shrimp Fenneropenaeus chinensis was performed. Muscle of a male shrimp was sequenced using PacBio platform, and assembled by Hi-C technology. The assembled F. chinensis genome was 1.47 Gb with contig N50 of 472.84 Kb, including 57.73% repetitive sequences, and was anchored to 43 pseudochromosomes, with scaffold N50 of 36.87 Mb. In total, 25,026 protein-coding genes were predicted. The genome size of F. chinensis showed significant contraction in comparison with that of other penaeid species, which is likely related to migration observed in this species. However, the F. chinensis genome included several expanded gene families related to cellular processes and metabolic processes, and the contracted gene families were associated with virus infection process. The findings signify the adaptation of F. chinensis to the selection pressure of migration and cold environment. Furthermore, the selection signature analysis identified genes associated with metabolism, phototransduction, and nervous system in cultured shrimps when compared with wild population, indicating targeted, artificial selection of growth, vision, and behavior during domestication. The construction of the genome of F. chinensis provided valuable information for the further genetic mechanism analysis of important biological processes, and will facilitate the research of genetic changes during evolution.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jitao Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianjian Lv
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiajia Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Haien Zhang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wei
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yuxin Zhou
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yuying He
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
44
|
Zhu T, De Lima CFF, De Smet I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab308. [PMID: 34185832 DOI: 10.1093/jxb/erab308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants are exposed to a wide range of temperatures during their life cycle and need to continuously adapt. These adaptations need to deal with temperature changes on a daily and seasonal level and with temperatures affected by climate change. Increasing global temperatures negatively impact crop performance, and several physiological, biochemical, morphological and developmental responses to increased temperature have been described that allow plants to mitigate this. In this review, we assess various growth, development, and yield-related responses of crops to extreme and moderate high temperature, focusing on knowledge gained from both monocot (e.g. wheat, barley, maize, rice) and dicot crops (e.g. soybean and tomato) and incorporating information from model plants (e.g. Arabidopsis and Brachypodium). This revealed common and different responses between dicot and monocot crops, and defined different temperature thresholds depending on the species, growth stage and organ.
Collapse
Affiliation(s)
- Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
45
|
Su J, Zhao J, Zhao S, Li M, Pang S, Kang Z, Zhen W, Chen S, Chen F, Wang X. Genetics of Resistance to Common Root Rot (Spot Blotch), Fusarium Crown Rot, and Sharp Eyespot in Wheat. Front Genet 2021; 12:699342. [PMID: 34249110 PMCID: PMC8260946 DOI: 10.3389/fgene.2021.699342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 12/05/2022] Open
Abstract
Due to soil changes, high density planting, and the use of straw-returning methods, wheat common root rot (spot blotch), Fusarium crown rot (FCR), and sharp eyespot (sheath blight) have become severe threats to global wheat production. Only a few wheat genotypes show moderate resistance to these root and crown rot fungal diseases, and the genetic determinants of wheat resistance to these devastating diseases are poorly understood. This review summarizes recent results of genetic studies of wheat resistance to common root rot, Fusarium crown rot, and sharp eyespot. Wheat germplasm with relatively higher resistance are highlighted and genetic loci controlling the resistance to each disease are summarized.
Collapse
Affiliation(s)
- Jun Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jiaojie Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuyong Pang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Wenchao Zhen
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Shisheng Chen
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
46
|
Castroverde CDM, Dina D. Temperature regulation of plant hormone signaling during stress and development. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab257. [PMID: 34081133 DOI: 10.1093/jxb/erab257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/20/2023]
Abstract
Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview of known temperature-sensitive or temperature-reinforced molecular hubs in hormone biosynthesis, homeostasis, signaling and downstream responses. These include recent advances on temperature regulation at the genomic, transcriptional, post-transcriptional and post-translational levels - directly linking some plant hormone pathways to known thermosensing mechanisms. Where applicable, diverse plant species and various temperature ranges will be presented, along with emerging principles and themes. It is anticipated that a grand unifying synthesis of current and future fundamental outlooks on how fluctuating temperatures regulate important plant hormone signaling pathways can be leveraged towards forward-thinking solutions to develop climate-smart crops amidst our dynamically changing world.
Collapse
Affiliation(s)
| | - Damaris Dina
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
47
|
Zandalinas SI, Fritschi FB, Mittler R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. TRENDS IN PLANT SCIENCE 2021; 26:588-599. [PMID: 33745784 DOI: 10.1016/j.tplants.2021.02.011] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 05/19/2023]
Abstract
Global warming, climate change, and environmental pollution present plants with unique combinations of different abiotic and biotic stresses. Although much is known about how plants acclimate to each of these individual stresses, little is known about how they respond to a combination of many of these stress factors occurring together, namely a multifactorial stress combination. Recent studies revealed that increasing the number of different co-occurring multifactorial stress factors causes a severe decline in plant growth and survival, as well as in the microbiome biodiversity that plants depend upon. This effect should serve as a dire warning to our society and prompt us to decisively act to reduce pollutants, fight global warming, and augment the tolerance of crops to multifactorial stress combinations.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Felix B Fritschi
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65201, USA.
| |
Collapse
|
48
|
Miedaner T, Juroszek P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1771-1785. [PMID: 33715023 PMCID: PMC8205889 DOI: 10.1007/s00122-021-03807-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/25/2021] [Indexed: 05/07/2023]
Abstract
Wheat productivity is threatened by global climate change. In several parts of NW Europe it will get warmer and dryer during the main crop growing period. The resulting likely lower realized on-farm crop yields must be kept by breeding for resistance against already existing and emerging diseases among other measures. Multi-disease resistance will get especially crucial. In this review, we focus on disease resistance breeding approaches in wheat, especially related to rust diseases and Fusarium head blight, because simulation studies of potential future disease risk have shown that these diseases will be increasingly relevant in the future. The long-term changes in disease occurrence must inevitably lead to adjustments of future resistance breeding strategies, whereby stability and durability of disease resistance under heat and water stress will be important in the future. In general, it would be important to focus on non-temperature sensitive resistance genes/QTLs. To conclude, research on the effects of heat and drought stress on disease resistance reactions must be given special attention in the future.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Peter Juroszek
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), 55545, Bad Kreuznach, Germany
| |
Collapse
|
49
|
Zandalinas SI, Sengupta S, Fritschi FB, Azad RK, Nechushtai R, Mittler R. The impact of multifactorial stress combination on plant growth and survival. THE NEW PHYTOLOGIST 2021; 230:1034-1048. [PMID: 33496342 PMCID: PMC8048544 DOI: 10.1111/nph.17232] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/17/2021] [Indexed: 05/08/2023]
Abstract
Climate change-driven extreme weather events, combined with increasing temperatures, harsh soil conditions, low water availability and quality, and the introduction of many man-made pollutants, pose a unique challenge to plants. Although our knowledge of the response of plants to each of these individual conditions is vast, we know very little about how a combination of many of these factors, occurring simultaneously, that is multifactorial stress combination, impacts plants. Seedlings of wild-type and different mutants of Arabidopsis thaliana plants were subjected to a multifactorial stress combination of six different stresses, each applied at a low level, and their survival, physiological and molecular responses determined. Our findings reveal that, while each of the different stresses, applied individually, had a negligible effect on plant growth and survival, the accumulated impact of multifactorial stress combination on plants was detrimental. We further show that the response of plants to multifactorial stress combination is unique and that specific pathways and processes play a critical role in the acclimation of plants to multifactorial stress combination. Taken together our findings reveal that further polluting our environment could result in higher complexities of multifactorial stress combinations that in turn could drive a critical decline in plant growth and survival.
Collapse
Affiliation(s)
- Sara I. Zandalinas
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
| | - Soham Sengupta
- Department of Biological Sciences and BioDiscovery InstituteCollege of ScienceUniversity of North Texas1155 Union Circle #305220DentonTX76203‐5017USA
| | - Felix B. Fritschi
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery InstituteCollege of ScienceUniversity of North Texas1155 Union Circle #305220DentonTX76203‐5017USA
- Department of MathematicsUniversity of North TexasDentonTX76203USA
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life ScienceThe Hebrew University of JerusalemEdmond J. Safra Campus at Givat RamJerusalem91904Israel
| | - Ron Mittler
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
- Department of SurgeryUniversity of Missouri School of MedicineChristopher S. Bond Life Sciences Center University of Missouri1201 Rollins StColumbiaMO65211USA
| |
Collapse
|
50
|
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins (Basel) 2021; 13:292. [PMID: 33924246 PMCID: PMC8074758 DOI: 10.3390/toxins13040292] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as "actions" because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as "reactions" of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the "reactions" could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|