1
|
Pang R, Wang J, Li H, Zhong Z, Li Z, Qiu B, Zhou C, Ali S, Wu J. Identification of the CYPome associated with acetamiprid resistance based on the chromosome-level genome of Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae). PEST MANAGEMENT SCIENCE 2025; 81:3273-3283. [PMID: 39888231 DOI: 10.1002/ps.8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND The bean flower thrips, Megalurothrips usitatus, poses a great threat to cowpea and other legume cultivars. Chemical insecticides have been applied to control M. usitatus, but have resulted in little profit because of the rapid evolution of insecticide resistance. To characterize the potential insecticide resistance mechanisms in M. usitatus, we sequenced and assembled a chromosome-level genome of M. usitatus by combining PacBio sequencing and Hi-C technology using a susceptible population. RESULTS The genome size was 248.60 Mb and contained 14 128 protein-coding genes. The expansion genes of M. usitatus were enriched in the functional categories of heme binding and monooxygenase activity. We further identified 103 cytochrome P450 genes from the M. usitatus genome, 33 of which belonged to the CYP6 family. Ten CYP6 genes were significantly overexpressed in an acetamiprid-resistant population of M. usitatus. An RNA interference bioassay showed that knockdown of CYP6FW1, CYP6GM5, CYP6GM6, and CYP6GM7 significantly reduced acetamiprid resistance in the resistant population. In addition, the expression of all four genes could be induced by acetamiprid exposure. AlphaFold2-based homology modeling and molecular docking analysis showed that the proteins with relevance to acetamiprid resistance had relatively lower binding free energy with the acetamiprid molecule. CONCLUSION This study provides a reference genome and gene resources for future studies on the evolution of M. usitatus and related pest species, and highlights the importance of cytochrome P450s in insecticide resistance in this pest insect. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Pang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jiabin Wang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Haolong Li
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zichun Zhong
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhongsheng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bo Qiu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Chenyan Zhou
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shaukat Ali
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jianhui Wu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Zhang L, Zhuang Z, Xie J, Kong W, Li T, Wang S, Liu X. Molecular insights on the function of CYP380C12 in Aphis gossypii Glover (Hemiptera: Aphididae): in silico and RNAi analyses. JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf067. [PMID: 40274271 DOI: 10.1093/jee/toaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 04/26/2025]
Abstract
Aphis gossypii Glover is a serious pest that causes significant economic losses and is difficult to control due to the rapid development of resistance to neonicotinoids. Insect cytochrome P450s play an important role in detoxification of insecticides. In this study, we aimed to understand the function of CYP380C12 in A. gossypii. The CYP380C12 gene of A. gossypii was cloned and characterized, and its relative expression level differed among instars. The expression of CYP380C12 increased by 48.5% compared with the Water group under imidacloprid (IMI) stress for 48 h. Molecular docking predicted the binding free energy of CYP380C12 and IMI was -7.0 kcal/mol, indicating an excellent stability at the docked active site, which was verified by molecular dynamics simulations. Subsequently, silencing efficiency of CYP380C12 in the dsCYP380C12 treatment group reached 48.9%, 47.0%, and 40.0% at 24, 48, and 72 h, and the mortality of A. gossypii treated with IMI was 1.45- and 1.38-fold that of the Water and dsGFP control groups, respectively. Moreover, the reproductive period of aphids treated with dsCYP380C12 (9.67 ± 0.88) was significantly shorter than that of those sprayed with Water (13.67 ± 1.20). Taken together, these results indicated that silencing CYP380C12 not only increases sensitivity of A. gossypii to IMI but also shortens its reproductive period. Understanding the function of CYP380C12 in A. gossypii can provide new insights for developing innovative strategies to control A. gossypii.
Collapse
Affiliation(s)
- Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ziyan Zhuang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jingang Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Wenting Kong
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tingting Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Shengfei Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, National Demonstration Center for Experimental Biology Education, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Liu J, Liu Y, Wang W, Liang G, Lu Y. Characterizing Three Heat Shock Protein 70 Genes of Aphis gossypii and Their Expression in Response to Temperature and Insecticide Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2842-2852. [PMID: 39838942 DOI: 10.1021/acs.jafc.4c09505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Aphis gossypii is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses. Three ApHsp70 genes were cloned from A. gossypii, and characterized their molecular features and expression profiles in response to temperature and insecticide stress. The deduced amino acid sequences of these proteins exhibited characteristic Hsp70 family signatures, and their tissue-specific expression patterns revealed their highest activity to be in the salivary glands under 35 °C. The temperature inductive assay further indicated that the expression of the three ApHsp70 genes was markedly upregulated under heat stress but not under cold shock. Furthermore, exposure to LC25 and LC50 concentrations of three insecticides triggered the upregulation of these ApHsp70 genes. The RNA interference (RNAi)-mediated suppression of ApHsp68 expression heightened cotton aphid's susceptibility to insecticides (acetamiprid and sulfoxaflor). Moreover, our study found that the sulfoxaflor-resistant strain of A. gossypii (Sul-R) displayed a higher survival rate compared with the sulfoxaflor-sensitive strain (Sul-S) under heat shock conditions. These results suggest that these three ApHsp70 genes play an essential role in response to both heat and insecticide stress.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Silva APN, Andrade ES, Nascimento VL, Haddi K. Thermal modulation of insecticide-induced hormetic and oxidative responses in insect pests. CHEMOSPHERE 2025; 370:143920. [PMID: 39657854 DOI: 10.1016/j.chemosphere.2024.143920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Environmental global changes are dramatically affecting agroecosystems. Insects have been shown to present various responses to multi-stress conditions (i.e., increase in temperature and exposure to contaminants). However, there is a knowledge gap on how temperature can modulate the hormetic effects in individuals sublethally exposed to chemical stressors. Here, we investigated how temperature (15, 20, 25, and 28 °C) modulates the effects of lethal and sublethal exposure to insecticides (imidacloprid) on the longevity, fecundity, and oxidative stress of a pest insect, the aphid Mysus persicae. Our results showed additive and interactive effects of temperature and insecticide on the stimulatory and oxidative responses of the insect pest. Overall, imidacloprid was 2.4-fold less toxic at 15 °C (3.547 μg/ml) than at 20 °C (1.482 μg/ml) and 24.6 to 19.8-fold less toxic than at 25 °C (0.144 μg/ml) and 28 °C (0.179 μg/ml) respectively. Furthermore, although the exposure of female aphids to most sublethal concentrations resulted in a decrease in their longevity and fecundity compared to the control, some of the sublethal concentrations produced positive effects in these parameters for the exposed individuals. The magnitude of induced sublethal effects varied between temperatures and occurred in similar ranges of low concentrations at temperatures 15 °C and 20 °C, and at temperatures 25 °C and 28 °C. Additionally, imidacloprid low concentrations induced a temperature-dependent production of reactive oxygen species in exposed insects at 12 and 24 h after exposure indicating oxidative stress. Our study supplies valuable data on how temperature modulates pesticide-mediated hormesis that can alter ecological interactions and functions within agroecosystems with potential implications in pest management.
Collapse
Affiliation(s)
- Ana Paula Nascimento Silva
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Eduarda Santos Andrade
- Department of Biology, Institute of Natural Sciences, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Vitor L Nascimento
- Department of Biology, Institute of Natural Sciences, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Khalid Haddi
- Laboratory of Molecular Entomology and Ecotoxicology, Department of Entomology, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| |
Collapse
|
5
|
Zhang T, Gong C, Pu J, Peng A, Yang J, Wang X. Enhancement of Tolerance against Flonicamid in Solenopsis invicta Queens through Overexpression of CYP6AQ83. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:237-248. [PMID: 39680625 DOI: 10.1021/acs.jafc.4c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Solenopsis invicta, an extremely destructive invasive species, has rapidly spread in China, with queens exhibiting chemical tolerance. In this study, bioassays were conducted on S. invicta colonies collected in Nanchong, revealing that the LC50 value of flonicamid for queens (3.91 mg/L) was significantly higher than that for workers (1.07 mg/L). Comparative analysis of transcriptomes of workers and queens treated with flonicamid revealed that differentially expressed genes (DEGs) were significantly enriched in the metabolism of xenobiotics by cytochrome P450 and drug metabolism by cytochrome P450 pathways. Based on the screening of transcriptome data, CYP6AQ83 might be involved in the detoxification metabolism of flonicamid in queens. After RNA interference, the sensitivity of queens to flonicamid was significantly increased by 30% in the treatment of the dsCYP6AQ83 group. Furthermore, heterologous overexpression of CYP6AQ83 in Drosophila melanogaster also significantly enhanced the tolerance against flonicamid. These results indicated that the overexpression of CYP6AQ83 in the queen enhances the tolerance against flonicamid.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jizhi Yang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Kong W, Li T, Li Y, Zhang L, Xie J, Liu X. Transgenic Cotton Expressing ds AgCYP6CY3 Significantly Delays the Growth and Development of Aphis gossypii by Inhibiting Its Glycolysis and TCA Cycle. Int J Mol Sci 2024; 26:264. [PMID: 39796120 PMCID: PMC11720249 DOI: 10.3390/ijms26010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
In our previous research, we found that CYP6CY3 not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing dsAgCYP6CY3 affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing dsAgCYP6CY3-P1 (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis. Additionally, multiple DEGs and DAMs of glycolytic and The tricarboxylic acid (TCA) cycle pathways were significantly down-regulated. Pyruvate carboxylase (PC), citrate synthase (CS), malate dehydrogenase (MDH) enzyme activities and pyruvate content were reduced in cotton aphid treated with TG cotton. In addition, TG cotton could significantly decrease the total sugar content from the body and honeydew in cotton aphid. The above results indicated that TG cotton inhibited glycolysis and the TCA cycle, and this inhibition is consistent with previous studies showing that cotton aphid fed on TG cotton showed significantly reduced body length and weight as well as delayed molting. These findings provide a new strategy for reducing the transmission of viruses by cotton aphid honeydew, preventing fungal growth, mitigating impacts on normal photosynthesis and improving cotton quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (W.K.); (T.L.); (Y.L.); (L.Z.); (J.X.)
| |
Collapse
|
7
|
Fouet C, Pinch MJ, Ashu FA, Ambadiang MM, Bouaka C, Batronie AJ, Hernandez CA, Rios DE, Penlap-Beng V, Kamdem C. Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106205. [PMID: 39672618 DOI: 10.1016/j.pestbp.2024.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 12/15/2024]
Abstract
New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, both have the potential to develop resistance to acetamiprid through cytochrome P450-mediated detoxification. However, contrary to An. coluzzii, An. gambiae populations are evolving cross-resistance to several active ingredients facilitated by mutations of nicotinic acetylcholine receptors (nAChRs). We sequenced coding regions on the β1 and α6 nAChR subunits where variants associated with resistance to neonicotinoids or to spinosyns have been found in agricultural pests and detected no mutation in An. coluzzii. By contrast, six nucleotide substitutions including an amino acid change in one of the loops that modulate ligand binding and affect sensitivity were present in the resistant species, An. gambiae. Allele frequency distributions were consistent with the spread of beneficial mutations that likely reduce the affinity of An. gambiae nAChRs for synthetic modulators. Our findings provide critical information for the application and resistance management of nAChR modulators in malaria prevention.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Matthew J Pinch
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Fred A Ashu
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Marilene M Ambadiang
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Calmes Bouaka
- Department of Vector Biology, Liverpool School of Tropical Medicine, UK
| | - Anthoni J Batronie
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Cesar A Hernandez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Desiree E Rios
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
8
|
Krestonoshina K, Melnichuk A, Kinareikina A, Maslakova K, Yangirova L, Silivanova E. The P450-Monooxygenase Activity and CYP6D1 Expression in the Chlorfenapyr-Resistant Strain of Musca domestica L. INSECTS 2024; 15:461. [PMID: 38921174 PMCID: PMC11203901 DOI: 10.3390/insects15060461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
The house fly Musca domestica L. is one of the most common insects of veterinary and medical importance worldwide; its ability to develop resistance to a large number of insecticides is well known. Many studies support the involvement of cytochrome P-450-dependent monooxygenases (P450) in the development of resistance to pyrethroids, neonicotinoids, carbamates, and organophosphates among insects. In this paper, the monooxygenase activity and expression level of CYP6D1 were studied for the first time in a chlorfenapyr-resistant strain of house fly. Our studies demonstrated that P450 activity in adults of the susceptible strain (Lab TY) and chlorfenapyr-resistant strain (ChlA) was 1.56-4.05-fold higher than that in larvae. In females of the Lab TY and ChlA strains, this activity was 1.53- and 1.57-fold higher, respectively (p < 0.05), than that in males, and in contrast, the expression level of CYP6D1 was 21- and 8-fold lower, respectively. The monooxygenase activity did not vary between larvae of the susceptible strain Lab TY and the chlorfenapyr-resistant strain ChlA. Activity in females and males of the ChlA strain exceeded that in the Lab TY strain specimens by 1.54 (p = 0.08) and 1.83 (p < 0.05) times, respectively, with the same level of CYP6D1 expression. PCR-RFLP analysis revealed a previously undescribed mutation in the promoter region of the CYP6D1 gene in adults of the Lab TY and ChlA strains, and it did not affect the gene expression level. The obtained results show that the development of resistance to chlorfenapyr in M. domestica is accompanied by an increase in P450-monooxygenase activity without changes in CYP6D1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Silivanova
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology—Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre of Siberian Branch of the Russian Academy of Sciences (ASRIVEA)—Branch of Tyumen Scientific Centre SB RAS Institutskaya St. 2, Tyumen 625041, Russia; (K.K.); (A.M.); (A.K.); (K.M.); (L.Y.)
| |
Collapse
|
9
|
Pavithran S, Murugan M, Mannu J, Sathyaseelan C, Balasubramani V, Harish S, Natesan S. Salivary gland transcriptomics of the cotton aphid Aphis gossypii and comparative analysis with other sap-sucking insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22123. [PMID: 38860775 DOI: 10.1002/arch.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Aphids are sap-sucking insects responsible for crop losses and a severe threat to crop production. Proteins in the aphid saliva are integral in establishing an interaction between aphids and plants and are responsible for host plant adaptation. The cotton aphid, Aphis gossypii (Hemiptera: Aphididae) is a major pest of Gossypium hirsutum. Despite extensive studies of the salivary proteins of various aphid species, the components of A. gossypii salivary glands are unknown. In this study, we identified 123,008 transcripts from the salivary gland of A. gossypii. Among those, 2933 proteins have signal peptides with no transmembrane domain known to be secreted from the cell upon feeding. The transcriptome includes proteins with more comprehensive functions such as digestion, detoxification, regulating host defenses, regulation of salivary glands, and a large set of uncharacterized proteins. Comparative analysis of salivary proteins of different aphids and other insects with A. gossypii revealed that 183 and 88 orthologous clusters were common in the Aphididae and non-Aphididae groups, respectively. The structure prediction for highly expressed salivary proteins indicated that most possess an intrinsically disordered region. These results provide valuable reference data for exploring novel functions of salivary proteins in A. gossypii with their host interactions. The identified proteins may help develop a sustainable way to manage aphid pests.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Venkatasamy Balasubramani
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
10
|
Cai Z, Zhao X, Qian Y, Zhang K, Guo S, Kan Y, Wang Y, Ayra-Pardo C, Li D. Transcriptomic and Metatranscriptomic Analyses Provide New Insights into the Response of the Pea Aphid Acyrthosiphon pisum (Hemiptera: Aphididae) to Acetamiprid. INSECTS 2024; 15:274. [PMID: 38667404 PMCID: PMC11050337 DOI: 10.3390/insects15040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Acetamiprid is a broad-spectrum neonicotinoid insecticide used in agriculture to control aphids. While recent studies have documented resistance to acetamiprid in several aphid species, the underlying mechanisms are still not fully understood. In this study, we analyzed the transcriptome and metatranscriptome of a laboratory strain of the pea aphid, Acyrthosiphon pisum (Harris, 1776), with reduced susceptibility to acetamiprid after nine generations of exposure to identify candidate genes and the microbiome involved in the adaptation process. Sequencing of the transcriptome of both selected (RS) and non-selected (SS) strains allowed the identification of 14,858 genes and 4938 new transcripts. Most of the differentially expressed genes were associated with catalytic activities and metabolic pathways involving carbon and fatty acids. Specifically, alcohol-forming fatty acyl-CoA reductase (FAR) and acyl-CoA synthetase (ACSF2), both involved in the synthesis of epidermal wax layer components, were significantly upregulated in RS, suggesting that adaptation to acetamiprid involves the synthesis of a thicker protective layer. Metatranscriptomic analyses revealed subtle shifts in the microbiome of RS. These results contribute to a deeper understanding of acetamiprid adaptation by the pea aphid and provide new insights for aphid control strategies.
Collapse
Affiliation(s)
- Zhiyan Cai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Xuhui Zhao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Yuxin Qian
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Kun Zhang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Shigang Guo
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
- School of Life Science and Technology, Henan Institute of Science and Technology, 90 East of Hualan Avenue, Xinxiang 453003, China
| | - Yuqing Wang
- Scientific Research Center, Nanyang Medical College, Nanyang 473061, China;
| | - Camilo Ayra-Pardo
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, Avda. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (Z.C.); (X.Z.); (Y.Q.); (K.Z.); (S.G.); (Y.K.)
| |
Collapse
|
11
|
Li B, Wang D, Xie X, Chen X, Liang G, Xing D, Zhao T, Wu J, Zhou X, Li C. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses 2024; 16:525. [PMID: 38675868 PMCID: PMC11054288 DOI: 10.3390/v16040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.
Collapse
Affiliation(s)
- Bo Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoli Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
12
|
Ashu FA, Fouet C, Ambadiang MM, Penlap-Beng V, Kamdem C. Adult mosquitoes of the sibling species Anopheles gambiae and Anopheles coluzzii exhibit contrasting patterns of susceptibility to four neonicotinoid insecticides along an urban-to-rural gradient in Yaoundé, Cameroon. Malar J 2024; 23:65. [PMID: 38431623 PMCID: PMC10909279 DOI: 10.1186/s12936-024-04876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Neonicotinoids are potential alternatives for controlling pyrethroid-resistant mosquitoes, but their efficacy against malaria vector populations of sub-Saharan Africa has yet to be investigated. The aim of the present study was to test the efficacy of four neonicotinoids against adult populations of the sibling species Anopheles gambiae and Anopheles coluzzii sampled along an urban-to-rural gradient. METHODS The lethal toxicity of three active ingredients for adults of two susceptible Anopheles strains was assessed using concentration-response assays, and their discriminating concentrations were calculated. The discriminating concentrations were then used to test the susceptibility of An. gambiae and An. coluzzii mosquitoes collected from urban, suburban and rural areas of Yaoundé, Cameroon, to acetamiprid, imidacloprid, clothianidin and thiamethoxam. RESULTS Lethal concentrations of neonicotinoids were relatively high suggesting that this class of insecticides has low toxicity against Anopheles mosquitoes. Reduced susceptibility to the four neonicotinoids tested was detected in An. gambiae populations collected from rural and suburban areas. By contrast, adults of An. coluzzii that occurred in urbanized settings were susceptible to neonicotinoids except acetamiprid for which 80% mortality was obtained within 72 h of insecticide exposure. The cytochrome inhibitor, piperonyl butoxide (PBO), significantly enhanced the activity of clothianidin and acetamiprid against An. gambiae mosquitoes. CONCLUSIONS These findings corroborate susceptibility profiles observed in larvae and highlight a significant variation in tolerance to neonicotinoids between An. gambiae and An. coluzzii populations from Yaoundé. Further studies are needed to disentangle the role of exposure to agricultural pesticides and of cross-resistance mechanisms in the development of neonicotinoid resistance in some Anopheles species.
Collapse
Affiliation(s)
- Fred A Ashu
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé 9, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Marilene M Ambadiang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé 9, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA.
| |
Collapse
|
13
|
Ambadiang M, Fouet C, Ashu F, Bouaka C, Penlap-Beng V, Kamdem C. Anopheles gambiae larvae's ability to grow and emerge in water containing lethal concentrations of clothianidin, acetamiprid, or imidacloprid is consistent with cross-resistance to neonicotinoids. Parasit Vectors 2024; 17:98. [PMID: 38429846 PMCID: PMC10905935 DOI: 10.1186/s13071-024-06188-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND For decades, various agrochemicals have been successfully repurposed for mosquito control. However, preexisting resistance caused in larval and adult populations by unintentional pesticide exposure or other cross-resistance mechanisms poses a challenge to the efficacy of this strategy. A better understanding of larval adaptation to the lethal and sublethal effects of residual pesticides in aquatic habitats would provide vital information for assessing the efficacy of repurposed agrochemicals against mosquitoes. METHODS We reared field-collected mosquito larvae in water containing a concentration of agrochemical causing 100% mortality in susceptible mosquitoes after 24 h (lethal concentration). Using this experimental setup, we tested the effect of lethal concentrations of a pyrrole (chlorfenapyr, 0.10 mg/l), a pyrethroid (deltamethrin, 1.5 mg/l), and three neonicotinoids including imidacloprid (0.075 mg/l), acetamiprid (0.15 mg/l), and clothianidin (0.035 mg/l) on mortality rates, growth, and survival in third-instar larvae of the two sibling species Anopheles gambiae and Anopheles coluzzii collected from Yaoundé, Cameroon. RESULTS We found that An. gambiae and An. coluzzii larvae were susceptible to chlorfenapyr and were killed within 24 h by a nominal concentration of 0.10 mg/l. Consistent with strong resistance, deltamethrin induced low mortality in both species. Lethal concentrations of acetamiprid, imidacloprid, and clothianidin strongly inhibited survival, growth, and emergence in An. coluzzii larvae. By contrast, depending on the active ingredient and the population tested, 5-60% of immature stages of An. gambiae were able to grow and emerge in water containing a lethal concentration of neonicotinoids, suggesting cross-resistance to this class of insecticides. CONCLUSIONS These findings corroborate susceptibility profiles observed in adults and suggest that unintentional pesticide exposure or other cross-resistance processes could contribute to the development of resistance to neonicotinoids in some Anopheles populations.
Collapse
Affiliation(s)
- Marilene Ambadiang
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Fred Ashu
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Calmes Bouaka
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
14
|
Barathi S, Sabapathi N, Kandasamy S, Lee J. Present status of insecticide impacts and eco-friendly approaches for remediation-a review. ENVIRONMENTAL RESEARCH 2024; 240:117432. [PMID: 37865327 DOI: 10.1016/j.envres.2023.117432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Insecticides are indispensable for modern agriculture to ensuring crop protection and optimal yields. However, their excessive use raises concerns regarding their adverse effects on agriculture and the environment. This study examines the impacts of insecticides on agriculture and proposes remediation strategies. Excessive insecticide application can lead to the development of resistance in target insects, necessitating higher concentrations or stronger chemicals, resulting in increased production costs and disruption of natural pest control mechanisms. In addition, non-target organisms, such as beneficial insects and aquatic life, suffer from the unintended consequences of insecticide use, leading to ecosystem imbalances and potential food chain contamination. To address these issues, integrated pest management (IPM) techniques that combine judicious insecticide use with biological control and cultural practices can reduce reliance on chemicals. Developing and implementing selective insecticides with reduced environmental persistence is crucial. Promoting farmer awareness of responsible insecticide use, offering training and resources, and adopting precision farming technologies can minimize overall insecticide usage.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Nadana Sabapathi
- Centre of Translational Research, Shenzhen Bay Laboratory, Guangming, 518107, China
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Coimbatore, 641004, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
15
|
Gul H, Gadratagi BG, Güncan A, Tyagi S, Ullah F, Desneux N, Liu X. Fitness costs of resistance to insecticides in insects. Front Physiol 2023; 14:1238111. [PMID: 37929209 PMCID: PMC10620942 DOI: 10.3389/fphys.2023.1238111] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
The chemical application is considered one of the most crucial methods for controlling insect pests, especially in intensive farming practices. Owing to the chemical application, insect pests are exposed to toxic chemical insecticides along with other stress factors in the environment. Insects require energy and resources for survival and adaptation to cope with these conditions. Also, insects use behavioral, physiological, and genetic mechanisms to combat stressors, like new environments, which may include chemicals insecticides. Sometimes, the continuous selection pressure of insecticides is metabolically costly, which leads to resistance development through constitutive upregulation of detoxification genes and/or target-site mutations. These actions are costly and can potentially affect the biological traits, including development and reproduction parameters and other key variables that ultimately affect the overall fitness of insects. This review synthesizes published in-depth information on fitness costs induced by insecticide resistance in insect pests in the past decade. It thereby highlights the insecticides resistant to insect populations that might help design integrated pest management (IPM) programs for controlling the spread of resistant populations.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Basana Gowda Gadratagi
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, Ordu, Türkiye
| | - Saniya Tyagi
- Department of Entomology, BRD PG College, Deoria, Uttar Pradesh, India
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Sabra SG, Abbas N, Hafez AM. First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105504. [PMID: 37532324 DOI: 10.1016/j.pestbp.2023.105504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 08/04/2023]
Abstract
Insecticides are widely used as the primary management strategy for controlling Myzus persicae, the devastating pest ravaging various vegetables, fruits, crops, and ornamentals. This study examined the susceptibility of M. persicae field populations to bifenthrin, fosthiazate, acetamiprid, spirotetramat, afidopyropen, and flonicamid while exploring the possible metabolic mechanisms of resistance. The study findings revealed that M. persicae field populations exhibited susceptible-to-moderate resistance to bifenthrin (resistance ratio (RR) = 0.94-19.65) and acetamiprid (RR = 1.73-12.91), low-to-moderate resistance to fosthiazate (RR = 3.67-17.00), and susceptible-to-low resistance to spirotetramat (RR = 0.70-6.68). However, all M. persicae field populations were susceptible to afidopyropen (RR = 0.44-2.25) and flonicamid (RR = 0.40-2.08). As determined by the biochemical assays, carboxylesterases were involved in the resistance cases to bifenthrin and fosthiazate, whereas cytochrome P450 monooxygenases were implicated in the resistance cases to acetamiprid. However, glutathione S-transferases were not implicated in the documented resistance of M. persicae field populations. Overall, the susceptibility of M. persicae field populations to flonicamid and afidopyropen-two unregistered insecticides in Saudi Arabia-suggests their potential as promising chemicals that can expand the various alternatives available for controlling this devastating pest. Although the detected moderate levels of resistance to bifenthrin, fosthiazate, and acetamiprid indicate a shift in the selection pressure of insecticides for M. persicae due to Saudi regulations, which have resulted in eventual obsolescence of conventional insecticides in favor of novel insecticides. Finally, rotational use of aforementioned insecticides can help in managing insecticide resistance in M. persicae.
Collapse
Affiliation(s)
- Safwat G Sabra
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulwahab M Hafez
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Yuan X, Li H, Guo X, Jiang H, Zhang Q, Zhang L, Wang G, Li W, Zhao M. Functional roles of two novel P450 genes in the adaptability of Conogethes punctiferalis to three commonly used pesticides. Front Physiol 2023; 14:1186804. [PMID: 37457033 PMCID: PMC10338330 DOI: 10.3389/fphys.2023.1186804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Insect cytochrome P450 (CYP450) genes play important roles in the detoxification and metabolism of xenobiotics, such as plant allelochemicals, mycotoxins and pesticides. The polyphagous Conogethes punctiferalis is a serious economic pest of fruit trees and agricultural crops, and it shows high adaptability to different living environments. Methods: The two novel P450 genes CYP6CV1 and CYP6AB51 were identified and characterized. Quantitative real-time PCR (qRT-PCR) technology was used to study the expression patterns of the two target genes in different larval developmental stages and tissues of C. punctiferalis. Furthermore, RNA interference (RNAi) technology was used to study the potential functions of the two P450 genes by treating RNAi-silenced larvae with three commonly used pesticides. Results: The CYP6CV1 and CYP6AB51 genes were expressed throughout various C. punctiferalis larval stages and in different tissues. Their expression levels increased along with larval development, and expression levels of the two target genes in the midgut were significantly higher than in other tissues. The toxicity bioassay results showed that the LC50 values of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin on C. punctiferalis larvae were 0.2028 μg/g, 0.0683 μg/g and 0.6110 mg/L, respectively. After treating with different concentrations of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin (LC10, LC30, LC50), independently, the relative expressions of the two genes CYP6CV1 and CYP6AB51 were significantly induced. After the dsRNA injection, the expression profiles of the two CYP genes were reduced 72.91% and 70.94%, respectively, and the mortality rates of the larvae significantly increased when treated with the three insecticides independently at LC10 values. Discussion: In the summary, after interfering with the CYP6CV1 and CYP6AB51 in C. punctiferalis, respectively, the sensitivity of C. punctiferalis to chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin was significantly increased, indicating that the two CYP6 genes were responsible for the adaptability of C. punctiferalis to the three chemical insecticides in C. punctiferalis. The results from this study demonstrated that CYP6CV1 and CYP6AB51 in C. punctiferalis play crucial roles in the detoxification of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin.
Collapse
Affiliation(s)
- Xingxing Yuan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Han Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weizheng Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Wang X, Zhao N, Cai L, Liu N, Zhu J, Yang B. High-quality chromosome-level scaffolds of the plant bug Pachypeltis micranthus provide insights into the availability of Mikania micrantha control. BMC Genomics 2023; 24:339. [PMID: 37340339 DOI: 10.1186/s12864-023-09445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The plant bug, Pachypeltis micranthus Mu et Liu (Hemiptera: Miridae), is an effective potential biological control agent for Mikania micrantha H.B.K. (Asteraceae; one of the most notorious invasive weeds worldwide). However, limited knowledge about this species hindered its practical application and research. Accordingly, sequencing the genome of this mirid bug holds great significance in controlling M. micrantha. RESULTS Here, 712.72 Mb high-quality chromosome-level scaffolds of P. micranthus were generated, of which 707.51 Mb (99.27%) of assembled sequences were anchored onto 15 chromosome-level scaffolds with contig N50 of 16.84 Mb. The P. micranthus genome had the highest GC content (42.43%) and the second highest proportion of repetitive sequences (375.82 Mb, 52.73%) than the three other mirid bugs (i.e., Apolygus lucorum, Cyrtorhinus lividipennis, and Nesidiocoris tenuis). Phylogenetic analysis showed that P. micranthus clustered with other mirid bugs and diverged from the common ancestor approximately 200 million years ago. Gene family expansion and/or contraction were analyzed, and significantly expanded gene families associated with P. micranthus feeding and adaptation to M. micrantha were manually identified. Compared with the whole body, transcriptome analysis of the salivary gland revealed that most of the upregulated genes were significantly associated with metabolism pathways and peptidase activity, particularly among cysteine peptidase, serine peptidase, and polygalacturonase; this could be one of the reasons for precisely and highly efficient feeding by the oligophagous bug P. micranthus on M. micrantha. CONCLUSION Collectively, this work provides a crucial chromosome-level scaffolds resource to study the evolutionary adaptation between mirid bug and their host. It is also helpful in searching for novel environment-friendly biological strategies to control M. micrantha.
Collapse
Affiliation(s)
- Xiafei Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Ning Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Liqiong Cai
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
| |
Collapse
|
19
|
Genome wide identification and evolutionary analysis of vat like NBS-LRR genes potentially associated with resistance to aphids in cotton. Genetica 2023; 151:119-131. [PMID: 36717534 DOI: 10.1007/s10709-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Nucleotide Binding Site - Leucine Rich Repeat (NBS-LRR) genes play a significant role in plant defense against biotic stresses and are an integral part of signal transduction pathways. Vat gene has been well reported for their role in resistance to Aphis gossypii and viruses transmitted by them. Despite their importance, Vat like NBS-LRR resistance genes have not yet been identified and studied in cotton species. This study report hundreds of orthologous Vat like NBS-LRR genes from the genomes of 18 cotton species through homology searches and the distribution of those identified genes were tend to be clustered on different chromosome. Especially, in a majority of the cases, Vat like genes were located on chromosome number 13 and they all shared two conserved NBS-LRR domains, one disease resistant domain and several repeats of LRR on the investigated cotton Vat like proteins. Gene ontology study on Vat like NBS-LRR genes revealed the molecular functions viz., ADP and protein binding. Phylogenetic analysis also revealed that Vat like sequences of two diploid species, viz., G. arboreum and G. anomalum, were closely related to the sequences of the tetraploids than all other diploids. The Vat like genes of G. aridum and G. schwendimanii were distantly related among diploids and tetraploids species. Various hormones and defense related cis-acting regulatory elements were identified from the 2 kb upstream sequences of the Vat like genes implying their defensive response towards the biotic stresses. Interestingly, G. arboreum and G. trilobum were found to have more regulatory elements than larger genomes of tetraploid cotton species. Thus, the present study provides the evidence for the evolution of Vat like genes in defense mechanisms against aphids infestation in cotton genomes and allows further characterization of candidate genes for developing aphid and aphid transmitted viruses resistant crops through cotton breeding.
Collapse
|
20
|
Transcriptomic Analysis Reveals the Detoxification Mechanism of Chilo suppressalis in Response to the Novel Pesticide Cyproflanilide. Int J Mol Sci 2023; 24:ijms24065461. [PMID: 36982533 PMCID: PMC10049496 DOI: 10.3390/ijms24065461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Chilo suppressalis is one of the most damaging rice pests in China’s rice-growing regions. Chemical pesticides are the primary method for pest control; the excessive use of insecticides has resulted in pesticide resistance. C. suppressalis is highly susceptible to cyproflanilide, a novel pesticide with high efficacy. However, the acute toxicity and detoxification mechanisms remain unclear. We carried out a bioassay experiment with C. suppressalis larvae and found that the LD10, LD30 and LD50 of cyproflanilide for 3rd instar larvae was 1.7 ng/per larvae, 6.62 ng/per larvae and 16.92 ng/per larvae, respectively. Moreover, our field trial results showed that cyproflanilide had a 91.24% control efficiency against C. suppressalis. We investigated the effect of cyproflanilide (LD30) treatment on the transcriptome profiles of C. suppressalis larvae and found that 483 genes were up-regulated and 305 genes were down-regulated in response to cyproflanilide exposure, with significantly higher CYP4G90 and CYP4AU10 expression in the treatment group. The RNA interference knockdown of CYP4G90 and CYP4AU10 increased mortality by 20% and 18%, respectively, compared to the control. Our results indicate that cyproflanilide has effective insecticidal toxicological activity, and that the CYP4G90 and CYP4AU10 genes are involved in detoxification metabolism. These findings provide an insight into the toxicological basis of cyproflanilide and the means to develop efficient resistance management tools for C. suppressalis.
Collapse
|
21
|
Yu H, Yang X, Dai J, Li Y, Veeran S, Lin J, Shu B. Effects of azadirachtin on detoxification-related gene expression in the fat bodies of the fall armyworm, Spodoptera frugiperda. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42587-42595. [PMID: 35294689 DOI: 10.1007/s11356-022-19661-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, has become a worldwide pest and threatens world food production. A previous study indicated that azadirachtin, the most effective botanical insecticide for S. frugiperda, inhibits larval growth of the insect. The effect of azadirachtin on the tissues of the larvae, however, remains to be determined. In this study, the effects of azadirachtin on the structure of fat bodies were analyzed. Comparative transcriptomic analysis was conducted between controls and samples treated with 0.1 μg/g azadirachtin for 7 days to explore potential relevant mechanisms. The expression of 5356 genes was significantly affected after azadirachtin treatment, with 3020 up-regulated and 2336 down-regulated. Among them, 137 encode detoxification enzymes, including 53 P450s, 20 GSTs, 27 CarEs, 16 UGTs, and 12 ABC transporters. Our results indicated that azadirachtin could destroy fat body structure and change the mRNA levels of detoxification-related genes. The up-regulated genes encoding detoxification enzymes might be related to detoxifying azadirachtin. Our results elucidate a preliminary mechanism of azadirachtin detoxification in the fat bodies of S. frugiperda larvae.
Collapse
Affiliation(s)
- Haikuo Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xianmei Yang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuning Li
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Sethuraman Veeran
- Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, 313 Yingdong teaching building, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
22
|
Lu J, Zhang H, Wang Q, Huang X. Genome-Wide Identification and Expression Pattern of Cytochrome P450 Genes in the Social Aphid Pseudoregma bambucicola. INSECTS 2023; 14:212. [PMID: 36835781 PMCID: PMC9966863 DOI: 10.3390/insects14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) have a variety of functions, including involvement in the metabolism of exogenous substances and the synthesis and degradation of endogenous substances, which are important for the growth and development of insects. Pseudoregma bambucicola is a social aphid that produces genetically identical but morphologically and behaviorally distinct first-instar soldiers and normal nymphs within colonies. In this study, we identified 43 P450 genes based on P. bambucicola genome data. Phylogenetic analysis showed that these genes were classified into 4 clans, 13 families, and 23 subfamilies. The CYP3 and CYP4 clans had a somewhat decreased number of genes. In addition, differential gene expression analysis based on transcriptome data showed that several P450 genes, including CYP18A1, CYP4G332, and CYP4G333, showed higher expression levels in soldiers compared to normal nymphs and adult aphids. These genes may be candidates for causing epidermal hardening and developmental arrest in soldiers. This study provides valuable data and lays the foundation for the study of functions of P450 genes in the social aphid P. bambucicola.
Collapse
Affiliation(s)
- Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Iftikhar A, Hafeez F, Aziz MA, Hashim M, Naeem A, Yousaf HK, Saleem MJ, Hussain S, Hafeez M, Ali Q, Rehman M, Akhtar S, Marc RA, Syaad KMA, Mostafa YS, Saeed FAA. Assessment of sublethal and transgenerational effects of spirotetramat, on population growth of cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). Front Physiol 2022; 13:1014190. [PMID: 36579021 PMCID: PMC9791945 DOI: 10.3389/fphys.2022.1014190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
The cabbage aphid (Brevicoryne brassicae L.) is a devastating pest of cruciferous crops causing economic damage worldwide and notably owing to its increasing resistance to commonly used pesticides. Such resistance prompts the development of integrated pest management (IPM) programs that include novel pesticides being effective against the aphids. Spirotetramat is a novel insecticide used against sap-sucking insect pests, particularly aphids. This study evaluated the toxicity of spirotetramat to adult apterous B. brassicae after 72 h using the leaf dipping method. According to the toxicity bioassay results, the LC50 value of spirotetramat to B. brassicae was 1.304 mgL-1. However, the sublethal concentrations (LC5 and LC15) and transgenerational effects of this novel insecticide on population growth parameters were estimated using the age-stage, two-sex life table theory method. The sublethal concentrations (LC5; 0.125 mgL-1 and LC15; 0.298 mgL-1) of spirotetramat reduced the adult longevity and fecundity of the parent generation (F0). These concentrations prolonged the preadult developmental duration while decreasing preadult survival, adult longevity and reproduction of the F1 generation. The adult pre-reproductive period was also extended by spirotetramat treatment groups. Subsequently, the population growth parameters such as the intrinsic rate of increase r, finite rate of increase λ and net reproductive rate R 0 of the F1 generation were decreased in spirotetramat treatment groups whereas, the mean generation time T of the F1 generation was not affected when compared to the control. These results indicated the negative effect of sublethal concentrations of spirotetramat on the performance of B. brassicae by reducing its nymphal survival, extending the duration of some immature stages and suppressing the population growth of B. brassicae. Overall, we demonstrated that spirotetramat is a pesticide showing both sublethal activities, and transgenerational effects on cabbage aphid; it may be useful for implementation in IPM programs against this aphid pest.
Collapse
Affiliation(s)
- Ayesha Iftikhar
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan,*Correspondence: Ayesha Iftikhar, ; Muhammad Hafeez,
| | - Faisal Hafeez
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Asif Aziz
- Department of Entomology, Faculty of Crop and Food Sciences, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Hashim
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Afifa Naeem
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | | | - Muhammad Jawad Saleem
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Agriculture, Mir Chakar Khan Rind University, Sibi, Pakistan
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China,*Correspondence: Ayesha Iftikhar, ; Muhammad Hafeez,
| | - Qurban Ali
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muzammal Rehman
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Sumreen Akhtar
- Department of Zoology, Faculty of Basic Sciences, University of the Punjab, Lahore, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Khalid M. Al Syaad
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Yassor Sabry Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatimah A. Al Saeed
- Department of Biology, Saudi Arabia Research Center for Advanced Materials Science (RCAMS), College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
24
|
Ullah F, Xu X, Gul H, Güncan A, Hafeez M, Gao X, Song D. Impact of Imidacloprid Resistance on the Demographic Traits and Expressions of Associated Genes in Aphis gossypii Glover. TOXICS 2022; 10:toxics10110658. [PMID: 36355949 PMCID: PMC9696316 DOI: 10.3390/toxics10110658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
Imidacloprid is one of the most widely used neonicotinoid insecticides to control sap-sucking insect pests, including Aphis gossypii. The intensive application of chemical insecticides to A. gossypii led to the development of resistance against several insecticides, including imidacloprid. Therefore, it is crucial to understand the association between imidacloprid resistance and the fitness of A. gossypii to limit the spread of the resistant population under field contexts. In this study, we used the age-stage, two-sex life table method to comprehensively investigate the fitness of imidacloprid resistant (ImR) and susceptible strains (SS) of melon aphids. Results showed that ImR aphids have prolonged developmental stages and decreased longevity, fecundity, and reproductive days. The key demographic parameters (r, λ, and R0) were significantly reduced in ImR strain compared to SS aphids. Additionally, the molecular mechanism for fitness costs was investigated by comparing the expression profile of juvenile hormone-binding protein (JHBP), juvenile hormone epoxide hydrolase (JHEH), juvenile hormone acid O-methyltransferase (JHAMT), Vitellogenin (Vg), ecdysone receptor (EcR), and ultraspiracle protein (USP) supposed to be associated with development and reproduction in insects. The results of RT-qPCR showed that EcR, JHBP, JHAMT, JHEH, and Vg genes were downregulated, while USP was statistically the same in ImR A. gossypii compared to the SS strain. Together, these results provide in-depth information about the occurrence and magnitude of fitness costs against imidacloprid resistance that could help manage the evolution and spread of A. gossypii resistance in field populations.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiao Xu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, Ordu 52200, Turkey
| | - Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Wu S, He M, Xia F, Zhao X, Liao X, Li R, Li M. The Cross-Resistance Pattern and the Metabolic Resistance Mechanism of Acetamiprid in the Brown Planthopper, Nilaparvata lugens (Stål). Int J Mol Sci 2022; 23:ijms23169429. [PMID: 36012694 PMCID: PMC9409256 DOI: 10.3390/ijms23169429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Acetamiprid is widely used in paddy fields for controlling Nilaparvata lugens (Stål). However, the risk of resistance development, the cross-resistance pattern and the resistance mechanism of acetamiprid in this pest remain unclear. In this study, an acetamiprid-resistant strain (AC-R) was originated from a field strain (UNSEL) through successive selection with acetamiprid for 30 generations, which reached 60.0-fold resistance when compared with a laboratory susceptible strain (AC-S). The AC-R strain (G30) exhibited cross-resistance to thiamethoxam (25.6-fold), nitenpyram (21.4-fold), imidacloprid (14.6-fold), cycloxaprid (11.8-fold), dinotefuran (8.7-fold), sulfoxaflor (7.6-fold) and isoprocarb (8.22-fold), while there was no cross-resistance to etofenprox, buprofezin and chlorpyrifos. Acetamiprid was synergized by the inhibitor piperonyl butoxide (2.2-fold) and the activity of cytochrome P450 monooxygenase was significantly higher in the AC-R strain compared with the AC-S strain, suggesting the critical role of P450. The gene expression results showed that the P450 gene CYP6ER1 was significantly overexpressed in AC-R compared with the AC-S and UNSEL strains. In addition, the RNA interference (RNAi) of CYP6ER1 significantly increased the susceptibility of AC-R to acetamiprid. Molecular docking predicted that acetamiprid and CYP6ER1 had close binding sites, and the nitrogen atoms had hydrogen bond interactions with CYP6ER1. These results demonstrated that the overexpression of CYP6ER1 contributed to acetamiprid resistance in N. lugens.
Collapse
Affiliation(s)
- Shuai Wu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
| | - Minrong He
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
| | - Fujin Xia
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
| | - Xueyi Zhao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
| | - Xun Liao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
- Correspondence: (X.L.); (R.L.)
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
- Correspondence: (X.L.); (R.L.)
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China
- The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China
| |
Collapse
|
26
|
Zhang Q, Zhou M, Wang J. Increasing the activities of protective enzymes is an important strategy to improve resistance in cucumber to powdery mildew disease and melon aphid under different infection/infestation patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:950538. [PMID: 36061767 PMCID: PMC9428622 DOI: 10.3389/fpls.2022.950538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew, caused by Sphaerotheca fuliginea (Schlecht.) Poll., and melon aphids (Aphis gossypii Glover) are a typical disease and insect pest, respectively, that affect cucumber production. Powdery mildew and melon aphid often occur together in greenhouse production, resulting in a reduction in cucumber yield. At present there are no reports on the physiological and biochemical effects of the combined disease and pest infection/infestation on cucumber. This study explored how cucumbers can regulate photosynthesis, protective enzyme activity, and basic metabolism to resist the fungal disease and aphids. After powdery mildew infection, the chlorophyll and free proline contents in cucumber leaves decreased, while the activities of POD (peroxidase) and SOD (superoxide dismutase) and the soluble protein and MDA (malondialdehyde) contents increased. Cucumber plants resist aphid attack by increasing the rates of photosynthesis and basal metabolism, and also by increasing the activities of protective enzymes. The combination of powdery mildew infection and aphid infestation reduced photosynthesis and basal metabolism in cucumber plants, although the activities of several protective enzymes increased. Aphid attack after powdery mildew infection or powdery mildew infection after aphid attack had the opposite effect on photosynthesis, protective enzyme activity, and basal metabolism regulation. Azoxystrobin and imidacloprid increased the contents of chlorophyll, free proline, and soluble protein, increased SOD activity, and decreased the MDA content in cucumber leaves. However, these compounds had the opposite effect on the soluble sugar content and POD and CAT (catalase) activities. The mixed ratio of the two single agents could improve the resistance of cucumber to the combined infection of powdery mildew and aphids. These results show that cucumber can enhance its pest/pathogen resistance by changing physiological metabolism when exposed to a complex infection system of pathogenic microorganisms and insect pests.
Collapse
Affiliation(s)
| | | | - Jungang Wang
- College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
27
|
Razavi R, Basij M, Beitollahi H, Panahandeh S. Experimental and theoretical investigation of acetamiprid adsorption on nano carbons and novel PVC membrane electrode for acetamiprid measurement. Sci Rep 2022; 12:12145. [PMID: 35840789 PMCID: PMC9287318 DOI: 10.1038/s41598-022-16459-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Acetamiprid removal was investigated by synthesized Graphene oxide, multiwall nanotube and graphite from an aqueous solution. For this propose, FT-IR, XRD, UV–Vis, SEM and EDS were used to characterize the synthesized nano adsorbents and to determine the removal process. A novel PVC membrane electrode as selective electrode made for determining the concentration of acetamiprid. Batch adsorption studies were conducted to investigate the effect of temperature, initial acetamiprid concentration, adsorbent type and contact time as important adsorption parameters. The maximum equilibrium time was found to be 15 min for graphene oxide. The kinetics studies showed that the adsorption of acetamiprid followed the pseudo-second-order kinetics mechnism. All the adsorption equilibrium data were well fitted to the Langmuir isotherm model and maximum monolayer adsorption capacity 99 percent. Docking data of adsorption have resulted in the same as experimental data in good manner and confirmed the adsorption process.
Collapse
Affiliation(s)
- Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran.
| | - Moslem Basij
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Saleh Panahandeh
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
28
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Fernández-Grandon GM, Khan MM, Siddiqui JA, Chen L, Ren XY, Zhou S, Lou Y, Lu Y. Down-Regulation of P450 Genes Enhances Susceptibility to Indoxacarb and Alters Physiology and Development of Fall Armyworm, Spodoptera frugipreda (Lepidoptera: Noctuidae). Front Physiol 2022; 13:884447. [PMID: 35615670 PMCID: PMC9125154 DOI: 10.3389/fphys.2022.884447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is a pest of many important crops globally. Effective control is challenging, with the pest exhibiting resistance to different synthetic pesticides across various groups. However, the mechanisms employed by resistant insects for overexpression of relevant detoxification genes remain unclear. The activity of detoxification enzymes was investigated in this study. Additionally, using RNA interference (RNAi), a functional analysis was completed of two P450s genes in an indoxacarb resistant population of fall armyworms. Elevated resistance levels (resistance ratio = 31.37-fold) in indoxacarb-selected populations of FAW were observed after 14 generations. The qRT-PCR showed higher expression of two cytochrome P450 genes, CYP321A7 and CYP6AE43, in this selected population compared to the control population. RNAi was applied to knock down the P450 dsCYP321A7 and dsCYP6AE43 genes in the FAW larvae. Droplet feeding of the dsRNAs (CYP321A7 and CYP6AE43) via an artificial diet significantly increased mortality rates in the indoxacarb treated population. A shorter larval developmental time of FAW was detected in all dsRNAs-fed larvae. Correspondingly, larval mass was reduced by dsRNAs in indoxacarb resistant populations of fall armyworm. Larval feeding assays demonstrate that dsRNAs targeting, specifically of CYP321A7 and CYP6AE43 enzymes, could be a beneficial technique in the management of indoxacarb resistant populations. Further study on the potential use of dsRNA and its application should be conducted in efforts to counter the development of resistance in FAW against various insecticides in the field.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Junaid Ali Siddiqui
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Xiao Yun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| |
Collapse
|
29
|
Peng T, Liu X, Tian F, Xu H, Yang F, Chen X, Gao X, Lv Y, Li J, Pan Y, Shang Q. Functional investigation of lncRNAs and target cytochrome P450 genes related to spirotetramat resistance in Aphis gossypii Glover. PEST MANAGEMENT SCIENCE 2022; 78:1982-1991. [PMID: 35092151 DOI: 10.1002/ps.6818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Spirotetramat is a tetramic acid derivative insecticide with novel modes of action for controlling Aphis gossypii Glover in the field. Previous studies have shown that long noncoding RNAs (lncRNAs) and cytochrome P450 monooxygenases (P450s) are involved in the detoxification process. However, the functions of lncRNAs in regulating P450 gene expression in spirotetramat resistance in A. gossypii are unknown. RESULTS In this study, we found CYP4CJ1, CYP6CY7 and CYP6CY21 expression levels to be significantly upregulated in a spirotetramat-resistant (SR) strain compared with a susceptible (SS) strain. Furthermore, knockdown of CYP4CJ1, CYP6CY7 and CYP6CY21 increased nymph and adult mortality in the SR strain following exposure to spirotetramat. Drosophila ectopically expressing CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 showed significantly decreased mortality after spirotetramat exposure, and CYP380C6, CYP4CJ1 and CYP6CY21 are putative targets of six lncRNAs. Silencing of lncRNAs MSTRG.36649.2/5 and MSTRG.71880.1 changed CYP6CY21 and CYP380C6 expression, altering the sensitivity of the SR strain to spirotetramat. Moreover, MSTRG.36649.2/5 did not compete for microRNA (miRNA) binding to regulate CYP6CY21 expression. CONCLUSION Our results confirm that CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 are potentially involved in the development of spirotetramat resistance in A. gossypii, and MSTRG.36649.2/5 and MSTRG.71880.1 probably regulate CYP6CY21 and CYP380C6 expression other than through the "sponge effect" of competing for miRNA binding. Our results provide a favorable molecular basis for studying cotton aphid P450 genes and lncRNA functions in spirotetramat resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun, China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
30
|
Wang K, Zhao J, Han Z, Chen M. Comparative transcriptome and RNA interference reveal CYP6DC1 and CYP380C47 related to lambda-cyhalothrin resistance in Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105088. [PMID: 35430059 DOI: 10.1016/j.pestbp.2022.105088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The bird-cherry-oat aphid, Rhopalosiphum padi, is a serious agricultural pest of Triticeae crops, and pyrethroids are the most widely used chemical pesticides for the control of the aphid. Our previous studies found that some R. padi field populations have developed resistance against pyrethroids; an M918L target-site mutation of the voltage gated sodium channel was present in the pyrethroid resistant individuals, while the high-level resistance to lambda-cyhalothrin revealed the presence of other mechanisms in the pest. Here, we conducted genome-wide transcriptional analysis for the lambda-cyhalothrin susceptible (SS) and resistant (LC-RR) strains of R. padi. Results indicated that 2457 genes were differently expressed between the SS and LC-RR strains. In the LC-RR, a total of 1265 and 1192 genes were up- and down-regulated, respectively. KEGG analysis implicated enrichment of P450 involved in insecticide metabolic pathways in the resistant transcriptome. qRT-PCR results confirmed that two P450 genes (CYP6DC1 and CYP380C47) were significantly overexpressed in the LC-RR individuals. Furthermore, RNA interference (RNAi) of CYP6DC1 or CYP380C47 significantly increased mortality of R. padi exposure to lambda-cyhalothrin. These results suggest that the overexpression of CYP6DC1 and CYP380C47 contributed to the lambda-cyhalothrin resistance in the pest. This study provides knowledge for further analyzing the molecular mechanism of resistance to pyrethroids in R. padi.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junning Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaojun Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
31
|
Xu X, Ding Q, Wang X, Wang R, Ullah F, Gao X, Song D. V101I and R81T mutations in the nicotinic acetylcholine receptor β1 subunit are associated with neonicotinoid resistance in Myzus persicae. PEST MANAGEMENT SCIENCE 2022; 78:1500-1507. [PMID: 34962090 DOI: 10.1002/ps.6768] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is a major pest worldwide. The intensive use of insecticides has led to the development of resistance against neonicotinoid insecticides. The R81T mutation in the nicotinic acetylcholine receptor (nAChR) beta1 subunit is considered a crucial mechanism adaptation to neonicotinoid resistance in M. persicae and Aphis gossypii. RESULTS Resistance-related mutations (R81T and V101I) were detected in the imidacloprid-resistant M. persicae AH19 population. The V101I mutation is reported for the first time. The V101I and R81T mutations existed separately, indicating that the two mutations evolved independently. Imidacloprid resistance in the AH19 population was stable without insecticide exposure. Four mutant strains were selected from the population with stable resistance. The resistance of the AH19-T, AH19-I, and AH19-TI strains to imidacloprid, thiamethoxam, and dinotefuran was significantly increased compared with the AH19-W strain. Synergism bioassays showed that the inhibition of three detoxification enzymes did not affect imidacloprid resistance in the AH19-T and AH19-I strains. Expression of nAChR β1 subunits in the AH19-W, AH19-T, and AH19-I strains remained unchanged. CONCLUSION The V101I mutation is associated with neonicotinoid resistance in M. persicae. The resistance of the AH19-T and AH19-I strains to neonicotinoids appears to be mainly due to the R81T and V101I mutations, whereas these mutations, together with changes in the cytochrome P450 monooxygenases and nAChR expression may be responsible for the development of neonicotinoid resistance in the AH19-TI strain. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qian Ding
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiu Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ruijie Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Farman Ullah
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Umina PA, Reidy-Crofts J, Edwards O, Chirgwin E, Ward S, Maino J, Babineau M. Susceptibility of the Cowpea Aphid (Hemiptera: Aphididae) to Widely Used Insecticides in Australia. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:143-150. [PMID: 35139214 DOI: 10.1093/jee/toab210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 06/14/2023]
Abstract
Globally, 27 aphid species have evolved resistance to almost 100 insecticide active ingredients. A proactive approach to resistance management in pest aphids is needed; this should include risk analysis, followed by regular baseline susceptibility assays for species deemed at high risk of evolving resistance. The cowpea aphid (Aphis craccivora Koch) has evolved insecticide resistance to multiple insecticides outside Australia and was recently identified as a high-risk species in Australia. In this study, we generated toxicity data against four insecticides (representing four unique chemical Mode of Action groups) for populations of A. craccivora collected across Australia. Alpha-cypermethrin was the most toxic chemical to A. craccivora in leaf-dip laboratory bioassays with an average LC50 value across nine populations of 0.008 mg a.i./L, which was significantly lower than dimethoate (1.17 mg a.i./L) and pirimicarb (0.89 mg a.i./L). Small, but significant, differences in sensitivity were detected in some populations against pirimicarb and dimethoate, whereas responses to alpha-cypermethrin and imidacloprid were not significantly different across all aphid populations examined in this study. For all insecticides, the field rate controlled 100% of individuals tested. The data generated will be important for future monitoring of insecticide responses of A. craccivora. Proactive management, including increased reliance on non-chemical pest management approaches and routine insecticide baseline sensitivity studies, is recommended for A. craccivora.
Collapse
Affiliation(s)
- P A Umina
- Cesar Australia, Brunswick, Victoria, Australia
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - J Reidy-Crofts
- CSIRO, Land and Water, Floreat, Western Australia, Australia
| | - O Edwards
- CSIRO, Land and Water, Floreat, Western Australia, Australia
| | - E Chirgwin
- Cesar Australia, Brunswick, Victoria, Australia
| | - S Ward
- Cesar Australia, Brunswick, Victoria, Australia
| | - J Maino
- Cesar Australia, Brunswick, Victoria, Australia
| | - M Babineau
- Cesar Australia, Brunswick, Victoria, Australia
| |
Collapse
|
33
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
34
|
Ahmed MAI, Vogel CFA, Malafaia G. Short exposure to nitenpyram pesticide induces effects on reproduction, development and metabolic gene expression profiles in Drosophila melanogaster (Diptera: Drosophilidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150254. [PMID: 34798758 PMCID: PMC8767978 DOI: 10.1016/j.scitotenv.2021.150254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of neonicotinoid insecticides has been demonstrated in several studies, the information on metabolism, behavior, and health risk remains limited and has raised concerns about its potential toxicity. Thus, in this study we assessed the effects of nitenpyram using different sublethal concentrations (one-third and one-tenth of the acute LC50 values) on various developmental and metabolic parameters from gene expression regulation in Drosophila melanogaster (model system used worldwide in ecotoxicological studies). As a result, nitenpyram sublethal concentrations prolonged the developmental time for both pupation and eclosion. Additionally, nitenpyram sublethal concentrations significantly decreased the lifespan, pupation rate, eclosion rate, and production of eggs of D. melanogaster. Moreover, the mRNA expression of genes relevant for development and metabolism was significantly elevated after exposure. Mixed function oxidase enzymes (Cyp12d1), (Cyp9f2), and (Cyp4ae1), hemocyte proliferation (RyR), and immune response (IM4) genes were upregulated, whereas lifespan (Atg7), male mating behavior (Ple), female fertility (Ddc), and lipid metabolism (Sxe2) genes were downregulated. These findings support a solid basis for further research to determine the hazardous effects of nitenpyram on health and the environment.
Collapse
Affiliation(s)
- Mohamed Ahmed Ibrahim Ahmed
- Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt; Center for Health and the Environment, Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Christoph Franz Adam Vogel
- Center for Health and the Environment, Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Post-graduation Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
35
|
Zhang A, Xu L, Liu Z, Zhang J, Zhao K, Han L. Effects of Acetamiprid at Low and Median Lethal Concentrations on the Development and Reproduction of the Soybean Aphid Aphis glycines. INSECTS 2022; 13:insects13010087. [PMID: 35055930 PMCID: PMC8777768 DOI: 10.3390/insects13010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
The soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) is a major pest of soybean and poses a serious threat to soybean production. Studies on the effect of acetamiprid on the life table parameters of A. glycines, provide important information for the effective management of this pest. We found that exposure to acetamiprid at LC50 significantly extended the mean generation time, adult pre-reproductive period, and total pre-reproduction period compared with the control, whereas exposure to acetamiprid at LC30 significantly shortened these periods. Exposure to acetamiprid at both LC30 and LC50 significantly decreased the fecundity of the female adult, net reproductive rate, intrinsic rate of increase, and finite rate of increase compared with the control. The probability of attaining the adult stage was 0.51, 0.38, and 0.86 for a newly born nymph from the LC30 acetamiprid treatment group, LC50 acetamiprid treatment group, and control group, respectively. Acetamiprid at both LC50 and LC30 exerted stress effects on A. glycines, with the LC50 treatment significantly decreased the growth rate compared with the LC30 treatment. The present study provides reference data that could facilitate the exploration of the effects of acetamiprid on A. glycines in the field.
Collapse
|
36
|
Hafeez M, Li X, Chen L, Ullah F, Huang J, Zhang Z, Zhang J, Siddiqui JA, Zhou SX, Ren XY, Imran M, Assiri MA, Lou Y, Lu Y. Molecular characterization and functional analysis of cytochrome P450-mediated detoxification CYP302A1 gene involved in host plant adaptation in Spodoptera frugieprda. FRONTIERS IN PLANT SCIENCE 2022; 13:1079442. [PMID: 36762173 PMCID: PMC9906809 DOI: 10.3389/fpls.2022.1079442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/30/2022] [Indexed: 05/13/2023]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a destructive and polyphagous pest of many essential food crops including maize and rice. The FAW is hard to manage, control, or eradicate, due to its polyphagous nature and voracity of feeding. Here, we report the characterization and functional analysis of the detoxification gene CYP302A1 and how S. frugieprda larvae use a detoxification mechanism to adapt host plants. Results demonstrated that CYP302A1 expression levels were much higher in midgut tissue and the older S. frugiperda larvae. Our current studies revealed the enhanced P450 activity in the midguts of S. frugiperda larvae after exposure to rice plants as compared to corn plants and an artificial diet. Furthermore, higher mortality was observed in PBO treated larvae followed by the exposure of rice plants as compared to the corn plant. The dsRNA-fed larvae showed downregulation of CYP302A1 gene in the midgut. At the same time, higher mortality, reduced larval weight and shorter developmental time was observed in the dsRNA-fed larvae followed by the exposure of rice plant as compared to the corn plant and DEPC-water treated plants as a control. These results concluded that the inducible P450 enzyme system and related genes could provide herbivores with an ecological opportunity to adapt to diverse host plants by utilizing secondary compounds present in their host plants.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Shu-xing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-yun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| |
Collapse
|
37
|
Hou N, Zhou Z, Chen Y, Tian J, Zhang Y, Liu Z. RNA interference in Pardosa pseudoannulata, an important predatory enemy against several insect pests, through ingestion of dsRNA-expressing Escherichia coli. INSECT MOLECULAR BIOLOGY 2021; 30:624-631. [PMID: 34410024 DOI: 10.1111/imb.12731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
RNA interference is an important technology for gene functional research in many organisms. The pond wolf spider (Pardosa pseudoannulata) is an important natural enemy of rice field pests. To facilitate large-scale gene functional research in this spider species and others, we developed an RNA interference (RNAi) method via ingestion of bacteria expressing dsRNA. The dsRNA targeting a cytochrome P450 monooxygenase (cyp41g2) was expressed in Escherichia coli HT115 (DE3). And then the bacterial suspension was fed to 14-20 days old spiderlings. The mRNA abundance of the target gene was significantly reduced after 3-day's ingestion of bacteria expressing dsRNA, and between day 5 and 7, RNAi efficiency remained stable. Thus, we selected 5 days as the optimum interference time. Furthermore, the bacteria resuspension containing 20 ng/μl dsRNA was selected as the optimum concentration. To evaluate the applicability of this method, three other genes with different tissue expression pattern were also selected as targets. And the mRNA abundance of all the four target genes was significantly reduced with RNAi efficiency between 66.0% and up to 86.9%. The results demonstrated that the oral delivery of bacteria expressing dsRNA would be an effective RNAi method for the gene functional study in P. pseudoannulata.
Collapse
Affiliation(s)
- N Hou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Z Zhou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
38
|
Insecticide Resistance Monitoring in Field Populations of the Whitebacked Planthopper Sogatella furcifera (Horvath) in China, 2019-2020. INSECTS 2021; 12:insects12121078. [PMID: 34940166 PMCID: PMC8706372 DOI: 10.3390/insects12121078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The whitebacked planthopper (WBPH), Sogatella furcifera (Horváth), is one of the most destructive pests that seriously threatens the high-quality and safe production of rice. Overuse of chemical insecticides has led to varying levels of resistance to insecticides in the field population of S. furcifera. In this study, we measured the susceptibility of 18 populations to 10 insecticides by the rice-seedling dip method. Enzyme assays were performed to measure the levels of esterase (EST), glutathione S- transferase (GST) and cytochrome P450 monooxygenase (P450). A risk of cross-resistance between some insecticides were found by pairwise correlation, and EST may be contributed to the resistance to nitenpyram, thiamethoxam and clothianidin in S. furcifera. Overall, our findings will help inform the effective insecticide resistance management strategies to delay the development of insecticide resistance in S. furcifera. Abstract Monitoring is an important component of insecticide resistance management. In this study, resistance monitoring was conducted on 18 field populations in China. The results showed that S. furcifera developed high levels of resistance to chlorpyrifos and buprofezin, and S. furcifera showed low to moderate levels of resistance to imidacloprid, thiamethoxam, dinotefuran, clothianidin, sulfoxaflor, isoprocarb and ethofenprox. Sogatella furcifera remained susceptible or low levels of resistance to nitenpyram. LC50 values of nitenpyram and dinotefuran, imidacloprid, thiamethoxam, clothianidin and chlorpyrifos exhibited significant correlations, as did those between dinotefuran and thiamethoxam, clothianidin, sulfoxaflor, imidacloprid, isoprocarb and buprofezin. Similarly, significant correlations were observed between thiamethoxam and clothianidin, sulfoxaflor and imidacloprid. In addition, the activity of EST in field populations of S. furcifera were significantly correlated with the LC50 values of nitenpyram, thiamethoxam and clothianidin. These results will help inform effective insecticide resistance management strategies to delay the development of insecticide resistance in S. furcifera.
Collapse
|
39
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
40
|
Zhang A, Zhu L, Shi Z, Liu T, Han L, Zhao K. Effects of imidacloprid and thiamethoxam on the development and reproduction of the soybean aphid Aphis glycines. PLoS One 2021; 16:e0250311. [PMID: 34529690 PMCID: PMC8445468 DOI: 10.1371/journal.pone.0250311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
The soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) is a primary pest of soybeans and poses a serious threat to soybean production. Our studies were conducted to understand the effects of different concentrations of insecticides (imidacloprid and thiamethoxam) on A. glycines and provided critical information for its effective management. Here, we found that the mean generation time and adult and total pre-nymphiposition periods of the LC50 imidacloprid- and thiamethoxam-treatment groups were significantly longer than those of the control group, although the adult pre-nymphiposition period in LC30 imidacloprid and thiamethoxam treatment groups was significantly shorter than that of the control group. Additionally, the mean fecundity per female adult, net reproductive rate, intrinsic rate of increase, and finite rate of increase of the LC30 imidacloprid-treatment group were significantly lower than those of the control group and higher than those of the LC50 imidacloprid-treatment group (P < 0.05). Moreover, both insecticides exerted stress effects on A. glycines, and specimens treated with the two insecticides at the LC50 showed a significant decrease in their growth rates relative to those treated with the insecticides at LC30. These results provide a reference for exploring the effects of imidacloprid and thiamethoxam on A. glycines population dynamics in the field and offer insight to agricultural producers on the potential of low-lethal concentrations of insecticides to stimulate insect reproduction during insecticide application.
Collapse
Affiliation(s)
- Aonan Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lin Zhu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Zhenghao Shi
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Tianying Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lanlan Han
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Kuijun Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
41
|
G. BG, Pandi G. GP, Ullah F, Patil NB, Sahu M, Adak T, Pokhare S, Yadav MK, Mahendiran A, Mittapelly P, Desneux N, Rath PC. Performance of Trichogramma japonicum under field conditions as a function of the factitious host species used for mass rearing. PLoS One 2021; 16:e0256246. [PMID: 34411169 PMCID: PMC8375968 DOI: 10.1371/journal.pone.0256246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Different factitious hosts were used to mass rear Trichogramma japonicum Ashmead in different parts of the globe because thorough details were lacking in both the laboratory and the field. The objective of this study was to compare, parasitoid, T. japonicum reared in different factitious hosts. Three commonly used factitious host eggs, Corcyra cephalonica (Stainton), Ephestia kuehniella Zeller and Sitotroga cerealella Olivier were tested under laboratory conditions and then in the field over a yellow stem borer, Scirpophaga incertulus (Walker) of rice. The highest parasitism by T. japonicum was observed on E. kuehniella eggs. The parasitoid’s highest emergence (88.99%) was observed on S. cerealella eggs at 24 h exposure, whereas at 48 h it was on E. kuehniella eggs (94.66%). Trichogramma japonicum females that emerged from E. kuehniella eggs were significantly long-lived. The days of oviposition by hosts and the host species were significant individually, but not their interaction. Higher proportions of flying T. japonicum were observed when reared on E. kuehniella and C. cephalonica eggs. Field results showed that T. japonicum mass-reared on E. kuehniella showed higher parasitism of its natural host, S. incertulus eggs. Hence, by considering these biological characteristics and field results, E. kuehniella could be leveraged for the mass rearing of quality parasitoids of T. japonicum in India, the Asian continent and beyond.
Collapse
Affiliation(s)
- Basana Gowda G.
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
- * E-mail:
| | | | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Naveenkumar B. Patil
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Madhusmita Sahu
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Totan Adak
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Somnath Pokhare
- ICAR- National Research Centre on Pomegranate, Solapur, Maharashtra, India
| | - Manoj Kumar Yadav
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Annamalai Mahendiran
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | | | - Prakash Chandra Rath
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
42
|
Yin F, Lin Q, Wang X, Li Z, Feng X, Shabbir MZ. The glutathione S-transferase (PxGST2L) may contribute to the detoxification metabolism of chlorantraniliprole in Plutella xylostella(L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1007-1016. [PMID: 34110545 PMCID: PMC8295076 DOI: 10.1007/s10646-021-02431-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 05/15/2023]
Abstract
The diamondback moth (Plutella xylostella L.), is an economic pest of cruciferous plants worldwide, which causes great economic loss to cruciferous plants production. However, the pest has developed resistance to insecticides. One of such insecticides is chlorantraniliprole. The study of the mechanisms underlying resistance is key for the effective management of resistance. In this study, a comparative proteomics approach was used to isolate and identify various proteins that differed between chlorantraniliprole-susceptible and -resistant strains of P. xylostella. Eleven proteins were significantly different and were successfully identified by MALDI-TOF-MS. Metabolism-related proteins accounted for the highest proportion among the eleven different proteins. The function of the PxGST2L protein was validated by RNAi. Knockdown of PxGST2L reduced the GST activity and increased the toxicity of chlorantraniliprole to the diamondback moth. The resistance ratio of diamondback moth to chlorantraniliprole was reduced from 1029 to 505. The results indicated that PxGST2L is partly responsible for chlorantraniliprole insecticide resistance in DBM. Our finding contributes to the understanding of the mechanism underlying resistance to chlorantraniliprole in the DBM, to develop effective resistance management tactics.
Collapse
Affiliation(s)
- Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Qingsheng Lin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China.
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China.
| | - Xiaoxiang Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Zhenyu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Xia Feng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Muhammad Zeeshan Shabbir
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| |
Collapse
|
43
|
Ahmad S, Jamil M, Fahim M, Zhang S, Ullah F, Lyu B, Luo Y. RNAi-Mediated Knockdown of Imaginal Disc Growth Factors (IDGFs) Genes Causes Developmental Malformation and Mortality in Melon Fly, Zeugodacus cucurbitae. Front Genet 2021; 12:691382. [PMID: 34290744 PMCID: PMC8287652 DOI: 10.3389/fgene.2021.691382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
This study reports the first successful use of oral feeding dsRNA technique for functional characterization of imaginal disc growth factors (IDGFs) genes (IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6) in melon fly Zeugodacus cucurbitae. Phylogenetic and domain analysis indicates that these genes had high similarity with other Tephritidae fruit flies homolog and contain only one conserved domain among these five genes, which is glyco-18 domain (glyco-hydro-18 domain). Gene expression analysis at different developmental stages revealed that these genes were expressed at larval, pupal, and adult stages. To understand their role in different developmental stages, larvae were fed dsRNA-corresponding to each of the five IDGFs, in an artificial diet. RNAi-mediated knockdown of IDGF1 shows no phenotypic effects but caused mortality (10.4%), while IDGF4_0 caused malformed pharate at the adult stage where insects failed to shed their old cuticle and remained attached with their body, highest mortality (49.2%) was recorded compared to dsRNA-green fluorescent protein (GFP) or DEPC. Silencing of IDGF3_1 and IDGF4_1 cause lethal phenotype in larvae, (17.2%) and (40%) mortality was indexed in Z. cucurbitae. IDGF6 was mainly expressed in pupae and adult stages, and its silencing caused a malformation in adult wings. The developmental defects such as malformation in wings, larval–larval lethality, pupal–adult malformation, and small body size show that IDGFs are key developmental genes in the melon fly. Our results provide a baseline for the melon fly management and understanding of IDGFs specific functions in Z. cucurbitae.
Collapse
Affiliation(s)
- Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, China
| | - Momana Jamil
- School of Plant Protection, Hainan University, Haikou, China
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College University, Peshawar, Pakistan
| | - Shujing Zhang
- School of Plant Protection, Hainan University, Haikou, China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Baoqian Lyu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Yanping Luo
- School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
44
|
Slusher EK, Cottrell T, Acebes-Doria AL. Effects of Aphicides on Pecan Aphids and Their Parasitoids in Pecan Orchards. INSECTS 2021; 12:insects12030241. [PMID: 33809093 PMCID: PMC8000058 DOI: 10.3390/insects12030241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Aphids are important pests of pecans. Traditionally, insecticides have been the primary method of management. However, over-reliance and non-judicious use has led to resistance and damage to natural enemy populations. Therefore, frequent assessment of insecticides is necessary in order to monitor resistance development and non-target impacts. Aphicides, flonicamid, sulfoxaflor, and afidopyropen were assessed for their effects on pecan aphids and parasitoid, Aphelinus perpallidus, in a mature pecan orchard in 2019 and 2020. Post-application assessments were performed 7, 14, and 21 days post-application. Leaf samples from non-treated trees had greater aphid numbers than treated trees 7 days post-application with differences diminishing throughout the other two treatment periods in 2019. In 2020, aphid numbers were lower but leaf samples from non-treated trees had more aphids than treated trees 7 days post-application in the lower canopy. These differences again diminished 14 and 21 days post-application. There was no difference among treatments in number of parasitoid adults or mummies. These findings indicate that pecan growers have multiple potential options available for aphid management that do not negatively impact the primary pecan aphid parasitoid. Implications of the results on pecan aphid management are discussed.
Collapse
Affiliation(s)
- Eddie K. Slusher
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA;
- Correspondence: ; Tel.: +1-859-242-2782
| | - Ted Cottrell
- USDA Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008, USA;
| | | |
Collapse
|
45
|
Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D. Acetamiprid resistance and fitness costs of melon aphid, Aphis gossypii: An age-stage, two-sex life table study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104729. [PMID: 33357551 DOI: 10.1016/j.pestbp.2020.104729] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/25/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
The melon aphid, Aphis gossypii is a globally distributed crop pest with a wide host range. The intensive use of insecticides against this insect over several years has led to develop resistance against many insecticides including acetamiprid. Understanding the relationship between acetamiprid resistance and fitness of A. gossypii is essential to limit the spread of the resistant population in the field. In this study, age-stage, two-sex life table approach was used to investigate these relationships in the lab. Results showed that resistant strain (Ace-R) had a reduced fitness (relative fitness = 0.909) along with significantly decreased adult longevity, fecundity, net reproductive (R0), mean generation time (T) and gross reproductive rate (GRR). Compared to the susceptible strain (Ace-S), the pre-adult period and total pre-oviposition period (TPOP) were also significantly shorter in Ace-R strain. Moreover, the expression profiles of EcR, JHBP, JHAMT, JHEH, USP and Vg genes supposed to be involved in insect reproduction and development were analyzed using Quantitative Real Time PCR. The EcR, JHBP, JHAMT and USP genes were up-regulated, Vg gene was down-regulated while the mRNA level of JHEH gene was statistically same in the Ace-R strain compared to the Ace-S strain. Collectively, this study provides the occurrence and magnitude of fitness costs of A. gossypii against acetamiprid resistance and could be helpful to manage the resistance evolution in field populations.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kaleem Tariq
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan; Entomology and Nematology Department, Steinmetz Hall, University of Florida, Gainesville, FL 32611, USA; U.S. Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|