1
|
Yang L, Tang M, Nüssler AK, Liu L, Yang W. Regulation of PVT-CeA Circuit in Deoxynivalenol-Induced Anorexia and Aversive-Like Emotions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417068. [PMID: 40019402 PMCID: PMC12021098 DOI: 10.1002/advs.202417068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Neuronal plasticity in the central amygdala (CeA) is essential for modulating feeding behaviors and emotional responses, potentially influencing reactions to Deoxynivalenol (DON). Acute oral administration of DON elicits a dose-responsive reduction in food intake, accompanied by pronounced alterations in locomotor activity and feeding frequency. This study investigates circuitry adaptations that mediate DON's effects on feeding, by targeting of GABA neurons in the CeA. Following exposure to DON, an increase in connectivity between the paraventricular nucleus of the thalamus (PVT) and CeAGABA neurons is observed, suggesting the involvement of this pathway in DON's adverse effects on feeding and emotional states. Chemogenetic and optogenetic manipulations of CeAGABA neurons resulted in substantial alterations in mice's feeding and overall activity. These findings suggest that CeAGABA neurons are involved in DON-induced anorexia and aversive-like emotional responses. Additionally, the administration of the SCN10A antagonist (A-803467) effectively mitigated DON-induced anorexia and aversive-like emotions, highlighting the pivotal role of the PVT-CeA circuit and CeAGABA neurons in regulating the physiological and emotional impacts of DON. These findings have significant implications for public health and clinical interventions, offering potential therapeutic strategies to mitigate DON's adverse effects on human health.
Collapse
Affiliation(s)
- Liu‐Nan Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Mingmeng Tang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Andreas K. Nüssler
- Department of TraumatologyBG Trauma CenterUniversity of TübingenSchnarrenbergstr. 9572076TübingenGermany
| | - Liegang Liu
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| | - Wei Yang
- Department of Nutrition and Food HygieneHubei Key Laboratory of Food Nutrition and SafetyTongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and HealthSchool of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyHangkong Road 13Wuhan430030China
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard DevelopmentHangkong Road 13Wuhan430030China
| |
Collapse
|
2
|
Jerzemowska G, Podlacha M, Orzeł-Gryglewska J. Amphetamine Injection into the Nucleus Accumbens and Electrical Stimulation of the Ventral Tegmental Area in Rats After Novelty Test-Behavioral and Neurochemical Correlates. Int J Mol Sci 2024; 26:182. [PMID: 39796042 PMCID: PMC11720036 DOI: 10.3390/ijms26010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Amphetamine abuse is a global health epidemic that is difficult to treat due to individual differences in response to environmental factors, including stress reactivity and anxiety levels, as well as individual neuronal differences, which may result in increased/decreased vulnerability to addiction. In the present study, we investigated whether the Wistar rats behavioral traits of high (HR) and low (LR) locomotor activity to novelty influence motivational behavior (induced feeding model; iFR by electrical stimulation of the ventral tegmental area; Es-VTA) supported by amphetamine injection into the nucleus accumbens shell (AcbSh) (HRAmph, n = 5; LRAmph, n = 5). A correlation was found between the novelty test's locomotor activity score and the frequency threshold percentage change (p < 0.001, Rs = -0.867). In HRAmph, there was a shortening (-24.16%), while in LRAmph, there was a lengthening (+51.84%) of iFR latency. Immunofluorescence studies showed differential neuronal density (activity of tyrosine hydroxylase, choline acetyltransferase, and cFos protein) in the selected brain structures in HRAmph and LRAmph animals as well as in comparison to a control group (HRACSF, n = 5; LRACSF, n = 5). These results contribute to expanding the state of knowledge of the behavioral and neuronal propensity to take drug abuse.
Collapse
Affiliation(s)
- Grażyna Jerzemowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str., 80-308 Gdansk, Poland;
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str., 80-308 Gdansk, Poland;
| | - Jolanta Orzeł-Gryglewska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza Str., 80-308 Gdansk, Poland;
| |
Collapse
|
3
|
Yan F, Hao Z, Zeng J, Liu Y, Dai Q, Zhu Y, Zhi Z, Lin H, Li S, Chen H, Zhang Y. Identification of a neuropeptide in suppressing food intake in zebrafish. Biochem Biophys Res Commun 2024; 734:150752. [PMID: 39353358 DOI: 10.1016/j.bbrc.2024.150752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Neuropeptides play crucial roles in regulating various physiological processes in vertebrates. In this study, we identified a novel neuropeptide-encoding gene, nwk, in the genomes of some vertebrate species. The nwk cDNA was subsequently cloned from the brain of zebrafish. The Nwk precursor comprises 88 amino acids, with a putative mature peptide (Nwk-22) of 22 amino acids. Sequence analysis revealed that Nwk-22 is relatively conserved across vertebrate species. Nwk is predominantly expressed in the brain, with positive mRNA cells identified in the TPp and preoptic area. Intraperitoneal injection of Nwk-22 suppressed food intake and downregulated the mRNA expression of the orexigenic factor agouti-related peptide (agrp) in zebrafish. Additionally, a CRISPR/Cas9 approach was used to generate nwk mutant zebrafish. The nwk-/- zebrafish exhibited increased food consumption compared to wild-type controls. Furthermore, Nwk-22a injection in nwk-/- fish also suppressed agrp expression while stimulating the expression of the anorexigenic gene pomca, further supporting the anorexigenic role of Nwk. Taken together, these findings suggest that Nwk functions as an anorexigenic factor, reducing food intake by downregulating orexigenic genes like agrp and upregulating anorexigenic genes like pomc in zebrafish.
Collapse
Affiliation(s)
- Fengying Yan
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiqiang Hao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Junyan Zeng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qinxi Dai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuzhi Zhu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zede Zhi
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China.
| |
Collapse
|
4
|
Manglani K, Anika NN, Patel D, Jhaveri S, Avanthika C, Sudan S, Alimohamed Z, Tiwari K. Correlation of Leptin in Patients With Type 2 Diabetes Mellitus. Cureus 2024; 16:e57667. [PMID: 38707092 PMCID: PMC11070180 DOI: 10.7759/cureus.57667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The exponential increase in diabetes mellitus (DM) poses serious public health concerns. In this review, we focus on the role of leptin in type 2 DM. The peripheral actions of leptin consist of upregulating proinflammatory cytokines which play an important role in the pathogenesis of type 2 DM and insulin resistance. Moreover, leptin is known to inhibit insulin secretion and plays a significant role in insulin resistance in obesity and type 2 DM. A literature search was conducted on Medline, Cochrane, Embase, and Google Scholar for relevant articles published until December 2023. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "Leptin," "NPY," and "Biomarker." This article aims to discuss the physiology of leptin in type 2 DM, its glucoregulatory actions, its relationship with appetite, the impact that various lifestyle modifications can have on leptin levels, and, finally, explore leptin as a potential target for various treatment strategies.
Collapse
Affiliation(s)
- Kajol Manglani
- Internal Medicine, MedStar Washington Hospital Center, Washington, USA
| | | | - Dhriti Patel
- Medicine and Surgery, B.J. Medical College and Civil Hospital, Ahmedabad, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Gujarat University, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubballi, IND
| | - Sourav Sudan
- Internal Medicine, Government Medical College, Rajouri, Rajouri, IND
| | - Zainab Alimohamed
- Division of Research & Academic Affairs, Larkin Health System, South Miami, USA
| | - Kripa Tiwari
- Internal Medicine, Maimonides Medical Center, New York, USA
| |
Collapse
|
5
|
Ignatieva EV, Lashin SA, Mustafin ZS, Kolchanov NA. Evolution of human genes encoding cell surface receptors involved in the regulation of appetite: an analysis based on the phylostratigraphic age and divergence indexes. Vavilovskii Zhurnal Genet Selektsii 2023; 27:829-838. [PMID: 38213702 PMCID: PMC10777300 DOI: 10.18699/vjgb-23-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 01/13/2024] Open
Abstract
Genes encoding cell surface receptors make up a significant portion of the human genome (more than a thousand genes) and play an important role in gene networks. Cell surface receptors are transmembrane proteins that interact with molecules (ligands) located outside the cell. This interaction activates signal transduction pathways in the cell. A large number of exogenous ligands of various origins, including drugs, are known for cell surface receptors, which accounts for interest in them from biomedical researchers. Appetite (the desire of the animal organism to consume food) is one of the most primitive instincts that contribute to survival. However, when the supply of nutrients is stable, the mechanism of adaptation to adverse factors acquired in the course of evolution turned out to be excessive, and therefore obesity has become one of the most serious public health problems of the twenty-first century. Pathological human conditions characterized by appetite violations include both hyperphagia, which inevitably leads to obesity, and anorexia nervosa induced by psychosocial stimuli, as well as decreased appetite caused by neurodegeneration, inflammation or cancer. Understanding the evolutionary mechanisms of human diseases, especially those related to lifestyle changes that have occurred over the past 100-200 years, is of fundamental and applied importance. It is also very important to identify relationships between the evolutionary characteristics of genes in gene networks and the resistance of these networks to changes caused by mutations. The aim of the current study is to identify the distinctive features of human genes encoding cell surface receptors involved in appetite regulation using the phylostratigraphic age index (PAI) and divergence index (DI). The values of PAI and DI were analyzed for 64 human genes encoding cell surface receptors, the orthologs of which were involved in the regulation of appetite in model animal species. It turned out that the set of genes under consideration contains an increased number of genes with the same phylostratigraphic age (PAI = 5, the stage of vertebrate divergence), and almost all of these genes (28 out of 31) belong to the superfamily of G-protein coupled receptors. Apparently, the synchronized evolution of such a large group of genes (31 genes out of 64) is associated with the development of the brain as a separate organ in the first vertebrates. When studying the distribution of genes from the same set by DI values, a significant enrichment with genes having a low DIs was revealed: eight genes (GPR26, NPY1R, GHSR, ADIPOR1, DRD1, NPY2R, GPR171, NPBWR1) had extremely low DIs (less than 0.05). Such low DI values indicate that most likely these genes are subjected to stabilizing selection. It was also found that the group of genes with low DIs was enriched with genes that had brain-specific patterns of expression. In particular, GPR26, which had the lowest DI, is in the group of brain-specific genes. Because the endogenous ligand for the GPR26 receptor has not yet been identified, this gene seems to be an extremely interesting object for further theoretical and experimental research. We believe that the features of the genes encoding cell surface receptors we have identified using the evolutionary metrics PAI and DI can be a starting point for further evolutionary analysis of the gene network regulating appetite.
Collapse
Affiliation(s)
- E V Ignatieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Lashin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Z S Mustafin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Yoshimura M, Flynn BP, Kershaw YM, Zhao Z, Ueta Y, Lightman SL, Conway-Campbell BL. Phase-shifting the circadian glucocorticoid profile induces disordered feeding behaviour by dysregulating hypothalamic neuropeptide gene expression. Commun Biol 2023; 6:998. [PMID: 37775688 PMCID: PMC10541449 DOI: 10.1038/s42003-023-05347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
Here we demonstrate, in rodents, how the timing of feeding behaviour becomes disordered when circulating glucocorticoid rhythms are dissociated from lighting cues; a phenomenon most commonly associated with shift-work and transmeridian travel 'jetlag'. Adrenalectomized rats are infused with physiological patterns of corticosterone modelled on the endogenous adrenal secretory profile, either in-phase or out-of-phase with lighting cues. For the in-phase group, food intake is significantly greater during the rats' active period compared to their inactive period; a feeding pattern similar to adrenal-intact control rats. In contrast, the feeding pattern of the out-of-phase group is significantly dysregulated. Consistent with a direct hypothalamic modulation of feeding behaviour, this altered timing is accompanied by dysregulated timing of anorexigenic and orexigenic neuropeptide gene expression. For Neuropeptide Y (Npy), we report a glucocorticoid-dependent direct transcriptional regulation mechanism mediated by the glucocorticoid receptor (GR). Taken together, our data highlight the adverse behavioural outcomes that can arise when two circadian systems have anti-phasic cues, in this case impacting on the glucocorticoid-regulation of a process as fundamental to health as feeding behaviour. Our findings further highlight the need for development of rational approaches in the prevention of metabolic dysfunction in circadian-disrupting activities such as transmeridian travel and shift-work.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
- Department of Physiology, University of Occupational and Environmental Health, Japan 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Benjamin P Flynn
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Yvonne M Kershaw
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Zidong Zhao
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Yoichi Ueta
- Department of Physiology, University of Occupational and Environmental Health, Japan 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Becky L Conway-Campbell
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
7
|
Alam MR, Singh S. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacology 2023:10.1007/s10787-023-01259-0. [PMID: 37318694 DOI: 10.1007/s10787-023-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
TAKMET M, TÜZÜN D, ŞAHİN M, DOĞANER A, KILINÇ M. OBEZİTENİN DOLAŞIMDAKİ GALANİN VE VASPİN DÜZEYLERİ İLE İLİŞKİSİ. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2022. [DOI: 10.17517/ksutfd.1140097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: Our aim was to compare vaspin and galanin in obese and normal weight individuals, to reveal whether these parameters are related to obesity and other related parameters.
Material and Methods: Forty patients with obesity and 40 control subjects were included in the study. Biochemical parameters were recorded from patient’s files. Galanin and vaspin levels were studied by ELISA method, obtained as a result of centrifugation of these blood samples.
Results: The groups were similar to each other in terms of gender and age (p>0.05). Galanine levels were higher in the group with obesity compared to the control group (p0.05). Glucose, insulin, triglyceride and LDL-C levels were statistically significantly higher in the patient group than in the control group (p0.05). A statistically significant positive correlation was found with galanin and glucose, insulin, and BMI, respectively (p
Collapse
|
9
|
Hajdarovic KH, Yu D, Hassell LA, Evans S, Packer S, Neretti N, Webb AE. Single-cell analysis of the aging female mouse hypothalamus. NATURE AGING 2022; 2:662-678. [PMID: 36285248 PMCID: PMC9592060 DOI: 10.1038/s43587-022-00246-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2022] [Indexed: 01/15/2023]
Abstract
Alterations in metabolism, sleep patterns, body composition, and hormone status are all key features of aging. While the hypothalamus is a well-conserved brain region that controls these homeostatic and survival-related behaviors, little is known about the intrinsic features of hypothalamic aging. Here, we perform single nuclei RNA-sequencing of 40,064 hypothalamic nuclei from young and aged female mice. We identify cell type-specific signatures of aging in neuronal subtypes as well as astrocytes and microglia. We uncover changes in cell types critical for metabolic regulation and body composition, and in an area of the hypothalamus linked to cognition. Our analysis also reveals an unexpected female-specific feature of hypothalamic aging: the master regulator of X-inactivation, Xist, is elevated with age, particularly in hypothalamic neurons. Moreover, using machine learning, we show that levels of X-chromosome genes, and Xist itself, can accurately predict cellular age. This study identifies critical cell-specific changes of the aging hypothalamus in mammals, and uncovers a potential marker of neuronal aging in females.
Collapse
Affiliation(s)
- Kaitlyn H Hajdarovic
- Neuroscience Graduate Program, Brown University, Providence, RI, 02912, USA
- These authors contributed equally: Kaitlyn H. Hajdarovic, Doudou Yu
| | - Doudou Yu
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
- These authors contributed equally: Kaitlyn H. Hajdarovic, Doudou Yu
| | - Lexi-Amber Hassell
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Shane Evans
- Graduate program in Computational Biology, Brown University, Providence, RI, 02912, USA
| | - Sarah Packer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
- Center on the Biology of Aging, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Takamata A, Nishimura Y, Oka A, Nagata M, Kosugi N, Eguchi S, Negishi H, Morimoto K. Endogenous Androgens Diminish Food Intake and Activation of Orexin A Neurons in Response to Reduced Glucose Availability in Male Rats. Nutrients 2022; 14:nu14061235. [PMID: 35334892 PMCID: PMC8950295 DOI: 10.3390/nu14061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Sex steroids modify feeding behavior and body weight regulation, and androgen reportedly augments food intake and body weight gain. To elucidate the role of endogenous androgens in the feeding regulation induced by reduced glucose availability, we examined the effect of gonadectomy (orchiectomy) on food intake and orexin A neuron’s activity in the lateral hypothalamic/perifornical area (LH/PFA) in response to reduced glucose availability (glucoprivation) induced by 2-deoxy-d-glucose (2DG) administration in male rats. Rats (7W) were bilaterally orchiectomized (ORX group) or sham operated (Sham group). Seventeen days after the surgery, food intake response to 2DG (400 mg/kg, i.v.) was measured for 4 h after the infusion. The same experiment was performed for the immunohistochemical examination of c-Fos-expressing orexin A neurons in the LH/PFA and c-Fos expression in the arcuate nucleus (Arc). Food intake induced by glucoprivation was greater in the ORX group than the Sham group, and the glucoprivation-induced food intake was inversely correlated with plasma testosterone concentration. Glucoprivation stimulated c-Fos expression of the orexin A neurons at the LH/PFA and c-Fos expression in the dorsomedial Arc. The number and percentage of c-Fos-expressing orexin A neurons in the LH/PFA and c-Fos expression in the dorsomedial Arc were significantly higher in the ORX group than the Sham group. This indicates that endogenous androgen, possibly testosterone, diminishes the food intake induced by reduced glucose availability, possibly via the attenuated activity of orexin A neuron in the LH/PFA and neurons in the dorsomedial Arc.
Collapse
Affiliation(s)
- Akira Takamata
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
- Correspondence: ; Tel.: +81-742-20-3469
| | - Yuri Nishimura
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Ayano Oka
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
| | - Mayuna Nagata
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
| | - Natsumi Kosugi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
| | - Sayaka Eguchi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
| | - Hiroko Negishi
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
- Department of Food and Nutrition, Kyoto Kacho University, 3-456 Rinka-cho, Higashiyama-ku, Kyoto 605-0062, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women’s University, Kitauoya Nishimachi, Nara 630-8506, Japan; (Y.N.); (A.O.); (M.N.); (N.K.); (S.E.); (H.N.); (K.M.)
- Department of Health and Nutrition, Faculty of Health Science, Kyoto Koka Women’s University, 38 Kadono-cho, Nishikyogoku, Ukyo-ku, Kyoto 615-0882, Japan
| |
Collapse
|
11
|
Aderibigbe AS, Ajuwon KM, Adeola O. Dietary phosphorus level regulates appetite through modulation of gut and hypothalamic expression of anorexigenic genes in broiler chickens. Poult Sci 2021; 101:101591. [PMID: 34890944 PMCID: PMC8665405 DOI: 10.1016/j.psj.2021.101591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/12/2021] [Accepted: 10/24/2021] [Indexed: 12/04/2022] Open
Abstract
Two experiments were designed to elucidate gut and hypothalamic molecular regulation of appetite by dietary phosphorus (P) concentration in broiler chickens. Birds (192 Cobb-500 broiler chickens) were randomly assigned to 3 experimental diets in experiment 1 (Exp. 1) and 24 broiler chickens were randomly assigned to 3 treatment groups in Exp. 2. Each diet comprised 8 replicate cages, with either 8 birds (Exp. 1) or 1 bird (Exp. 2) per replicate cage. In Exp. 1, diets contained 1.2 (P-deficient), 2.8 (P-marginal) or 4.4 (P-adequate) g/kg non-phytate P (nPP). In Exp. 2, birds fed the P-adequate diet were pair-fed (PF) to the feed consumption levels of birds fed the P-deficient diet. Feed intake and BW gain (P < 0.001) decreased in birds fed the P-deficient diet in Exp. 1. Birds fed the P-deficient diet had similar feed intake and BW gain with PF group fed the P-adequate diet (Exp. 2) but was significantly lower (P < 0.001) than birds fed the P-adequate diets. Sodium-phosphate cotransporter (NaPi-IIb) mRNA was upregulated (P < 0.05) in both experiments. Conversely, cholecystokinin (CCK) mRNA was downregulated (P < 0.01) in birds fed P-deficient diets. Anorexia-related hypothalamic cholecystokinin receptor (CCKAR) and melanocortin receptors (MC3R and MC4R) were upregulated (P < 0.05) in birds fed P-deficient diets, in both experiments. The current data show that dietary P deficiency decreases feed intake in broiler chickens by altering the expression of anorexigenic genes in the gut and hypothalamus of broiler chickens.
Collapse
Affiliation(s)
- A S Aderibigbe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - O Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Rodríguez Gabilondo A, Hernández Pérez L, Martínez Rodríguez R. Hormonal and neuroendocrine control of reproductive function in teleost fish. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction is one of the important physiological events for the maintenance of the species. Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) regulates the synthesis and release of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in the different regulatory mechanisms of these species' growth, metabolism, and reproduction. However, especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and success of aquaculture.
Collapse
Affiliation(s)
- Adrian Rodríguez Gabilondo
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernández Pérez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rebeca Martínez Rodríguez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
13
|
Faheem NM, Ali TM. The counteracting effects of (-)-Epigallocatechin-3-Gallate on the immobilization stress-induced adverse reactions in rat pancreas. Cell Stress Chaperones 2021; 26:159-172. [PMID: 33000400 PMCID: PMC7736449 DOI: 10.1007/s12192-020-01165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
Many studies suggest that Epigallocatechin-3-Gallate (EGCG) has many protective effects. But little is known about its protective effects against chronic restraint stress-induced damage in rats. The aim was to demonstrate the potential protective effects of EGCG against harmful pancreatic damage to the immobilization stress in the rat model. Forty rats, 2 months old, were divided into four groups (n = 10): control group; EGCG group, rats received EGCG by gavage (100 mg/kg /day) for 30 days; stressed group, rats exposed to immobilization stress; and stressed with EGCG group, rats exposed to immobilization stress and received EGCG for 30 days. Glycemic status parameters, corticosterone, and inflammatory markers were investigated on the first day, 15th day, and the 30th day of the experiment. Pancreatic oxidative stress markers and cytokines were evaluated. Histological, immunohistological, and statistical studies were performed. On the 15th day, fasting blood glucose (FBG), fasting plasma insulin (FPI), homeostatic model assessment for insulin resistance (HOMA-IR), and fasting plasma corticosterone were significantly higher in the stressed group when compared with first and 30th day in the same group as well as when compared with control and stressed with EGCG groups. The stressed group revealed significantly higher pancreatic IL-1β, IL-6, TNF-α, MDA, and NO, serum amylase and serum lipase, and significantly lower GSH, SOD, and CAT when compared to control and stressed with EGCG groups. EGCG treatment attenuated the pancreatic stress-induced cellular degeneration, leucocytic infiltration, and cytoplasmic vacuolations; significantly decreased area percentage of collagen fibers; and significantly increased mean area percentage of insulin immunopositive cell as compared with stressed group. EGCG is a protective agent against immobilization stress because of its anti-diabetic, anti-inflammatory, and and anti-oxidative stress properties, as confirmed by biochemical and histological alterations.
Collapse
Affiliation(s)
- Nermeen Mohammed Faheem
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Taif University, Taif, 21944, Kingdom of Saudi Arabia.
| | - Tarek Mohamed Ali
- Department of Medical Physiology, Faculty of Medicine, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Dalvi P, Loganathan N, Mcilwraith EK, Tran A, Belsham DD. Hypothalamic Cell Models. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:27-77. [DOI: 10.1016/b978-0-12-819801-8.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Le B, Cheng X, Qu S. Cooperative effects of galanin and leptin on alleviation of insulin resistance in adipose tissue of diabetic rats. J Cell Mol Med 2020; 24:6773-6780. [PMID: 32395890 PMCID: PMC7299679 DOI: 10.1111/jcmm.15328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
It was reported that either orexigenic neuropeptide galanin or anorexigenic hormone leptin caught benefit insulin sensitivity through increasing the translocation of glucose transporter 4 (GLUT4) in patients with diabetes. To date, it is unknown whether galanin can potentiate the effect of leptin on alleviation of insulin resistance. Therefore, in the current study we sought to assess the combined effect of central leptin and galanin on insulin resistance in the adipose tissues of type 2 diabetic rats. Galanin and leptin were injected into the intracerebroventricle of the diabetic rats, respectively, or cooperatively once a day for 2 weeks. Then, several indexes of insulin resistance were examined. The results showed that glucose infusion rates in the hyperinsulinaemic-euglycaemic clamp test, plasma adiponectin content and GLUT4 translocation, as well as Akt phosphorylation in fat cells, were higher, not GLUT4 protein and GLUT4 mRNA expression, but HOMA index was lower in the galanin + leptin group than either one of them. Furthermore, treatment with MK-2206, an Akt inhibitor, blocked the combined effects of galanin + leptin on alleviation of insulin resistance. These results suggest that galanin can improve the leptin-induced mitigative effects on insulin resistance in the fat cells, and those provided new insights into the potential tactics for prevention and remedy of insulin resistance.
Collapse
Affiliation(s)
- Bu Le
- Department of EndocrinologyShanghai 10th People HospitalTongji University School of MedicineShanghaiChina
| | - Xiaoyun Cheng
- Department of EndocrinologyShanghai 10th People HospitalTongji University School of MedicineShanghaiChina
| | - Shen Qu
- Department of EndocrinologyShanghai 10th People HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
16
|
Suarez AN, Liu CM, Cortella AM, Noble EE, Kanoski SE. Ghrelin and Orexin Interact to Increase Meal Size Through a Descending Hippocampus to Hindbrain Signaling Pathway. Biol Psychiatry 2020; 87:1001-1011. [PMID: 31836175 PMCID: PMC7188579 DOI: 10.1016/j.biopsych.2019.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Memory and cognitive processes influence the amount of food consumed during a meal, yet the neurobiological mechanisms mediating these effects are poorly understood. The hippocampus (HPC) has recently emerged as a brain region that integrates feeding-relevant biological signals with learning and memory processes to regulate feeding. We investigated whether the gut-derived hormone ghrelin acts in the ventral HPC (vHPC) to increase meal size through interactions with gut-derived satiation signaling. METHODS Interactions between vHPC ghrelin signaling, gut-derived satiation signaling, feeding, and interoceptive discrimination learning were assessed via rodent behavioral neuropharmacological approaches. Downstream neural pathways were identified using transsynaptic virus-based tracing strategies. RESULTS vHPC ghrelin signaling counteracted the food intake-reducing effects produced by various peripheral biological satiation signals, including cholecystokinin, exendin-4 (a glucagon-like peptide-1 receptor agonist), amylin, and mechanical distension of the stomach. Furthermore, vHPC ghrelin signaling produced interoceptive cues that generalized to a perceived state of energy deficit, thereby providing a potential mechanism for the attenuation of satiation processing. Neuroanatomical tracing identified a multiorder connection from vHPC neurons to lateral hypothalamic area orexin (hypocretin)-producing neurons that project to the laterodorsal tegmental nucleus in the hindbrain. Lastly, vHPC ghrelin signaling increased spontaneous meal size via downstream orexin receptor signaling in the laterodorsal tegmental nucleus. CONCLUSIONS vHPC ghrelin signaling increases meal size by counteracting the efficacy of various gut-derived satiation signals. These effects occur via downstream orexin signaling to the hindbrain laterodorsal tegmental nucleus, thereby highlighting a novel hippocampus-hypothalamus-hindbrain pathway regulating meal size control.
Collapse
Affiliation(s)
- Andrea N. Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Clarissa M. Liu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Alyssa M. Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Emily E. Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA,Correspondence: Dr. Scott E. Kanoski, Department of Biological Sciences, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA, Tel: +1 213 821 5762, Fax: +1 213 740 6159.
| |
Collapse
|
17
|
Cherait A, Maucotel J, Lefranc B, Leprince J, Vaudry D. Intranasal Administration of PACAP Is an Efficient Delivery Route to Reduce Infarct Volume and Promote Functional Recovery After Transient and Permanent Middle Cerebral Artery Occlusion. Front Endocrinol (Lausanne) 2020; 11:585082. [PMID: 33551991 PMCID: PMC7855853 DOI: 10.3389/fendo.2020.585082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Intranasal (IN) administration appears to be a suitable route for clinical use as it allows direct delivery of bioactive molecules to the central nervous system, reducing systemic exposure and sides effects. Nevertheless, only some molecules can be transported to the brain from the nasal cavity. This led us to compare the efficiency of an IN, intravenous (IV), and intraperitoneal (IP) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) after transient or permanent middle cerebral artery occlusion (MCAO) in C57BL/6 mice. The results show that the neuroprotective effect of PACAP is much more efficient after IN administration than IV injection while IP injection had no effect. IN administration of PACAP reduced the infarct volume when injected within 6 h after the reperfusion and improved functional recovery up to at least 1 week after the ischemia.
Collapse
Affiliation(s)
- Asma Cherait
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Department of Natural and Life Sciences, Faculty of Sciences, University of Algiers, Algiers, Algeria
- Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
- *Correspondence: David Vaudry, ; Asma Cherait,
| | - Julie Maucotel
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Benjamin Lefranc
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
- *Correspondence: David Vaudry, ; Asma Cherait,
| |
Collapse
|
18
|
Lv S, Zhou Y, Feng Y, Zhang X, Wang X, Yang Y, Wang X. Peripheral Spexin Inhibited Food Intake in Mice. Int J Endocrinol 2020; 2020:4913785. [PMID: 32831833 PMCID: PMC7426757 DOI: 10.1155/2020/4913785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 11/17/2022] Open
Abstract
Spexin (SPX, NPQ), a novel endogenous neuropeptide, was firstly identified by bioinformatics. Spexin gene and protein widely distributed in the central nervous system and peripheral tissues, such as the hypothalamus and digestive tract. The role of spexin in appetite regulation in mammalian is still unclear. The present study was designed to investigate the mechanism and effect of peripheral spexin on food intake in mice. During the light period, an intraperitoneal (i.p.) injection of spexin (10 nmol/mouse) significantly inhibited cumulative food intake at 2, 4, and 6 h after treatment in fasted mice. During the dark period, spexin (1 and 10 nmol/mouse, i.p.) significantly suppressed cumulative food intake at 4 and 6 h after treatment in freely feeding mice. The GALR3 antagonist SNAP37889, not GALR2 antagonist, significantly antagonized the inhibitory effect on cumulative food intake (0-6 h) induced by spexin. Spexin significantly reduced the mRNA level of Npy mRNA, not Agrp, Pomc, Cart, Crh, Orexin, or Mch, in the hypothalamus. Spexin (10 nmol/mouse, i.p.) increased the number of c-Fos positive neurons in hypothalamic AHA and SCN, but not in ARC, DMN, LHA, PVN, SON, or VMH. The hypothalamic p-CaMK2 protein expression was upregulated by spexin. This study indicated that acute peripheral injection of spexin inhibited mouse food intake. The anorectic effect may be mediated by GALR3, and inhibiting neuropeptide Y (NPY) via p-CaMK2 and c-Fos in the hypothalamus.
Collapse
Affiliation(s)
- Shuangyu Lv
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yu Feng
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinyue Wang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanjie Yang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinchun Wang
- The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| |
Collapse
|
19
|
Lazzarino GP, Acutain MF, Canesini G, Andreoli MF, Ramos JG. Cafeteria diet induces progressive changes in hypothalamic mechanisms involved in food intake control at different feeding periods in female rats. Mol Cell Endocrinol 2019; 498:110542. [PMID: 31430504 DOI: 10.1016/j.mce.2019.110542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
We studied the effects of cafeteria diet (CAF) intake from weaning on mRNA levels and DNA methylation state of feeding-related neuropeptides and hormone receptors in individual hypothalamic nuclei at different feeding periods. Four weeks of CAF (short-term) increased energy intake and adiposity, without affecting neuropeptides' expression. Eleven weeks of CAF (medium-term) increased energy intake, adiposity, leptinemia, and body weight, with an orexigenic response of the lateral hypothalamus, paraventricular and ventromedial nuclei, given by upregulation of Orexins, AgRP, and NPY opposed by an anorectic signal of the arcuate nucleus, which displayed a higher POMC expression. The changes in neuropeptidic mRNA levels were related to epigenetic modifications in their promoter regions. Metabolic and molecular changes were intensified after 20 weeks of diet (long-term). The alterations in these hypothalamic brain nuclei could add information about their differential role in food intake control, and how their action is disrupted during the development of obesity.
Collapse
Affiliation(s)
- Gisela Paola Lazzarino
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - María Florencia Acutain
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - Guillermina Canesini
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional Del Litoral (UNL), Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - María Florencia Andreoli
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina; Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| |
Collapse
|
20
|
Gaudet DA, El-Desoky D, Poret JM, Braymer HD, Primeaux SD. Expression of neural markers of gustatory signaling are differentially altered by continuous and intermittent feeding patterns. Physiol Behav 2019; 212:112719. [PMID: 31634524 DOI: 10.1016/j.physbeh.2019.112719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Food intake patterns are regulated by signals from the gustatory neural circuit, a complex neural network that begins at the tongue and continues to homeostatic and hedonic brain regions involved in eating behavior. The goal of the current study was to investigate the short-term effects of continuous access to a high fat diet (HFD) versus limited access to dietary fat on the gustatory neural circuit. Male Sprague-Dawley rats were fed a chow diet, a HFD (56% kcal from fat), or provided limited, daily (2 h/day) or limited, intermittent (2 h/day, 3 times/week) access to vegetable shortening for 2 weeks. Real time PCR was used to determine mRNA expression of markers of fat sensing/signaling (e.g. CD36) on the circumvallate papillae, markers of homeostatic eating in the mediobasal hypothalamus (MBH) and markers of hedonic eating in the nucleus accumbens (NAc). Continuous HFD increased mRNA levels of lingual CD36 and serotonin signaling, altered markers of homeostatic and hedonic eating. Limited, intermittent access to dietary fat selectively altered the expression of genes associated with the regulation of dopamine signaling. Overall, these data suggest that short-term, continuous access to HFD leads to altered fat taste and decreased expression of markers of homeostatic and hedonic eating. Limited, intermittent access, or binge-like, consumption of dietary fat led to an overall increase in markers of hedonic eating, without altering expression of lingual fat sensors or homeostatic eating. These data suggest that there are differential effects of meal patterns on gustatory neurocircuitry which may regulate the overconsumption of fat and lead to obesity.
Collapse
Affiliation(s)
- Darryl A Gaudet
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Dalia El-Desoky
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Jonquil M Poret
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, USA; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
21
|
Sirohi S, Skripnikova E, Davis JF. Vertical Sleeve Gastrectomy Attenuates Hedonic Feeding Without Impacting Alcohol Drinking in Rats. Obesity (Silver Spring) 2019; 27:603-611. [PMID: 30740914 PMCID: PMC6430654 DOI: 10.1002/oby.22415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Roux-en-Y gastric bypass surgery and vertical sleeve gastrectomy (VSG) are the most commonly performed bariatric procedures. Whereas studies report new-onset alcohol misuse following Roux-en-Y gastric bypass, the impact of VSG on alcohol intake is less clear. Hedonic feeding, alcohol drinking, and hypothalamic obesity-related gene expression following VSG were evaluated. METHODS Male Long-Evans rats underwent VSG or sham surgery. To evaluate hedonic feeding, rats received a high-fat diet following behavioral satiation on chow. Alcohol (5%-10% v/v) drinking was assessed in a two-bottle choice paradigm. Finally, polymerase chain reaction array evaluated gene expression. RESULTS VSG induced moderate but significant weight loss. Sham rats significantly escalated high-fat diet intake following behavioral satiation, an effect significantly reduced in VSG rats. A moderate decrease in alcohol intake was observed in VSG rats at low (5%) alcohol concentration. However, overall, no significant between-group differences were evident. Key hypothalamic orexigenic transcripts linked to stimulation of food and alcohol intake were significantly decreased in VSG rats. CONCLUSIONS VSG attenuated hedonic feeding without impacting alcohol drinking, an effect potentially mediated by alterations in genetic information flow within the hypothalamus. Importantly, these data highlight VSG as an effective bariatric procedure with a potentially reduced risk of developing alcohol use disorder.
Collapse
Affiliation(s)
- Sunil Sirohi
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA
- Corresponding Authors: Jon F. Davis, PhD, Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, 1815 Ferdinand’s Lane, Pullman, WA, 99164, Tel (Office): 509-335-8163, , Sunil Sirohi, PhD, Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125, Tel (Office): 504-520-5471; (lab) 504-520-5332, ;
| | - Elena Skripnikova
- Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
- Corresponding Authors: Jon F. Davis, PhD, Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, 1815 Ferdinand’s Lane, Pullman, WA, 99164, Tel (Office): 509-335-8163, , Sunil Sirohi, PhD, Laboratory of Endocrine and Neuropsychiatric Disorders, Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125, Tel (Office): 504-520-5471; (lab) 504-520-5332, ;
| |
Collapse
|
22
|
Raghav A, Ahmad J, Naseem I. Chronic unpredictable environmental stress impair biochemical and physiological homeostasis: Role in diabetes mellitus. Diabetes Metab Syndr 2019; 13:1021-1030. [PMID: 31336438 DOI: 10.1016/j.dsx.2019.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
AIMS Chronic unpredictable environmental stress (CUES) may induce predisposition to diabetes mellitus. This study investigates the role of CUES on impaired homeostasis. MATERIAL AND METHODS Stressed group mice (n = 20) were exposed to CUES for 16 weeks. Weekly body weight, feed consumption, feed efficiency ratio, fasting blood glucose were monitored. Plasma HbA1c, plasma cortisol, plasma epinephrine and plasma insulin, serum lipids, antioxidants and carbohydrate metabolizing enzymes activity were assessed along with DNA damage and histopathological examination of liver, kidney, pancreas, spleen and skeletal muscles. RESULTS AND CONCLUSION s: Fasting blood glucose levels & HbA1c in the stressed were significantly higher compared to control (p < 0.001). Serum lipids were found insignificantly higher in stressed mice compared to control. Body weights of the stressed mice and feed efficiency ratio were found significant (p < 0.001). Plasma corticosterone, plasma epinephrine, HOMA-IR was found to be significantly higher in the stressed group (p < 0.001). Plasma insulin level was found to be significantly lower in the stressed group (p < 0.001). Significant changes were observed in antioxidants level, carbohydrate metabolizing enzymes activity, peripheral tissues and DNA integrity. CUES initiates pathogenesis of diabetes.
Collapse
Affiliation(s)
- Alok Raghav
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Imrana Naseem
- Department of Biochemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
23
|
Pais-Roldán P, Edlow BL, Jiang Y, Stelzer J, Zou M, Yu X. Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury. Neuroimage 2019; 189:615-630. [PMID: 30708105 DOI: 10.1016/j.neuroimage.2019.01.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 01/03/2023] Open
Abstract
Despite the association between brainstem lesions and coma, a mechanistic understanding of coma pathogenesis and recovery is lacking. We developed a coma model in the rat mimicking human brainstem coma, which allowed multimodal analysis of a brainstem tegmentum lesion's effects on behavior, cortical electrophysiology, and global brain functional connectivity. After coma induction, we observed a transient period (∼1h) of unresponsiveness accompanied by cortical burst-suppression. Comatose rats then gradually regained behavioral responsiveness concurrent with emergence of delta/theta-predominant cortical rhythms in primary somatosensory cortex. During the acute stage of coma recovery (∼1-8h), longitudinal resting-state functional MRI revealed an increase in functional connectivity between subcortical arousal nuclei in the thalamus, basal forebrain, and basal ganglia and cortical regions implicated in awareness. This rat coma model provides an experimental platform to systematically study network-based mechanisms of coma pathogenesis and recovery, as well as to test targeted therapies aimed at promoting recovery of consciousness after coma.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, 72074, Germany
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuanyuan Jiang
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Johannes Stelzer
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany
| | - Ming Zou
- Department of Geriatrics & Neurology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, 72076, Germany; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
24
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
25
|
Asprosin: Possible target in connection with ghrelin and cytokine network expression in the post-burn treatment. Med Hypotheses 2018; 118:163-168. [DOI: 10.1016/j.mehy.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
|
26
|
Ans AH, Anjum I, Satija V, Inayat A, Asghar Z, Akram I, Shrestha B. Neurohormonal Regulation of Appetite and its Relationship with Stress: A Mini Literature Review. Cureus 2018; 10:e3032. [PMID: 30254821 PMCID: PMC6150743 DOI: 10.7759/cureus.3032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stress has long been known to affect eating behaviors in humans. Stress-induced hyperphagia is considered a potential cause for the development of obesity. Given the high prevalence of obesity and its association with other cardiovascular and metabolic disorders, the subject of stress-induced eating has become even more important. We reviewed data from past studies to further elucidate the relationship between stress, appetite regulation and eating patterns in humans. Even though it is difficult to say with certainty that a person exposed to stress will undereat or overeat, but certain assumptions can be made. Generally, acute stress results in decreased eating whereas chronic stress results in increased eating. Glucocorticoids, the effector molecules of the stress response, increase the tendency to consume high-calorie, palatable foods. Further studies that can link the biological markers of stress-response with the hormones and neurotransmitters of appetite regulation can broaden our understanding of the subject. These studies can provide a groundwork for the development of effective anti-obesity strategies.
Collapse
Affiliation(s)
- Armghan H Ans
- Cardiology, University of Pennsylvania, Philadelphia, USA
| | - Ibrar Anjum
- Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Vaibhav Satija
- Internal Medicine, Saint Vincent Hospital, Worcester, USA
| | | | - Zain Asghar
- Internal Medicine, Services Institute of Medical Sciences, Lahore, PAK
| | - Imran Akram
- Internal Medicine, King Edward Medical University/Mayo Hospital, Lahore, PAK
| | | |
Collapse
|
27
|
Ding R, Yang M, Wang X, Quan J, Zhuang Z, Zhou S, Li S, Xu Z, Zheng E, Cai G, Liu D, Huang W, Yang J, Wu Z. Genetic Architecture of Feeding Behavior and Feed Efficiency in a Duroc Pig Population. Front Genet 2018; 9:220. [PMID: 29971093 PMCID: PMC6018414 DOI: 10.3389/fgene.2018.00220] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Abstract
Increasing feed efficiency is a major goal of breeders as it can reduce production cost and energy consumption. However, the genetic architecture of feeding behavior and feed efficiency traits remains elusive. To investigate the genetic architecture of feed efficiency in pigs, three feeding behavior traits (daily feed intake, number of daily visits to feeder, and duration of each visit) and two feed efficiency traits (feed conversion ratio and residual feed intake) were considered. We performed genome-wide association studies (GWASs) of the five traits using a population of 1,008 Duroc pigs genotyped with an Illumina Porcine SNP50K BeadChip. A total of 9 genome-wide (P < 1.54E-06) and 35 suggestive (P < 3.08E-05) single nucleotide polymorphisms (SNPs) were detected. Two pleiotropic quantitative trait loci (QTLs) on SSC 1 and SSC 7 were found to affect more than one trait. Markers WU_10.2_7_18377044 and DRGA0001676 are two key SNPs for these two pleiotropic QTLs. Marker WU_10.2_7_18377044 on SSC 7 contributed 2.16 and 2.37% of the observed phenotypic variance for DFI and RFI, respectively. The other SNP DRGA0001676 on SSC 1 explained 3.22 and 5.46% of the observed phenotypic variance for FCR and RFI, respectively. Finally, functions of candidate genes and gene set enrichment analysis indicate that most of the significant pathways are associated with hormonal and digestive gland secretion during feeding. This study advances our understanding of the genetic mechanisms of feeding behavior and feed efficiency traits and provide an opportunity for increasing feeding efficiency using marker-assisted selection or genomic selection in pigs.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shaoyun Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Dewu Liu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| |
Collapse
|
28
|
Perron IJ, Keenan BT, Chellappa K, Lahens NF, Yohn NL, Shockley KR, Pack AI, Veasey SC. Dietary challenges differentially affect activity and sleep/wake behavior in mus musculus: Isolating independent associations with diet/energy balance and body weight. PLoS One 2018; 13:e0196743. [PMID: 29746501 PMCID: PMC5945034 DOI: 10.1371/journal.pone.0196743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. MATERIALS AND METHODS Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. RESULTS Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. CONCLUSIONS Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.
Collapse
Affiliation(s)
- Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: ,
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karthikeyani Chellappa
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Lahens
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicole L. Yohn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sigrid C. Veasey
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
29
|
Li Z, Liu X, Zhang P, Han R, Sun G, Jiang R, Wang Y, Liu X, Li W, Kang X, Tian Y. Comparative transcriptome analysis of hypothalamus-regulated feed intake induced by exogenous visfatin in chicks. BMC Genomics 2018; 19:249. [PMID: 29642854 PMCID: PMC5896085 DOI: 10.1186/s12864-018-4644-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
Abstract
Background The intracerebroventricular injection of visfatin increases feed intake. However, little is known about the molecular mechanism in chicks. This study was conducted to assess the effect of visfatin on the feeding behavior of chicks and the associated molecular mechanism. Results In response to the intraventricular injection of 40 ng and 400 ng visfatin, feed intake in chicks was significantly increased, and the concentrations of glucose, insulin, TG, HDL and LDL were significantly altered. Using RNA-seq, we identified DEGs in the chick hypothalamus at 60 min after injection with various doses of visfatin. In total, 325, 85 and 519 DEGs were identified in the treated chick hypothalamus in the LT vs C, HT vs C and LT vs HT comparisons, respectively. The changes in the expression profiles of DEGs, GO functional categories, KEGG pathways, and PPI networks by visfatin-mediated regulation of feed intake were analyzed. The DEGs were grouped into 8 clusters based on their expression patterns via K-mean clustering; there were 14 appetite-related DEGs enriched in the hormone activity GO term. The neuroactive ligand-receptor interaction pathway was the key pathway affected by visfatin. The PPI analysis of DEGs showed that POMC was a hub gene that interacted with the maximum number of nodes and ingestion-related pathways, including POMC, CRH, AgRP, NPY, TRH, VIP, NPYL, CGA and TSHB. Conclusion These common DEGs were enriched in the hormone activity GO term and the neuroactive ligand-receptor interaction pathway. Therefore, visfatin causes hyperphagia via the POMC/CRH and NPY/AgRP signaling pathways. These results provide valuable information about the molecular mechanisms of the regulation of food intake by visfatin. Electronic supplementary material The online version of this article (10.1186/s12864-018-4644-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuelian Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Panpan Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenya Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
30
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
31
|
Marraudino M, Bonaldo B, Farinetti A, Panzica G, Ponti G, Gotti S. Metabolism Disrupting Chemicals and Alteration of Neuroendocrine Circuits Controlling Food Intake and Energy Metabolism. Front Endocrinol (Lausanne) 2018; 9:766. [PMID: 30687229 PMCID: PMC6333703 DOI: 10.3389/fendo.2018.00766] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
The metabolism-disrupting chemicals (MDCs) are molecules (largely belonging to the category of endocrine disrupting chemicals, EDCs) that can cause important diseases as the metabolic syndrome, obesity, Type 2 Diabetes Mellitus or fatty liver. MDCs act on fat tissue and liver, may regulate gut functions (influencing absorption), but they may also alter the hypothalamic peptidergic circuits that control food intake and energy metabolism. These circuits are normally regulated by several factors, including estrogens, therefore those EDCs that are able to bind estrogen receptors may promote metabolic changes through their action on the same hypothalamic circuits. Here, we discuss data showing how the exposure to some MDCs can alter the expression of neuropeptides within the hypothalamic circuits involved in food intake and energy metabolism. In particular, in this review we have described the effects at hypothalamic level of three known EDCs: Genistein, an isoflavone (phytoestrogen) abundant in soy-based food (a possible new not-synthetic MDC), Bisphenol A (compound involved in the manufacturing of many consumer plastic products), and Tributyltin chloride (one of the most dangerous and toxic endocrine disruptor, used in antifouling paint for boats).
Collapse
Affiliation(s)
- Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Alice Farinetti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
- *Correspondence: GianCarlo Panzica
| | - Giovanna Ponti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Opstal AMV, Akintola AA, Elst MVD, Westendorp RG, Pijl H, Heemst DV, Grond JVD. Effects of intranasal insulin application on the hypothalamic BOLD response to glucose ingestion. Sci Rep 2017; 7:13327. [PMID: 29042645 PMCID: PMC5645424 DOI: 10.1038/s41598-017-13818-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/02/2017] [Indexed: 11/09/2022] Open
Abstract
The hypothalamus is a crucial structure in the brain that responds to metabolic cues and regulates energy homeostasis. Patients with type 2 diabetes demonstrate a lack of hypothalamic neuronal response after glucose ingestion, which is suggested to be an underlying cause of the disease. In this study, we assessed whether intranasal insulin can be used to enhance neuronal hypothalamic responses to glucose ingestion. In a randomized, double-blinded, placebo-controlled 4-double cross-over experiment, hypothalamic activation was measured in young non- diabetic subjects by determining blood-oxygen-level dependent MRI signals over 30 minutes before and after ingestion of 75 g glucose dissolved in 300 ml water, under intranasal insulin or placebo condition. Glucose ingestion under placebo condition lead to an average 1.4% hypothalamic BOLD decrease, under insulin condition the average response to glucose was a 2.2% decrease. Administration of water did not affect the hypothalamic BOLD responses. Intranasal insulin did not change circulating glucose and insulin levels. Still, circulating glucose levels showed a significant dampening effect on the BOLD response and insulin levels a significant strengthening effect. Our data provide proof of concept for future experiments testing the potential of intranasal application of insulin to ameliorate defective homeostatic control in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Anna M van Opstal
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Abimbola A Akintola
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marjan van der Elst
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Rudi G Westendorp
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Public Health and Centre for Healthy Ageing, University of Copenhagen, Copenhagen, Denmark
| | - Hanno Pijl
- Department of Internal Medicine, Section Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
33
|
Mosa R, Huang L, Li H, Grist M, LeRoith D, Chen C. Long-term treatment with the ghrelin receptor antagonist [d-Lys3]-GHRP-6 does not improve glucose homeostasis in nonobese diabetic MKR mice. Am J Physiol Regul Integr Comp Physiol 2017; 314:R71-R83. [PMID: 28903914 DOI: 10.1152/ajpregu.00157.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long-term treatment with the ghrelin receptor antagonist [d-Lys3]-GHRP-6 does not improve glucose homeostasis in nonobese diabetic MKR mice. Am J Physiol Regul Integr Comp Physiol 314: R71-R83, 2018. First published September 13, 2017; doi: 10.1152/ajpregu.00157.2017 .-Ghrelin secretion has been associated with increased caloric intake and adiposity. The expressions of ghrelin and its receptor (GHS-R1a) in the pancreas has raised the interest about the role of ghrelin in glucose homeostasis. Most of the studies showed that ghrelin promoted hyperglycemia and inhibited insulin secretion. This raised the interest in using GHS-R1a antagonists as therapeutic targets for type 2 diabetes. Available data of GHS-R antagonists are on a short-term basis. Moreover, the complexity of GHS-R1a signaling makes it difficult to understand the mechanism of action of GHS-R1a antagonists. This study examined the possible effects of long-term treatment with a GHS-R1a antagonist, [d-Lys3]-growth hormone-releasing peptide (GHRP)-6, on glucose homeostasis, food intake, and indirect calorimetric parameters in nonobese diabetic MKR mice. Our results showed that [d-Lys3]-GHRP-6 (200 nmol/mouse) reduced pulsatile growth hormone secretion and body fat mass as expected but worsened glucose and insulin intolerances and increased cumulative food intake unexpectedly. In addition, a significant increase in blood glucose and decreases in plasma insulin and C-peptide levels were observed in MKR mice following long-term [d-Lys3]-GHRP-6 treatment, suggesting a direct inhibition of insulin secretion. Immunofluorescence staining of pancreatic islets showed a proportional increase in somatostatin-positive cells and a decrease in insulin-positive cells in [d-Lys3]-GHRP-6-treated mice. Furthermore, [d-Lys3]-GHRP-6 stimulated food intake on long-term treatment via reduction of proopiomelanocortin gene expression and antagonized GH secretion via reduced growth hormone-releasing hormone gene expression in hypothalamus. These results demonstrate that [d-Lys3]-GHRP-6 is not completely opposite to ghrelin and may not be a treatment option for type 2 diabetes.
Collapse
Affiliation(s)
- Rasha Mosa
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Lili Huang
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Hongzhuo Li
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Michael Grist
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Derek LeRoith
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Preload of slowly digestible carbohydrate microspheres decreases gastric emptying rate of subsequent meal in humans. Nutr Res 2017; 45:46-51. [DOI: 10.1016/j.nutres.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/17/2017] [Accepted: 06/30/2017] [Indexed: 11/21/2022]
|
35
|
Bancks MP, Alonso A, Gottesman RF, Mosley TH, Selvin E, Pankow JS. Brain function and structure and risk for incident diabetes: The Atherosclerosis Risk in Communities Study. Alzheimers Dement 2017. [PMID: 28624149 DOI: 10.1016/j.jalz.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Diabetes is prospectively associated with cognitive decline. Whether lower cognitive function and worse brain structure are prospectively associated with incident diabetes is unclear. METHODS We analyzed data for 10,133 individuals with cognitive function testing (1990-1992) and 1212 individuals with brain magnetic resonance imaging (1993-1994) from the Atherosclerosis Risk in Communities cohort. We estimated hazard ratios for incident diabetes through 2014 after adjustment for traditional diabetes risk factors and cohort attrition. RESULTS Higher level of baseline cognitive function was associated with lower risk for diabetes (per 1 standard deviation, hazard ratio = 0.94; 95% confidence interval = 0.90, 0.98). This association did not persist after accounting for baseline glucose level, case ascertainment methods, and cohort attrition. No association was observed between any brain magnetic resonance imaging measure and incident diabetes. DISCUSSION This is one of the first studies to prospectively evaluate the association between both cognitive function and brain structure and the incidence of diabetes.
Collapse
Affiliation(s)
- Michael P Bancks
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Elizabeth Selvin
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| |
Collapse
|
36
|
Sekar R, Wang L, Chow BKC. Central Control of Feeding Behavior by the Secretin, PACAP, and Glucagon Family of Peptides. Front Endocrinol (Lausanne) 2017; 8:18. [PMID: 28223965 PMCID: PMC5293785 DOI: 10.3389/fendo.2017.00018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Constituting a group of structurally related brain-gut peptides, secretin (SCT), pituitary adenylate cyclase-activating peptide (PACAP), and glucagon (GCG) family of peptide hormones exert their functions via interactions with the class B1 G protein-coupled receptors. In recent years, the roles of these peptides in neuroendocrine control of feeding behavior have been a specific area of research focus for development of potential therapeutic drug targets to combat obesity and metabolic disorders. As a result, some members in the family and their analogs have already been utilized as therapeutic agents in clinical application. This review aims to provide an overview of the current understanding on the important role of SCT, PACAP, and GCG family of peptides in central control of feeding behavior.
Collapse
Affiliation(s)
- Revathi Sekar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Lei Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
37
|
Bili E, Karagianni E, Goulis DG, Toulis KA, Grimbizis G, Tarlatzis BC. Galanin in pregnancy: Is there an association with birth weight and gestational diabetes? J Matern Fetal Neonatal Med 2016; 30:2812-2817. [PMID: 27881034 DOI: 10.1080/14767058.2016.1263990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To review the actions of galanin during pregnancy and to examine the existence of an association between galanin and birthweight as well as with gestational diabetes mellitus (GDM). RESULTS Galanin concentrations in maternal circulation are similar in pregnant and nonpregnant status and have been correlated with body mass index (BMI). There is evidence of an association between birthweight and galanin concentrations in amniotic fluid during second trimester and galanin concentrations in umbilical cord at term. Moreover, there is a positive correlation between maternal galanin concentrations and existence of GDM. However, galanin concentrations in fetal circulation have not been correlated with neonatal fat mass. Neonatal galanin concentrations do not differ among uncomplicated pregnancies and those complicated by GDM or intrauterine growth retardation (IUGR). CONCLUSIONS There is evidence for an association between galanin during pregnancy with birth weight and metabolic processes. Further studies are required in order to elucidate this role. Galanin could serve as a predictor of neonatal body weight, alternations of which contribute to the development of diseases during adulthood.
Collapse
Affiliation(s)
- Eleni Bili
- a First Department of Obstetrics - Gynecology , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Evdokia Karagianni
- a First Department of Obstetrics - Gynecology , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Dimitrios G Goulis
- a First Department of Obstetrics - Gynecology , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Konstantinos A Toulis
- b Department of Endocrinology , 424 General Military Hospital , Thessaloniki , Greece
| | - Grigoris Grimbizis
- a First Department of Obstetrics - Gynecology , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Basil C Tarlatzis
- a First Department of Obstetrics - Gynecology , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
38
|
Le Thuc O, Cansell C, Bourourou M, Denis RG, Stobbe K, Devaux N, Guyon A, Cazareth J, Heurteaux C, Rostène W, Luquet S, Blondeau N, Nahon JL, Rovère C. Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Rep 2016; 17:1738-1752. [PMID: 27733491 DOI: 10.15252/embr.201541499] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Céline Cansell
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Miled Bourourou
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Raphaël Gp Denis
- Univ Paris Diderot Sorbonne Paris Cité Unité de Biologie Fonctionnelle et Adaptative CNRS UMR 8251, Paris, France
| | - Katharina Stobbe
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Nadège Devaux
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Alice Guyon
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Julie Cazareth
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | | | - William Rostène
- Institut de la Vision UMRS 968-Université Pierre et Marie Curie, Paris, France
| | - Serge Luquet
- Univ Paris Diderot Sorbonne Paris Cité Unité de Biologie Fonctionnelle et Adaptative CNRS UMR 8251, Paris, France
| | - Nicolas Blondeau
- Université Côte d'Azur, Nice, France.,CNRS, IPMC, Sophia Antipolis, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, Nice, France .,CNRS, IPMC, Sophia Antipolis, France.,Station de Primatologie UPS846 CNRS, Rousset-sur-Arc, France
| | - Carole Rovère
- Université Côte d'Azur, Nice, France .,CNRS, IPMC, Sophia Antipolis, France
| |
Collapse
|
39
|
Nagarajan G, Jurkevich A, Kang SW, Kuenzel WJ. Diencephalic and septal structures containing the avian vasotocin receptor (V1aR) involved in the regulation of food intake in chickens, Gallus gallus. Physiol Behav 2016; 164:268-76. [PMID: 27317836 DOI: 10.1016/j.physbeh.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/23/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022]
Abstract
Recently, it was found that the avian central vasotocin receptor (V1aR) is associated with the regulation of food intake. To identify V1aR-containing brain structures regulating food intake, a selective V1aR antagonist SR-49059 that induced food intake was administrated intracerebroventricularly in male chickens followed by detection of brain structures using FOS immunoreactivity. Particularly, the hypothalamic core region of the paraventricular nucleus, lateral hypothalamic area, dorsomedial hypothalamic nucleus, a subnucleus of the central extended amygdalar complex [dorsolateral bed nucleus of the stria terminalis], medial septal nucleus and caudal brainstem [nucleus of the solitary tract] showed significantly increased FOS-ir cells. On the other hand, the supraoptic nucleus of the preoptic area and the nucleus of the hippocampal commissure of the septum showed suppressed FOS immunoreactivity in the V1aR antagonist treatment group. Further investigation revealed that neuronal activity of arginine vasotocin (AVT-ir) magnocellular neurons in the supraoptic nucleus, preoptic periventricular nucleus, paraventricular nucleus and ventral periventricular hypothalamic nucleus and most likely corticotropin releasing hormone (CRH-ir) neurons in the nucleus of the hippocampal commissure were reduced following the antagonist treatment. Dual immunofluorescence labeling results showed that perikarya of AVT-ir magnocellular neurons in the preoptic area and hypothalamus were colabeled with V1aR. Within the nucleus of the hippocampal commissure, CRH-ir neurons were shown in close contact with V1aR-ir glial cells. Results of the present study suggest that the V1aR plays a role in the regulation of food intake by modulating neurons that synthesize and release anorectic neuropeptides in the avian brain.
Collapse
Affiliation(s)
- Gurueswar Nagarajan
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Alexander Jurkevich
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Seong W Kang
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wayne J Kuenzel
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
40
|
Chang GQ, Karatayev O, Lukatskaya O, Leibowitz SF. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons. Peptides 2016; 79:16-26. [PMID: 27002387 PMCID: PMC4872302 DOI: 10.1016/j.peptides.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023]
Abstract
Gestational exposure to a fat-rich diet, while elevating maternal circulating fatty acids, increases in the offspring's hypothalamus and amygdala the proliferation and density of neurons that express neuropeptides known to stimulate consummatory behavior. To understand the relationship between these phenomena, this study examined in the brain of postnatal offspring (day 15) the effect of prenatal fat exposure on the transcription factor, peroxisome proliferator-activated receptor (PPAR) β/δ, which is sensitive to fatty acids, and the relationship of PPAR β/δ to the orexigenic neuropeptides, orexin, melanin-concentrating hormone, and enkephalin. Prenatal exposure to a fat-rich diet compared to low-fat chow increased the density of cells immunoreactive for PPAR β/δ in the hypothalamic paraventricular nucleus (PVN), perifornical lateral hypothalamus (PFLH), and central nucleus of the amygdala (CeA), but not the hypothalamic arcuate nucleus or basolateral amygdaloid nucleus. It also increased co-labeling of PPAR β/δ with the cell proliferation marker, BrdU, or neuronal marker, NeuN, and the triple labeling of PPAR β/δ with BrdU plus NeuN, indicating an increase in proliferation and density of new PPAR β/δ neurons. Prenatal fat exposure stimulated the double-labeling of PPAR β/δ with orexin or melanin-concentrating hormone in the PFLH and enkephalin in the PVN and CeA and also triple-labeling of PPAR β/δ with BrdU and these neuropeptides, indicating that dietary fat increases the genesis of PPAR β/δ neurons that produce these peptides. These findings demonstrate a close anatomical relationship between PPAR β/δ and the increased proliferation and density of peptide-expressing neurons in the hypothalamus and amygdala of fat-exposed offspring.
Collapse
Affiliation(s)
- G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - O Lukatskaya
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Zhang Z, Fang P, He B, Guo L, Runesson J, Langel Ü, Shi M, Zhu Y, Bo P. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats. J Diabetes Res 2016; 2016:9095648. [PMID: 27127795 PMCID: PMC4835658 DOI: 10.1155/2016/9095648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/18/2023] Open
Abstract
Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adiponectin/blood
- Animals
- Biomarkers/blood
- Bradykinin/administration & dosage
- Bradykinin/analogs & derivatives
- C-Reactive Protein/analysis
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Disease Models, Animal
- GTPase-Activating Proteins/metabolism
- Galanin/administration & dosage
- Glucose Transporter Type 4/genetics
- Glucose Transporter Type 4/metabolism
- Hypoglycemic Agents/pharmacology
- Injections, Intraventricular
- Insulin/pharmacology
- Insulin Resistance
- Male
- Peptide Fragments/administration & dosage
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Wistar
- Receptor, Galanin, Type 1/agonists
- Receptor, Galanin, Type 1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Penghua Fang
- Department of Physiology, School of Hanlin, Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, China
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Biao He
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Lili Guo
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Johan Runesson
- Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences Stockholm University, 10691 Stockholm, Sweden
| | - Ülo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences Stockholm University, 10691 Stockholm, Sweden
| | - Mingyi Shi
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
42
|
Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol Res 2016; 106:51-63. [DOI: 10.1016/j.phrs.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
|
43
|
Ardianto C, Yonemochi N, Yamamoto S, Yang L, Takenoya F, Shioda S, Nagase H, Ikeda H, Kamei J. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons. Neuroscience 2016; 320:183-93. [DOI: 10.1016/j.neuroscience.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/30/2022]
|
44
|
Li S, Liu Q, Xiao L, Chen H, Li G, Zhang Y, Lin H. Molecular cloning and functional characterization of spexin in orange-spotted grouper (Epinephelus coioides). Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:85-91. [PMID: 26944307 DOI: 10.1016/j.cbpb.2016.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
Spexin is a newly discovered neuropeptide in vertebrates. Comprehensive comparative studies are required to unveil its biological functions. In order to ascertain the neuroendocrine function of spexin in orange-spotted grouper, its full-length cDNA and genomic DNA sequences were cloned and analyzed. Sequence analyses showed that the spexin gene structure is composed of six exons and five introns, and the amino acids of mature peptide (spexin-14) in grouper are identical to that of other fish. Tissue expression analysis found that grouper spexin is highly expressed in the brain, liver and ovary. Real time-PCR analysis demonstrated that the hypothalamic expression of spexin declined gradually during the ovarian development, and was up-regulated by food deprivation. Intraperitoneal administration of spexin-14 peptides to grouper significantly elevated the mRNA levels of proopiomelanocortin (pomc) and suppressed the orexin expression in the hypothalamus, but could not change the hypothalamic expression of gonadotropin releasing hormone 1 (gnrh1). Both in vivo and in vitro administration of spexin could not significantly influence the expression of follicle-stimulating hormone β (fshβ) and luteinizing hormone β (lhβ) in the pituitary with the exception of an inhibition of gh expression. Our data suggested that the spexin has a significant role in the regulation of energy metabolism and food intake in orange-spotted grouper.
Collapse
Affiliation(s)
- Shuisheng Li
- Zhanjiang City State Key Laboratory of Marine Ecology and Environment, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qiongyu Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huapu Chen
- Zhanjiang City State Key Laboratory of Marine Ecology and Environment, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Guangli Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
45
|
Fonseka TM, Müller DJ, Kennedy SH. Inflammatory Cytokines and Antipsychotic-Induced Weight Gain: Review and Clinical Implications. MOLECULAR NEUROPSYCHIATRY 2016; 2:1-14. [PMID: 27606316 DOI: 10.1159/000441521] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023]
Abstract
Antipsychotic medications (APs), particularly second-generation APs, are associated with significant weight gain in schizophrenia patients. Recent evidence suggests that the immune system may contribute to antipsychotic-induced weight gain (AIWG) via AP-mediated alterations of cytokine levels. Antipsychotics with a high propensity for weight gain, such as clozapine and olanzapine, influence the expression of immune genes, and induce changes in serum cytokine levels to ultimately down-regulate neuroinflammation. Since inflammatory cytokines are normally involved in anorexigenic responses, reduced inflammation has been independently shown to mediate changes in feeding behaviours and other metabolic parameters, resulting in obesity. Genetic variation in pro-inflammatory cytokines is also associated with both general obesity and weight change during AP treatment, and thus, may be implicated in the pharmacogenetics of AIWG. At this time, preliminary data support a cytokine-mediated model of AIWG which may have clinical utility in developing more effective metabolic monitoring guidelines and prevention measures. However, further research is still needed to clearly elucidate the validity of this immune model. This article reviews the evidence implicating inflammatory cytokines in AIWG and its potential clinical relevance.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ont., Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, Ont., Canada; Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ont., Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, Ont., Canada
| |
Collapse
|
46
|
Ikeda H, Ardianto C, Yonemochi N, Yang L, Ohashi T, Ikegami M, Nagase H, Kamei J. Inhibition of opioid systems in the hypothalamus as well as the mesolimbic area suppresses feeding behavior of mice. Neuroscience 2015; 311:9-21. [PMID: 26454026 DOI: 10.1016/j.neuroscience.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/23/2022]
Abstract
Opioid receptors, especially μ-opioid receptors, in the ventral tegmental area (VTA) and nucleus accumbens (NAcc) are reported to regulate food motivation. However, the roles of μ-, δ- and κ-opioid receptors are not fully understood. Moreover, since μ-, δ- and κ-opioid receptors are reported to distribute in the hypothalamus, these receptors in the hypothalamus might regulate feeding behavior. Thus, the present study investigated the role of μ-, δ- and κ-opioid receptors in the VTA, the NAcc and the hypothalamus in the regulation of feeding behavior. Male ICR mice were subjected to a feeding test after food deprivation for 16h. The mRNA levels of proopiomelanocortin (POMC), preproenkephalin (PENK) and prodynorphin (PDYN), the precursors of endogenous opioid peptides, were measured by reverse transcription-polymerase chain reaction (RT-PCR). The systemic injection of non-selective (naloxone) and selective μ (β-funaltrexamine; β-FNA), δ (naltrindole) and κ (norbinaltorphimine; norBNI) opioid receptor antagonists markedly reduced food intake. In contrast, the systemic injection of preferential μ (morphine), selective δ (KNT-127) and κ (U-50,488) opioid receptor agonists did not change food intake. The mRNA levels of POMC, PENK and PDYN were decreased in the hypothalamus and the midbrain after food deprivation, whereas the mRNA levels of PENK and PDYN, but not POMC, were decreased in the ventral striatum. The injection of naloxone into the NAcc, VTA and lateral hypothalamus (LH), but not the ventromedial nucleus of the hypothalamus, significantly decreased food intake. The injection of β-FNA and naltrindole into the LH, but not the VTA or NAcc, decreased food intake. The injection of norBNI into the LH and VTA, but not the NAcc, decreased food intake. These results indicate that μ-, δ- and κ-opioid receptors in the LH play a more important role in the regulation of feeding behavior than those receptors in the VTA and the NAcc.
Collapse
Affiliation(s)
- H Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - C Ardianto
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - N Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - L Yang
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - T Ohashi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - M Ikegami
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - H Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - J Kamei
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
47
|
Pirnik Z, Železná B, Kiss A, Maletínská L. Peripheral administration of palmitoylated prolactin-releasing peptide induces Fos expression in hypothalamic neurons involved in energy homeostasis in NMRI male mice. Brain Res 2015; 1625:151-8. [PMID: 26362395 DOI: 10.1016/j.brainres.2015.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 11/26/2022]
Abstract
Energy homeostasis is the result of a balance between energy intake and expenditure, and the hypothalamus plays a key role in the regulation of these processes. The hypothalamic prolactin-releasing peptide (PrRP) is involved in food intake regulation and energy homeostasis, although only its lipidized analogs exert central anorexigenic effects after peripheral administration. The aim of the present study was to delineate the extent of the Fos expression as a marker of neuronal activation within the hypothalamic structures involved in food intake regulation after peripherally administered palmitoylated PrRP31 (palm-PrRP31) and to determine whether the anorexigenic effect of peripherally administered palm-PrRP31 influence the activity of hypocretin (HCRT) and oxytocin (OXY) neurons, i.e., the neuropeptides crucially involved in the regulation of energy homeostasis. The data confirmed an anorexigenic effect of palm-PrRP31 treatment (5mg/kg, s.c.) in mice. In the palm-PrRP31-treated animals, a significant increase in Fos expression was observed in the hypothalamic paraventricular (PVN), dorsomedial (DMN), and arcuate (Arc) nuclei and in the neurons of the nucleus of the solitary tract (NTS). Moreover, significant Fos expression was observed in the lateral hypothalamic area (LHA) HCRT neurons and PVN OXY neurons after palm-PrRP31 administration. The present findings may indicate that palm-PrRP31 may be involved in energy homeostasis via the activation of several hypothalamic structures. Fos activation of the hypothalamic OXY and HCRT neurons in the PVN and LHA emphasizes the importance of the areas mentioned in the central action of palm-PrRP31.
Collapse
Affiliation(s)
- Zdenko Pirnik
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic; Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, SAS, Bratislava, Slovak Republic; Department of Human and Clinical Pharmacology, University of Veterinary Medicine, Košice, Slovak Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic
| | - Alexander Kiss
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, SAS, Bratislava, Slovak Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, AS CR, Prague, Czech Republic.
| |
Collapse
|
48
|
Horner K, Lee S. Appetite-related peptides in childhood and adolescence: role of ghrelin, PYY, and GLP-1. Appl Physiol Nutr Metab 2015; 40:1089-99. [PMID: 26466085 DOI: 10.1139/apnm-2015-0050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During childhood and adolescence, a number of factors, including age, puberty, sex, race, and body composition, may contribute to differences in satiety, food intake, and appetite-related peptides. These peptides include the orexigenic peptide ghrelin and anorexigenic gut peptides peptide YY (PYY) and glucagon-like peptide-1 (GLP-1). For example, lower fasting ghrelin levels, lower postprandial ghrelin suppression, and blunted PYY and GLP-1 responses to food intake could contribute to a dysregulation of appetite in already obese children and adolescents. Whereas, changes in these peptides observed during puberty could facilitate growth. A greater understanding of the major moderating factors of appetite-related peptides in the pediatric population is essential to improve interpretation of study findings and for effective tailoring of strategies targeting appetite control to individuals. While more studies are needed, there is some evidence to suggest that exercise-based lifestyle interventions could be a potential therapeutic strategy to improve appetite-peptide profiles in overweight and obese children and adolescents. The aim of this review is (i) to discuss the potential moderating factors of ghrelin, PYY, and GLP-1, including age and puberty, sex, race and body composition; and (ii) to examine the effects of exercise interventions on these appetite-related gut peptides in children and adolescents.
Collapse
Affiliation(s)
- Katy Horner
- Division of Weight Management and Wellness, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15226, USA.,Division of Weight Management and Wellness, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15226, USA
| | - SoJung Lee
- Division of Weight Management and Wellness, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15226, USA.,Division of Weight Management and Wellness, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15226, USA
| |
Collapse
|
49
|
Iemolo A, Ferragud A, Cottone P, Sabino V. Pituitary Adenylate Cyclase-Activating Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the Melanocortin and the TrkB Systems. Neuropsychopharmacology 2015; 40:1846-55. [PMID: 25649277 PMCID: PMC4839508 DOI: 10.1038/npp.2015.34] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 02/03/2023]
Abstract
Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 μg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF.
Collapse
Affiliation(s)
- Attilio Iemolo
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Antonio Ferragud
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA,Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA, Tel: +1 617 638 4327, Fax: +1 617 638 5668, E-mail: or
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA,Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA, Tel: +1 617 638 4327, Fax: +1 617 638 5668, E-mail: or
| |
Collapse
|
50
|
Diet-induced obesity impairs hypothalamic glucose sensing but not glucose hypothalamic extracellular levels, as measured by microdialysis. Nutr Diabetes 2015; 5:e162. [PMID: 26075639 PMCID: PMC4491853 DOI: 10.1038/nutd.2015.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/09/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES Glucose from the diet may signal metabolic status to hypothalamic sites controlling energy homeostasis. Disruption of this mechanism may contribute to obesity but its relevance has not been established. The present experiments aimed at evaluating whether obesity induced by chronic high-fat intake affects the ability of hypothalamic glucose to control feeding. We hypothesized that glucose transport to the hypothalamus as well as glucose sensing and signaling could be impaired by high-fat feeding. SUBJECTS/METHODS Female Wistar rats were studied after 8 weeks on either control or high-lard diet. Daily food intake was measured after intracerebroventricular (i.c.v.) glucose. Glycemia and glucose content of medial hypothalamus microdialysates were measured in response to interperitoneal (i.p.) glucose or meal intake after an overnight fast. The effect of refeeding on whole hypothalamus levels of glucose transporter proteins (GLUT) 1, 2 and 4, AMPK and phosphorylated AMPK levels was determined by immunoblotting. RESULTS High-fat rats had higher body weight and fat content and serum leptin than control rats, but normal insulin levels and glucose tolerance. I.c.v. glucose inhibited food intake in control but failed to do so in high-fat rats. Either i.p. glucose or refeeding significantly increased glucose hypothalamic microdialysate levels in the control rats. These levels showed exacerbated increases in the high-fat rats. GLUT1 and 4 levels were not affected by refeeding. GLUT2 levels decreased and phosphor-AMPK levels increased in the high-fat rats but not in the controls. CONCLUSIONS The findings suggest that, in the high-fat rats, a defective glucose sensing by decreased GLUT2 levels contributed to an inappropriate activation of AMPK after refeeding, despite increased extracellular glucose levels. These derangements were probably involved in the abolition of hypophagia in response to i.c.v. glucose. It is proposed that 'glucose resistance' in central sites of feeding control may be relevant in the disturbances of energy homeostasis induced by high-fat feeding.
Collapse
|