1
|
Bansal P, Roitman MF, Jung EE. d-Amphetamine and Feeding States Cohesively Affect Locomotion and Motor Neuron Response in Zebrafish Larvae. Brain Behav 2024; 14:e70173. [PMID: 39643450 PMCID: PMC11624004 DOI: 10.1002/brb3.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE Amphetamine (AMPH) increases locomotor activities in animals, and the locomotor response to AMPH is further modulated by caloric deficits such as food deprivation and restriction. The increment in locomotor activity regulated by AMPH-caloric deficit concomitance can be further modulated by varying feeding schedules (e.g., acute and chronic food deprivation and acute feeding after chronic food deprivation). However, the effects of different feeding schedules on AMPH-induced locomotor activity are yet to be explicated. Here, we have explored the stimulatory responses of acutely administered D-amphetamine in locomotion under systematically varying feeding states (fed/sated and food deprivation) and schedules (chronic and acute) in zebrafish larvae. METHOD We exposed wild-type and transgenic [Tg(mnx1:GCaMP5)] zebrafish larvae to 0.7 µM concentration of AMPH and measured swimming activity and spinal motor neuron activity in vivo in real time. The analysis involved time-elapsed and cumulative manner pre- and post-AMPH treatment in four different caloric states including acute and chronic schedules of feeding and hunger. Both locomotor and motor neuron activities were compared in all four states in both fish lines. FINDINGS Our results show that locomotion and motor neuron activity increased in both chronic and acute food deprivation post-AMPH treatment cumulatively. A steady increase in locomotion was observed in acute food deprivation compared to an immediate abrupt increase in chronic food-deprivation state. The ad libitum-fed larvae exhibited a moderate increase both in locomotion and motor neuron activity. Conversely to all other caloric states, food-sated (acute feeding after chronic food deprivation) larvae moved moderately less and exhibited a mild decrease in motor neuron activity after AMPH treatment. CONCLUSION These results reveal the importance of cohesive effects of feeding schedule and AMPH treatment by revealing the changes in stimulatory characteristics of AMPH on locomotion and motor neuron activity in acute and chronic feeding states.
Collapse
Affiliation(s)
- Pushkar Bansal
- Department of Mechanical and Industrial EngineeringThe University of Illinois at ChicagoChicagoIllinoisUSA
| | - Mitchell F. Roitman
- Department of PsychologyThe University of Illinois at ChicagoChicagoIllinoisUSA
| | - Erica E. Jung
- Department of Mechanical and Industrial EngineeringThe University of Illinois at ChicagoChicagoIllinoisUSA
- Department of BioengineeringThe University of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Bake T, Peris-Sampedro F, Wáczek Z, Ohlsson C, Pálsdóttir V, Jansson JO, Dickson SL. The gravitostat protects diet-induced obese rats against fat accumulation and weight gain. J Neuroendocrinol 2021; 33:e12997. [PMID: 34240761 DOI: 10.1111/jne.12997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
The gravitostat is a novel homeostatic body weight-regulating mechanism, mostly studied in mice, and recently confirmed in obese humans. In the present study, we explored the effect of weight loading on metabolic outcomes, meal patterns and parameters linked to energy expenditure in both obese and lean rats. Diet-induced obese (DIO) and lean rats were implanted with capsules weighing either 15% of biological body weight (load) or empty capsules (1.3% of body weight; controls). Loading protected against fat accumulation more markedly in the DIO group. In line with this, the obesity-related impairment in insulin sensitivity was notably ameliorated in DIO rats upon loading, as revealed by the reduction in serum insulin levels and homeostatic model assessment for insulin resistance index scores. Although 24-hour caloric intake was reduced in both groups, this effect was greater in loaded DIO rats than in loaded lean peers. During days 10-16, after recovery from surgery, loading: (i) decreased meal size in both groups (only during the light phase in DIO rats) but this was compensated in lean rats by an increase in meal frequency; (ii) reduced dark phase locomotor activity only in lean rats; and (iii) reduced mean caloric efficiency in DIO rats. Muscle weight was unaffected by loading in either group. Dietary-obese rats are therefore more responsive than lean rats to loading.
Collapse
Affiliation(s)
- Tina Bake
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Zita Wáczek
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre of Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Vilborg Pálsdóttir
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Sun H, Meng K, Hou L, Shang L, Yan J. Melanocortin receptor-4 mediates the anorectic effect induced by the nucleus tractus solitarius injection of glucagon-like Peptide-2 in fasted rats. Eur J Pharmacol 2021; 901:174072. [PMID: 33823184 DOI: 10.1016/j.ejphar.2021.174072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is secreted from enteroendocrine L-type cells of the gut and also released from preproglucagonergic (PPG) neurons in the nucleus tractus solitarius (NTS) and adjacent medial reticular nucleus of the brain stem. The neurons in the NTS express GLP-2, and the neurons send extensive projections to the hypothalamus. Recent studies show that the intracerebroventricular administration of GLP-2 significantly suppresses food intake in animals and some evidence suggest that the melanocortin receptor-4 (MC4-R) signaling in the hypothalamus is required for intracerebroventricular GLP-2-mediated inhibition of feeding. There is proopiomelanocortin (POMC) positive neurons expressing MC4-R in the NTS. Suppression of MC4-R expressing neurons in the brain stem inhibits gastric emptying. In this study, we tested the effects of NTS GLP-2R activation and blockade on feeding behavior and evaluated the endogenous melanocortin system's role in the NTS in mediating effects of GLP-2 on feeding behavior in fed and fasted rats. Our results demonstrated that microinjection of GLP-2 into the NTS suppressed food intake in fasted-refeeding rats but did not affect food intake in free-feeding rats, and this inhibition was blocked by pretreatment of either Exendin (9-39) or SHU 9119, suggesting the GLP-2 system in the NTS exerts an inhibitory action on food intake. MC4-R mediates this action in the NTS.
Collapse
Affiliation(s)
- Huiling Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology College, Xi'an Jiaotong University, 98 Xi Wu Road, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Kai Meng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Lin Hou
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, N7 8BD, UK.
| | - Jianqun Yan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology College, Xi'an Jiaotong University, 98 Xi Wu Road, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76 West Yan Ta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Tsuchida H, Mostari P, Yamada K, Miyazaki S, Enomoto Y, Inoue N, Uenoyama Y, Tsukamura H. Paraventricular Dynorphin A Neurons Mediate LH Pulse Suppression Induced by Hindbrain Glucoprivation in Female Rats. Endocrinology 2020; 161:5902463. [PMID: 32894768 DOI: 10.1210/endocr/bqaa161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Malnutrition suppresses reproductive functions in mammals, which is considered to be mostly due to the inhibition of pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release. The present study aimed to examine if the hypothalamic dynorphin A (Dyn) neurons mediate the suppression of GnRH/luteinizing hormone (LH) pulses during malnutrition. Ovariectomized rats treated with a negative feedback level of estradiol-17β-treated (OVX+E2) were administered with intravenous (iv) or fourth cerebroventricle (4V) 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, to serve as a malnutrition model. Central administration of a Dyn receptor antagonist blocked the iv- or 4V-2DG-induced suppression of LH pulses in OVX+E2 rats. The 4V 2DG administration significantly increased the number of Pdyn (Dyn gene)-positive cells co-expressing fos in the paraventricular nucleus (PVN), but not in the ARC and supraoptic nucleus (SON), and the iv 2DG treatment significantly increased the number of fos and Pdyn-co-expressing cells in the PVN and SON, but decreased it in the ARC. The E2 treatment significantly increased Pdyn expression in the PVN, but not in the ARC and SON. Double in situ hybridization for Kiss1 (kisspeptin gene) and Oprk1 (Dyn receptor gene) revealed that around 60% of ARC Kiss1-expressing cells co-expressed Oprk1. These results suggest that the PVN Dyn neurons, at least in part, mediate LH pulse suppression induced by the hindbrain or peripheral glucoprivation, and Dyn neurons may directly suppress the ARC kisspeptin neurons in female rats.
Collapse
Affiliation(s)
- Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Parvin Mostari
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sae Miyazaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuki Enomoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Pereira LC, Maior RS, Barros M. Time-Dependent Changes in Cortisol and Tympanic Temperature Lateralization During Food Deprivation Stress in Marmoset Monkeys. Front Behav Neurosci 2020; 14:123. [PMID: 32765232 PMCID: PMC7378730 DOI: 10.3389/fnbeh.2020.00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022] Open
Abstract
Temporal information about food availability can be easily entrained, as in the case of fixed feeding routines of captive animals. A sudden unintentional or deliberate delay (e.g., food deprivation—FD) leads to frustration and psychological stress due to the loss of temporal predictability. How marmosets—an increasingly used small primate—process and respond to FD stress has not been previously assessed. Here we delayed the routine feeding of adult captive marmosets for 3 or 6 h. Blood cortisol concentration was used as a hormonal measure of the stress response. Changes in the left/right baseline tympanic membrane temperature (TMT) were used as an indirect ipsilateral indicator of hemisphere activity. Marmosets that were deprived for 3 h had higher cortisol levels than non-deprived controls. Cortisol concentration in the marmosets deprived for 6 h did not differ from controls possibly due to adaptative mechanisms against the detrimental effects of prolonged high cortisol levels. Interestingly, FD stress may have been processed more symmetrically at first, as indicated by the bilateral increase in TMT at the 3 h interval. As the event progressed (i.e., 6 h), a clear rightward TMT bias suggests that hemisphere activity had become asymmetrical. Therefore, the sudden loss of temporal predictability of an entrained routine feeding schedule induces time-dependent changes in the cortisol stress response and shifts in the TMT (and potentially hemisphere activity) lateralization bias of adult captive marmosets.
Collapse
Affiliation(s)
- Lucas C. Pereira
- Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Rafael S. Maior
- Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Marilia Barros
- Primate Center, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, Brazil
- *Correspondence: Marilia Barros
| |
Collapse
|
6
|
Wen J, Chi QS, Wang DH, Zhao ZJ. The responses of metabolic rate and neuropeptides to food deprivation in striped hamsters (Cricetulus barabensis) with different basal metabolic rate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:483-492. [PMID: 32314557 DOI: 10.1002/jez.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022]
Abstract
High basal metabolic rate (BMR) is related to a powerful metabolic engine even under food shortage, which can lead to high levels of daily energy expenditure and requires more energy for maintenance in small mammals. To test the hypothesis that animals with different BMR levels respond differently to food shortage, we compared the changes in metabolism, morphology, and gene expression in response to food deprivation (FD) in male-striped hamsters (Cricetulus barabensis) with low (L)- or high (H)-BMR levels. After 36 hr of FD, energy expenditure, metabolic rate (MR), mass of body composition, and leptin and agouti-related peptide gene expressions in the white adipose tissues and the hypothalamus, respectively, decreased significantly in hamsters. The energy expenditure of H-BMR hamsters was reduced more than that of L-BMR hamsters after 36 hr of FD. Furthermore, MR was significantly reduced by FD, and that of the H-BMR group decreased more than that of the L-BMR group during the daytime. Therefore, our data suggest that striped hamsters with different BMR display different responses to variations in food availability. During FD, MR in H-BMR hamsters was more flexible than that in L-BMR animals and L-BMR hamsters could not reduce their MR any lower.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jun Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
7
|
Mei J, Kohler J, Winter Y, Spies C, Endres M, Banneke S, Emmrich JV. Automated radial 8-arm maze: A voluntary and stress-free behavior test to assess spatial learning and memory in mice. Behav Brain Res 2020; 381:112352. [PMID: 31722240 DOI: 10.1016/j.bbr.2019.112352] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
The radial arm maze (RAM) is a common behavioral test to assess spatial working and reference memory in mice. However, conventional RAM experiments require a substantial degree of manual handling and animals are usually subjected to prolonged periods of food or water deprivation to achieve sufficient learning motivation resulting in stress-induced confounding effects and unwanted intra- and inter-subject variation. In a proof-of-concept approach to improve reliability and repeatability of results by refining the conventional maze methodology, we developed a voluntary, fully automated 8-arm RAM and tested its feasibility and usability using both spatial working and combined working/reference memory paradigms in ten female C57BL/6J mice. We demonstrate that experimental procedures of up to 7 days duration could be conducted without any manual animal handling and that mice up to 18 months of age showed robust spatial learning performance without any food or water restrictions being applied. Therefore, a voluntary, automated 8-arm RAM can serve to minimize variation in experimental results by reducing an animal's distress, suffering, and pain, which, in turn, contributes to the comprehensive application of 3R principles.
Collapse
Affiliation(s)
- Jie Mei
- Department of Neurology and Department of Experimental Neurology, Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Joel Kohler
- Department of Neurology and Department of Experimental Neurology, Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - York Winter
- Institute of Biology, Humboldt University, Berlin
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Department of Experimental Neurology, Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Stefanie Banneke
- German Federal Institute for Risk Assessment, German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Julius Valentin Emmrich
- Department of Neurology and Department of Experimental Neurology, Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; German Federal Institute for Risk Assessment, German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany.
| |
Collapse
|
8
|
A role for leptin and ghrelin in the augmentation of heroin seeking induced by chronic food restriction. Psychopharmacology (Berl) 2020; 237:787-800. [PMID: 31811350 DOI: 10.1007/s00213-019-05415-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
RATIONAL Caloric restriction increases the risk of relapse in abstinent drug users. Hormones involved in the regulation of energy balance and food intake, such as leptin and ghrelin, are implicated in drug-related behaviors. OBJECTIVES We investigated the role of leptin and ghrelin in the augmentation of heroin seeking induced by chronic food restriction. METHODS Rats self-administered heroin (0.1 mg/kg/infusion) for 10 days followed by 14 days of drug withdrawal. During withdrawal, rats were food restricted to 90% of their original body weight or were given free access to food. In experiment 1, we measured the plasma concentrations of leptin and ghrelin following heroin self-administration and withdrawal. In experiment 2, leptin was administered centrally (2.0 or 4.0 μg; i.c.v.) prior to a heroin-seeking test under extinction conditions. High density of both leptin and ghrelin receptors was previously identified in the ventral tegmental area (VTA), suggesting a direct effect on reward and motivation. Hence, we administered leptin (experiment 3; 0.125 or 0.250 μg/side), or ghrelin receptor antagonist JMV 2959 (experiment 4; 2.0 or 10.0 μg/side) directly into the VTA prior to the heroin-seeking test. RESULTS Chronic food restriction significantly decreased plasma levels of leptin and elevated plasma levels of ghrelin. Central administration of leptin had no statistically significant effect on heroin seeking. Intra-VTA administration of either leptin or JMV 2959 dose-dependently and selectively decreased heroin seeking in the food-restricted rats. CONCLUSIONS Leptin and ghrelin transmission in the VTA can modulate the augmentation of heroin seeking induced by chronic food restriction.
Collapse
|
9
|
Keel PK, Bodell LP, Forney KJ, Appelbaum J, Williams D. Examining weight suppression as a transdiagnostic factor influencing illness trajectory in bulimic eating disorders. Physiol Behav 2019; 208:112565. [PMID: 31153878 PMCID: PMC6636832 DOI: 10.1016/j.physbeh.2019.112565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022]
Abstract
Recent research indicates that weight suppression (WS: defined as the difference between highest lifetime and current weight) prospectively predicts illness trajectory across eating disorders characterized by binge eating, including AN binge-purge subtype (ANbp), bulimia nervosa (BN), and binge eating disorder (BED), collectively referred to as bulimic eating disorders. Through a series of studies, we have developed a model to explain the link between WS and illness trajectory in bulimic eating disorders. Our model posits that WS contributes to reduced circulating leptin, which leads to reduced postprandial glucagon-like peptide 1 (GLP-1) response. Diminished leptin and GLP-1 function contribute to alterations in two reward-related constructs in the Research Domain Criteria (RDoC): reward value/effort and reward satiation. Respectively, these changes increase drive/motivation to consume food and decrease ability for food consumption to lead to a state of satiation/satisfaction. Combined, these alterations increase risk for experiencing large, out-of-control binge-eating episodes. The following review presents evidence that contributed to the development of this model as well as preliminary findings from an on-going project funded to test this model.
Collapse
Affiliation(s)
- Pamela K Keel
- Department of Psychology, Florida State University, USA.
| | | | | | | | - Diana Williams
- Department of Psychology and Program in Neuroscience, Florida State University, USA
| |
Collapse
|
10
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
11
|
|
12
|
Fasting and refeeding induce differential changes in hypothalamic mRNA abundance of appetite-associated factors in 7 day-old Japanese quail, Coturnix japonica. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:60-67. [DOI: 10.1016/j.cbpa.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
|
13
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
14
|
WEN J, TAN S, WANG D, ZHAO Z. Variation of food availability affects male striped hamsters (Cricetulus barabensis
) with different levels of metabolic rate. Integr Zool 2018; 13:769-782. [DOI: 10.1111/1749-4877.12337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jing WEN
- College of Life and Environmental Science; Wenzhou University; Wenzhou China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Song TAN
- College of Life and Environmental Science; Wenzhou University; Wenzhou China
| | - Dehua WANG
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences; Beijing China
| | - Zhijun ZHAO
- College of Life and Environmental Science; Wenzhou University; Wenzhou China
| |
Collapse
|
15
|
Leptin resistance was involved in susceptibility to overweight in the striped hamster re-fed with high fat diet. Sci Rep 2018; 8:920. [PMID: 29343842 PMCID: PMC5772526 DOI: 10.1038/s41598-017-18158-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 02/03/2023] Open
Abstract
Food restriction (FR) is the most commonly used intervention to prevent the overweight. However, the lost weight is usually followed by “compensatory growth” when FR ends, resulting in overweight. The present study was aimed to examining the behavior patterns and hormones mechanisms underpinning the over-weight. Energy budget and body fat content, and several endocrine markers related to leptin signals were examined in the striped hamsters under 20% FR refed by either low-fat diet (LF group) or high-fat diet (HF group). Body mass and fat content significantly regained when FR ended, and the hamsters in HF group showed 49.1% more body fat than in LF group (P < 0.01). Digestive energy intake was higher by 20.1% in HF than LF group, while metabolic thermogenesis and behavior patterns did not differed between the two groups. Gene expression of leptin receptor and anorexigenic peptides of pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript in hypothalamus were significantly up-regulated in LF group, but down-regulated in HF group. It suggests that effective leptin signals to the brain were involved in attenuation of hyperphagia in hamsters refed with LF. However, “leptin resistance” probably occurred in hamsters refed with HF, which impaired the control of hyperphagia, resulting in development of over-weight.
Collapse
|
16
|
WEN J, TAN S, QIAO Q, SHI L, HUANG Y, ZHAO Z. Strategies of behavior, energetic and thermogenesis of striped hamsters in response to food deprivation. Integr Zool 2018; 13:70-83. [DOI: 10.1111/1749-4877.12259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing WEN
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Song TAN
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Qinggang QIAO
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Lulu SHI
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Yixin HUANG
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Zhijun ZHAO
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| |
Collapse
|
17
|
Bessières B, Nicole O, Bontempi B. Assessing recent and remote associative olfactory memory in rats using the social transmission of food preference paradigm. Nat Protoc 2017; 12:1415-1436. [DOI: 10.1038/nprot.2017.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Dietze S, Lees KR, Fink H, Brosda J, Voigt JP. Food Deprivation, Body Weight Loss and Anxiety-Related Behavior in Rats. Animals (Basel) 2016; 6:ani6010004. [PMID: 26751481 PMCID: PMC4730121 DOI: 10.3390/ani6010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Food deprivation protocols are frequently used in behavioral studies. However, there is limited evidence as to when food deprivation compromises animal welfare. Regarding the refinement of experiments involving animals, this study investigated the effects of food deprivation on body weight loss and behavior in male and female rats. Sex difference in behavior and motivational state after food deprivation is the main finding of the study. The data highlights the need for tailored pilot experiments to evaluate the impact of food deprivation on animals with regard to the 3Rs principles (replacement, reduction, refinement) in animal science. Abstract In behavioral studies, food deprivation protocols are routinely used to initiate or maintain motivational states that are required in a particular test situation. However, there is limited evidence as to when food deprivation compromises animal welfare. This study investigated the effects of different lengths of food deprivation periods and restricted (fixed-time) feeding on body weight loss as well as anxiety-related and motivated behavior in 5–6 month old male and female Wistar rats. The observed body weight loss was not influenced by sex and ranged between 4% (16 h deprivation) to approximately 9% (fixed-time feeding). Despite significant body weight loss in all groups, the motivation to eat under the aversive test conditions of the modified open field test increased only after 48 h of food deprivation. Long-lasting effects on anxiety as measured in the elevated plus maze test 24 h after refeeding have not been observed, although fixed-time feeding could possibly lead to a lasting anxiogenic effect in female rats. Overall, female rats showed a more anxiolytic profile in both tests when compared to male rats. Despite these sex differences, results suggest that food deprivation is not always paralleled by an increased motivation to feed in a conflict situation. This is an important finding as it highlights the need for tailored pilot experiments to evaluate the impact of food deprivation protocols on animals in regard to the principles of the 3Rs introduced by Russell and Burch.
Collapse
Affiliation(s)
- Silke Dietze
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, Berlin 14195, Germany.
| | - Katarina R Lees
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Heidrun Fink
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, Berlin 14195, Germany.
| | - Jan Brosda
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, Berlin 14195, Germany.
| | - Jörg-Peter Voigt
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
19
|
Interacting Neural Processes of Feeding, Hyperactivity, Stress, Reward, and the Utility of the Activity-Based Anorexia Model of Anorexia Nervosa. Harv Rev Psychiatry 2016; 24:416-436. [PMID: 27824637 PMCID: PMC5485261 DOI: 10.1097/hrp.0000000000000111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric illness with minimal effective treatments and a very high rate of mortality. Understanding the neurobiological underpinnings of the disease is imperative for improving outcomes and can be aided by the study of animal models. The activity-based anorexia rodent model (ABA) is the current best parallel for the study of AN. This review describes the basic neurobiology of feeding and hyperactivity seen in both ABA and AN, and compiles the research on the role that stress-response and reward pathways play in modulating the homeostatic drive to eat and to expend energy, which become dysfunctional in ABA and AN.
Collapse
|
20
|
Reprint of “Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies”. Neurotoxicol Teratol 2015; 52:93-108. [DOI: 10.1016/j.ntt.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022]
|
21
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
22
|
Fed and fasted chicks from lines divergently selected for low or high body weight have differential hypothalamic appetite-associated factor mRNA expression profiles. Behav Brain Res 2015; 286:58-63. [DOI: 10.1016/j.bbr.2015.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/31/2023]
|
23
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
24
|
Carrillo B, Collado P, Díaz F, Chowen JA, Pinos H. Exposure to increased levels of estradiol during development can have long-term effects on the response to undernutrition in female rats. Nutr Neurosci 2015; 19:414-422. [PMID: 25763920 DOI: 10.1179/1476830515y.0000000012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Undernutrition during development alters the expression of peptides that control energy expenditure and feeding behavior. Estrogens can also modulate these peptides. Here, we analyze whether the early postnatal administration of estradiol modulates the effects of undernutrition on neuroendocrine parameters in adult female Wistar rats. METHODS Control rats were fed a control diet. Undernourished pups were submitted to a restricted diet with half of the undernourished rats receiving 0.4 mg/kg s.c. of estradiol benzoate (EB) from postnatal day (P) 6 until P13. Quantitative real-time polymerase chain reaction was performed to determine expression in the hypothalamus of agouti-related peptide (AgRP), proopiomelanocortin (POMC), neuropeptide Y (NPY), and cocaine- and amphetamine-regulated transcript. Plasma estradiol, testosterone, and adiponectin levels were measured by enzyme-linked immunosorbent assay. Total and acylated ghrelin levels were measured in plasma by radioimmunoassay. Insulin and leptin were measured by mulitplex immunoassays. RESULTS Undernourishment decreased body weight, fat mass, plasma leptin and insulin levels, and hypothalamic POMC mRNA levels. An increase in orexigenic signals AgRP and NPY mRNA levels, and in plasma adiponectin levels were found in undernourished animals. Early postnatal treatment with EB to undernourished female rats reversed the effects of undernutrition on adult hypothalamic POMC mRNA levels. In addition, neonatal EB treatment to undernourished females significantly decreased adult plasma testosterone, estradiol, and acylated ghrelin levels. DISCUSSION Our results suggest that increased estradiol during a critical period of development has the capacity to modulate the alterations that undernutrition produces on energy metabolism.
Collapse
Affiliation(s)
- B Carrillo
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , Madrid , Spain
| | - P Collado
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , Madrid , Spain
| | - F Díaz
- b Departamento de Endocrinología , Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III , Madrid , Spain
| | - J A Chowen
- b Departamento de Endocrinología , Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III , Madrid , Spain
| | - H Pinos
- a Departamento de Psicobiología , Universidad Nacional de Educación a Distancia (UNED) , Madrid , Spain
| |
Collapse
|
25
|
Boughton CK, Murphy KG. Can neuropeptides treat obesity? A review of neuropeptides and their potential role in the treatment of obesity. Br J Pharmacol 2014; 170:1333-48. [PMID: 23121386 DOI: 10.1111/bph.12037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- C K Boughton
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
26
|
Lindén J, Lensu S, Pohjanvirta R. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hormones of energy balance in a TCDD-sensitive and a TCDD-resistant rat strain. Int J Mol Sci 2014; 15:13938-66. [PMID: 25119860 PMCID: PMC4159833 DOI: 10.3390/ijms150813938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 01/16/2023] Open
Abstract
One of the hallmarks of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a drastically reduced feed intake by an unknown mechanism. To further elucidate this wasting syndrome, we followed the effects of a single large dose (100 μg/kg) of TCDD on the serum levels of several energy balance-influencing hormones, clinical chemistry variables, and hepatic aryl hydrocarbon receptor (AHR) expression in two rat strains that differ widely in their TCDD sensitivities, for up to 10 days. TCDD affected most of the analytes in sensitive Long-Evans rats, while there were few alterations in the resistant Han/Wistar strain. However, analyses of feed-restricted unexposed Long-Evans rats indicated several of the perturbations to be secondary to energy deficiency. Notable increases in ghrelin and glucagon occurred in TCDD-treated Long-Evans rats alone, which links these hormones to the wasting syndrome. The newly found energy balance regulators, insulin-like growth factor 1 and fibroblast growth factor 21 (FGF-21), appeared to function in concert in body weight loss-induced metabolic state, and FGF-21 was putatively linked to increased lipolysis induced by TCDD. Finally, we demonstrate a reverse set of changes in the AHR protein and mRNA response to TCDD and feed restriction, suggesting that AHR might function also as a physiological regulator, possibly involved in the maintenance of energy balance.
Collapse
Affiliation(s)
- Jere Lindén
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Sanna Lensu
- Department of Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| |
Collapse
|
27
|
Vorhees CV, Williams MT. Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies. Neurotoxicol Teratol 2014; 45:75-90. [PMID: 25116937 DOI: 10.1016/j.ntt.2014.07.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022]
Abstract
Maneuvering safely through the environment is central to survival of all animals. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and sometimes proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures (e.g., subiculum); in humans this system encodes declarative memory (allocentric, semantic, and episodic, i.e., memory for people, places, things, and events). This form of memory is assessed in laboratory animals by many methods, but predominantly the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and when over-learned becomes implicit or procedural memory. Several allocentric methods for rodents are reviewed and compared with the MWM with particular focus on the Cincinnati water maze (CWM). MWM advantages include minimal training, no food deprivation, ease of testing, reliable learning, insensitivity to differences in body weight and appetite, absence of non-performers, control methods for performance effects, repeated testing capability and other factors that make this test well-suited for regulatory studies. MWM limitations are also reviewed. Evidence-based MWM design and testing methods are presented. On balance, the MWM is arguably the preferred test for assessing learning and memory in basic research and regulatory studies and the CWM is recommended if two tests can be accommodated so that both allocentric (MWM) and egocentric (CWM) learning and memory can be effectively and efficiently assessed.
Collapse
Affiliation(s)
- Charles V Vorhees
- Division of Child Neurology, Dept. of Pediatrics, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Division of Child Neurology, Dept. of Pediatrics, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| |
Collapse
|
28
|
Ferry B. The orexinergic system influences conditioned odor aversion learning in the rat: a theory on the processes and hypothesis on the circuit involved. Front Behav Neurosci 2014; 8:164. [PMID: 24834041 PMCID: PMC4018543 DOI: 10.3389/fnbeh.2014.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
A large variety of behaviors that are essential for animal survival depend on the perception and processing of surrounding smells present in the natural environment. In particular, food-search behavior, which is conditioned by hunger, is directly driven by the perception of odors associated with food, and feeding status modulates olfactory sensitivity. The orexinergic hypothalamic peptide orexin A (OXA), one of the central and peripheral hormones that triggers food intake, has been shown to increase olfactory sensitivity in various experimental conditions including the conditioned odor aversion learning paradigm (COA). COA is an associative task that corresponds to the association between an olfactory conditioned stimulus (CS) and a delayed gastric malaise. Previous studies have shown that this association is formed only if the delay separating the CS presentation from the malaise is short, suggesting that the memory trace of the odor is relatively unstable. To test the selectivity of the OXA system in olfactory sensitivity, a recent study compared the effects of fasting and of central infusion of OXA during the acquisition of COA. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA learning performances. In reference to the duration of action of OXA, the present work details the results obtained during the successive COA extinction tests and suggests a hypothesis concerning the role of the OXA component of fasting on the memory processes underlying CS-malaise association during COA. Moreover, referring to previous data in the literature we suggest a functional circuit model where fasting modulates olfactory memory processes through direct and/or indirect activation of particular OXA brain targets including the olfactory bulb, the locus coeruleus (LC) and the amygdala.
Collapse
Affiliation(s)
- Barbara Ferry
- Centre of Research in Neuroscience Lyon, CNRS UMR 5292 - INSERM U1028 UCBL1 Lyon, France
| |
Collapse
|
29
|
Yang L, Sun C, Li W. Neuropeptide B in Nile tilapia Oreochromis niloticus: molecular cloning and its effects on the regulation of food intake and mRNA expression of growth hormone and prolactin. Gen Comp Endocrinol 2014; 200:27-34. [PMID: 24561274 DOI: 10.1016/j.ygcen.2014.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Neuropeptide B (NPB) regulates food intake, energy homeostasis and hormone secretion in mammals via two G-protein coupled receptors, termed as GPR 7 and GPR 8. However, there is no study that reports the function of NPB in teleosts. In this study, the full-length cDNA of prepro-NPB with the size of 663bp was cloned from the hypothalamus of Nile tilapia. The CDS of the prepro-NPB is 387bp which encodes a precursor protein with the size of 128a.a. This precursor contains a mature peptide with the size of 29a.a, and it was named as NPB29. Tissue distribution study showed that this gene was mainly expressed in different parts of brain, especially in the diencephalon as well as hypothalamus, and the spinal cord in Nile tilapia. Fasting significantly stimulated the mRNA expression of NPB in the brain area without hypothalamus, and refeeding after fasting for 3 and 14days also showed similar effects on NPB expression. While, only short-term fasting (3days) and refeeding after fasting for 7 and 14days induced mRNA expression of NPB in the hypothalamus. Intraperitoneal (i.p.) injection of NPB remarkably elevated the mRNA expression of hypothalamic neuropeptide Y (NPY), cholecystokinin 1 (CCK1) and pituitary prolactin (PRL), whereas significantly inhibited growth hormone (GH) expression in pituitary. These observations in the present study suggested that NPB may participate in the regulation of feeding and gene expression of pituitary GH and PRL in Nile tilapia.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
30
|
Hypothalamic gene expression during voluntary hypophagia in the Sprague-Dawley rat on withdrawal of the palatable liquid diet, Ensure. Physiol Behav 2014; 128:172-9. [PMID: 24534180 DOI: 10.1016/j.physbeh.2014.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 11/23/2022]
Abstract
Sprague-Dawley rats over-consume calories over a 10 week period and develop diet-induced obesity (c. 100 g body weight differential vs controls) when fed a control pellet diet supplemented with chocolate Ensure liquid. Subsequent withdrawal of Ensure immediately reduces caloric intake by more than 50%, and results in weight loss, despite control pellet being available ad libitum. To assess the molecular underpinnings of this phenomenon, brains were processed for energy balance and food reward-related gene expression analysis at two time points, 24 h and 4 days after the withdrawal of Ensure, when energy intake was suppressed. Gene expression levels in hypothalamic arcuate nucleus and forebrain nucleus accumbens were compared with rats pair-fed to the same energy intake, i.e. imposed negative energy balance, and to controls fed control pellet ad libitum throughout. Cumulative energy intake was approximately 50% lower across the 4 day post-Ensure period, giving rise to a small reduction in body weight although body adiposity and blood leptin remained elevated (c. 100% and 50%, respectively vs controls) in rats that had previously been fed Ensure. In contrast, pair-feeding reduced blood insulin and leptin by 33% and 55%, respectively. Hypothalamic expression of neuropeptide Y and agouti-related peptide was down-regulated at 24 h in rats previously fed Ensure, indicative of the apparent counter-regulatory changes seen in diet-induced obesity, but was normalised between the 24 h and 4 day time points. By contrast, the effect of cumulative negative energy balance in the pair-fed groups increased with time, up-regulating expression of the orexigenic neuropeptides. There was also a reduction of suppressor of cytokine signalling-3 gene expression in pair-fed groups where leptin levels were low. There were no changes in opioid, dopamine receptor or cannabinoid receptor expression in the nucleus accumbens. Feedback from diet-induced obesity appears to drive voluntary hypophagia upon withdrawal of palatable diet, and to override signals from intake restriction that would otherwise set in train an anabolic drive.
Collapse
|
31
|
Zhao ZJ, Chen KX, Liu YA, Wang CM, Cao J. Decreased circulating leptin and increased neuropeptide Y gene expression are implicated in food deprivation-induced hyperactivity in striped hamsters, Cricetulus barabensis. Horm Behav 2014; 65:355-62. [PMID: 24631583 DOI: 10.1016/j.yhbeh.2014.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/15/2014] [Accepted: 03/02/2014] [Indexed: 11/15/2022]
Abstract
Physiological and behavioral adjustments of small mammals are important strategies in response to variations in food availability. Although numerous of studies have been carried out in rodents, behavioral patterns in response to food deprivation and re-feeding (FD-RF) are still inconsistent. Here we examined effects of a 24h FD followed by RF on general activity, serum leptin concentrations and gene expression of orexigenic and anorexigenic hypothalamic neuropeptides in striped hamsters (Cricetulus barabensis) with/without leptin supplements. The time spent on activity was increased by 2.5 fold in FD hamsters compared with controls fed ad libitum (P<0.01). Body mass, fat mass as well as serum leptin concentrations were significantly decreased in FD hamsters in comparison with ad libitum controls, which were in parallel with hyperactivity. During re-feeding, leptin concentrations increased rapidly to pre-deprivation levels by 12h, but locomotor activity decreased gradually and did not return to pre-deprivation levels until 5days after re-feeding. Leptin administration to FD hamsters significantly attenuated the increased activity. Gene expression of hypothalamic neuropeptide Y (NPY) was upregulated in FD hamsters and fell down to control levels when hamsters were re-fed ad libitum, similar to that observed in activity behavior. Leptin supplement induced increases in serum leptin concentrations (184.1%, P<0.05) in FD hamsters and simultaneously attenuated the increase in activity (45.8%, P<0.05) and NPY gene expression (35%, P<0.05). This may allow us to draw a more generalized conclusion that decreased leptin concentrations function as a starvation signal in animals under food shortage; to induce an increase in activity levels, leading animals to forage and/or migrate, and consequently increasing the chance of survival. Decreased concentrations of serum leptin in animals subjected to food shortage may induce an upregulation of gene expression of hypothalamus NPY, consequently driving a significant increase in foraging behavior.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325027, China; State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Ke-Xin Chen
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yong-An Liu
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Chun-Ming Wang
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325027, China; School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
32
|
Fischer EK, Harris RM, Hofmann HA, Hoke KL. Predator exposure alters stress physiology in guppies across timescales. Horm Behav 2014; 65:165-72. [PMID: 24370688 DOI: 10.1016/j.yhbeh.2013.12.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 11/29/2022]
Abstract
In vertebrates, glucocorticoids mediate a wide-range of responses to stressors. For this reason, they are implicated in adaptation to changes in predation pressure. Trinidadian guppies (Poecilia reticulata) from high-predation environments have repeatedly and independently colonized and adapted to low-predation environments, resulting in parallel changes in life history, morphology, and behavior. We validated methods for non-invasive waterborne hormone sample collection in this species, and used this technique to examine genetic and environmental effects of predation on basal glucocorticoid (cortisol) levels. To examine genetic differences, we compared waterborne cortisol levels in high- and low-predation fish from two distinct population pairs. We found that fish from high-predation localities had lower cortisol levels than their low-predation counterparts. To isolate environmental influences, we compared waterborne cortisol levels in genetically similar fish reared with and without exposure to predator chemical cues. We found that fish reared with predator chemical cues had lower waterborne cortisol levels than those reared without. Comparisons of waterborne and whole-body cortisol levels demonstrated that populations differed in overall cortisol levels in the body, whereas rearing conditions altered the release of cortisol from the body into the water. Thus, evolutionary history with predators and lifetime exposure to predator cues were both associated with lower cortisol release, but depended on distinct physiological mechanisms.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Rayna M Harris
- Department of Integrative Biology, Institute for Cellular & Molecular Biology, The University of Texas at Austin, 78712, USA
| | - Hans A Hofmann
- Department of Integrative Biology, Institute for Cellular & Molecular Biology, The University of Texas at Austin, 78712, USA; Institute for Neuroscience, The University of Texas at Austin, 78712, USA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
33
|
Abstract
Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks.
Collapse
|
34
|
Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res 2013; 1526:102-22. [PMID: 23830852 DOI: 10.1016/j.brainres.2013.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
Abstract
This review summarizes data regarding the brain expression of the orexin (hypocretin) system including: prepro-orexin (PPO), orexin A (OxA), orexin B (OxB) and the two orexin receptors 1 and 2 (OxR1, OxR2). Clinical data is limited to OxA and OxB in cerebral spinal fluid and serum/plasma, thus necessitating the development of animal models to undertake mechanistic studies. We focus on changes in animal models that were either exposed to a regime of altered sleep, metabolic energy homeostasis, exposed to drugs and noxious insults. Many more expressional studies are available for PPO, OxA and OxB levels, compared to studies of the receptors. Interestingly, the direction and pattern of change for PPO, OxA and OxB is inconsistent amongst studies, whereas for the receptors, there tends to be increased expression for both OxR1 and OxR2 after alterations in energy homeostasis, and an increased expression after noxious insults or exposure to some drugs. The clinical implications of these results from animal models are discussed in light of the findings from human studies, and future research directions are suggested to fill knowledge gaps with regard to the orexin system, particularly during early brain development.
Collapse
Affiliation(s)
- Rita Machaalani
- Department of Medicine, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
35
|
Bake T, Duncan JS, Morgan DGA, Mercer JG. Arcuate nucleus homeostatic systems are not altered immediately prior to the scheduled consumption of large, binge-type meals of palatable solid or liquid diet in rats and Mice. J Neuroendocrinol 2013. [PMID: 23194408 DOI: 10.1111/jne.12008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Meal feeding is a critical issue in the over-consumption of calories leading to human obesity. To investigate the mechanisms involved in the regulation of meal feeding in rodents, we studied a scheduled feeding regime that induces substantial food intake over short periods of time. Male Sprague-Dawley rats and C57BL6 mice were fed one of four palatable diets [45% fat pellet, 60% fat pellet or standard pellet supplemented with Ensure (EN; Abbott Laboratories, Maidenhead, UK) or 12.5% sucrose (SUC)] either ad lib. or with daily 2-h scheduled access and standard pellet available for 22 h. Energy balance gene expression in the hypothalamic arcuate nucleus (ARC) and nucleus accumbens (NAcc) reward gene expression were assessed by in situ hybridisation. Rats fed ad lib. on 45% or 60% fat diet were heavier and fatter than controls, and had reduced neuropeptide Y (NPY) gene expression in the ARC. Mice fed ad lib. on any of the palatable diets were heavier, fatter and had higher blood leptin than controls, and had reduced NPY and increased cocaine- and-amphetamine-regulated transcript mRNA in the ARC. Schedule-fed rats and mice quickly adapted their feeding behaviour to 2-h access on palatable food. Three schedule-fed groups binged: the percentage of daily calories consumed in 2 h on 45% fat diet, 60% fat diet or EN, respectively, was 55%, 63% and 49% in rats, and 86%, 86% and 45% in mice. However, changed feeding behaviour was not reflected in an induction of orexigenic neuropeptide or suppression of anorexigenic neuropeptide gene expression in the ARC, in the 2-h period prior to scheduled feeding. The mechanisms underlying large meal/binge-type eating may be regulated by nonhomeostatic processes involving other genes in the hypothalamus or other brain areas. However, assessment of opioid and dopamine receptor gene expression in the NAcc did not reveal evidence of the involvement of these genes in driving large meals, at least at the investigated time point.
Collapse
Affiliation(s)
- T Bake
- Rowett Institute of Nutrition and Health, Ingestive Behaviour Group, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | | | |
Collapse
|
36
|
Miranda B, Esposito V, de Girolamo P, Sharp PJ, Wilson PW, Dunn IC. Orexin in the chicken hypothalamus: immunocytochemical localisation and comparison of mRNA concentrations during the day and night, and after chronic food restriction. Brain Res 2013; 1513:34-40. [PMID: 23548597 DOI: 10.1016/j.brainres.2013.03.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
Abstract
In mammals Orexin-A and -B are neuropeptides involved in the hypothalamic regulation of diverse physiological functions including food intake and the sleep-wake cycle. This generalisation was investigated in meat-(broiler) and layer-type juvenile domestic chickens by immunocytochemical localisation of orexin A/B in the hypothalamus, and by measurements of hypothalamic hypocretin mRNA which encodes for orexin A/B after chronic food restriction, and during the sleep-wake cycle. Orexin immunoreactive fibres were observed throughout the hypothalamus with cell bodies in and around the paraventricular nucleus. No differences were observed in the pattern of immunoreactivity using anti- human orexin-A, or -B antisera. The amount of hypothalamic hypocretin mRNA in food -restricted broilers was higher than in broilers fed ad libitum, but the same as in layer- type hens fed ad libitum. Hypothalamic hypocretin mRNA was increased (P<0.01) in 12-week-old broilers fed 25% of their ad libitum intake between 6-12 weeks of age. No difference in hypothalamic hypocretin mRNA was seen in 12-week-old layer- type hens when they were awake (1-2h after lights on) or sleeping (1-2h after lights off). It is concluded that in the chicken, we could not find evidence that hypothalamic orexin plays a role in the sleep-wake cycle and it may be involved in aspects of energy balance.
Collapse
Affiliation(s)
- Bernadette Miranda
- Department of Structures, Functions and Biological Technologies, University of Naples FedericoII, via Delpino1, I-80137 Naples, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
38
|
Badonnel K, Lacroix MC, Monnerie R, Durieux D, Caillol M, Baly C. Chronic restricted access to food leading to undernutrition affects rat neuroendocrine status and olfactory-driven behaviors. Horm Behav 2012; 62:120-7. [PMID: 22633909 DOI: 10.1016/j.yhbeh.2012.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated that olfactory-driven behaviors in rats are influenced by short-term caloric restriction, partly through the modulation of olfactory sensitivity by appetite-modulating hormones or peptides such as insulin and leptin. Here, we addressed the issue of a long-term modulation of their neuroendocrine status by evaluating the effect of chronic food restriction in rats following a limitation of the duration of daily food intake to 2 h (SF) instead of 8 h (LF) on the expression of insulin and leptin system in the olfactory mucosa and bulb and on olfactory behaviors. This restriction resulted in a one-third reduction in the daily food intake and a 25% reduction in the body weight of SF rats when compared to controls, and was accompanied by lower levels of triglycerides, glucose, insulin and leptin in SF rats. Under these conditions, we observed a modulation of olfactory-mediated behaviors regarding food odors. In addition, restriction had a differential effect on the expression of insulin receptors, but not that of leptin receptors, in the olfactory mucosa, whereas no transcriptional change was observed at the upper level of the olfactory bulb. Overall, these data demonstrated that long-term changes in nutritional status modulate olfactory-mediated behaviors. Modulation of insulin system expression in the olfactory mucosa of food restricted rats suggests that this hormone could be part of this process.
Collapse
Affiliation(s)
- Karine Badonnel
- INRA, UR1197, Neurobiologie de l'Olfaction et Modélisation en Imagerie, 78350 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
39
|
Alsiö J, Olszewski PK, Levine AS, Schiöth HB. Feed-forward mechanisms: addiction-like behavioral and molecular adaptations in overeating. Front Neuroendocrinol 2012; 33:127-39. [PMID: 22305720 DOI: 10.1016/j.yfrne.2012.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/24/2011] [Accepted: 01/13/2012] [Indexed: 12/23/2022]
Abstract
Food reward, not hunger, is the main driving force behind eating in the modern obesogenic environment. Palatable foods, generally calorie-dense and rich in sugar/fat, are thus readily overconsumed despite the resulting health consequences. Important advances have been made to explain mechanisms underlying excessive consumption as an immediate response to presentation of rewarding tastants. However, our understanding of long-term neural adaptations to food reward that oftentimes persist during even a prolonged absence of palatable food and contribute to the reinstatement of compulsive overeating of high-fat high-sugar diets, is much more limited. Here we discuss the evidence from animal and human studies for neural and molecular adaptations in both homeostatic and non-homeostatic appetite regulation that may underlie the formation of a "feed-forward" system, sensitive to palatable food and propelling the individual from a basic preference for palatable diets to food craving and compulsive, addiction-like eating behavior.
Collapse
Affiliation(s)
- Johan Alsiö
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, Box 593, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
40
|
A modified adjusting delay task to assess impulsive choice between isocaloric reinforcers in non-deprived male rats: effects of 5-HT₂A/C and 5-HT₁A receptor agonists. Psychopharmacology (Berl) 2012; 219:377-86. [PMID: 21989803 PMCID: PMC3936353 DOI: 10.1007/s00213-011-2517-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Existing animal models of impulsivity frequently use food restriction to increase subjects' motivation. In addition, behavioral tasks that assess impulsive choice typically involve the use of reinforcers with dissimilar caloric content. These factors represent energy-homeostasis limitations, which may confound the interpretation of results and limit the applicability of these models. OBJECTIVES This study was aimed at validating face and convergent validities of a modified adjusting delay task, which assesses impulsive choice between isocaloric reinforcers in ad libitum fed rats. METHODS Male Wistar rats (n = 18) were used to assess the preferredness and reinforcing efficacy of a "supersaccharin" solution (1.5% glucose/0.4% saccharin) over a 1.5% glucose solution. A separate group of rats (n = 24) was trained in a modified adjusting delay task, which involved repeated choice between the glucose solution delivered immediately and the supersaccharin solution delivered after a variable delay. To pharmacologically validate the task, the effects of the 5-HT(2A/C) receptor agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)-DOI] and the 5-HT(1A) receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide [(±)-8-OH-DPAT] on impulsive choice were then evaluated. RESULTS Supersaccharin was highly reinforcing and uniformly preferred over the glucose solution by all subjects. Rats quickly learned the task, and impulsivity was a very stable and consistent trait. DOI and 8-OH-DPAT significantly and dose dependently increased impulsive choice in this modified adjusting delay task. CONCLUSIONS We validated a rodent task of impulsive choice, which eliminates typical energy-homeostasis limitations and, therefore, opens new avenues in the study of impulsivity in preclinical feeding and obesity research.
Collapse
|
41
|
Trinko R, Gan G, Gao XB, Sears RM, Guarnieri DJ, DiLeone RJ. Erk1/2 mediates leptin receptor signaling in the ventral tegmental area. PLoS One 2011; 6:e27180. [PMID: 22076135 PMCID: PMC3208604 DOI: 10.1371/journal.pone.0027180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 10/11/2011] [Indexed: 12/15/2022] Open
Abstract
Leptin acts on the ventral tegmental area (VTA) to modulate neuronal function and feeding behavior in rats and mice. To identify the intracellular effectors of the leptin receptor (Lepr), downstream signal transduction events were assessed for regulation by direct leptin infusion. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and phosphorylated extracellular signal-regulated kinase-1 and -2 (pERK1/2) were increased in the VTA while phospho-AKT (pAKT) was unaffected. Pretreatment of brain slices with the mitogen-activated protein kinase kinase -1 and -2 (MEK1/2) inhibitor U0126 blocked the leptin-mediated decrease in firing frequency of VTA dopamine neurons. The anorexigenic effects of VTA-administered leptin were also blocked by pretreatment with U0126, which effectively blocked phosphorylation of ERK1/2 but not STAT3. These data demonstrate that pERK1/2 may have a critical role in mediating both the electrophysiogical and behavioral effects of leptin receptor signaling in the VTA.
Collapse
Affiliation(s)
- Richard Trinko
- Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Geliang Gan
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xiao-Bing Gao
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert M. Sears
- Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Douglas J. Guarnieri
- Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ralph J. DiLeone
- Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bello NT, Coughlin JW, Redgrave GW, Ladenheim EE, Moran TH, Guarda AS. Dietary conditions and highly palatable food access alter rat cannabinoid receptor expression and binding density. Physiol Behav 2011; 105:720-6. [PMID: 22005165 DOI: 10.1016/j.physbeh.2011.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/15/2011] [Accepted: 09/29/2011] [Indexed: 11/29/2022]
Abstract
Endogenous cannabinoid signaling, mediated predominately by CB1 receptor activation, is involved in food intake control and body weight regulation. Despite advances in determining the role of the CB1 receptor in obesity, its involvement in the driven nature of eating pathologies has received little attention. The present study examined CB1 receptor alterations as a consequence of dietary-induced binge eating in female Sprague Dawley rats. Four control groups were used to control for calorie restriction and highly palatable food variables characterizing this behavioral model. All groups were kept on their respective feeding schedules for 6-weeks and were given a uniform 33% calorie restriction (~22 h food deprivation) prior to sacrifice. Our findings indicate that regional CB1 mRNA and density were influenced by dietary conditions, but were not specific to the dietary-induced binge eating paradigm used. An increase of approximately 50% (compared with naive controls) in CB1 receptor mRNA levels in the nucleus of the solitary tract as measured by in situ hybridization was found in animals receiving continuous access to a highly palatable food (i.e., vegetable shortening with 10% sucrose). This group also had a significant increase in body weight and adiposity. An approximate 20% reduction in CB1 mRNA was observed in the cingulate cortex (areas 1 and 2) in animals exposed to an intermittent schedule of feeding, compared with groups that had ad libitum feeding schedules (i.e., continuous access and naive controls). Receptor density as measured by [(3)H]CP55,940 autoradiography, was reduced by approximately 30% in the nucleus accumbens shell region in groups receiving repeated access to the highly palatable food. Taken together, these findings indicate that dietary conditions can differentially influence CB1 receptors in forebrain and hindbrain regions.
Collapse
Affiliation(s)
- Nicholas T Bello
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | | | | | | | | | | |
Collapse
|
43
|
New operant model of reinstatement of food-seeking behavior in mice. Psychopharmacology (Berl) 2011; 215:49-70. [PMID: 21161187 DOI: 10.1007/s00213-010-2110-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE A major problem in treating obesity is the high rate of relapse to abnormal food-taking behavior when maintaining diet. OBJECTIVES The present study evaluates the reinstatement of extinguished palatable food-seeking behavior induced by cues previously associated with the palatable food, re-exposure to this food, or stress. The participation of the opioid and dopamine mechanisms in the acquisition, extinction, and cue-induced reinstatement was also investigated. MATERIALS AND METHODS C57BL/6 mice were first trained on a fixed-ratio-1 schedule of reinforcement to obtain chocolate-flavored pellets during 20 days, which was associated to a stimulus light. Operant behavior was then extinguished during 20 daily sessions. mRNA levels of opioid peptide precursors and dopamine receptors were evaluated in the brain by in situ hybridization and RT-PCR techniques. RESULTS A reinstatement of food-seeking behavior was only obtained after exposure to the food-associated cue. A down-regulation of prodynorphin mRNA was found in the dorsal striatum and nucleus accumbens after the acquisition, extinction, and reinstatement of the operant behavior. Extinction and reinstatement of this operant response enhanced proenkephalin mRNA in the dorsal striatum and/or the nucleus accumbens core. Down-regulation of D2 receptor expression was observed in the dorsal striatum and nucleus accumbens after reinstatement. An up-regulation of PDYN mRNA expression was found in the hypothalamus after extinction and reinstatement. CONCLUSIONS This study provides a new operant model in mice for the evaluation of food-taking behavior and reveals specific changes in the dopamine and opioid system associated to the behavioral responses directed to obtain a natural reward.
Collapse
|
44
|
MacDonald L, Radler M, Paolini AG, Kent S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an anti-inflammatory bias. Am J Physiol Regul Integr Comp Physiol 2011; 301:R172-84. [PMID: 21525175 DOI: 10.1152/ajpregu.00057.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 μg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.
Collapse
Affiliation(s)
- Leah MacDonald
- School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | | | | |
Collapse
|
45
|
Effect of feeding status on adjuvant arthritis severity, cachexia, and insulin sensitivity in male Lewis rats. Mediators Inflamm 2010; 2010. [PMID: 20953376 PMCID: PMC2952917 DOI: 10.1155/2010/398026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/09/2010] [Indexed: 12/23/2022] Open
Abstract
We studied the effect of food restriction, overfeeding, and normofeeding on cachexia, inflammatory and metabolic parameters, and insulin sensitivity in chronic adjuvant arthritis (AA) in rats. Food restriction during AA increased circulating ghrelin, corticosterone, decreased leptin, and ameliorated arthrogram score and systemic inflammation compared to normofeeding. Overfeeding worsened arthrogram score and systemic inflammation, and led to lipid accumulation in the liver, but not to alterations of adipokine and ghrelin plasma levels relative to normofeeding. Independently of feeding status, AA induced cachexia, in which modulation of mRNA expressions for appetite-regulating neuropeptides (NPY, AgRP, POMC, CART) in the arcuate nucleus (ARC) does not play a primary role. The overexpression of IL-1β mRNA in the ARC suggests its role in the mechanisms of impaired energy balance during AA under all feeding conditions. Normal HOMA index in all arthritic groups does not indicate the development of insulin resistance by feeding interventions in these rats.
Collapse
|
46
|
The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs. Adv Drug Deliv Rev 2010; 62:918-27. [PMID: 20600408 DOI: 10.1016/j.addr.2010.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/28/2010] [Accepted: 06/15/2010] [Indexed: 11/20/2022]
Abstract
Daily restricted feeding entrains the circadian rhythm of mouse clock gene expression in the central nervous system, excluding the suprachiasmatic nucleus (SCN), as well as in the peripheral tissues such as the liver, lung, and heart. In addition to entrainment of the clock genes, daily restricted feeding induces a locomotor activity increase 2-3h before the restricted feeding time initiates. The increase in activity is called the food-anticipatory activity (FAA). In addition to FAA, daily restricted feeding can also entrain peripheral circadian clocks in other organs such as liver, lung, and heart. This type of oscillator is called the food-entrainable peripheral oscillator (FEPO). At present, the mechanisms for restricted feeding-induced entrainment of locomotor activity (FAA) and/or peripheral clock (FEPO) are still unknown. In this review, we describe the role of the central nervous system and peripheral tissues in FAA performance and also in the entrainment of clock gene expression. In addition, the mechanism for entrainment of circadian oscillators by the abuse of drugs, such as methamphetamine, is discussed.
Collapse
|
47
|
Scheurink AJW, Boersma GJ, Nergårdh R, Södersten P. Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav 2010; 100:490-5. [PMID: 20361989 DOI: 10.1016/j.physbeh.2010.03.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/18/2010] [Indexed: 11/18/2022]
Abstract
Restricted food intake is associated with increased physical activity, very likely an evolutionary advantage, initially both functional and rewarding. The hyperactivity of patients with anorexia nervosa, however, is a main problem for recovery. This seemingly paradoxical reward of hyperactivity in anorexia nervosa is one of the main aspects in our framework for the neurobiological changes that may underlie the development of the disorder. Here, we focus on the neurobiological basis of hyperactivity and reward in both animals and humans suggesting that the mesolimbic dopamine and hypothalamic orexin neurons play central roles. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
|
48
|
Veldhuis JD, Bowers CY. Integrating GHS into the Ghrelin System. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010:879503. [PMID: 20798846 PMCID: PMC2925380 DOI: 10.1155/2010/879503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/30/2009] [Indexed: 12/21/2022]
Abstract
Oligopeptide derivatives of metenkephalin were found to stimulate growth-hormone (GH) release directly by pituitary somatotrope cells in vitro in 1977. Members of this class of peptides and nonpeptidyl mimetics are referred to as GH secretagogues (GHSs). A specific guanosine triphosphatate-binding protein-associated heptahelical transmembrane receptor for GHS was cloned in 1996. An endogenous ligand for the GHS receptor, acylghrelin, was identified in 1999. Expression of ghrelin and homonymous receptor occurs in the brain, pituitary gland, stomach, endothelium/vascular smooth muscle, pancreas, placenta, intestine, heart, bone, and other tissues. Principal actions of this peptidergic system include stimulation of GH release via combined hypothalamopituitary mechanisms, orexigenesis (appetitive enhancement), insulinostasis (inhibition of insulin secretion), cardiovascular effects (decreased mean arterial pressure and vasodilation), stimulation of gastric motility and acid secretion, adipogenesis with repression of fat oxidation, and antiapoptosis (antagonism of endothelial, neuronal, and cardiomyocyte death). The array of known and proposed interactions of ghrelin with key metabolic signals makes ghrelin and its receptor prime targets for drug development.
Collapse
Affiliation(s)
- Johannes D. Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Cyril Y. Bowers
- Division of Endocrinology, Department of Internal Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
49
|
Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B 2010; 180:631-44. [PMID: 20174808 DOI: 10.1007/s00360-010-0451-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/21/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Daily variations in behaviour and physiology are controlled by a circadian timing system consisting of a network of oscillatory structures. In mammals, a master clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, adjusts timing of other self-sustained oscillators in the brain and peripheral organs. Synchronisation to external cues is mainly achieved by ambient light, which resets the SCN clock. Other environmental factors, in particular food availability and time of feeding, also influence internal timing. Timed feeding can reset the phase of the peripheral oscillators whilst having almost no effect in shifting the phase of the SCN clockwork when animals are exposed (synchronised) to a light-dark cycle. Food deprivation and calorie restriction lead not only to loss of body mass (>15%) and increased motor activity, but also affect the timing of daily activity, nocturnal animals becoming partially diurnal (i.e. they are active during their usual sleep period). This change in behavioural timing is due in part to the fact that metabolic cues associated with calorie restriction affect the SCN clock and its synchronisation to light.
Collapse
|
50
|
Latagliata EC, Patrono E, Puglisi-Allegra S, Ventura R. Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control. BMC Neurosci 2010; 11:15. [PMID: 20141625 PMCID: PMC2827417 DOI: 10.1186/1471-2202-11-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 02/08/2010] [Indexed: 11/17/2022] Open
Abstract
Background Eating disorders are multifactorial psychiatric disorders. Chronic stressful experiences and caloric restriction are the most powerful triggers of eating disorders in human and animals. Although compulsive behavior is considered to characterize pathological excessive food intake, to our knowledge, no evidence has been reported of continued food seeking/intake despite its possible harmful consequences, an index of compulsive behavior. Brain monoamine transmission is considered to have a key role in vulnerability to eating disorders, and norepinephrine in medial prefrontal cortex has been shown to be critical for food-related motivated behavior. Here, using a new paradigm of conditioned suppression, we investigated whether the ability of a foot-shock-paired conditioned stimulus to suppress chocolate-seeking behavior was reversed by previous exposure to a food restriction experience, thus modeling food seeking in spite of harmful consequences in mice. Moreover, we assessed the effects of selective norepinephrine inactivation in medial prefrontal cortex on conditioned suppression test in stressed and caloric restricted mice. Results While Control (non food deprived) animals showed a profound conditioned suppression of chocolate seeking during presentation of conditioned stimulus, previously food restricted animals showed food seeking/intake despite its possible harmful consequences. Moreover, food seeking in spite of harmful consequences was prevented by selective norepinephrine inactivation, thus showing that prefrontal cortical norepinephrine is critical also for maladaptive food-related behavior. Conclusions These findings indicate that adaptive food seeking/intake can be transformed into maladaptive behaviors and point to "top-down" influence on eating disturbances and to new targets for therapy of aberrant eating behaviors.
Collapse
Affiliation(s)
- Emanuele Claudio Latagliata
- Santa Lucia Foundation, European Centre for Brain Research (CERC), via del Fosso di Fiorano 64, Rome 00143 Italy
| | | | | | | |
Collapse
|