1
|
Villarreal D, Pradhan G, Zhou Y, Xue B, Sun Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022; 12:517. [PMID: 35454106 PMCID: PMC9028691 DOI: 10.3390/biom12040517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ghrelin and obestatin are two "sibling proteins" encoded by the same preproghrelin gene but possess an array of diverse and complex functions. While there are ample literature documenting ghrelin's functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have been perceived to be antagonistic initially; however, recent studies challenge this dogma. While they have opposing effects in some systems, they function synergistically in other systems, with many functions remaining debatable. In this review, we discuss their functional relationship under three "C" categories, namely complex, complementary, and contradictory. Their functions in food intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer, and digestive system are complementary. Their functions in white adipose tissue, thermogenesis, and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions of ghrelin and obestatin under both physiological and pathological conditions, with the intent of contributing to a better understanding of these two important gut hormones.
Collapse
Affiliation(s)
- Daniel Villarreal
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
2
|
Influence of obestatin on the histological development of the small intestine in piglets during the first week of postnatal life. Animal 2020; 14:2129-2137. [PMID: 32398171 DOI: 10.1017/s1751731120000919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Obestatin is a gastrointestinal peptide having wide-ranging effects on cell proliferation; however, its mechanism of action remains poorly understood. Thus, the aim of the study was to elucidate the effect of exogenous obestatin on the postnatal structural development of the small intestine. Seven-day-old piglets with an average BW of 1.56 ± 0.23 kg were divided into four groups (n = 10) that received intragastrically obestatin (2, 10 or 15 μg/kg BW) or vehicle. After a 6-day experimental period, morphological analysis of gastrointestinal tract and small intestine wall (mitosis and apoptosis indexes, histomorphometry of mucosa and muscularis layers) was performed. The study revealed a seemingly incoherent pattern of the histological structure of the small intestine among the experimental groups, suggesting that the effect of obestatin is both intestinal segment specific and dose dependent. Histomorphometric analysis of the small intestine showed that higher doses of obestatin seem to promote the structural development of the duodenum while simultaneously hindering the maturation of more distal parts of the intestine. Intragastric administration of obestatin increased the crypt mitotic index in all segments of the small intestine with the strongest pro-mitotic activity following the administration of obestatin at a dose of 10 and 15 μg/kg BW. The significant differences in the number of apoptotic cells in the intestinal villi among the groups were observed only in proximal jejunum and ileum. In conclusion, it seems that obestatin shows a broad-spectrum of activity in the gastrointestinal tract of newborn piglets, being able to accelerate its structural development. However, the varied effect depending on the intestinal segment or the concentration of exogenous obestatin causes that further research is needed to clarify the exact mechanism of this phenomenon.
Collapse
|
3
|
Khaleel EF, Abdel-Aleem GA. Obestatin protects and reverses nonalcoholic fatty liver disease and its associated insulin resistance in rats via inhibition of food intake, enhancing hepatic adiponectin signaling, and blocking ghrelin acylation. Arch Physiol Biochem 2019; 125:64-78. [PMID: 29429367 DOI: 10.1080/13813455.2018.1437638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigated the ameliorative and protective effects of long-term obestatin administration (80 nmol/kg/ intraperitoneal injection (i.p.)) on the pathogenesis of high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD) in rats. Rats (n = 8/group) were divided as control, NAFLD, NAFLD + Simvastatin, NAFLD + obestatin, NAFLD then obestatin, and obestatin then NAFLD. Obestatin co -or post-therapy significantly reduced hepatomegaly and reversed hyperlipidemia, hepatic lipid accumulation, and insulin resistance (IR). Mechanistically obestatin treatments in these rats significantly prevented the increases in final body weights and food intake. Concomitantly, it enhanced circulatory adiponectin levels and hepatic signaling as evident by elevated hepatic protein levels of adiponectin receptors (adipoRII), carnitine palmitoyltransferase-1 (CPT-1), peroxisome proliferator-activated receptor- α (PPAR-α), and phosphor-AMPK (p-AMPK). In addition, obestatin enhanced total circulatory ghrelin levels and significantly increased deacylated ghrelin to acylated ghrelin (DAG/AG) ratio. These data suggest that obestatin reverses and protects against development or progression of NAFLD directly by modulating ghrelin and adiponectin signaling or indirectly by lowering food intake.
Collapse
Affiliation(s)
- Eman F Khaleel
- a Department of Medical Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
- b Department of Medical Physiology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Ghada A Abdel-Aleem
- c Department of Medical Biochemistry, College of Medicine , King Khalid University , Abha , Saudi Arabia
- d Department of Medical Biochemistry, Faculty of Medicine , Tanta University , Tanta , Egypt
| |
Collapse
|
4
|
Kapica M, Puzio I, Kato I, Kuwahara A, Zabielski R, Antushevich H. Exogenous obestatin affects pancreatic enzyme secretion in rat through two opposite mechanisms, direct inhibition and vagally-mediated stimulation. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/89734/2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Szlis M, Polkowska J, Skrzeczyńska E, Przybył BJ, Wójcik-Gładysz A. Does obestatin modulate the hypothalamic appetite-regulating network in peripubertal sheep? J Anim Physiol Anim Nutr (Berl) 2018; 102:690-700. [DOI: 10.1111/jpn.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/28/2018] [Indexed: 12/12/2022]
Affiliation(s)
- M. Szlis
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - J. Polkowska
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - E. Skrzeczyńska
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - B. J. Przybył
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - A. Wójcik-Gładysz
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| |
Collapse
|
6
|
Green BD, Grieve DJ. Biochemical properties and biological actions of obestatin and its relevence in type 2 diabetes. Peptides 2018; 100:249-259. [PMID: 29412827 DOI: 10.1016/j.peptides.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Obestatin was initially discovered in rat stomach extract, and although it is principally produced in the gastric mucosa, it can be found throughout the gastrointestinal tract. This 23-amino acid C-terminally amidated peptide is derived from preproghrelin and has been ascribed a wide range of metabolic effects relevant to type 2 diabetes. Obestatin reportedly inhibits gastrointestinal motility, reduces food intake and lowers body weight and improves lipid metabolism. Furthermore, it appears to exert actions on the pancreatic β-cell, most notably increasing β-cell mass and upregulating genes associated with insulin production and β-cell regeneration, with relevance to type 2 diabetes. It is becoming evident that obestatin also exerts pleiotropic effects on the cardiovascular system, possibly modulating blood pressure, endothelial function and triggering cardioprotective mechanisms, which may be important in determining cardiovascular outcomes in type 2 diabetes. Furthermore, it seems that like other gut peptides obestatin has neuroprotective properties. This review examines the biochemical properties of the obestatin peptide (its structure, sequence, stability and distribution) and the candidate receptors through which it may act. It provides a balanced examination of the reported pancreatic and extrapancreatic actions of obestatin and evaluates its potential relevance with respect to diabetes therapy, together with discussion of direct evidence linking alterations in obestatin signalling with obesity/diabetes and other diseases.
Collapse
Affiliation(s)
- Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5BN, UK.
| | - David J Grieve
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7AE, UK
| |
Collapse
|
7
|
Abstract
Ghrelin, an endoggenous for the growth hormone secretagogue receptor, has been shown to participate in the regulation of energy homeostasis and pituitary hormone secretion. Obestatin, encoded by the same gene as ghrelin, is described as a physiological opponent of ghrelin. Ghrelin and obestatin are altered in polycystic ovary syndrome (PCOS), which is characterized by insulin resistance and pituitary hormone secretion disorder. The aim of this study was to evaluate ghrelin/obestatin imbalance in relation to insulin resistance and pituitary hormone in adolescence with PCOS. This restrospective case-control study included 33 adolescence with PCOS and 38 control adolescence. Ghrelin and obestatin concentrations in serum were determined by RIA, and the serum fasting glucose and Insulin were determined by the glucose oxidase color method and INS-EASIA. The serum LH and FSH were measured by highly specific hemiluminescence immunoassays. We found that the serum ghrelin levels and ghrelin/obestatin ratio were significant lower in PCOS group than in control group, and the serum obestatin levels were significant higher in PCOS group than in control group. The ghrelin/obestatin ratios were negatively correlation with LH/FSH ratio and insulin resistant index in PCOS group. The findings of this study suggest that ghrelin/obestatin imbalance may play a role in pathogenesis of adolescent PCOS.
Collapse
Affiliation(s)
- Weiguang Wu
- a Department of Obstetrics and Gynecology , Affiliated Hospital, Logistical College of Chinese People's Armed Police Forces , Tianjin , PR China
| | - Xiaobin Fan
- b Department of Obstetrics and Gynecology , Xi'an No3 Hospital , Shanxi Xi'an , PR China
| | - Yuecheng Yu
- c Department of Obstetrics & Gynecology , Xijing Hospital, Fourth Military Medical University , Shanxi Xi'an , PR China
| | - Zheng Wang
- a Department of Obstetrics and Gynecology , Affiliated Hospital, Logistical College of Chinese People's Armed Police Forces , Tianjin , PR China
| | - Yingchun Wang
- a Department of Obstetrics and Gynecology , Affiliated Hospital, Logistical College of Chinese People's Armed Police Forces , Tianjin , PR China
| |
Collapse
|
8
|
Kołodziejski PA, Pruszyńska-Oszmałek E, Strowski MZ, Nowak KW. Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function. Endocrine 2017; 56:538-550. [PMID: 28477305 DOI: 10.1007/s12020-017-1309-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/19/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE Obestatin and ghrelin are peptides encoded by the preproghrelin gene. Obestatin inhibits food intake, in addition to regulation of glucose and lipid metabolism. Here, we test the ability of obestatin at improving metabolic control and liver function in type 2 diabetic animals (type 2 diabetes mellitus). METHODS The effects of chronic obestatin treatment of mice with experimentally induced type 2 diabetes mellitus on serum levels of glucose and lipids, and insulin sensitivity are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. RESULTS Obestatin reduced body weight and decreased serum glucose, fructosamine, and β-hydroxybutyrate levels, as well as total and low-density lipoprotein fractions of cholesterol. In addition, obestatin increased high-density lipoproteins cholesterol levels and enhanced insulin sensitivity in mice with type 2 diabetes mellitus. Moreover, obestatin diminished liver mass, hepatic triglycerides and cholesterol contents, while glycogen content was higher in livers of healthy and mice with type 2 diabetes mellitus treated with obestatin. These changes were accompanied by reduction of increased alanine aminotransferase, aspartate aminotransferase, and gamma glutamyl transpeptidase in T2DM mice with type 2 diabetes mellitus. Obestatin increased adiponectin levels and reduced leptin concentration. Obestatin influenced the expression of genes involved in lipid and carbohydrate metabolism by increasing Fabp5 and decreasing G6pc, Pepck, Fgf21 mRNA in the liver. Obestatin increased both, AKT and AMPK phosphorylation, and sirtuin 1 (SIRT1) protein levels as well as mRNA expression in the liver. CONCLUSION Obestatin improves metabolic abnormalities in type 2 diabetes mellitus, restores hepatic lipid contents and decreases hepatic enzymes. Therefore, obestatin could potentially have a therapeutic relevance in treating of insulin resistance and metabolic dysfunctions in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Paweł A Kołodziejski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska Street 35, 60-637, Poznan, Poland.
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska Street 35, 60-637, Poznan, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology & the Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, 13353, Berlin, Germany
- Park-Klinik Weissensee, Internal Medicine - Gastroenterology, Berlin, 13086, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wolynska Street 35, 60-637, Poznan, Poland
| |
Collapse
|
9
|
Pradhan G, Wu CS, Han Lee J, Kanikarla P, Guo S, Yechoor VK, Samson SL, Sun Y. Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R. Sci Rep 2017; 7:979. [PMID: 28428639 PMCID: PMC5430520 DOI: 10.1038/s41598-017-00888-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
Orexigenic hormone ghrelin and anorexic hormone obestatin are encoded by the same preproghrelin gene. While it is known that ghrelin inhibits glucose-stimulated insulin secretion (GSIS), the effect of obestatin on GSIS is unclear. Ghrelin's effect is mediated by its receptor Growth Hormone Secretagogue Receptor (GHS-R), but the physiologically relevant receptor of obestatin remains debatable. Here we have investigated the effect of obestatin on GSIS in vitro, in vivo and ex vivo, and tested whether obestatin regulates insulin secretion through GHS-R. We found that under hyperglycemic condition, obestatin augments GSIS in rat insulinoma cells (INS-1) and in pancreatic islets from ghrelin -/- mice. Surprisingly, obestatin-induced GSIS was absent in β-cells in which GHS-R was suppressed. Obestatin-induced insulin secretion was abolished in the circulation of Ghsr -/- mice, and in pancreatic islets isolated from Ghsr -/- mice. We also found that obestatin-induced GSIS was attenuated in islets isolated from β-cell-specific Ghsr knockout MIP-Cre/ERT;Ghsrf/f mice. Our data collectively demonstrate that obestatin is a potent insulin secretagogue under hyperglycemic condition, and obestatin's effect on insulin secretion is mediated by GHS-R in pancreatic β-cells. Our findings reveal an intriguing insight that obestatin and ghrelin have opposing effects on insulin secretion, and both are mediated through ghrelin receptor GHS-R.
Collapse
Affiliation(s)
- Geetali Pradhan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Shan Wu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Jong Han Lee
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Preeti Kanikarla
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shaodong Guo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Vijay K Yechoor
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan L Samson
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yuxiang Sun
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Zhao SJ, Wang DH, Li YW, Han L, Xiao X, Ma M, Wan DCC, Hong A, Ma Y. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects. Int J Nanomedicine 2017; 12:2143-2160. [PMID: 28356733 PMCID: PMC5367579 DOI: 10.2147/ijn.s130566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP), was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD), comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC) as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4-and 7.1-fold longer than wild PACAP (~5 min) and DBAYL (~1.98 h), respectively. SCD (10 nmol/L) significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H2O2-injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug through its insulinotropic effect), DBAYL, SeNPs or SC. A single injection of SCD (20 nmol/kg) into db/db mice with type 2 diabetes leads to enhanced insulin secretion and sustained hypoglycemic effect, and the effectiveness and duration of SCD in enhancing insulin secretion and reducing blood glucose levels are much stronger than Exendin-4, SeNPs or SC. In db/db mice, chronic administration of SCD by daily injection for 12 weeks markedly improved glucose and lipid profiles, insulin sensitivity and the structures of pancreatic and adipose tissue. The results indicate that SC can play a role as a carrier for the slow release of bioactive peptides and SCD could be a hopeful therapeutic against type 2 diabetes through the synergy effects of DBAYL and SeNPs.
Collapse
Affiliation(s)
- Shao-Jun Zhao
- Institute of Biomedicine, Department of Cellular Biology, Jinan University; National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - De-Hua Wang
- Institute of Biomedicine, Department of Cellular Biology, Jinan University; National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Yan-Wei Li
- Institute of Biomedicine, Department of Cellular Biology, Jinan University; National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Lei Han
- Institute of Biomedicine, Department of Cellular Biology, Jinan University; National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Xing Xiao
- Institute of Biomedicine, Department of Cellular Biology, Jinan University; National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Min Ma
- College of traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangdong
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - An Hong
- Institute of Biomedicine, Department of Cellular Biology, Jinan University; National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Yi Ma
- Institute of Biomedicine, Department of Cellular Biology, Jinan University; National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| |
Collapse
|
11
|
Xu X, Wang J, Li L, Wang C, Li W, Zhang Q, Yang L. The role of obestatin in Roux-en-Y gastric bypass surgery in the obese, type 2 diabetes Zucker rat. Diabetes Res Clin Pract 2016; 119:57-64. [PMID: 27449711 DOI: 10.1016/j.diabres.2016.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 06/05/2016] [Indexed: 12/25/2022]
Abstract
AIMS Roux-en-Y gastric bypass (RYGB) is a novel therapy for diabetes and the exact mechanisms of this procedure remain unclear. Obestatin is an important gut hormone. We aimed to explore the role of obestatin in the therapeutic mechanism of RYGB. METHODS Twenty obese Zucker rats and twenty Wistar rats were randomly assigned to two groups: RYGB and sham surgery. We evaluated plasma obestatin and insulin levels pre- and post-RYGB. Additionally, obestatin expression levels in the gastrointestinal tract were assessed using immunohistochemical staining. RESULTS In Zucker rats, plasma obestatin and insulin levels gradually increased after RYGB. At post-operation week 7, plasma levels of obestatin were higher in the RYGB group than the sham operation group, and fasting plasma insulin levels were significantly increased the in RYGB group compared with the sham operation group. Furthermore, we observed a positive relationship between obestatin and insulin plasma levels. Among 10 zucker rats, high expression of obestatin was only seen in the jejunum of 2 rats before the operation; however, high expression of obestatin was seen in the Roux limb of 8 rats and in the ileum of 7 rats after RYGB. The expression of obestatin was significantly higher in the intestine in the RYGB group than the sham operation group postoperatively. CONCLUSIONS We propose that obestatin maybe a potential mediator to improve glucose homeostasis after RYGB. The increase of obestatin secretion may be an important mechanism through which RYGB alleviates obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Xianhui Xu
- Department of General Surgery, No. 401 Hospital of People's Liberation Army, Min Jiang Road No. 22, Qingdao, Shandong, China
| | - Jianli Wang
- Department of General Surgery 1, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Ling Li
- Department of Endocrinology, No. 401 Hospital of People's Liberation Army, Min Jiang Road No. 22, Qingdao, Shandong, China
| | - Chunbin Wang
- Department of Endocrinology, No. 401 Hospital of People's Liberation Army, Min Jiang Road No. 22, Qingdao, Shandong, China
| | - Weihua Li
- Department of General Surgery, No. 401 Hospital of People's Liberation Army, Min Jiang Road No. 22, Qingdao, Shandong, China
| | - Qin Zhang
- Department of General Surgery, No. 401 Hospital of People's Liberation Army, Min Jiang Road No. 22, Qingdao, Shandong, China.
| | - Linghui Yang
- Department of Endocrinology, No. 401 Hospital of People's Liberation Army, Min Jiang Road No. 22, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Wang JL, Xu XH, Zhang XJ, Li WH. The role of obestatin in roux-en-Y gastric bypass-induced remission of type 2 diabetes mellitus. Diabetes Metab Res Rev 2016; 32:470-7. [PMID: 26445403 DOI: 10.1002/dmrr.2735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/31/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and multifactorial disease that is generally characterized by insulin resistance and loss of β-cell function that develops in adulthood. To date, more than 6% of the world's population is affected by T2DM. The main treatments of T2DM are dietary and lifestyle changes. However, only dependent on behaviour modification and oral hypoglycemics, many patients are unable to maintain glycemic control. Emerging evidence indicates that up to 80% of patients with T2DM undergoing Roux-en-Y gastric bypass (RYGB) experience complete remission of their T2DM and the majority of remissions occur almost immediately following the operation. Obestatin is a 23-amino-acid peptide, which is not only thought to suppress food intake and decrease gastric emptying but also found to exert survival effects in pancreatic β cells, increase glucose-stimulated insulin secretion, and reduce insulin resistance and inflammation. In addition, some researchers demonstrated that obestatin is a nutritional marker reflecting body adiposity and insulin resistance. Although results from previous studies were conflicting, the peripheral blood concentrations of obestatin were changed after RYGB. Therefore, regulation of obestatin level may be another mechanism for RYGB-induced remission of T2DM. In this article, we review briefly the effect of RYGB on T2DM in humans and offer an overview of the published data on the effects of RYGB on obestatin level in patients with T2DM. Furthermore, the possible roles of obestatin in the remission of T2DM following RYGB are also reviewed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jian-Li Wang
- Qingdao University, Qingdao, China
- Department of General Surgery 1, The Affiliated Hospital of Chengde Medical College, Chengde City, China
| | - Xian-Hui Xu
- Department of General Surgery, No. 401 Hospital of People's Liberation Army, Qingdao, China
| | - Xue-Jun Zhang
- Department of General Surgery 1, The Affiliated Hospital of Chengde Medical College, Chengde City, China
| | - Wei-Hua Li
- Department of General Surgery, No. 401 Hospital of People's Liberation Army, Qingdao, China
| |
Collapse
|
13
|
Nagaraj S, Manjappara UV. Studies on the influence of CCK-8 on the ability of obestatin to reduce food intake, gain in body weight and related lipid parameters. Biochimie 2016; 125:126-30. [DOI: 10.1016/j.biochi.2016.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
|
14
|
Cowan E, Burch KJ, Green BD, Grieve DJ. Obestatin as a key regulator of metabolism and cardiovascular function with emerging therapeutic potential for diabetes. Br J Pharmacol 2016; 173:2165-81. [PMID: 27111465 DOI: 10.1111/bph.13502] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Obestatin is a 23-amino acid C-terminally amidated gastrointestinal peptide derived from preproghrelin and which forms an α helix. Although obestatin has a short biological half-life and is rapidly degraded, it is proposed to exert wide-ranging pathophysiological actions. Whilst the precise nature of many of its effects is unclear, accumulating evidence supports positive actions on both metabolism and cardiovascular function. For example, obestatin has been reported to inhibit food and water intake, body weight gain and gastrointestinal motility and also to mediate promotion of cell survival and prevention of apoptosis. Obestatin-induced increases in beta cell mass, enhanced adipogenesis and improved lipid metabolism have been noted along with up-regulation of genes associated with beta cell regeneration, insulin production and adipogenesis. Furthermore, human circulating obestatin levels generally demonstrate an inverse association with obesity and diabetes, whilst the peptide has been shown to confer protective metabolic effects in experimental diabetes, suggesting that it may hold therapeutic potential in this setting. Obestatin also appears to be involved in blood pressure regulation and to exert beneficial effects on endothelial function, with experimental studies indicating that it may also promote cardioprotective actions against, for example, ischaemia-reperfusion injury. This review will present a critical appraisal of the expanding obestatin research area and discuss the emerging therapeutic potential of this peptide for both metabolic and cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- Elaine Cowan
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, UK
| | - Kerry J Burch
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - Brian D Green
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, UK
| | - David J Grieve
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| |
Collapse
|
15
|
Moienneia N, Attarzadeh Hosseini SR. Acute and chronic responses of metabolic myokine to different intensities of exercise in sedentary young women. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.obmed.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Cowan E, Kumar P, Burch KJ, Grieve DJ, Green BD, Graham SF. Treatment of lean and diet-induced obesity (DIO) mice with a novel stable obestatin analogue alters plasma metabolite levels as detected by untargeted LC-MS metabolomics. Metabolomics 2016; 12:124. [PMID: 27471436 PMCID: PMC4932145 DOI: 10.1007/s11306-016-1063-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/31/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Obestatin is a controversial gastrointestinal peptide purported to have metabolic actions. OBJECTIVES This study investigated whether treatment with a stable obestatin analogue (PEG-OB(Cys10, Cys13)) changed plasma metabolite levels firstly in lean and subsequently in diet-induced obesity (DIO) C57BL6/J mice. METHODS Untargeted LC-HRMS metabolomics experiments were carried out in ESI + mode with plasma extracts from both groups of animals. Data were normalised, multivariate and univariate statistical analysis performed and metabolites of interest putatively identified. RESULTS In lean mice, 39 metabolites were significantly changed by obestatin treatment and the majority of these were increased, including various C16 and C18 moieties of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and monoacylglycerol, along with vitamin A, vitamin D3, tyrosine, acetylcarnitine and 2α-(hydroxymethyl)-5α-androstane-3β,17β-diol. Decreased concentrations of glycolithocholic acid, 3-dehydroteasterone and various phospholipids were observed. In DIO mice, 25 metabolites were significantly affected and strikingly, the magnitudes of changes here were generally much greater in DIO mice than in lean mice, and in contrast, the majority of metabolite changes were decreases. Four metabolites affected in both groups included glycolithocholic acid, and three different long-chain (C18) phospholipid molecules (phosphatidylethanolamine, platelet activating factor (PAF), and monoacylglycerol). Metabolites exclusively affected in DIO mice included various phosphatidylcholines, lysophosphatidylcholines and fatty acyls, as well as creatine and oxidised glutathione. CONCLUSION This investigation demonstrates that obestatin treatment affects phospholipid turnover and influences lipid homeostasis, whilst providing convincing evidence that obestatin may be acting to ameliorate diet-induced impairments in lipid metabolism, and it may influence steroid, bile acid, PAF and glutathione metabolism.
Collapse
Affiliation(s)
- Elaine Cowan
- />Institute for Global Food Security, Queen’s University of Belfast, Belfast, BT9 5BN Northern Ireland, UK
| | - Praveen Kumar
- />Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073 USA
| | - Kerry J. Burch
- />Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - David J. Grieve
- />Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Brian D. Green
- />Institute for Global Food Security, Queen’s University of Belfast, Belfast, BT9 5BN Northern Ireland, UK
| | - Stewart F. Graham
- />Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073 USA
| |
Collapse
|
17
|
Ma Y, Fang S, Zhao S, Wang X, Wang D, Ma M, Luo T, Hong A. A recombinant slow-release PACAP-derived peptide alleviates diabetes by promoting both insulin secretion and actions. Biomaterials 2015; 51:80-90. [PMID: 25771000 DOI: 10.1016/j.biomaterials.2015.01.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuroendocrine factor that activates both the receptor VPAC1 and VPAC2. Although PACAP possesses insulinotropic activity, its therapeutic application is limited by the extremely short acting half-life and the stimulatory effects on glucagon production via a VPAC1-dependent mechanism. Here we have generated a recombinant PACAP-derived peptide (named as MHDBAY) comprising a 7-mer albumin-binding peptide identified by phage display screening (WQRPSSW), a cleavage peptide for Factor Xa (FXa) and dipeptidyl peptidase IV (DPP IV), and a 31-amino acid PACAP-derived peptide (DBAY) that can specifically bind to the VPAC2 receptor. MHDBAY binds to albumin both in vitro and in animals, thereby leading to an orderly slow release of the active peptide DBAY via the protease cleavage. In db/db mice and New Zealand rabbits, the circulating half-life of MHDBAY is approximately 12.2 h, which is 146-fold longer than DBAY (∼5 min). A single injection of MHDBAY into db/db diabetic mice markedly increases insulin secretion, thereby leading to sustained alleviation of hyperglycemia. The potency and duration of MHDBAY in increasing insulin secretion and decreasing blood glucose levels is much greater than Exendin-4, an anti-diabetic drug via its insulinotropic actions. Furthermore, chronic administration of MHDBAY by daily injection for 8 weeks significantly improves both glucose and lipid profiles and also greatly increases insulin sensitivity in db/db mice. These findings suggest that serum albumin may act as a reservoir for slow-release of small bioactive peptides, and MHDBAY may represent a promising therapeutic peptide for diabetes.
Collapse
Affiliation(s)
- Yi Ma
- Institute of Biomedicine & Dept. Cellular Biology, Jinan University, National Engineering Research Center of Genetic Medicine, 601 Huangpu Ave. West, Guangzhou 510632, Guangdong Province, China
| | - Shixiong Fang
- Institute of Biomedicine & Dept. Cellular Biology, Jinan University, National Engineering Research Center of Genetic Medicine, 601 Huangpu Ave. West, Guangzhou 510632, Guangdong Province, China
| | - Shaojun Zhao
- Institute of Biomedicine & Dept. Cellular Biology, Jinan University, National Engineering Research Center of Genetic Medicine, 601 Huangpu Ave. West, Guangzhou 510632, Guangdong Province, China
| | - Xiaoli Wang
- Institute of Biomedicine & Dept. Cellular Biology, Jinan University, National Engineering Research Center of Genetic Medicine, 601 Huangpu Ave. West, Guangzhou 510632, Guangdong Province, China
| | - Dongbo Wang
- Institute of Biomedicine & Dept. Cellular Biology, Jinan University, National Engineering Research Center of Genetic Medicine, 601 Huangpu Ave. West, Guangzhou 510632, Guangdong Province, China
| | - Min Ma
- School of Medicine of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Tianjie Luo
- Institute of Biomedicine & Dept. Cellular Biology, Jinan University, National Engineering Research Center of Genetic Medicine, 601 Huangpu Ave. West, Guangzhou 510632, Guangdong Province, China
| | - An Hong
- Institute of Biomedicine & Dept. Cellular Biology, Jinan University, National Engineering Research Center of Genetic Medicine, 601 Huangpu Ave. West, Guangzhou 510632, Guangdong Province, China.
| |
Collapse
|
18
|
Gesmundo I, Gallo D, Favaro E, Ghigo E, Granata R. Obestatin: a new metabolic player in the pancreas and white adipose tissue. IUBMB Life 2013; 65:976-82. [PMID: 24217898 DOI: 10.1002/iub.1226] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/14/2023]
Abstract
Obestatin is a 23 amino acid amidated peptide, member of the preproghrelin gene-derived peptides. Initially, obestatin was reported to exert opposite effects to those of ghrelin on food intake and body weight gain, through interaction with GPR39; however, these findings are still strongly debated and obestatin biological role remains largely unknown. Interestingly, binding of obestatin to the glucagon-like peptide 1 receptor has been recently suggested. Despite being a controversial peptide, recent findings have clearly indicated that obestatin is indeed a multifunctional peptide, exerting a variety of effects, such as stimulation of cell proliferation, survival and differentiation, influence on glucose and lipid metabolism, as well as anti-inflammatory and cardioprotective actions. Its positive effects on glucose and lipid metabolism candidate this peptide as a potential therapeutic tool in pathological conditions such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
19
|
Ren G, He Z, Cong P, Chen H, Guo Y, Yu J, Liu Z, Ji Q, Song Z, Chen Y. Peripheral administration of TAT-obestatin can influence the expression of liporegulatory genes but fails to affect food intake in mice. Peptides 2013; 42:8-14. [PMID: 23313740 DOI: 10.1016/j.peptides.2013.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 12/14/2022]
Abstract
Obestatin is a 23-amino-acid peptide originally regarded as an anorexigenic factor. However, most of the subsequent studies failed to confirm the initially reported anorexigenic properties of obestatin. Obestatin is incapable of crossing the blood brain barrier (BBB), which may affect its biological function. Here, we report the physiological effects of obestatin in mice after intraperitoneal administration of obestatin conjugated to the cell-permeable peptide TAT, which is capable of delivering different types of proteins through the BBB. Acute peripheral administration of 1 μmol/kg of TAT-obestatin did not influence the 24 h cumulative food intake and body weight gain of mice that were fasted for 18 h. Fed mice were injected intraperitoneally with 100 nmol/kg of TAT-obestatin daily for 25 d. Compared with control groups, on day 3, the gain in body weight was significantly altered; on day 7, abdominal fat mass was remarkably reduced; however, on day 25, there was a surprisingly notable increase in abdominal and epididymal fat mass. In comparison with control groups, on day 25, the expression levels of adiponectin, ADD1, C/EBPα, PPARG and GLUT4 were significantly up-regulated in liver tissues; in white adipose tissue, the expression level of C/EBPα was significantly up-regulated, but adiponectin and GLUT4 were significantly down-regulated. In addition, GPR39, the suspected receptor of obestatin, was up-regulated in white adipose tissue on day 25. These findings suggest that TAT-obestatin might play a role in white adipose tissue metabolism, but its physiological effects on food intake and body weight gain regulation remain unclear.
Collapse
Affiliation(s)
- Guangcai Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang JV, Li L, Huang Q, Ren PG. Obestatin receptor in energy homeostasis and obesity pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:89-107. [PMID: 23317783 DOI: 10.1016/b978-0-12-386933-3.00003-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Based on the bioinformatic prediction, Zhang and colleagues discovered obestatin, a new 23-amino acid hormone from rat stomach extract encoded by the ghrelin gene. Obestatin is present not only in the gastrointestinal tract, but also in the spleen, mammary gland, breast milk, and plasma. Obestatin appears to function as part of a complex gut-brain network whereby hormones and substances from the stomach, intestine and the brain about satiety or hunger. Given the current research regarding the effects of obestatin and its possible cognate receptor(s), this chapter provides the latest review of the physiological and pathological characteristics of this hormone and its possible receptor(s) in energy homeostasis and obesity.
Collapse
Affiliation(s)
- Jian V Zhang
- Research Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | | | |
Collapse
|
21
|
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis--does it have an appetite for cancer progression? Endocr Rev 2012; 33:849-91. [PMID: 22826465 DOI: 10.1210/er.2011-1007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell migration, cell invasion, inflammation, and angiogenesis; however, the role of ghrelin in cancer is currently unclear. Ghrelin has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation. Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are required to determine whether ghrelin has a role in cancer progression.
Collapse
Affiliation(s)
- Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Australian Prostate Cancer Research Centre-Queensland, Brisbane, Queensland 4001, Australia.
| | | | | | | |
Collapse
|
22
|
Agnew AJ, Robinson E, McVicar CM, Harvey AP, Ali IHA, Lindsay JE, McDonald DM, Green BD, Grieve DJ. The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling. Br J Pharmacol 2012; 166:327-38. [PMID: 22035179 DOI: 10.1111/j.1476-5381.2011.01761.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Obestatin is a recently discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. EXPERIMENTAL APPROACH Cumulative relaxation responses to obestatin peptides were assessed in rat isolated aorta and mesenteric artery (n≥ 8) in the presence and absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). KEY RESULTS Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, l-NAME (NOS inhibitor), high extracellular K(+) , GDP-β-S (G-protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked GPCR, PI3K/PKB, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and PKB phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarizing factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. CONCLUSIONS AND IMPLICATIONS Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterized by endothelial dysfunction and cardiovascular complications.
Collapse
Affiliation(s)
- Andrew J Agnew
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Spiegeleer B, Van Dorpe S, Vergote V, Wynendaele E, Pauwels E, Van De Wiele C, Garcia-Solis P, Solis-Sainz JC. In vitro metabolic stability of iodinated obestatin peptides. Peptides 2012; 33:272-8. [PMID: 22222609 DOI: 10.1016/j.peptides.2011.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/18/2011] [Accepted: 12/18/2011] [Indexed: 10/14/2022]
Abstract
Different iodinated mouse obestatin peptides have been characterized toward their in vitro stability in the main metabolic compartments plasma, liver and kidney. Using HPLC-UV for quantification, significant differences in the degradation kinetics of the iodinated peptides, arising from both enzymatic proteolysis and dehalogenation, were found when compared to the native, unmodified peptide. HPLC-MS/MS analysis demonstrated that the cleavage sites were dependent upon the biological matrix and the location of the amino acid residue incorporating the iodine atom(s). The degrading proteases were found to target peptide bonds further away from the iodine incorporation, while proteolytic cleavages of nearby peptide bonds were more limited. Diiodinated amino acid residue containing peptides were found to be more susceptible to deiodination than the mono-iodinated derivative. In plasma, the percentage of peptide degradation solely attributed to deiodinase activity after 20 min incubation reached up to 25% for 2,5-diiodo-H(19)-obestatin compared to 20% and only 3% for (3,5-diiodo-Y(16))- and (3-iodo-Y(16)) obestatin, respectively. Hence, our results demonstrate that the different iodinated peptides pose significantly different metabolization properties and thus, also different biological activities are expected for peptides upon iodination.
Collapse
Affiliation(s)
- Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hedayati M, Saghebjoo M, Ghanbari-Niaki A. Effects of circuit resistance training intensity on the plasma ghrelin to obestatin ratios in healthy young women. Int J Endocrinol Metab 2012; 10:475-9. [PMID: 23843807 PMCID: PMC3693612 DOI: 10.5812/ijem.2459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/12/2011] [Accepted: 02/04/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ghrelin and obestatin are orexigenic and anorexigenic peptides, respectively. It appears that an accurate balance between theses peptides is important for regulating energy homeostasis and body weight. OBJECTIVES The aim of this study was to identify the possible mechanisms by which circuit resistance training influences energy homeostasis and weight control. PATIENTS AND METHODS Twenty-seven female students with the mean age of 22 ± 1.54 years and mean body mass index (BMI) of 20.76 ± 1.86 kg/m(2) were selected and randomly divided into experimental and control groups. Subjects performed circuit resistance training with 40% and 80% of 1 repetition maximum (1RM) for 4 weeks. Total plasma ghrelin, obestatin, and glucose levels and the ghrelin to obestatin ratio were measured for all subjects before and after training. RESULTS One-way ANOVA tests showed that, the plasma ghrelin to obestatin ratio increased significantly in the 80% 1RM group (P < 0.05). Furthermore, a significant reduction of the plasma obestatin level was found in this group (P < 0.05). CONCLUSIONS It appears that an energy deficit caused by circuit resistance training in 80% of the 1RM group resulted in the ghrelin precursor being increasingly used for ghrelin production. Thus, obestatin secretion decreased and the ghrelin to obestatin ratio increased in order to stimulate food intake and lost energy resource consumption to eventually restore the energy balance in the body.
Collapse
Affiliation(s)
- Mehdi Hedayati
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Mehdi Hedayati, Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel.: +98-2122432500, Fax: +98-2122416264, E-mail:
| | - Marziyeh Saghebjoo
- Faculty of Physical Education and Sports Sciences, University of Birjand, Birjand, IR Iran
| | - Abbass Ghanbari-Niaki
- Faculty of Physical Education and Sports Sciences, Mazandaran University, Mazandaran, IR Iran
| |
Collapse
|
25
|
Baragli A, Lanfranco F, Allasia S, Granata R, Ghigo E. Neuroendocrine and metabolic activities of ghrelin gene products. Peptides 2011; 32:2323-32. [PMID: 22056513 DOI: 10.1016/j.peptides.2011.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/03/2011] [Accepted: 10/25/2011] [Indexed: 12/15/2022]
Abstract
Acylated ghrelin (AG) is a 28 amino acid gastric peptide a natural ligand for the growth hormone secretagogue (GHS) receptor type 1a (GHS-R1a), endowed with GH-secreting and orexigenic properties. Besides, ghrelin exerts several peripheral metabolic actions, including modulation of glucose homeostasis and stimulation of adipogenesis. Notably, AG administration causes hyperglycemia in rodents as in humans. Ghrelin pleiotropy is supported by a widespread expression of the ghrelin gene, of GHS-R1a and other unknown ghrelin binding sites. The existence of alternative receptors for AG, of several natural ligands for GHS-R1a and of acylation-independent ghrelin non-neuroendocrine activities, suggests that there might be a complex 'ghrelin system' not yet completely explored. Moreover, the patho-physiological implications of unacylated ghrelin (UAG), and obestatin (Ob), the other two ghrelin gene-derived peptides, need to be clarified. Within the next few years, we may better understand the 'ghrelin system', where we might envisage clinical applications.
Collapse
Affiliation(s)
- Alessandra Baragli
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Department of Internal Medicine, University of Turin, Turin, Italy.
| | | | | | | | | |
Collapse
|
26
|
Genetic selection for body weight in chickens has altered responses of the brain's AMPK system to food intake regulation effect of ghrelin, but not obestatin. Behav Brain Res 2011; 221:216-26. [DOI: 10.1016/j.bbr.2011.02.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/21/2022]
|
27
|
|
28
|
Seim I, Walpole C, Amorim L, Josh P, Herington A, Chopin L. The expanding roles of the ghrelin-gene derived peptide obestatin in health and disease. Mol Cell Endocrinol 2011; 340:111-7. [PMID: 21459124 DOI: 10.1016/j.mce.2011.03.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 01/18/2023]
Abstract
Obestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, which includes adipogenesis, pancreatic homeostasis and cancer.
Collapse
Affiliation(s)
- Inge Seim
- Queensland University of Technology, Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Li JB, Asakawa A, Cheng K, Li Y, Chaolu H, Tsai M, Inui A. Biological effects of obestatin. Endocrine 2011; 39:205-211. [PMID: 21424587 DOI: 10.1007/s12020-011-9453-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/05/2011] [Indexed: 10/18/2022]
Abstract
Obestatin, a 23-amino-acid peptide, is derived from the preproghrelin precursor. Obestatin was identified in 2005 as a hormone regulating food intake and energy, and having opposite effects to those of ghrelin. However, as studies have progressed, many disputes on the physiological function of obestatin have emerged. The food intake suppressive effects of obestatin have not been replicated in many studies. Nonetheless, many biological roles of obestatin have been revealed, and obestatin is thought to be associated with a variety of biological functions such as feeding, drinking, incretion, memory, and sleep, and with neuropsychiatric manifestations. The biological effects of obestatin will be reviewed in this article.
Collapse
Affiliation(s)
- Jiang-Bo Li
- Department of Social and Behavioral Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Agnew A, Calderwood D, Chevallier OP, Greer B, Grieve DJ, Green BD. Chronic treatment with a stable obestatin analog significantly alters plasma triglyceride levels but fails to influence food intake; fluid intake; body weight; or body composition in rats. Peptides 2011; 32:755-62. [PMID: 21167891 DOI: 10.1016/j.peptides.2010.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/02/2010] [Accepted: 12/02/2010] [Indexed: 01/21/2023]
Abstract
Obestatin (OB(1-23) is a 23 amino acid peptide encoded on the preproghrelin gene, originally reported to have metabolic actions related to food intake, gastric emptying and body weight. The biological instability of OB(1-23) has recently been highlighted by studies demonstrating its rapid enzymatic cleavage in a number of biological matrices. We assessed the stability of both OB(1-23) and an N-terminally PEGylated analog (PEG-OB(1-23)) before conducting chronic in vivo studies. Peptides were incubated in rat liver homogenate and degradation monitored by LC-MS. PEG-OB(1-23) was approximately 3-times more stable than OB(1-23). Following a 14 day infusion of Sprague-Dawley rats with 50 nmol/kg/day of OB(1-23) or a N-terminally PEGylated analog (PEG-OB(1-23)), we found no changes in food/fluid intake, body weight and plasma glucose or cholesterol between groups. Furthermore, morphometric liver, muscle and white adipose tissue (WAT) weights and tissue triglyceride concentrations remained unaltered between groups. However, with stabilized PEG-OB(1-23) we observed a 40% reduction in plasma triglycerides. These findings indicate that PEG-OB(1-23) is an OB(1-23) analog with significantly enhanced stability and suggest that obestatin could play a role in modulating physiological lipid metabolism, although it does not appear to be involved in regulation of food/fluid intake, body weight or fat deposition.
Collapse
Affiliation(s)
- A Agnew
- School of Biological Sciences, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | | | | | | | | | | |
Collapse
|
31
|
Popovics P, Stewart AJ. GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell Mol Life Sci 2011; 68:85-95. [PMID: 20812023 PMCID: PMC11114682 DOI: 10.1007/s00018-010-0517-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
GPR39 is a vertebrate G protein-coupled receptor related to the ghrelin/neurotensin receptor subfamily. The receptor is expressed in a range of tissues including the pancreas, gut/gastrointestinal tract, liver, kidney and in some regions of the brain. GPR39 was initially thought to be the cognitive receptor for the peptide hormone, obestatin. However, subsequent in vitro studies have failed to demonstrate binding of this peptide to the receptor. Zn(2+) has been shown to be a potent stimulator of GPR39 activity via the Gα(q), Gα(12/13) and Gα(s) pathways. The potency and specificity of Zn(2+) in activating GPR39 suggest it to be a physiologically important agonist. GPR39 is now emerging as an important transducer of autocrine and paracrine Zn(2+) signals, impacting upon cellular processes such as insulin secretion, gastric emptying, neurotransmission and epithelial repair. This review focuses on the molecular, structural and biological properties of GPR39 and its various physiological functions.
Collapse
Affiliation(s)
- Petra Popovics
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, St Andrews, Fife KY16 9TF UK
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, St Andrews, Fife KY16 9TF UK
| |
Collapse
|
32
|
Subasinghage AP, Green BD, Flatt PR, Irwin N, Hewage CM. Metabolic and structural properties of human obestatin {1-23} and two fragment peptides. Peptides 2010; 31:1697-705. [PMID: 20553778 DOI: 10.1016/j.peptides.2010.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 12/26/2022]
Abstract
Obestatin is a peptide produced in the oxyntic mucosa of the stomach and co-localizes with ghrelin on the periphery of pancreatic islets. Several studies demonstrate that obestatin reduces food and water intake, decreases body weight gain, inhibits gastrointestinal motility, and modulates glucose-induced insulin secretion. In this study we evaluated the acute metabolic effects of human obestatin {1-23} and fragment peptides {1-10} or {11-23} in high-fat fed mice, and then investigated their solution structure by NMR spectroscopy and molecular modelling. Obestatins {1-23} and {11-23} significantly reduced food intake (86% and 90% respectively) and lowered glucose responses to feeding, whilst leaving insulin responses unchanged. No metabolic changes could be detected following the administration of obestatin {1-10}. In aqueous solution none of the obestatin peptides possessed secondary structural features. However, in a 2,2,2-trifluoroethanol (TFE-d(3))-H(2)O solvent mixture, the structure of obestatin {1-23} was characterized by an alpha-helix followed by a single turn helix conformation between residues Pro(4) and Gln(15) and His(19) and Ala(22) respectively. Obestatin {1-10} showed no structural components whereas {11-23} contained an alpha-helix between residues Val(14) and Ser(20) in a mixed solvent. These studies are the first to elucidate the structure of human obestatin and provide clear evidence that the observed alpha-helical structures are critical for in vivo activity. Future structure/function studies may facilitate the design of novel therapeutic agents based on the obestatin peptide structure.
Collapse
Affiliation(s)
- Anusha P Subasinghage
- UCD School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, SEC Strategic Research Cluster, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
33
|
Tissue distribution and effects of fasting and obesity on the ghrelin axis in mice. ACTA ACUST UNITED AC 2010; 163:62-73. [DOI: 10.1016/j.regpep.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/05/2010] [Accepted: 03/22/2010] [Indexed: 11/21/2022]
|
34
|
Brunetti L, Di Nisio C, Recinella L, Orlando G, Ferrante C, Chiavaroli A, Leone S, Di Michele P, Shohreh R, Vacca M. Obestatin inhibits dopamine release in rat hypothalamus. Eur J Pharmacol 2010; 641:142-7. [PMID: 20553917 DOI: 10.1016/j.ejphar.2010.05.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 04/14/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
Abstract
We have investigated the effects of the gastric peptide obestatin injected into the arcuate nucleus of the rat hypothalamus on the hypothalamic mRNA expression of peptides which play master roles as feeding behavior modulators. We have also evaluated the effects of obestatin on dopamine, norepinephrine and serotonin release from rat hypothalamic synaptosomes in vitro. After 4 daily intrahypothalamic injections of obestatin (1 nmol/kg), we recorded a significant reduction of daily caloric intake and body weight gain. Gene expressions of either anorexigenic (cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, proopiomelanocortin) or orexigenic (agouti-related peptide, neuropeptide Y, orexin-A) peptide mRNAs in the hypothalamus, as evaluated by real-time quantitative PCR, were not different in respect to vehicle treated rats. Moreover, ghrelin/obestatin prepropeptide gene expression in the hypothalamus was not affected by obestatin treatment. In hypothalamic synaptosomes perfused with obestatin (1-100 nM), we found a dose-dependent inhibition of depolarization-induced dopamine release, while norepinephrine and serotonin releases were not modified by obestatin treatment. When ghrelin (1 nM) and obestatin (1 nM) were co-perfused, we observed that ghrelin reversed obestatin-induced inhibition of dopamine release, and obestatin was able to block ghrelin-induced inhibition of serotonin release. We can conclude that obestatin plays an anorectic role in the hypothalamus which could be partially mediated by the acute inhibition of dopamine release, with the possible involvement of antagonism of the hypothalamic serotonin inhibitory effects of ghrelin.
Collapse
Affiliation(s)
- Luigi Brunetti
- Department of Drug Sciences, School of Pharmacy, G. d'Annunzio University, via dei Vestini, Chieti, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mafra D, Guebre-Egziabher F, Fouque D. Endocrine Role of Stomach in Appetite Regulation in Chronic Kidney Disease: About Ghrelin and Obestatin. J Ren Nutr 2010; 20:68-73. [DOI: 10.1053/j.jrn.2009.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Indexed: 12/24/2022] Open
|
36
|
Crespo MA, González Matías LC, Lozano MG, Paz SF, Pérez MR, Gago EV, Ferrer FM. [Gastrointestinal hormones in food intake control]. ACTA ACUST UNITED AC 2010; 56:317-30. [PMID: 19695513 DOI: 10.1016/s1575-0922(09)71946-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/25/2009] [Indexed: 12/17/2022]
Abstract
The discovery of gut hormones regulating the energy balance has aroused great interest in the scientific community. Some of these hormones modulate appetite and satiety, acting on the hypothalamus or the solitary tract nucleus in the brainstem. In general, the endocrine signals generated in the gut have direct or indirect (through the autonomous nervous system) anorexigenic effects. Only ghrelin, a gastric hormone, has been consistently associated with the initiation of food intake and is regarded as the main orexigenic signal both in animal models and humans. In this review, we provide a brief description of the major gastrointestinal hormones implicated in the regulation of food intake. Given the increased importance of food intake disturbances, especially obesity, a better understanding of the underlying mechanisms of action of the gastrointestinal hormones might contribute to the development of new molecules that could increase the therapeutic arsenal for treating obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Mayte Alvarez Crespo
- Laboratorio de Endocrinología, Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Biología, Universidad de Vigo, Vigo, Pontevedra, España
| | | | | | | | | | | | | |
Collapse
|
37
|
Xin X, Ren AJ, Zheng X, Qin YW, Zhao XX, Yuan WJ, Guo ZF. Disturbance of circulating ghrelin and obestatin in chronic heart failure patients especially in those with cachexia. Peptides 2009; 30:2281-5. [PMID: 19666068 DOI: 10.1016/j.peptides.2009.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/21/2022]
Abstract
Plasma ghrelin was elevated in chronic heart failure (CHF) patients with cachexia. Obestatin, a sibling of ghrelin, opposes several actions of ghrelin. We, therefore, investigated plasma obestatin and ghrelin levels in patients with CHF. Total plasma ghrelin and obestatin levels were measured in 65 patients with CHF (22 with cardiac cachexia) and 15 controls. Ghrelin levels were significantly higher in patients with cachexia (1237.8+/-47.9 pg/ml) than those without cachexia (P=0.041) and controls (P<0.01). Obestatin levels correlated positively with ghrelin levels, and obestatin levels were significantly increased in patients with cachexia (282.3+/-13.0 pg/ml) than patients without cachexia and controls (both P<0.01). However, the ghrelin to obestatin ratios (4.5+/-0.2) were significantly lower in CHF patients with cachexia than controls (P<0.01). Ghrelin and ratio of ghrelin to obestatin were independent predictors of the development of cardiac cachexia. No association was found between ghrelin, obestatin and New York Heart Association functional class, brain natriuretic peptide. There was disturbance of circulating ghrelin and obestatin in the CHF patients especially those with cachexia, which may have a role in the pathogenesis of cardiac cachexia in CHF.
Collapse
Affiliation(s)
- Xing Xin
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 2009; 61:430-81. [PMID: 20038570 DOI: 10.1124/pr.109.001958] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A breakthrough using "reverse pharmacology" identified and characterized acyl ghrelin from the stomach as the endogenous cognate ligand for the growth hormone (GH) secretagogue receptor (GHS-R) 1a. The unique post-translational modification of O-n-octanoylation at serine 3 is the first in peptide discovery history and is essential for GH-releasing ability. Des-acyl ghrelin, lacking O-n-octanoylation at serine 3, is also produced in the stomach and remains the major molecular form secreted into the circulation. The third ghrelin gene product, obestatin, a novel 23-amino acid peptide identified from rat stomach, was found by comparative genomic analysis. Three ghrelin gene products actively participate in modulating appetite, adipogenesis, gut motility, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. Knockdown or knockout of acyl ghrelin and/or GHS-R1a, and overexpression of des-acyl ghrelin show benefits in the therapy of obesity and metabolic syndrome. By contrast, agonism of acyl ghrelin and/or GHS-R1a could combat human anorexia-cachexia, including anorexia nervosa, chronic heart failure, chronic obstructive pulmonary disease, liver cirrhosis, chronic kidney disease, burn, and postsurgery recovery, as well as restore gut dysmotility, such as diabetic or neurogenic gastroparesis, and postoperative ileus. The ghrelin acyl-modifying enzyme, ghrelin O-Acyltransferase (GOAT), which attaches octanoate to serine-3 of ghrelin, has been identified and characterized also from the stomach. To date, ghrelin is the only protein to be octanylated, and inhibition of GOAT may have effects only on the stomach and is unlikely to affect the synthesis of other proteins. GOAT may provide a critical molecular target in developing novel therapeutics for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Japan
| | | | | | | | | |
Collapse
|
39
|
Nagaraj S, Peddha MS, Manjappara UV. Fragment analogs as better mimics of obestatin. ACTA ACUST UNITED AC 2009; 158:143-8. [DOI: 10.1016/j.regpep.2009.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/07/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
|
40
|
Aygen B, Dogukan A, Dursun FE, Aydin S, Kilic N, Sahpaz F, Celiker H. Ghrelin and obestatin levels in end-stage renal disease. J Int Med Res 2009; 37:757-65. [PMID: 19589259 DOI: 10.1177/147323000903700319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Malnutrition is fairly common in end-stage renal disease (ESRD) patients, persistent lack of appetite being a major symptom. Ghrelin and obestatin are two hormones that are involved in appetite and energy homeostasis. The present study examined ghrelin and obestatin levels in 24 ESRD patients undergoing haemodialysis and 24 age-matched healthy controls. Serum and saliva ghrelin and obestatin levels in the ESRD patients were significantly higher compared with controls, while saliva ghrelin and obestatin levels in all study participants were significantly higher than serum levels. Saliva ghrelin correlated with serum ghrelin and saliva obestatin correlated with serum obestatin in all study participants, although there was no correlation between ghrelin and obestatin levels. In conclusion, the results suggest that the kidneys may have a role in the metabolism and/or clearance of obestatin, as they do for ghrelin. Further studies are needed to determine if elevated levels of these hormones in ESRD patients contribute to the malnutrition that is common in these patients.
Collapse
Affiliation(s)
- B Aygen
- Department of Nephrology, Medical Faculty, Firat University, Elazig, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ren AJ, He Q, Shi JS, Guo ZF, Zheng X, Lin L, Wang YK, Xia SY, Sun LL, Du X, Sun Y, Zhang LM, Yuan WJ. Association of obestatin with blood pressure in the third trimesters of pregnancy. Peptides 2009; 30:1742-5. [PMID: 19560502 DOI: 10.1016/j.peptides.2009.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Obestatin is a recently discovered 23-amino acid peptide encoded by the same gene that encodes ghrelin. It has been reported that there is a significant negative correlation between the plasma ghrelin concentration and systemic blood pressure in patients with pregnancy-induced hypertension. We investigated the plasma concentration of obestatin in 18 non-pregnant women, 18 normal pregnant women, and 15 patients with pregnancy-induced hypertension. The plasma concentrations of obestatin in these 3 groups of women were 63.4+/-9.5pg/ml, 38.1+/-6.3pg/ml, and 46.0+/-9.3pg/ml, respectively. In non-pregnant women, there was no correlation between the plasma obestatin concentration and the mean arterial pressure. However, there was a positive correlation between the plasma obestatin concentration and the mean arterial pressure in normal pregnant women and pregnant women with pregnancy-induced hypertension. These results suggest that obestatin may have some potential role in the regulation of blood pressure in normal pregnant women and women with pregnancy-induced hypertension.
Collapse
Affiliation(s)
- An-jing Ren
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Volante M, Rosas R, Ceppi P, Rapa I, Cassoni P, Wiedenmann B, Settanni F, Granata R, Papotti M. Obestatin in human neuroendocrine tissues and tumours: expression and effect on tumour growth. J Pathol 2009; 218:458-66. [DOI: 10.1002/path.2551] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Annemie VD, Debby VD, Valentijn V, Bart DS, Walter L, Liliane S, Peter Paul DD. Central administration of obestatin fails to show inhibitory effects on food and water intake in mice. ACTA ACUST UNITED AC 2009; 156:77-82. [DOI: 10.1016/j.regpep.2009.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/06/2009] [Accepted: 04/29/2009] [Indexed: 11/29/2022]
|
44
|
Brunetti L, Leone S, Orlando G, Recinella L, Ferrante C, Chiavaroli A, Di Nisio C, Di Michele P, Vacca M. Effects of obestatin on feeding and body weight after standard or cafeteria diet in the rat. Peptides 2009; 30:1323-7. [PMID: 19397941 DOI: 10.1016/j.peptides.2009.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Obestatin is a gastric derived 23 amino acid peptide, which has shown anorectic effects in a number of experimental paradigms after both peripheral and central administration. On the other hand, several researchers were not able to confirm these data. Since all previous experiments have been performed in animals fed a standard laboratory diet, we studied obestatin effects in male Wistar rats fed both a standard laboratory chow (STD) diet (3.5% fat, 63% carbohydrate, 14% protein, 19.5% other components without caloric value; 3.20 kcal/g) and a highly palatable cafeteria-style (CAF) diet (30% fat, 56% carbohydrate, 14% protein; 4.20 kcal/g). Vehicle or obestatin (10, 50 or 100 nmol/kg) was injected intraperitoneally daily for 12 days. In STD diet rats, obestatin decreased daily caloric intake and body weight gain compared to vehicle treated rats. The anorectic and weight reducing effects of obestatin treatment were evidenced since day 6 and day 8 of treatment, respectively, and were consistent through the end of treatment. On the other hand, in CAF diet rats, obestatin treatment did not modify either daily caloric intake or body weight gain. In CAF diet rats, the percentage intake from standard food was decreased, balanced by an increase in cafeteria food intake. Obestatin treatment affected neither water consumption nor the intake of any specific food within the cafeteria diet. In conclusion, obestatin decreases caloric intake and body weight gain, but only in rats fed a STD diet.
Collapse
Affiliation(s)
- Luigi Brunetti
- Department of Drug Sciences, G. d'Annunzio University, School of Pharmacy, via dei Vestini, 66013 Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Neuroendocrine and physiological regulation of intake with particular reference to domesticated ruminant animals. Nutr Res Rev 2009; 21:207-34. [PMID: 19087372 DOI: 10.1017/s0954422408138744] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system undertakes the homeostatic role of sensing nutrient intake and body reserves, integrating the information, and regulating energy intake and/or energy expenditure. Few tasks regulated by the brain hold greater survival value, particularly important in farmed ruminant species, where the demands of pregnancy, lactation and/or growth are not easily met by often bulky plant-based and sometimes nutrient-sparse diets. Information regarding metabolic state can be transmitted to the appetite control centres of the brain by a diverse array of signals, such as stimulation of the vagus nerve, or metabolic 'feedback' factors derived from the pituitary gland, adipose tissue, stomach/abomasum, intestine, pancreas and/or muscle. These signals act directly on the neurons located in the arcuate nucleus of the medio-basal hypothalamus, a key integration, and hunger (orexigenic) and satiety (anorexigenic) control centre of the brain. Interest in human obesity and associated disorders has fuelled considerable research effort in this area, resulting in increased understanding of chronic and acute factors influencing feed intake. In recent years, research has demonstrated that these results have relevance to animal production, with genetic selection for production found to affect orexigenic hormones, feeding found to reduce the concentration of acute controllers of orexigenic signals, and exogenous administration of orexigenic hormones (i.e. growth hormone or ghrelin) reportedly increasing DM intake in ruminant animals as well as single-stomached species. The current state of knowledge on factors influencing the hypothalamic orexigenic and anorexigenic control centres is reviewed, particularly as it relates to domesticated ruminant animals, and potential avenues for future research are identified.
Collapse
|
46
|
Dong XY, He JM, Tang SQ, Li HY, Jiang QY, Zou XT. Is GPR39 the natural receptor of obestatin? Peptides 2009; 30:431-8. [PMID: 18977259 DOI: 10.1016/j.peptides.2008.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 08/25/2008] [Accepted: 09/25/2008] [Indexed: 12/15/2022]
Abstract
GPR39, an orphan receptor belonging to the family of G protein-coupled receptors, was originally reported to be the receptor of obestatin. However recently, numerous reports have questioned this conclusion. In mammals, GPR39 was reported to be involved in the regulation of gastrointestinal and the metabolic functions. In this article, a latest and brief review on the receptor family, structure, distribution and physiological functions of GPR39 has been reported.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Yingdong Bioengineering, Shaoguan University, Daxue Avenue, Zhenjiang District, Shaoguan 512005, China
| | | | | | | | | | | |
Collapse
|
47
|
Ren AJ, Guo ZF, Wang YK, Lin L, Zheng X, Yuan WJ. Obestatin, obesity and diabetes. Peptides 2009; 30:439-44. [PMID: 18992781 DOI: 10.1016/j.peptides.2008.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/04/2008] [Accepted: 10/06/2008] [Indexed: 01/07/2023]
Abstract
The high prevalence of obesity and diabetes will lead to higher rates of morbidity and mortality. It is well known that ghrelin plays a potential role in obesity and diabetes. Obestatin, a novel 23 amino acid amidated peptide encoded by the same gene that encodes ghrelin, was initially reported to have opposite actions to ghrelin in the regulation of food intake, emptying of the stomach and body weight. Recent work suggests that obestatin also regulate beta-cell survival and insulin secretion. The ghrelin-obestatin system is, therefore, a promising target for the developing of new drugs for the treatment of obesity and diabetes. This review summarizes the interrelationship between obestatin, obesity and diabetes.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
48
|
Gao XY, Kuang HY, Liu XM, Duan P, Yang Y, Ma ZB. Circulating ghrelin/obestatin ratio in subjects with Helicobacter pylori infection. Nutrition 2009; 25:506-11. [PMID: 19131215 DOI: 10.1016/j.nut.2008.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ghrelin is a peptide hormone involved in human energy homeostasis. Obestatin is a recently discovered active peptide derived from preproghrelin. It seemed that obestatin was a physiologic opponent of ghrelin. Helicobacter pylori infection may be associated with appetite and nutrition. We compared the plasma ghrelin/obestatin ratio in H. pylori-positive and -negative groups. METHODS People undergoing an annual health checkup were included. Helicobacter pylori status was based on serologic and carbon-13 urea breath findings. Fifty adults with H. pylori infection and 50 adults matched by age and body mass index without H. pylori infection were enrolled in this study. Plasma ghrelin and obestatin levels were measured by radioimmunoassay. RESULTS Ghrelin concentrations and ghrelin/obestatin ratios were lower in the H. pylori-positive group than in the H. pylori-negative group. There was no significant difference in circulating obestatin between those with and without H. pylori infection. In all subjects, the ghrelin/obestatin ratio was negatively correlated with body mass index, the homeostasis model of assessment for insulin resistance, and serum levels of triacylglycerol. There was a positive correlation between circulating obestatin and ghrelin levels. CONCLUSION Helicobacter pylori infection was associated with a reduction in the circulating ghrelin/obestatin ratio in Chinese adults.
Collapse
Affiliation(s)
- Xin-Yuan Gao
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
49
|
Egido EM, Hernández R, Marco J, Silvestre RA. Effect of obestatin on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. ACTA ACUST UNITED AC 2009; 152:61-6. [DOI: 10.1016/j.regpep.2008.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/08/2008] [Accepted: 08/07/2008] [Indexed: 11/17/2022]
|
50
|
Roche J, Sheahan A, Chagas L, Blache D, Berry D, Kay J. Long-Term Infusions of Ghrelin and Obestatin in Early Lactation Dairy Cows. J Dairy Sci 2008; 91:4728-40. [DOI: 10.3168/jds.2008-1193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|