1
|
Morey TM, Benatar T, Xu SX, Wang L, Ip P, Nitya-Nootan T, Thakor G, Bader AG, Helsen CW, Houry WA. Tuning TCR complex recruitment to the T cell antigen coupler (TAC) enhances TAC-T cell function. Sci Rep 2025; 15:6769. [PMID: 40000726 PMCID: PMC11861912 DOI: 10.1038/s41598-025-87944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The T cell antigen coupler (TAC) receptor is a novel synthetic receptor designed to maximize the therapeutic potential of T cells in the absence of tonic signaling or receptor-related toxicities. Prior studies indicated that TACs provide safe and long-lasting anti-tumor immunity in multiple preclinical models of solid tumors supported by mounting clinical evidence. TAC receptors function by targeting a cancer associated surface antigen while recapitulating natural T cell receptor (TCR) signaling, which involves both TCR/CD3 recruitment and intracellular CD4 co-receptor activity. While other receptor designs exist that redirect TCR signaling towards cancer associated antigens, the TAC technology is unique in that antigen binding is distinctly separated from TCR/CD3 complex recruitment. In the present study, we show that single amino-acid changes in the TAC domain responsible for TCR recruitment of a Claudin 18.2-directed TAC receptor led to enhanced in vivo functionality. Analyzing biophysical properties of the receptor suggests that TAC receptors with high TCR affinities are suboptimal compared to receptor constructs that show lower TCR affinities with notably fast off-rates. This work demonstrates that balancing TCR recruitment is critical when designing effective TAC T cell receptors, a concept that may apply more broadly to other therapeutic approaches relying on TCR signaling.
Collapse
Affiliation(s)
- Trevor M Morey
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON, M5G 1M1, Canada
| | - Tania Benatar
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Stacey X Xu
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Ling Wang
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Philbert Ip
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | | | - Gargi Thakor
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Andreas G Bader
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada
| | - Christopher W Helsen
- Triumvira Immunologics Inc, 270 Longwood Road South, Hamilton, ON, L8P 0A6, Canada.
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1612, Toronto, ON, M5G 1M1, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
2
|
Zahid R, Wang J, Cai Z, Ishtiaq A, Liu M, Ma D, Liang Y, Xu Y. Single chain fragment variable, a new theranostic approach for cardiovascular diseases. Front Immunol 2024; 15:1443290. [PMID: 39735545 PMCID: PMC11671482 DOI: 10.3389/fimmu.2024.1443290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a significant global health challenge, leading to substantial morbidity and mortality. Despite recent advancements in CVD management, pharmaceutical treatments often suffer from poor pharmacokinetics and high toxicity. With the rapid progress of modern molecular biology and immunology, however, single-chain fragment variable (scFv) molecule engineering has emerged as a promising theranostic tool to offer specificity and versatility in targeting CVD-related antigens. To represent the latest development on the potential of scFv in the context of CVDs, this review summarized the new mechanism of action and applications as therapeutic, as well as diagnostic agents. Furthermore, the advantages of scFv, including its small size, ease of modification, and ability to be engineered for enhanced affinity and specificity, are also described. Finally, such challenges as immunogenicity, stability, and scalability, alongside strategies to overcome these hurdles, are deeply scrutinized to provide safer and more effective strategies for the diagnosis and treatment of the incurable CVDs.
Collapse
Affiliation(s)
- Rukhshan Zahid
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Ayesha Ishtiaq
- College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Yan Liang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Science, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
3
|
Yamamoto Y, Taniguchi H, Nguyen NM, Yokoyama F, Choowongkomon K, Angelini A, Horiuchi JI, Kumada Y. Development of a novel and broadly applicable sandwich ELISA assay based on rabbit single-chain variable fragments and a modified Ig-binding domain of protein L fused to a polystyrene-binding peptide. J Immunol Methods 2024; 534:113771. [PMID: 39490960 DOI: 10.1016/j.jim.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Most of currently available sandwich-type enzyme-linked immunosorbent assays (ELISA) require the use of full-length animal-derived antibodies which poses welfare criticisms and are often expensive to produce. There is therefore a strong demand for the development of more affordable and animal-free methods to produce antibodies for sandwich ELISA assay. To address these issues, we propose here the development of a new technology based on two complementary rabbit single-chain variable fragments (scFvs) and an Ig-binding domain of protein L (PpL1) fused to a polystyrene-binding peptide (PS-tag) that can be recombinantly produced in bacteria. Toward this goal, we developed a rabbit scFv capable to bind the antigen via its variable regions while engaging protein L through its constant framework domain. To enhance the density of captured scFv and enable a better solvent exposure, we generated multiple PpL1 variants bearing polystyrene-binding peptides (PS) tags fused to its ends. The tandem trimer of PpL1 variant bearing PS-tags located at the N-terminus (PpL1'-T-PSN) revealed increased antigen-binding signal when immobilized on hydrophilic polystyrene (phi-PS) plates. By CDR-grafting different antigen-binding specificities into our engineered protein L-binding scFv we validated our technology against a different antigen. Finally, to further enhance the sensitivity of our assay, we implemented a protein L-based pretreatment to remove potential inhibitory immunoglobulin often present in the blood samples. The ability to rapidly and cost-effectively generate animal-free recombinant antibody fragments that can be adsorbed and specifically oriented on plates while retaining their antigen-binding properties could lead to the development of innovative and widely applicable sandwich ELISA systems for the efficient, versatile and sensitive detection of different types of antigens.
Collapse
Affiliation(s)
- Yodai Yamamoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Haruka Taniguchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Ngoc Minh Nguyen
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Fuki Yokoyama
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Jun-Ichi Horiuchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Yoichi Kumada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
4
|
Nguyen NM, Nakao K, Kobayashi R, Taniguchi H, Yokoyama F, Horiuchi JI, Kumada Y. Generation of rabbit single-chain variable fragments with different physicochemical and biological properties by complementary determining region-grafting technology. J Biosci Bioeng 2024; 138:439-444. [PMID: 39198103 DOI: 10.1016/j.jbiosc.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 09/01/2024]
Abstract
In this study, we have demonstrated a complementary-determining region (CDR) grafting technology for the generation of rabbit scFvs with different antigen recognition and physicochemical properties. The antigen-binding affinity of the CDR-grafted anti-CRP scFv, C1R/B1R (V1), which was generated by the CDR/framework region (CDR/FR) definition based on the traditional numbering rule, was insufficient when compared to that of the original clone, C1R, suggesting that the amino acid residues outside the original CDRs might significantly contribute to antigen recognition in rabbit scFvs. We redefined new CDRs and FRs to maintain antigen-binding affinities through the extension of multiple amino acid residues for CDRH1 and CDRH2, based on the amino acid sequence alignments of rabbit scFvs isolated from phage libraries. The new version successfully maintained the antigen binding affinity. CDR-grafted scFvs possessing a common CDR sequence and different FR sequences were successfully generated based on this new CDR/FR definition, and their physicochemical properties were further investigated. The antigen-binding activities of rabbit scFvs on Maxisorp varied between the tested clones in sandwich ELISA, supporting the idea that the combination of CDR with different FRs might change the physicochemical properties of scFvs on a solid material. The CDR-grafted scFvs possessing a frame sequence of anti-CRP scFv C2R maintained the ability to bind to protein L and were successfully purified. Expression titers showed improved solubility by diminishing the amount of insoluble scFvs. Thus, the method developed in this study is promising for generating alternatives with strict antigen binding recognition and different physicochemical properties.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kiichi Nakao
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryo Kobayashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Haruka Taniguchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Fuki Yokoyama
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jun-Ichi Horiuchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoichi Kumada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
5
|
Adame M, Vázquez H, Juárez-López D, Corzo G, Amezcua M, López D, González Z, Schcolnik-Cabrera A, Morales-Martínez A, Villegas E. Expression and characterization of scFv-6009FV in Pichia pastoris with improved ability to neutralize the neurotoxin Cn2 from Centruroides noxius. Int J Biol Macromol 2024; 275:133461. [PMID: 38945343 DOI: 10.1016/j.ijbiomac.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % β-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.
Collapse
Affiliation(s)
- Mariel Adame
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hilda Vázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Juárez-López
- Instituto de Investigaciones Biomédicas, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mónica Amezcua
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Daniela López
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Zuriel González
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Adriana Morales-Martínez
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
6
|
Pham DN, Linova MY, Smith WK, Brown H, Elhanafi D, Fan J, Lavoie J, Woodley JM, Carbonell RG. Novel multimodal cation-exchange membrane for the purification of a single-chain variable fragment from Pichia pastoris supernatant. J Chromatogr A 2024; 1718:464682. [PMID: 38341900 DOI: 10.1016/j.chroma.2024.464682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.
Collapse
Affiliation(s)
- Dan N Pham
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marina Y Linova
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - William K Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Hunter Brown
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Joseph Lavoie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
7
|
Tomisch J, Busse V, Rosato F, Makshakova ON, Salavei P, Kittel AS, Gillon E, Lataster L, Imberty A, Meléndez AV, Römer W. A Shiga Toxin B-Subunit-Based Lectibody Boosts T Cell Cytotoxicity towards Gb3-Positive Cancer Cells. Cells 2023; 12:1896. [PMID: 37508560 PMCID: PMC10378424 DOI: 10.3390/cells12141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.
Collapse
Affiliation(s)
- Jana Tomisch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Vincent Busse
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Pavel Salavei
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104 Freiburg, Germany
| | - Anna-Sophia Kittel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Emilie Gillon
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Levin Lataster
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Calcium-dependent affinity ligands for the purification of antibody fragments at neutral pH. J Chromatogr A 2023; 1694:463902. [PMID: 36871527 DOI: 10.1016/j.chroma.2023.463902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The emerging formats of antibody fragments for biotherapeutics suffer from inadequate purification methods, delaying the advances of innovative therapies. One of the top therapeutic candidates, the single-chain variable fragment (scFv), requires the development of individual purification protocols dependent on the type of scFv. The available approaches that are based on selective affinity chromatography but do not involve the use of a purification tag, such as Protein L and Protein A chromatography, require acidic elution buffers. These elution conditions can cause the formation of aggregates and thereby greatly compromise the yield, which can be a major problem for scFvs that are generally unstable molecules. Due to the costly and time-consuming production of biological drugs, like antibody fragments, we have engineered novel purification ligands that elute the scFvs in a calcium-dependent manner. The developed ligands are equipped with new, selective binding surfaces and were shown to efficiently elute all captured scFv at neutral pH with the use of a calcium chelator. Further, two of three ligands were proven not to bind to the CDRs of the scFv, indicating potential for use as generic affinity ligands to a range of different scFvs. Multimerization and optimization of the most promising ligand led to a 3-fold increase in binding capacity for the hexamer compared to the monomer, in addition to highly selective and efficient purification of a scFv with >95% purity in a single purification step. This calcium-dependent ligand could revolutionize the scFv industry, greatly facilitating the purification procedure and improving the quality of the final product.
Collapse
|
9
|
Parkinson J, Hard R, Wang W. The RESP AI model accelerates the identification of tight-binding antibodies. Nat Commun 2023; 14:454. [PMID: 36709319 PMCID: PMC9884274 DOI: 10.1038/s41467-023-36028-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
High-affinity antibodies are often identified through directed evolution, which may require many iterations of mutagenesis and selection to find an optimal candidate. Deep learning techniques hold the potential to accelerate this process but the existing methods cannot provide the confidence interval or uncertainty needed to assess the reliability of the predictions. Here we present a pipeline called RESP for efficient identification of high affinity antibodies. We develop a learned representation trained on over 3 million human B-cell receptor sequences to encode antibody sequences. We then develop a variational Bayesian neural network to perform ordinal regression on a set of the directed evolution sequences binned by off-rate and quantify their likelihood to be tight binders against an antigen. Importantly, this model can assess sequences not present in the directed evolution library and thus greatly expand the search space to uncover the best sequences for experimental evaluation. We demonstrate the power of this pipeline by achieving a 17-fold improvement in the KD of the PD-L1 antibody Atezolizumab and this success illustrates the potential of RESP in facilitating general antibody development.
Collapse
Affiliation(s)
- Jonathan Parkinson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0359, USA
| | - Ryan Hard
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0359, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0359, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093-0359, USA.
| |
Collapse
|
10
|
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel) 2022; 14:cancers14174206. [PMID: 36077739 PMCID: PMC9455005 DOI: 10.3390/cancers14174206] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recombinant antibody fragments have shown remarkable potential as diagnostic and therapeutic tools in the fight against cancer. The single-chain fragment variable (scFv) that contains the complete antigen-binding domains of a whole antibody, has several advantages such as a high specificity and affinity for antigens, a low immunogenicity, and the proven ability to penetrate tumor tissues and diffuse. This review provides an overview of the current studies on the principle, generation, and applications of scFvs, particularly in the diagnosis and therapy of cancer, and underscores their potential use in clinical trials. Abstract Cancer remains a public health problem worldwide. Although conventional therapies have led to some excellent outcomes, some patients fail to respond to treatment, they have few therapeutic alternatives and a poor survival prognosis. Several strategies have been proposed to overcome this issue. The most recent approach is immunotherapy, particularly the use of recombinant antibodies and their derivatives, such as the single-chain fragment variable (scFv) containing the complete antigen-binding domains of a whole antibody that successfully targets tumor cells. This review describes the recent progress made with scFvs as a cancer diagnostic and therapeutic tool, with an emphasis on preclinical approaches and their potential use in clinical trials.
Collapse
Affiliation(s)
- Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-(55)-5228-9917 (ext. 4401)
| |
Collapse
|
11
|
Kowalik A, Majerek M, Mrowiec K, Solich J, Faron-Górecka A, Woźnicka O, Dziedzicka-Wasylewska M, Łukasiewicz S. Dopamine D 2 and Serotonin 5-HT 1A Dimeric Receptor-Binding Monomeric Antibody scFv as a Potential Ligand for Carrying Drugs Targeting Selected Areas of the Brain. Biomolecules 2022; 12:749. [PMID: 35740874 PMCID: PMC9221303 DOI: 10.3390/biom12060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format). We studied scFv, which specifically recognizes the dopamine D2 and serotonin 5-HT1A receptor heteromers. The scFvD2-5-HT1A protein was analyzed biochemically and biologically, and the obtained results indicated that the antibody is properly folded and non-toxic and can be described as low-immunogenic. It is not only able to bind to the D2-5-HT1A receptor heteromer, but it also influences the cAMP signaling pathway and-when surfaced on nanogold particles-it can cross the blood-brain barrier in in vitro models. When administered to mice, it decreased locomotor activity, matching the effect induced by clozapine. Thus, we are strongly convinced that scFvD2-5-HT1A, which was a subject of the present investigation, is a promising targeting ligand with the potential for the functionalization of nanocarriers targeting selected areas of the brain.
Collapse
Affiliation(s)
- Agata Kowalik
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Mateusz Majerek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Krzysztof Mrowiec
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland;
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| |
Collapse
|
12
|
Mirzaeinia S, Zeinali S, Budisa N, Karbalaei-Heidari HR. Targeted Codelivery of Prodigiosin and Simvastatin Using Smart BioMOF: Functionalization by Recombinant Anti-VEGFR1 scFv. Front Bioeng Biotechnol 2022; 10:866275. [PMID: 35402395 PMCID: PMC8987009 DOI: 10.3389/fbioe.2022.866275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Biological metal-organic frameworks (BioMOFs) are hybrid compounds in which metal nodes are linked to biocompatible organic ligands and have potential for medical application. Herein, we developed a novel BioMOF modified with an anti-VEGFR1 scFv antibody (D16F7 scFv). Our BioMOF is co-loaded with a combination of an anticancer compound and a lipid-lowering drug to simultaneously suppress the proliferation, growth rate and metastases of cancer cells in cell culture model system. In particular, Prodigiosin (PG) and Simvastatin (SIM) were co-loaded into the newly synthesized Ca-Gly BioMOF nanoparticles coated with maltose and functionalized with a recombinant maltose binding protein-scFv fragment of anti-VEGFR1 (Ca-Gly-Maltose-D16F7). The nanoformulation, termed PG + SIM-NP-D16F7, has been shown to have strong active targeting behavior towards VEGFR1-overexpresing cancer cells. Moreover, the co-delivery of PG and SIM not only effectively inhibits the proliferation of cancer cells, but also prevents their invasion and metastasis. The PG + SIM-NP-D16F7 nanocarrier exhibited stronger cytotoxic and anti-metastatic effects compared to mono-treatment of free drugs and drug-loaded nanoparticles. Smart co-delivery of PG and SIM on BioMOF nanoparticles had synergistic effects on growth inhibition and prevented cancer cell metastasis. The present nanoplatform can be introduced as a promising tool for chemotherapy compared with mono-treatment and/or non-targeted formulations.
Collapse
Affiliation(s)
- Somayyeh Mirzaeinia
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Sedighe Zeinali
- Department of Nanochemical Engineering, School of Advanced Technologies, Nanotechnology Research Institute, Shiraz University, Shiraz, Iran
| | - Nediljko Budisa
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Hamid Reza Karbalaei-Heidari
- Molecular Biotechnology Lab, Department of Biology, Faculty of Science, Shiraz University, Shiraz, Iran
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Ebihara T, Masuda A, Takahashi D, Hino M, Mon H, Kakino K, Fujii T, Fujita R, Ueda T, Lee JM, Kusakabe T. Production of scFv, Fab, and IgG of CR3022 Antibodies Against SARS-CoV-2 Using Silkworm-Baculovirus Expression System. Mol Biotechnol 2021; 63:1223-1234. [PMID: 34304364 PMCID: PMC8310559 DOI: 10.1007/s12033-021-00373-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/16/2021] [Indexed: 01/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.
Collapse
Affiliation(s)
- Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Daisuke Takahashi
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
14
|
Non-Antibody-Based Binders for the Enrichment of Proteins for Analysis by Mass Spectrometry. Biomolecules 2021; 11:biom11121791. [PMID: 34944435 PMCID: PMC8698613 DOI: 10.3390/biom11121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
There is often a need to isolate proteins from body fluids, such as plasma or serum, prior to further analysis with (targeted) mass spectrometry. Although immunoglobulin or antibody-based binders have been successful in this regard, they possess certain disadvantages, which stimulated the development and validation of alternative, non-antibody-based binders. These binders are based on different protein scaffolds and are often selected and optimized using phage or other display technologies. This review focuses on several non-antibody-based binders in the context of enriching proteins for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis and compares them to antibodies. In addition, we give a brief introduction to approaches for the immobilization of binders. The combination of non-antibody-based binders and targeted mass spectrometry is promising in areas, like regulated bioanalysis of therapeutic proteins or the quantification of biomarkers. However, the rather limited commercial availability of these binders presents a bottleneck that needs to be addressed.
Collapse
|
15
|
Nikolova G, Georgieva Y, Atanasova A, Radulova G, Kapogianni A, Tsacheva I. Autoinduction as Means for Optimization of the Heterologous Expression of Recombinant Single-Chain Fv (scFv) Antibodies. Mol Biotechnol 2021; 63:1049-1056. [PMID: 34215946 DOI: 10.1007/s12033-021-00363-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
The monoclonal antibodies and the recombinant antibody fragments are widely used in the biotechnology studies and in medicine as a powerful therapeutic and diagnostic tool. The most commonly used recombinant antibody fragments are single-chain fragment variable (scFv) because of their small size and minimal immunogenicity while still retaining high-affinity antigen binding. A wide range of expression systems such as bacterial and eukaryotic cell systems enable the sufficient production of scFv antibodies. However, their stable expression in soluble form and correct protein folding are often insufficient. In the present study, we present the autoinduction as a key element of the optimized scheme for heterologous expression of human monoclonal scFv antibodies (clones A1 and A12) in Escherichia coli HB2151, which resulted in two-fold increase of the total protein yield in 24 h.
Collapse
Affiliation(s)
- Ginka Nikolova
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov, Sofia, Bulgaria
| | - Yana Georgieva
- Clinical Laboratory and Immunology, Military Medical Academy, 3 Sv. Georgi Sofiyski, Sofia, Bulgaria
| | - Alexandra Atanasova
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov, Sofia, Bulgaria
| | - Gabriela Radulova
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov, Sofia, Bulgaria
| | - Alexandra Kapogianni
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov, Sofia, Bulgaria
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov, Sofia, Bulgaria.
| |
Collapse
|
16
|
Karki R, Rimal S, Rieth MD. Predicted N-terminal N-linked glycosylation sites may underlie membrane protein expression patterns in Saccharomyces cerevisiae. Yeast 2021; 38:497-506. [PMID: 34182612 DOI: 10.1002/yea.3657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
N-linked glycosylation is one type of posttranslational modification that proteins undergo during expression. The following describes the effects of N-linked glycosylation on high-level membrane protein expression in yeast with an emphasis on Saccharomyces cerevisiae. N-linked glycosylation is highlighted here as an important consideration when preparing membrane protein gene constructs for expression in S. cerevisiae, which continues to be used as a workhorse in both research and industrial applications. Non-native N-linked glycosylation commonly occurs during the heterologous expression of mammalian proteins in many yeast species which can have important immunological consequences when used in the production of biotherapeutic proteins or peptides. Further, non-native N-linked glycosylation can lead to improper protein folding and premature degradation, which can impede high-level expression yields and hinder downstream analysis. Multiple strategies are presented in this article, which suggest different methods that can be implemented to circumvent the unwanted consequences of N-linked glycosylation during the expression process. These considerations may have long-term benefits for high-level protein production in S. cerevisiae across a broad spectrum of expression targets with special emphasis placed on G-protein coupled receptors, one of the largest families of membrane proteins.
Collapse
Affiliation(s)
- Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Swechha Rimal
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Monica D Rieth
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| |
Collapse
|
17
|
Navabi P, Ganjalikhany MR, Jafari S, Dehbashi M, Ganjalikhani-Hakemi M. Designing and generating a single-chain fragment variable (scFv) antibody against IL2Rα (CD25): An in silico and in vitro study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:360-368. [PMID: 33995947 PMCID: PMC8087844 DOI: 10.22038/ijbms.2021.51709.11728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/19/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES IL-2Rα plays a critical role in maintaining immune function. However, expression and secretion of CD25 in various malignant disorders and autoimmune diseases are now well established. Thus, CD25 is considered an important target candidate for antibody-based therapy. This study aimed to find the most suitable linker peptide to construct a functional anti-CD25 single-chain fragment variable (scFv) by bioinformatics studies and its production in a bacterial expression system. MATERIALS AND METHODS Here, the 3D structures of the scFvs with different linkers were predicted and molecular dynamics simulation was performed to compare their structures and dynamics. Then, interactions between five models of scFv and human CD25 were calculated via molecular docking. According to MD and docking results, the anti-CD25 scFvs with (Gly4Ser)3 linker were constructed and cloned into pET-22b(+). Then, recombinant plasmids were transformed into Escherichia coli Bl21 (DE3) for expression using IPTG and lactose as inducers. Anti-CD25 scFv was purified from the periplasm and detected by SDS-PAGE and Western blot. Afterward, functionality was evaluated using ELISA. RESULTS In silico analysis showed that the model containing (Gly4Ser)3 as a linker has more stability compared with other linkers. The results of SDS-PAGE, Western blot, and ELISA confirmed the accuracy of anti-CD25 scFv production and its ability to bind to the human CD25. CONCLUSION Conclusively, our work provides a theoretical and experimental basis for production of an anti-CD25 scFv, which may be applied for various malignant disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Parnian Navabi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepideh Jafari
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
18
|
Shin J, Phelan PJ, Gjoerup O, Bachovchin W, Bullock PA. Characterization of a single chain variable fragment of nivolumab that targets PD-1 and blocks PD-L1 binding. Protein Expr Purif 2021; 177:105766. [PMID: 32987122 PMCID: PMC7518118 DOI: 10.1016/j.pep.2020.105766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/28/2022]
Abstract
Activated T-cells express Programmed cell Death protein 1 (PD-1), a key immune checkpoint receptor. PD-1 functions primarily in peripheral tissues, where T cells may encounter tumor-derived immunosuppressive ligands. Monoclonal antibodies that disrupt the interaction between T-cell derived PD-1 and immunosuppressive ligands, such as PD-L1, have revolutionized approaches to cancer therapy. For instance, Nivolumab is a monoclonal Ab that targets human PD-1 and has played an important role in immune checkpoint therapy. Herein we report the purification and initial characterization of a ~27 kDa single chain variable fragment (scFv) of Nivolumab that targets human PD-1 and blocks binding by PD-L1. The possibility that the anti-PD-1 scFv can serve as both an anti-tumor agent and as an anti-viral agent is discussed. IMPORTANCE: The clinical significance of anti-PD-1 antibodies for treatment of a range of solid tumors is well documented (reviewed in [1-4]). In this report, we describe the results of studies that establish that an anti-PD-1 scFv purified from E. coli binds tightly to human PD-1. Furthermore, we demonstrate that upon binding, the anti-PD-1 scFv disrupts the interaction between PD-1 and PD-L1. Thus, the properties of this scFv, including its small size, stability and affinity for human PD-1, suggest that it has the potential to be a useful reagent in subsequent immunotherapeutic, diagnostic and anti-viral applications.
Collapse
Affiliation(s)
- Jong Shin
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Paul J Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Ole Gjoerup
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - William Bachovchin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
Cnudde T, Lakhrif Z, Bourgoin J, Boursin F, Horiot C, Henriquet C, di Tommaso A, Juste MO, Jiacomini IG, Dimier-Poisson I, Pugnière M, Mévélec MN, Aubrey N. Exploration and Modulation of Antibody Fragment Biophysical Properties by Replacing the Framework Region Sequences. Antibodies (Basel) 2020; 9:E9. [PMID: 32326443 PMCID: PMC7344962 DOI: 10.3390/antib9020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
In order to increase the successful development of recombinant antibodies and fragments, it seems fundamental to enhance their expression and/or biophysical properties, such as the thermal, chemical, and pH stabilities. In this study, we employed a method bases on replacing the antibody framework region sequences, in order to promote more particularly single-chain Fragment variable (scFv) product quality. We provide evidence that mutations of the VH- C-C' loop might significantly improve the prokaryote production of well-folded and functional fragments with a production yield multiplied by 27 times. Additional mutations are accountable for an increase in the thermal (+19.6 °C) and chemical (+1.9 M) stabilities have also been identified. Furthermore, the hereby-produced fragments have shown to remain stable at a pH of 2.0, which avoids molecule functional and structural impairments during the purification process. Lastly, this study provides relevant information to the understanding of the relationship between the antibodies amino acid sequences and their respective biophysical properties.
Collapse
Affiliation(s)
- Thomas Cnudde
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Zineb Lakhrif
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Justine Bourgoin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Fanny Boursin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Catherine Horiot
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Corinne Henriquet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | - Anne di Tommaso
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba 81530, PR, Brazil
| | | | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | | | - Nicolas Aubrey
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| |
Collapse
|
20
|
Mikiewicz D, Łukasiewicz N, Zieliński M, Cecuda-Adamczewska V, Bierczyńska-Krzysik A, Romanik-Chruścielewska A, Kęsik-Brodacka M. Bacterial expression and characterization of an anti-CD22 single-chain antibody fragment. Protein Expr Purif 2020; 170:105594. [PMID: 32032771 DOI: 10.1016/j.pep.2020.105594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/10/2023]
Abstract
Single-chain variable fragment (scFv) antibodies are fusion proteins of the variable regions of the heavy and light chains of immunoglobulins connected with a short linker peptide. They possess unique and superior features compared to whole antibodies for immunotherapy of various carcinomas, including hematologic B-cell malignancies. In the presented study we obtained efficient production of the recombinant anti-CD22 scFv in Escherichia coli expression system. The active recombinant protein was successfully recovered from inclusion bodies. Assays were performed to assess the in vitro targeting properties and specificity of the obtained anti-CD22 scFv antibody in the CD22 positive and negative lymphoma cell lines.
Collapse
Affiliation(s)
- Diana Mikiewicz
- Research Network Łukasiewicz - Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland.
| | - Natalia Łukasiewicz
- Research Network Łukasiewicz - Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland.
| | - Marcin Zieliński
- Research Network Łukasiewicz - Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland.
| | - Violetta Cecuda-Adamczewska
- Research Network Łukasiewicz - Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland.
| | - Anna Bierczyńska-Krzysik
- Research Network Łukasiewicz - Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland.
| | | | - Małgorzata Kęsik-Brodacka
- Research Network Łukasiewicz - Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland.
| |
Collapse
|
21
|
Pan L, Cao C, Run C, Zhou L, Chou JJ. DNA-Mediated Assembly of Multispecific Antibodies for T Cell Engaging and Tumor Killing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900973. [PMID: 31993277 PMCID: PMC6974939 DOI: 10.1002/advs.201900973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/22/2019] [Indexed: 05/08/2023]
Abstract
Targeting T-cells against cancer cells is a direct means of treating cancer, and has already shown great responses in clinical treatment of B-cell malignancies. A simple way to redirect T-cells to cancer cells is by using multispecific antibody (MsAb) that contains different arms for specifically "grabbing" the T-cells and cancer cells; as such, the T-cells are activated upon target engagement and the killing begins. Here, a nucleic acid mediated protein-protein assembly (NAPPA) approach is implemented to construct a MsAb for T-cell engaging and tumor killing. Anti -CD19 and -CD3 single-chain variable fragments (scFvs) are conjugated to different l-DNAs with sequences that form the Holliday junction, thus allowing spontaneous assembly of homogeneous protein-DNA oligomers containing two anti-CD19 and one anti-CD3 scFvs. The new MsAb shows strong efficacy in inducing Raji tumor cell cytotoxicity in the presence of T-cells with EC50 ≈ 0.2 × 10-9 m; it also suppresses tumor growth in a Raji xenograft mouse model. The data indicates that MsAbs assembled from protein-DNA conjugates are effective macromolecules for directing T-cells for tumor killing. The modular nature of the NAPPA platform allows rapid generation of complex MsAbs from simple antibody fragments, while offering a general solution for preparing antibodies with high-order specificity.
Collapse
Affiliation(s)
- Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti‐cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang University310058HangzhouChina
| | - Chan Cao
- Assembly Medicine, LLCShanghai201203China
| | | | | | - James J. Chou
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
22
|
Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and Production of Bispecific Antibodies. Antibodies (Basel) 2019; 8:antib8030043. [PMID: 31544849 PMCID: PMC6783844 DOI: 10.3390/antib8030043] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yiqun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jaeyoung Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kevin McFarland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
23
|
Diaz Arias CA, Molino JVD, de Araújo Viana Marques D, Queiroz Maranhão A, Abdalla Saes Parra D, Pessoa Junior A, Converti A. Influence of carbon source on cell size and production of anti LDL (-) single-chain variable fragment by a recombinant Pichia pastoris strain. Mol Biol Rep 2019; 46:3257-3264. [PMID: 31073913 DOI: 10.1007/s11033-019-04785-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/22/2019] [Indexed: 10/26/2022]
Abstract
The aim of this work was to study the effect of the carbon source (glycerol, sucrose, glucose or a sucrose/glucose mixture) on the production of the anti LDL (-) single-chain variable fragment (scFv) by the recombinant Pichia pastoris SMD 1168 strain as well as on the cell size. The use of glucose as a carbon source in the growth phase led to a remarkable increase in cell size compared with glycerol, while the smallest cells were obtained with sucrose likely due to the occurrence of an energetic stress. The scFv concentration seemed to be related to cell number rather than to cell concentration, which in its turn showed no significant dependence on the carbon source. Yeast cells grown on sucrose had a mean diameter (0.736 ± 0.097 μm) about 35% shorter than those grown on glucose and allowed for the highest final concentration of the scFv antibody fragment (93.7 ± 0.2 mg/L). These results demonstrate that sucrose is the best carbon source for the expression of such an antibody fragment by the recombinant P. pastoris strain, which may be very useful for the diagnostic analysis of the so-called "bad cholesterol".
Collapse
Affiliation(s)
- Cesar Andres Diaz Arias
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | - João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | | | - Andrea Queiroz Maranhão
- Department of Cell Biology, Brasilia University, Campus Universitario Darcy RibeiroBloco K, 2 pavimento, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Dulcineia Abdalla Saes Parra
- Department of Clinical and Toxicological Analyses, University of São Paulo, Prof. Lineu Prestes, 580, Bloco 18, São Paulo, SP, 05508-000, Brazil
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy.
| |
Collapse
|
24
|
Goulatis LI, Ramanathan R, Shusta EV. Impacts of the -1 Amino Acid on Yeast Production of Protein-Intein Fusions. Biotechnol Prog 2018; 35:e2736. [PMID: 30341810 DOI: 10.1002/btpr.2736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023]
Abstract
Expressing antibodies as fusions to the non-self-cleaving Mxe GyrA intein allows for site-specific chemical functionalization via expressed protein ligation. It is highly desirable to maximize the yield of functionalizable protein; and previously an evolved intein, 202-08, was identified that could increase protein fusion production in yeast. Given that the -1 amino acid residue upstream of inteins can affect cleavage efficiency, we examined the effects of amino acid variability at this position on 202-08 intein cleavage efficiency and secretion yield. Varying the -1 residue resulted in a wide range of cleavage behaviors with some amino acids yielding substantial autocleaved product that could not be functionalized. Autocleavage was noticeably higher with the 202-08 intein compared with the wild-type Mxe GyrA intein and resulted directly from the catalytic activity of the intein. Refeeding of production cultures with nitrogen base and casamino acids reduced, but did not eliminate autocleavage, while increasing protein-intein production up to seven-fold. Importantly, two amino acids, Gly and Ala, at the -1 position resulted in good cleavage efficiency with no undesirable autocleavage, and can be used in concert with refeeding strategies to increase total functionalizable protein yield for multiple protein fusion partners. Taken together, we describe an optimized yeast expression platform for protein-intein fusions. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2736, 2019.
Collapse
Affiliation(s)
- Loukas I Goulatis
- Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706
| | - Rasika Ramanathan
- Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706
| | - Eric V Shusta
- Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
25
|
Wang Y, Shan Y, Gao X, Gong R, Zheng J, Zhang XD, Zhao Q. Screening and expressing HIV-1 specific antibody fragments in Saccharomyces cerevisiae. Mol Immunol 2018; 103:279-285. [PMID: 30342371 DOI: 10.1016/j.molimm.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023]
Abstract
Yeast displaying techniques have been widely used for identifying novel single-chain variable fragments (scFvs) and engineering their binding properties. In this study, we establish a set of vectors for scFv screening and production in the yeast system of Saccharomyces cerevisiae. This suite includes a display vector pYS for screening of recombinant scFv libraries as well as an expression vector pYE for production of scFv candidates in Saccharomyces cerevisiae. The display vector, pYS, give the identification of the HIV-1-specific scFv clones from one scFv display library by fluorescence-activated cell sorting. Subsequently, the expression vector pYE can offer high quality scFvs of interest up to hundreds of microgram scale for bioactivity analysis. As the result, one identified scFv was confirmed to exhibit HIV-1 neutralization activity in a cell line-based pseudovirus assay. The advantage of this system enables the identical post-translation of mammalian scFvs in the same host cells. Therefore, this vector set can be useful for the rapid screening and expression of antibody genes.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Gao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Zheng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China
| | - Xiaohua Douglas Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China.
| |
Collapse
|
26
|
O'Brien CJ, Calero‐Rubio C, Razinkov VI, Robinson AS, Roberts CJ. Biophysical characterization and molecular simulation of electrostatically driven self-association of a single-chain antibody. Protein Sci 2018; 27:1275-1285. [PMID: 29637646 PMCID: PMC6032362 DOI: 10.1002/pro.3415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Colloidal protein-protein interactions (PPI) are often expected to impact key behaviors of proteins in solution, such as aggregation rates and mechanisms, aggregate structure, protein solubility, and solution viscosity. PPI of an anti-fluorescein single chain antibody variable fragment (scFv) were characterized experimentally at low to intermediate ionic strength using a combination of static light scattering and sedimentation equilibrium ultracentrifugation. Surprisingly, the results indicated that interactions were strongly net-attractive and electrostatics promoted self-association. Only repulsive interactions were expected based on prior work and calculations based a homology model of a related scFv crystal structure. However, the crystal structure lacks the charged, net-neutral linker sequence. PyRosetta was used to generate a set of scFv structures with different linker conformations, and coarse-grained Monte Carlo simulations were used to evaluate the effect of different linker configurations via second osmotic virial coefficient (B22 ) simulations. The results show that the configuration of the linker has a significant effect on the calculated B22 values, and can result in strong electrostatic attractions between oppositely charged residues on the protein surface. This is particularly relevant for development of non-natural antibody products, where charged linkers and other loop regions may be prevalent. The results also provide a preliminary computational framework to evaluate the effect of unstructured linkers on experimental protein-protein interaction parameters such as B22 .
Collapse
Affiliation(s)
- Christopher J. O'Brien
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelaware19716
| | - Cesar Calero‐Rubio
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelaware19716
| | | | - Anne S. Robinson
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelaware19716
- Department of Chemical and Biomolecular EngineeringTulane UniversityNew OrleansLos Angeles70118
| | - Christopher J. Roberts
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelaware19716
| |
Collapse
|
27
|
Madrid R, de la Cruz S, García-García A, Alcocer MJ, González I, García T, Martín R. Multimeric recombinant antibody (scFv) for ELISA detection of allergenic walnut. An alternative to animal antibodies. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Dong S, Bo Z, Zhang C, Feng J, Liu X. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library. Appl Microbiol Biotechnol 2018; 102:3363-3374. [DOI: 10.1007/s00253-018-8797-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
|
29
|
INCREASING OF THE EXPRESSION OF RECOMBINANT scFv-ANTIBODIES EFFICIENCY. BIOTECHNOLOGIA ACTA 2017. [DOI: 10.15407/biotech10.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Cultivation of Pichia pastoris carrying the scFv anti LDL (-) antibody fragment. Effect of preculture carbon source. Braz J Microbiol 2017; 48:419-426. [PMID: 28237678 PMCID: PMC5498413 DOI: 10.1016/j.bjm.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022] Open
Abstract
Antibodies and antibody fragments are nowadays among the most important biotechnological products, and Pichia pastoris is one of the most important vectors to produce them as well as other recombinant proteins. The conditions to effectively cultivate a P. pastoris strain previously genetically modified to produce the single-chain variable fragment anti low density lipoprotein (−) under the control of the alcohol oxidase promoter have been investigated in this study. In particular, it was evaluated if, and eventually how, the carbon source (glucose or glycerol) used in the preculture preceding cryopreservation in 20% glycerol influences both cell and antibody fragment productions either in flasks or in bioreactor. Although in flasks the volumetric productivity of the antibody fragment secreted by cells precultured, cryopreserved and reactivated in glycerol was 42.9% higher compared with cells precultured in glucose, the use of glycerol in bioreactor led to a remarkable shortening of the lag phase, thereby increasing it by no less than thrice compared to flasks. These results are quite promising in comparison with those reported in the literature for possible future industrial applications of this cultivation, taking into account that the overall process time was reduced by around 8 h.
Collapse
|
31
|
Liu J, Zhang HC, Duan CF, Dong J, Zhao GX, Wang JP, Li N, Liu JZ, Li YW. Production of anti-amoxicillin ScFv antibody and simulation studying its molecular recognition mechanism for penicillins. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:742-750. [PMID: 27383141 DOI: 10.1080/03601234.2016.1198639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The molecular recognition mechanism of an antibody for its hapten is very interesting. The objective of this research was to study the intermolecular interactions of an anti-amoxicillin antibody with penicillin drugs. The single chain variable fragment (ScFv) antibody was generated from a hybridoma cell strain excreting the monoclonal antibody for amoxicillin. The recombinant ScFv antibody showed similar recognition ability for penicillins to its parental monoclonal antibody: simultaneous recognizing 11 penicillins with cross-reactivities of 18-107%. The three-dimensional structure of the ScFv antibody was simulated by using homology modeling, and its intermolecular interactions with 11 penicillins were studied by using molecular docking. Results showed that three CDRs are involved in antibody recognition; CDR L3 Arg 100, CDR H3 Tyr226, and CDR H3 Arg 228 were the key contact amino acid residues; hydrogen bonding was the main antibody-drug intermolecular force; and the core structure of penicillin drugs was the main antibody binding position. These results could explain the recognition mechanism of anti-amoxicillin antibody for amoxicillin and its analogs. This is the first study reporting the production of ScFv antibody for penicillins and stimulation studying its recognition mechanism.
Collapse
Affiliation(s)
- Jing Liu
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Hui C Zhang
- b College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei , China
| | - Chang F Duan
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Jun Dong
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Guo X Zhao
- b College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei , China
| | - Jian P Wang
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Nan Li
- b College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei , China
| | - Jin Z Liu
- c Agricultural Bureau of Botou , Cangzhou Hebei , China
| | - Yu W Li
- d Hangu Animal Health Supervision Institute , Tangshan Hebei , China
| |
Collapse
|
32
|
Wang JP, Dong J, Duan CF, Zhang HC, He X, Wang GN, Zhao GX, Liu J. Production and Directional Evolution of Antisarafloxacin ScFv Antibody for Immunoassay of Fluoroquinolones in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7957-7965. [PMID: 27718569 DOI: 10.1021/acs.jafc.6b03356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A recombinant antisarafloxacin ScFv antibody was produced by direct transformation of its gene into Rosetta-gami(DE3) for expression, and then its recognition mechanisms for 12 fluoroquinolones were studied using the molecular docking method. On the basis of the results of virtual mutation, the ScFv antibody was evolved by directional mutagenesis of contact amino acid residue Tyr99 to His. The ScFv mutant showed highly increased affinity for the 12 drugs with up to sevenfold improved sensitivity. Finally, the mutant was used to develop an indirect competitive enzyme linked immunosorbent assay for determination of the 12 drugs in milk. The limits of detection were in the range of 0.3-8.0 ng/mL; the ties were in the range of 5-106%, and the recoveries from the standard fortified blank milk were in the range of 62.0-89.3%. This is the first study reporting the evolution of an ScFv antibody using a directional mutagenesis strategy based on virtual mutation.
Collapse
Affiliation(s)
- Jian Ping Wang
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Jun Dong
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Chang Fei Duan
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Hui Cai Zhang
- College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Xin He
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Geng Nan Wang
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Guo Xian Zhao
- College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Jing Liu
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| |
Collapse
|
33
|
Chen Q, Tao T, Bie X, Lu F, Li Y, Lu Z. Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A. J Microbiol Methods 2016; 129:136-143. [DOI: 10.1016/j.mimet.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022]
|
34
|
Production of in vivo biotinylated scFv specific to almond ( Prunus dulcis ) proteins by recombinant Pichia pastoris. J Biotechnol 2016; 227:112-119. [DOI: 10.1016/j.jbiotec.2016.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 11/18/2022]
|
35
|
Baghban R, Gargari SLM, Rajabibazl M, Nazarian S, Bakherad H. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris. Biotechnol Appl Biochem 2016; 63:200-205. [PMID: 24673401 DOI: 10.1002/bab.1226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/20/2014] [Indexed: 11/07/2022]
Abstract
Botulinum neurotoxins (BoNTs) result in severe and often fatal disease, botulism. Common remedial measures such as equine antitoxin and human botulism immunoglobulin in turn are problematic and time-consuming. Therefore, diagnosis and therapy of BoNTs are vital. The variable domain of heavy-chain antibodies (VHH) has unique features, such as the ability to identify and bind specifically to target epitopes and ease of production in bacteria and yeast. The Pichia pastoris is suitable for expression of recombinant antibody fragments. Disulfide bond formation and correct folds of protein with a high yield are some of the advantages of this eukaryotic host. In this study, we have expressed and purified the camelid VHH against BoNT/E in P. pastoris. The final yield of P. pastoris-expressed antibody was estimated to be 16 mg/l, which is higher than that expressed by Escherichia coli. The nanobody expressed in P. pastoris neutralized 4LD50 of the BoNT/E upon i.p. injection in 25% of mice. The nanobody expressed in E. coli extended the mice's survival to 1.5-fold compared to the control. This experiment indicated that the quality of expressed protein in the yeast is superior to that of the bacterial expression. Favorable protein folding by P. pastoris seems to play a role in its better toxin-binding property.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Express Way, Tehran, Iran
| | | | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Sciences, Imam Hosein University, Tehran, Iran
| | - Hamid Bakherad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran-Qom Express Way, Tehran, Iran
| |
Collapse
|
36
|
Gaciarz A, Veijola J, Uchida Y, Saaranen MJ, Wang C, Hörkkö S, Ruddock LW. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microb Cell Fact 2016; 15:22. [PMID: 26809624 PMCID: PMC4727284 DOI: 10.1186/s12934-016-0419-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Background Disulfide bonds are the most common structural, post-translational modification found in proteins. Antibodies contain up to 25 disulfide bonds depending on type, with scFv fragments containing two disulfides and Fab fragments containing five or six disulfide bonds. The production of antibody fragments that contain native disulfide bonds can be challenging, especially on a large scale. The protein needs to be targeted to prokaryotic periplasm or the eukaryotic endoplasmic reticulum. These compartments are specialised for disulfide bond formation, but both compartments have limitations. Results Here we show that the introduction into the cytoplasm of a catalyst of disulfide bond formation and a catalyst of disulfide bond isomerization allows the efficient formation of natively folded scFv and Fab antibody fragments in the cytoplasm of Escherichia coli with intact reducing pathways. Eleven scFv and eleven Fab fragments were screened and ten of each were obtained in yields of >5 mg/L from deep-well plates. Production of eight of the scFv and all ten of the Fab showed a strong dependence on the addition of the folding factors. Yields of purified scFv of up to 240 mg/L and yields of purified Fab fragments of up to 42 mg/L were obtained. Purified fragments showed circular dichroism spectra consistent with being natively folded and were biologically active. Conclusions Our results show that the efficient production of soluble, biologically active scFv and Fab antibody fragments in the cytoplasm of E. coli is not only possible, but facile. The required components can be easily transferred between different E. coli strains. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0419-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Gaciarz
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Johanna Veijola
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Yuko Uchida
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Mirva J Saaranen
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Chunguang Wang
- Department of Medical Microbiology and Immunology and Medical Research Center, University of Oulu, Oulu, Finland.
| | - Sohvi Hörkkö
- Department of Medical Microbiology and Immunology and Medical Research Center, University of Oulu, Oulu, Finland. .,Nordlab Oulu, Oulu University Hospital, Oulu, Finland.
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
37
|
Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microb Cell Fact 2016. [DOI: 10.10.1186/s12934-016-0419-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Moricoli D, Carbonella DC, Dominici S, Fiori V, Balducci MC, Guerzoni C, Manara MC, Pasello M, Laguardia ME, Cianfriglia M, Scotlandi K, Magnani M. Process development of a human recombinant diabody expressed in E. coli: engagement of CD99-induced apoptosis for target therapy in Ewing's sarcoma. Appl Microbiol Biotechnol 2015; 100:3949-63. [PMID: 26685854 DOI: 10.1007/s00253-015-7226-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022]
Abstract
Ewing's sarcoma (EWS) is the second most common primary bone tumor in pediatric patients characterized by over expression of CD99. Current management consists in extensive chemotherapy in addition to surgical resection and/or radiation. Recent improvements in treatment are still overshadowed by severe side effects such as toxicity and risk of secondary malignancies; therefore, more effective strategies are urgently needed. The goal of this work was to develop a rapid, inexpensive, and "up-scalable" process of a novel human bivalent single-chain fragment variable diabody (C7 dAbd) directed against CD99, as a new therapeutic approach for EWS. We first investigated different Escherichia coli constructs of C7 dAbd in small-scale studies. Starting from 60 % soluble fraction, we obtained a yield of 25 mg C7 dAbd per liter of bacterial culture with the construct containing pelB signal sequence. In contrast, a low recovery of C7 dAbd was achieved starting from periplasmic inclusion bodies. In order to maximize the yield of C7 dAbd, large-scale fermentation was optimized. We obtained from 75 % soluble fraction 35 mg C7 dAbd per L of cell culture grown in a synthetic media containing 3 g/L of vegetable peptone and 1 g/L of yeast extract. Furthermore, we demonstrated the better efficacy of the cell lysis by homogenization versus periplasmic extraction, in reducing endotoxin level of the C7 dAbd. For gram-scale purification, a direct aligned two-step chromatography cascade based on binding selectivity was developed. Finally, we recovered C7 dAbd with low residual process-related impurities, excellent reactivity, and apoptotic ability against EWS cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Clara Guerzoni
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | | | - Maurizio Cianfriglia
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy. .,PROMETEO Laboratory, STB, RIT Department, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Mauro Magnani
- Department of Biomolecular Science, Section of Biochemistry and Molecular Biology University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| |
Collapse
|
39
|
Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, Madej M, Bereta J. A new expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I + J phagemid libraries. Immunol Lett 2015. [DOI: 10.1016/j.imlet.2015.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Lindner R, Moosmann A, Dietrich A, Böttinger H, Kontermann R, Siemann-Herzberg M. Process development of periplasmatically produced single chain fragment variable against epidermal growth factor receptor in Escherichia coli. J Biotechnol 2015; 192 Pt A:136-45. [PMID: 25450642 DOI: 10.1016/j.jbiotec.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022]
Abstract
Prokaryotic production systems have been widely used to manufacture recombinant therapeutic proteins. Economically, the prokaryotic production – especially of small therapeutic molecules – is advantageous compared to eukaryotic production strategies. However, due to the potential endotoxin and host cell protein contamination, the requirements for the purification process are disproportionately higher and therefore more expensive and elaborate to circumvent. For this reason, the goal of this work was to develop and establish a rapid, simple, inexpensive and ‘up-scalable’ production and purification process, using the therapeutic relevant protein anti-EGFR scFv hu225 as model molecule. Configuring high cell density cultivation of Escherichia coli – using the rha-BAD expression system as production platform – a specific product concentration up to 20 mgscFv/gCDW was obtained. By combining freeze-and-thaw, osmotic shock and pH induced host cell protein precipitation, almost 70% of the product was extracted from the biomass. In a novel approach a mixed mode chromatography was implemented as a capturing and desalting step, which allowed the direct application of further ion exchange chromatography steps for purification up to pharmaceutical grade. Thereby, 50% of the produced scFv could be purified within 10 h while maintaining the biological activity.
Collapse
|
41
|
Marshall C, Grosskopf VA, Moehling TJ, Tillotson BJ, Wiepz GJ, Abbott NL, Raines RT, Shusta EV. An evolved Mxe GyrA intein for enhanced production of fusion proteins. ACS Chem Biol 2015; 10:527-38. [PMID: 25384269 PMCID: PMC4340354 DOI: 10.1021/cb500689g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
Expressing antibodies as fusions to the non-self-cleaving Mxe GyrA intein enables site-specific, carboxy-terminal chemical modification of the antibodies by expressed protein ligation (EPL). Bacterial antibody-intein fusion protein expression platforms typically yield insoluble inclusion bodies that require refolding to obtain active antibody-intein fusion proteins. Previously, we demonstrated that it was possible to employ yeast surface display to express properly folded single-chain antibody (scFv)-intein fusions, therefore permitting the direct small-scale chemical functionalization of scFvs. Here, directed evolution of the Mxe GyrA intein was performed to improve both the display and secretion levels of scFv-intein fusion proteins from yeast. The engineered intein was shown to increase the yeast display levels of eight different scFvs by up to 3-fold. Additionally, scFv- and green fluorescent protein (GFP)-intein fusion proteins can be secreted from yeast, and while fusion of the scFvs to the wild-type intein resulted in low expression levels, the engineered intein increased scFv-intein production levels by up to 30-fold. The secreted scFv- and GFP-intein fusion proteins retained their respective binding and fluorescent activities, and upon intein release, EPL resulted in carboxy-terminal azide functionalization of the target proteins. The azide-functionalized scFvs and GFP were subsequently employed in a copper-free, strain-promoted click reaction to site-specifically immobilize the proteins on surfaces, and it was demonstrated that the functionalized, immobilized scFvs retained their antigen binding specificity. Taken together, the evolved yeast intein platform provides a robust alternative to bacterial intein expression systems.
Collapse
Affiliation(s)
- Carrie
J. Marshall
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Vanessa A. Grosskopf
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Taylor J. Moehling
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Benjamin J. Tillotson
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Gregory J. Wiepz
- Dept.
of Biomolecular Chemistry, University of
Wisconsin-Madison, 420
Henry Mall, Madison, Wisconsin 53706, United States
| | - Nicholas L. Abbott
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Dept.
of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
- Dept.
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eric V. Shusta
- Dept.
of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Rossant CJ, Matthews C, Neal F, Colley C, Gardener MJ, Vaughan T. Versatility of Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer Assays for Biologics Drug Discovery. ACTA ACUST UNITED AC 2014; 20:508-18. [DOI: 10.1177/1087057114557464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of potential lead antibodies in the drug discovery process requires the use of assays that not only measure binding of the antibody to the target molecule but assess a wide range of other characteristics. These include affinity ranking, measurement of their ability to inhibit relevant protein-protein interactions, assessment of their selectivity for the target protein, and determination of their species cross-reactivity profiles to support in vivo studies. Time-resolved fluorescence resonance energy transfer is a technology that offers the flexibility for development of such assays, through the availability of donor and acceptor fluorophore-conjugated reagents for detection of multiple tags or fusion proteins. The time-resolved component of the technology reduces potential assay interference, allowing screening of a range of different crude sample types derived from the bacterial or mammalian cell expression systems often used for antibody discovery projects. Here we describe the successful application of this technology across multiple projects targeting soluble proteins and demonstrate how it has provided key information for the isolation of potential therapeutic antibodies with the desired activity profile.
Collapse
Affiliation(s)
- Christine J. Rossant
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
- Crescendo Biologics, Cambridge, UK
| | - Carl Matthews
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Frances Neal
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | - Caroline Colley
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| | | | - Tristan Vaughan
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, UK
| |
Collapse
|
43
|
Intachai K, Singboottra P, Leksawasdi N, Kasinrerk W, Tayapiwatana C, Butr-Indr B. Enhanced Production of Functional Extracellular Single Chain Variable Fragment Against HIV-1 Matrix Protein fromEscherichia coliby Sequential Simplex Optimization. Prep Biochem Biotechnol 2014; 45:56-68. [DOI: 10.1080/10826068.2014.887580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Carneiro AP, Reis CF, Morari EC, Maia YCP, Nascimento R, Bonatto JMC, de Souza MA, Goulart LR, Ward LS. A putative OTU domain-containing protein 1 deubiquitinating enzyme is differentially expressed in thyroid cancer and identifies less-aggressive tumours. Br J Cancer 2014; 111:551-8. [PMID: 24937664 PMCID: PMC4119988 DOI: 10.1038/bjc.2014.331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/20/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022] Open
Abstract
Background: This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. Methods: We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. Results: One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Conclusions: The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.
Collapse
Affiliation(s)
- A P Carneiro
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences (FCM), University of Campinas (Unicamp), Campinas, SP, Brazil
| | - C F Reis
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences (FCM), University of Campinas (Unicamp), Campinas, SP, Brazil
| | - E C Morari
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences (FCM), University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Y C P Maia
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry (Ingeb), Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - R Nascimento
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry (Ingeb), Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - J M C Bonatto
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - M A de Souza
- Laboratory of Molecular Biology, Federal University of Uberlandia, Institute of Biomedical Sciences, Uberlandia, MG, Brazil
| | - L R Goulart
- 1] Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry (Ingeb), Federal University of Uberlandia, Uberlandia, MG, Brazil [2] Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - L S Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences (FCM), University of Campinas (Unicamp), Campinas, SP, Brazil
| |
Collapse
|
45
|
Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain. PLoS One 2014; 9:e96790. [PMID: 24804933 PMCID: PMC4013048 DOI: 10.1371/journal.pone.0096790] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type I (HIV-1) mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD) between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv) can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.
Collapse
|
46
|
Grewal YS, Shiddiky MJ, Spadafora LJ, Cangelosi GA, Trau M. Nano-yeast–scFv probes on screen-printed gold electrodes for detection of Entamoeba histolytica antigens in a biological matrix. Biosens Bioelectron 2014; 55:417-22. [DOI: 10.1016/j.bios.2013.12.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022]
|
47
|
Molino JVD, Viana Marques DDA, Júnior AP, Mazzola PG, Gatti MSV. Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol Prog 2013; 29:1343-53. [DOI: 10.1002/btpr.1792] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 06/28/2013] [Indexed: 12/19/2022]
Affiliation(s)
- João Vitor Dutra Molino
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Daniela de Araújo Viana Marques
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Adalberto Pessoa Júnior
- Dept. of Biochemical and Pharmaceutical Technology; Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Block 16, Cidade Universitária; São Paulo 05508-000 Brazil
| | - Priscila Gava Mazzola
- Dept. of Clinical Patology; Faculty of Medical Sciences; University of Campinas, Rua: Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz, Campinas; São Paulo 13083-887 Brazil
| | - Maria Silvia Viccari Gatti
- Genetics; Evolution and Bioagents Dept.; Biology Institute; University of Campinas, Rua: Monteiro Lobato, 255, Cidade Universitária “Zeferino Vaz,” Campinas; São Paulo 13083-862 Brazil
| |
Collapse
|
48
|
Cai F, Li T, Xie Y, He X. Expression of functional single-chain variable domain fragment (scFv) antibody against Metolcarb in Pichia pastoris. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
49
|
Zhou Y, Zhang J, Jin H, Chen Z, Wu Q, Li W, Yue M, Luo C, Wang M. Prokaryotic expression and refolding of EGFR extracellular domain and generation of phage display human scFv against EGFR. Biomed Pharmacother 2013; 67:737-43. [PMID: 23639232 DOI: 10.1016/j.biopha.2013.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/24/2013] [Indexed: 10/26/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), overexpressed in many epithelial tumors, is emerging as an attractive target for cancer therapy. Antibodies to the extracellular region of EGFR play a key role in the development of a mechanistic understanding and cancer therapy. In the present study, we demonstrated for the first time that EGFR-truncated extracellular domain (EGFR-tED), which was expressed in Escherichia coli BL21 (DE3) cells in the form of inclusion bodies, could be purified and renatured. The EGFR-tED protein was purified by gel filtration and Ni-NTA affinity chromatography with high purity (>90%) and refolded by a urea gradient size-exclusion chromatography, which could bind its ligand EGF in a concentration-dependent manner. The renatured EGFR was used for biopanning anti-EGFR scFvs from a human synthetic antibody phage display library. Combined with an additional cell-based ELISA screen, a novel scFv, E10, was obtained with two-fold more potent on the binding to EGFR-bearing tumor cells (the epidermoid carcinoma cell line A431) and the inhibition of A431 cells proliferation than scFv 11F8, suggesting that the E10 has the potential to be developed as therapeutic agents to solid tumors associated with EGFR overexpression.
Collapse
Affiliation(s)
- Yaqiong Zhou
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
An SJ, Yim SS, Jeong KJ. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide. Protein Expr Purif 2013; 89:251-7. [PMID: 23597779 DOI: 10.1016/j.pep.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/27/2022]
Abstract
Corynebacterium glutamicum is one of the useful hosts for the secretory production of heterologous proteins because of intrinsic attributes such as the presence of few endogenous proteins and proteases in culture medium. Here, we report the development of a new secretory system for the production of heterologous proteins by using the porin B (PorB) signal peptide in C. glutamicum. We examined two different endoxylanases and an antibody fragment (scFv) as model proteins for secretory production. In the flask cultivations, all the examined proteins were successfully produced as active forms into the culture medium with high efficiency. For the high-level production of endoxylanase, fed-batch cultivation was also performed in a lab-scale (5L) bioreactor, and the endoxylanases were efficiently secreted in the culture medium at levels as high as 615mg/L. From the culture supernatant, the secreted endoxylanases could be purified with high purity via one-step affinity column chromatography.
Collapse
Affiliation(s)
- Seul Ji An
- Department of Chemical and Biomolecular Engineering, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|