1
|
Kaldjob-Heinrich L, Nuciforo S, Lemke S, Stahl A, Czemmel S, Babaei S, Blukacz L, Meier MA, Zhang Y, Schürch CM, Gonzalez-Menendez I, Woelffing P, Malek NP, Scheble V, Nahnsen S, Claassen M, Templin M, Bösmüller H, Heim MH, Dauch D, Bitzer M. Adenosine Receptor 3 in Liver Cancer: Expression Variability, Epigenetic Modulation, and Enhanced Histone Deacetylase Inhibitor Effects. GASTRO HEP ADVANCES 2024; 4:100590. [PMID: 39911497 PMCID: PMC11795062 DOI: 10.1016/j.gastha.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 02/07/2025]
Abstract
Background and Aims Primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), has low response rates to existing treatments, highlighting the urgent need for novel treatment options. Adenosine A3 receptor (ADORA3) signaling has emerged as a potential target. Namodenoson, an ADORA3 agonist, has shown promise in early clinical trials for HCC. However, further data are required to clarify ADORA3 expression patterns in liver cancer, mechanisms of action, and the potential for combination therapies to inform patient selection for future clinical trials. Methods Patient-derived tissue microarrays and RNA-sequencing were employed to investigate ADORA3 expression. Cellular responses to ADORA3 stimulation and combination treatments were studied in HCC and CCA cell lines and patient-derived organoids (PDOs). Genome-wide RNA-Seq analysis, mRNA analysis, and DigiWest protein profiling were performed. Results Tissue microarray analysis revealed higher ADORA3 expression in nonmalignant samples and a subset of tumors with weak or absent ADORA3 expression. This was supported by RNA sequencing data from The Cancer Genome Atlas and needle biopsy samples. Cell lines and PDOs exhibited antiproliferative effects with the ADORA3 agonist Namodenoson, confirmed by receptor dependency tests with specific antagonists and siRNA experiments. Genome-wide RNA-Seq analysis suggested chromatin remodeling events after ADORA3 stimulation. mRNA expression and DigiWest profiling identified downregulation of histone deacetylases and histone H3 modifications. Combination treatments with different ADORA3 agonists and histone deacetylase inhibitors significantly enhanced antiproliferative effects in almost all selected combinations, supported by investigations in PDOs. Conclusion ADORA3 expression varies considerably in HCC or CCA, ranging from high to absent receptor detection. This observation might help to identify patients for clinical studies. Additionally, Namodenoson's epigenetic modulating activity suggests epigenetic drugs as promising candidates for combination treatment.
Collapse
Affiliation(s)
| | - Sandro Nuciforo
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Clinic of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases Basel, Basel, Switzerland
| | - Steffen Lemke
- Quantitative Biology Center (QBiC), Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Aaron Stahl
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Sepideh Babaei
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Lauriane Blukacz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Marie-Anne Meier
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Clinic of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases Basel, Basel, Switzerland
| | - Yizheng Zhang
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
| | - Pascal Woelffing
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Department of Medical Oncology and Pneumology, Eberhard-Karls University, Tuebingen, Germany
| | - Nisar P. Malek
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Center for Personalized Medicine, Eberhard-Karls University, Tuebingen, Germany
| | - Veit Scheble
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Manfred Claassen
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Machine Learning in Science, Excellence Cluster Machine Learning, University of Tübingen, Tübingen, Germany
| | - Markus Templin
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Hans Bösmüller
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
| | - Markus H. Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Clinic of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases Basel, Basel, Switzerland
| | - Daniel Dauch
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Department of Medical Oncology and Pneumology, Eberhard-Karls University, Tuebingen, Germany
| | - Michael Bitzer
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Center for Personalized Medicine, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
2
|
Oshima HS, Ogawa A, Sano FK, Akasaka H, Kawakami T, Iwama A, Okamoto HH, Nagiri C, Wei FY, Shihoya W, Nureki O. Structural insights into the agonist selectivity of the adenosine A 3 receptor. Nat Commun 2024; 15:9294. [PMID: 39511145 PMCID: PMC11544091 DOI: 10.1038/s41467-024-53473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
Adenosine receptors play pivotal roles in physiological processes. Adenosine A3 receptor (A3R), the most recently identified adenosine receptor, is expressed in various tissues, exhibiting important roles in neuron, heart, and immune cells, and is often overexpressed in tumors, highlighting the therapeutic potential of A3R-selective agents. Recently, we identified RNA-derived N6-methyladenosine (m6A) as an endogenous agonist for A3R, suggesting the relationship between RNA-derived modified adenosine and A3R. Despite extensive studies on the other adenosine receptors, the selectivity mechanism of A3R, especially for A3R-selective agonists such as m6A and namodenoson, remained elusive. Here, we identify tRNA-derived N6-isopentenyl adenosine (i6A) as an A3R-selective ligand via screening of modified nucleosides against the adenosine receptors. Like m6A, i6A is found in the human body and may be an endogenous A3R ligand. Our cryo-EM analyses elucidate the A3R-Gi complexes bound to adenosine, 5'-N-ethylcarboxamidoadenosine (NECA), m6A, i6A, and namodenoson at overall resolutions of 3.27 Å (adenosine), 2.86 Å (NECA), 3.19 Å (m6A), 3.28 Å (i6A), and 3.20 Å (namodenoson), suggesting the selectivity and activation mechanism of A3R. We further conduct structure-guided engineering of m6A-insensitive A3R, which may aid future research targeting m6A and A3R, providing a molecular basis for future drug discovery.
Collapse
Affiliation(s)
- Hidetaka S Oshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Ogawa
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Kawakami
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chisae Nagiri
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Gao ZG, Chen W, Gao RR, Li J, Tosh DK, Hanover JA, Jacobson KA. Genetic and functional modulation by agonist MRS5698 and allosteric enhancer LUF6000 at the native A 3 adenosine receptor in HL-60 cells. Purinergic Signal 2024; 20:559-570. [PMID: 38416332 PMCID: PMC11377395 DOI: 10.1007/s11302-024-09992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1β, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1β, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA.
| | - Weiping Chen
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Ray R Gao
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Jonathan Li
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - John A Hanover
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Venugopala KN, Buccioni M. Current Understanding of the Role of Adenosine Receptors in Cancer. Molecules 2024; 29:3501. [PMID: 39124905 PMCID: PMC11313767 DOI: 10.3390/molecules29153501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Katharigatta Narayanaswamy Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, ChIP, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy;
| |
Collapse
|
5
|
Xu JP, Ouyang QW, Shao MJ, Ke H, Du H, Xu SC, Yang Q, Cui YR, Qu F. Manual acupuncture ameliorates inflammatory pain by upregulating adenosine A 3 receptor in complete Freund's adjuvant-induced arthritis rats. Int Immunopharmacol 2024; 133:112095. [PMID: 38678668 DOI: 10.1016/j.intimp.2024.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Adenosine A3 receptor (A3R) exerts analgesic, anti-inflammatory, and anti-nociceptive effects. In this study, we determined the analgesic mechanism of manual acupuncture (MA) in rats with complete Freund's adjuvant (CFA)-induced arthritis and explored whether MA ameliorates inflammation in these rats by upregulating A3R. METHODS Sixty Sprague Dawley (SD) rats were randomly divided into the following groups: Control, CFA, CFA + MA, CFA + sham MA, CFA + MA + DMSO, CFA + MA + IB-MECA, and CFA + MA + Reversine groups. The arthritis rat model was induced by injecting CFA into the left ankle joints. Thereafter, the rats were subjected to MA (ST36 acupoint) for 3 days. The clinical indicators paw withdrawal latency (PWL), paw withdrawal threshold (PWT), and open field test (OFT) were used to determine the analgesic effect of MA. In addition, to explore the effect of A3R on inflammation after subjecting arthritis rats to MA, IB-MECA (A3R agonist) and Reversine (A3R antagonist) were injected into ST36 before MA. RESULTS MA ameliorated the pathological symptoms of CFA-induced arthritis, including the pain indicators PWL and PWT, number of rearing, total ambulatory distance, and activity trajectory. Furthermore, after MA, the mRNA and protein expression of A3R was upregulated in CFA-induced arthritis rats. In contrast, the protein levels of TNF-α, IL-1β, Rap1, and p-p65 were downregulated after MA. Interestingly, the A3R agonist and antagonist further downregulated and upregulated inflammatory cytokine expression, respectively, after MA. Furthermore, the A3R antagonist increased the degree of ankle swelling after MA. CONCLUSION MA can alleviate inflammatory pain by inhibiting the NF-κB signaling pathway via upregulating A3R expression of the superficial fascia of the ST36 acupoint site in CFA-induced arthritis rats.
Collapse
Affiliation(s)
- Jing-Ping Xu
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qian-Wen Ouyang
- Nanchang People's Hospital, Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 334000, China
| | - Mei-Juan Shao
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hong Ke
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hong Du
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Shang-Cheng Xu
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qian Yang
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yan-Ru Cui
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China.
| | - Fei Qu
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
6
|
Duangrat R, Parichatikanond W, Chanmahasathien W, Mangmool S. Adenosine A 3 Receptor: From Molecular Signaling to Therapeutic Strategies for Heart Diseases. Int J Mol Sci 2024; 25:5763. [PMID: 38891948 PMCID: PMC11171512 DOI: 10.3390/ijms25115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular diseases (CVDs), particularly heart failure, are major contributors to early mortality globally. Heart failure poses a significant public health problem, with persistently poor long-term outcomes and an overall unsatisfactory prognosis for patients. Conventionally, treatments for heart failure have focused on lowering blood pressure; however, the development of more potent therapies targeting hemodynamic parameters presents challenges, including tolerability and safety risks, which could potentially restrict their clinical effectiveness. Adenosine has emerged as a key mediator in CVDs, acting as a retaliatory metabolite produced during cellular stress via ATP metabolism, and works as a signaling molecule regulating various physiological processes. Adenosine functions by interacting with different adenosine receptor (AR) subtypes expressed in cardiac cells, including A1AR, A2AAR, A2BAR, and A3AR. In addition to A1AR, A3AR has a multifaceted role in the cardiovascular system, since its activation contributes to reducing the damage to the heart in various pathological states, particularly ischemic heart disease, heart failure, and hypertension, although its role is not as well documented compared to other AR subtypes. Research on A3AR signaling has focused on identifying the intricate molecular mechanisms involved in CVDs through various pathways, including Gi or Gq protein-dependent signaling, ATP-sensitive potassium channels, MAPKs, and G protein-independent signaling. Several A3AR-specific agonists, such as piclidenoson and namodenoson, exert cardioprotective impacts during ischemia in the diverse animal models of heart disease. Thus, modulating A3ARs serves as a potential therapeutic approach, fueling considerable interest in developing compounds that target A3ARs as potential treatments for heart diseases.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | | | - Wisinee Chanmahasathien
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
8
|
The chronological evolution of fluorescent GPCR probes for bioimaging. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
O'Brien BJ, Faraoni EY, Strickland LN, Ma Z, Mota V, Mota S, Chen X, Mills T, Eltzschig HK, DelGiorno KE, Bailey‐Lundberg JM. CD73-generated extracellular adenosine promotes resolution of neutrophil-mediated tissue injury and restrains metaplasia in pancreatitis. FASEB J 2023; 37:e22684. [PMID: 36468677 PMCID: PMC9753971 DOI: 10.1096/fj.202201537r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Pancreatitis is currently the leading cause of gastrointestinal hospitalizations in the US. This condition occurs in response to abdominal injury, gallstones, chronic alcohol consumption or, less frequently, the cause remains idiopathic. CD73 is a cell surface ecto-5'-nucleotidase that generates extracellular adenosine, which can contribute to resolution of inflammation by binding adenosine receptors on infiltrating immune cells. We hypothesized genetic deletion of CD73 would result in more severe pancreatitis due to decreased generation of extracellular adenosine. CD73 knockout (CD73-/- ) and C57BL/6 (wild type, WT) mice were used to evaluate the progression and response of caerulein-induced acute and chronic pancreatitis. In response to caerulein-mediated chronic or acute pancreatitis, WT mice display resolution of pancreatitis at earlier timepoints than CD73-/- mice. Using immunohistochemistry and analysis of single-cell RNA-seq (scRNA-seq) data, we determined CD73 localization in chronic pancreatitis is primarily observed in mucin/ductal cell populations and immune cells. In murine pancreata challenged with caerulein to induce acute pancreatitis, we compared CD73-/- to WT mice and observed a significant infiltration of Ly6G+, MPO+, and Granzyme B+ cells in CD73-/- compared to WT pancreata and we quantified a significant increase in acinar-to-ductal metaplasia demonstrating sustained metaplasia and inflammation in CD73-/- mice. Using neutrophil depletion in CD73-/- mice, we show neutrophil depletion significantly reduces metaplasia defined by CK19+ cells per field and significantly reduces acute pancreatitis. These data identify CD73 enhancers as a potential therapeutic strategy for patients with acute and chronic pancreatitis as adenosine generation and activation of adenosine receptors is critical to resolve persistent inflammation in the pancreas.
Collapse
Affiliation(s)
- Baylee J. O'Brien
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Erika Y. Faraoni
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Lincoln N. Strickland
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Zhibo Ma
- Gene Expression LaboratoryThe Salk Institute for Biological SciencesSan DiegoCaliforniaUSA
| | - Victoria Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Samantha Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Xuebo Chen
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Holger K. Eltzschig
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Jennifer M. Bailey‐Lundberg
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
10
|
Fisher ES, Chen Y, Sifuentes MM, Stubblefield JJ, Lozano D, Holstein DM, Ren J, Davenport M, DeRosa N, Chen TP, Nickel G, Liston TE, Lechleiter JD. Adenosine A1R/A3R agonist AST-004 reduces brain infarction in mouse and rat models of acute ischemic stroke. FRONTIERS IN STROKE 2022; 1:1010928. [PMID: 38348128 PMCID: PMC10861240 DOI: 10.3389/fstro.2022.1010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Acute ischemic stroke (AIS) is the second leading cause of death globally. No Food and Drug Administration (FDA) approved therapies exist that target cerebroprotection following stroke. Our group recently reported significant cerebroprotection with the adenosine A1/A3 receptor agonist, AST-004, in a transient stroke model in non-human primates (NHP) and in a preclinical mouse model of traumatic brain injury (TBI). However, the specific receptor pathway activated was only inferred based on in vitro binding studies. The current study investigated the underlying mechanism of AST-004 cerebroprotection in two independent models of AIS: permanent photothrombotic stroke in mice and transient middle cerebral artery occlusion (MCAO) in rats. AST-004 treatments across a range of doses were cerebroprotective and efficacy could be blocked by A3R antagonism, indicating a mechanism of action that does not require A1R agonism. The high affinity A3R agonist MRS5698 was also cerebroprotective following stroke, but not the A3R agonist Cl-IB-MECA under our experimental conditions. AST-004 efficacy was blocked by the astrocyte specific mitochondrial toxin fluoroacetate, confirming an underlying mechanism of cerebroprotection that was dependent on astrocyte mitochondrial metabolism. An increase in A3R mRNA levels following stroke suggested an intrinsic cerebroprotective response that was mediated by A3R signaling. Together, these studies confirm that certain A3R agonists, such as AST-004, may be exciting new therapeutic avenues to develop for AIS.
Collapse
Affiliation(s)
- Elizabeth S. Fisher
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Yanan Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Mikaela M. Sifuentes
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Jeremy J. Stubblefield
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Damian Lozano
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - JingMei Ren
- NeuroVasc Preclinical Services, Inc., Lexington, MA, United States
| | | | - Nicholas DeRosa
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Tsung-pei Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Gerard Nickel
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | | | - James D. Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Bai Y, Zhang X, Zheng J, Liu Z, Yang Z, Zhang X. Overcoming high level adenosine-mediated immunosuppression by DZD2269, a potent and selective A2aR antagonist. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:302. [PMID: 36229853 PMCID: PMC9563815 DOI: 10.1186/s13046-022-02511-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Adenosine is a potent immunosuppressant whose levels in the tumor microenvironment (TME) are often much higher than those in normal tissues. Binding of adenosine to its receptor A2aR activates a cascade of genes and leads to immunosuppression. In addition, immune checkpoint blockage markedly increases A2aR expression in T cells, which could dampen their anti-tumor response. Several A2aR antagonists are under clinical development, but with limited clinical benefit reported so far. These A2aR antagonists showed much diminished activity at high adenosine levels found in TME, which may explain their clinical underperformance. We report the discovery and early clinical development of DZD2269, a novel A2aR antagonist which can fully block A2aR mediated immunosuppression commonly found in TME. Adenosine stimulates phosphorylation of cyclic AMP response element binding protein (CREB) in T cells and inhibits anti-tumor cytokine secretion in PBMCs in a dose-dependent manner. DZD2269 was able to reverse the immunosuppression induced by high concentrations of adenosine, as demonstrated by inhibiting CREB phosphorylation in T cells, restoring Th1 cytokine secretion in PBMCs, and stimulating dendritic cells (DCs) maturation. As a single agent, DZD2269 showed anti-tumor growth in multiple syngeneic mouse tumor models, and more profound anti-tumor effects were observed when DZD2269 was in combination with immune checkpoint inhibitors, radiotherapy, or chemotherapy. A good PK/PD relationship was observed in these animal models. In the phase 1 clinical study, downregulation of pCREB was detected in human T cells, consistent with preclinical prediction. Our data support further clinical development of DZD2269 in patients with cancer. METHODS The selectivity of DZD2269 for adenosine receptors was tested in engineered cell lines, and its efficacy in blocking A2aR signaling and reversing adenosine-mediated immunosuppression was assessed in human T cells and peripheral blood mononuclear cells (PBMCs). The anti-tumor effects of DZD2269 were evaluated in multiple syngeneic mouse models as a single agent as well as in combination with chemotherapy, radiotherapy, or immune checkpoint inhibitors. A phase 1 study in healthy volunteers (NCT04932005) has been initiated to assess safety, pharmacokinetics (PK) and pharmacodynamics (PD) of DZD2269. RESULTS Adenosine stimulates phosphorylation of cyclic AMP response element binding protein (CREB) in T cells and inhibits anti-tumor cytokine secretion in PBMCs in a dose-dependent manner. DZD2269 was able to reverse the immunosuppression induced by high concentrations of adenosine, as demonstrated by inhibiting CREB phosphorylation in T cells, restoring Th1 cytokine secretion in PBMCs, and stimulating dendritic cells (DCs) maturation. As a single agent, DZD2269 showed anti-tumor growth in multiple syngeneic mouse tumor models, and more profound anti-tumor effects were observed when DZD2269 was in combination with immune checkpoint inhibitors, radiotherapy, or chemotherapy. A good PK/PD relationship was observed in these animal models. In the phase 1 clinical study, downregulation of pCREB was detected in human T cells, consistent with preclinical prediction. CONCLUSION DZD2269 is a novel A2aR antagonist which can fully block A2aR mediated immunosuppression commonly found in TME. Clinical development of DZD2269 in patients with cancer is warranted (NCT04634344).
Collapse
Affiliation(s)
- Yu Bai
- grid.11135.370000 0001 2256 9319Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Xin Zhang
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Jie Zheng
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Ziyi Liu
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Zhenfan Yang
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Xiaolin Zhang
- grid.11135.370000 0001 2256 9319Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| |
Collapse
|
12
|
Pasquini S, Contri C, Cappello M, Borea PA, Varani K, Vincenzi F. Update on the recent development of allosteric modulators for adenosine receptors and their therapeutic applications. Front Pharmacol 2022; 13:1030895. [PMID: 36278183 PMCID: PMC9581118 DOI: 10.3389/fphar.2022.1030895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A1 and various A3AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- *Correspondence: Katia Varani,
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Zhang T, Yu-Jing L, Ma T. The immunomodulatory function of adenosine in sepsis. Front Immunol 2022; 13:936547. [PMID: 35958599 PMCID: PMC9357910 DOI: 10.3389/fimmu.2022.936547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Sepsis is an unsolved clinical condition with a substantial mortality rate in the hospital. Despite decades of research, no effective treatments for sepsis exists. The role of adenosine in the pathogenesis of sepsis is discussed in this paper. Adenosine is an essential endogenous molecule that activates the A1, A2a, A2b, and A3 adenosine receptors to regulate tissue function. These receptors are found on a wide range of immune cells and bind adenosine, which helps to control the immune response to inflammation. The adenosine receptors have many regulatory activities that determine the onset and progression of the disease, which have been discovered via the use of animal models. A greater understanding of the role of adenosine in modulating the immune system has sparked hope that an adenosine receptor-targeted treatment may be used one day to treat sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
14
|
Park S, Ahn Y, Kim Y, Roh EJ, Lee Y, Han C, Yoo HM, Yu J. Design, Synthesis and Biological Evaluation of 1,3,5-Triazine Derivatives Targeting hA1 and hA3 Adenosine Receptor. Molecules 2022; 27:molecules27134016. [PMID: 35807265 PMCID: PMC9268102 DOI: 10.3390/molecules27134016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Adenosine mediates various physiological activities in the body. Adenosine receptors (ARs) are widely expressed in tumors and the tumor microenvironment (TME), and they induce tumor proliferation and suppress immune cell function. There are four types of human adenosine receptor (hARs): hA1, hA2A, hA2B, and hA3. Both hA1 and hA3 AR play an important role in tumor proliferation. We designed and synthesized novel 1,3,5-triazine derivatives through amination and Suzuki coupling, and evaluated them for binding affinities to each hAR subtype. Compounds 9a and 11b showed good binding affinity to both hA1 and hA3 AR, while 9c showed the highest binding affinity to hA1 AR. In this study, we discovered that 9c inhibits cell viability, leading to cell death in lung cancer cell lines. Flow cytometry analysis revealed that 9c caused an increase in intracellular reactive oxygen species (ROS) and a depolarization of the mitochondrial membrane potential. The binding mode of 1,3,5-triazine derivatives to hA1 and hA3 AR were predicted by a molecular docking study.
Collapse
Affiliation(s)
- Sujin Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (S.P.); (C.H.)
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (E.J.R.)
| | - Yujin Ahn
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea;
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Yongchan Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (E.J.R.)
| | - Eun Joo Roh
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (E.J.R.)
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Chaebin Han
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (S.P.); (C.H.)
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.K.); (E.J.R.)
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea;
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (H.M.Y.); (J.Y.)
| | - Jinha Yu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (S.P.); (C.H.)
- Correspondence: (H.M.Y.); (J.Y.)
| |
Collapse
|
15
|
Francucci B, Dal Ben D, Lambertucci C, Spinaci A, Volpini R, Marucci G, Buccioni M. A patent review of adenosine A 2B receptor antagonists (2016-present). Expert Opin Ther Pat 2022; 32:689-712. [PMID: 35387537 DOI: 10.1080/13543776.2022.2057222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A2B adenosine receptor (A2BAR) plays a crucial role in pathophysiologic conditions associated with high adenosine release, typical of airway inflammatory pathologies, gastrointestinal disorders, cancer, asthma, type 2 diabetes, and atherosclerosis. In some pathologies, simultaneous inactivation of A2A and A2BARs is desirable to have a synergism of action that leads to a greater efficacy of the pharmacological treatment and less side effects due to the dose of drug administered. In this context, it is strongly required to identify molecules capable of selectively antagonizing A2BAR or A2A/A2BARs. AREAS COVERED The review provides a summary of patents, published from 2016 to present, on chemicals and their clinical use. In this paper, information on the biological activity of representative structures of recently developed A2B or A2A/A2B receptor ligands is reported. EXPERT OPINION Among the four P1 receptors, A2BAR is the most inscrutable and the least studied until a few years ago, but its involvement in various inflammatory pathologies has recently made it a pharmacological target of high interest. Many efforts by the academy and pharmaceutical companies have been made to discover potential A2BAR and A2A/A2BARs drugs. Although several compounds have been synthesized only a few molecules have entered clinical trials.
Collapse
Affiliation(s)
- Beatrice Francucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
16
|
A3 adenosine receptor agonist IB-MECA reverses chronic cerebral ischemia-induced inhibitory avoidance memory deficit. Eur J Pharmacol 2022; 921:174874. [DOI: 10.1016/j.ejphar.2022.174874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
|
17
|
Coppi E, Cherchi F, Venturini M, Lucarini E, Corradetti R, Di Cesare Mannelli L, Ghelardini C, Pedata F, Pugliese AM. Therapeutic Potential of Highly Selective A 3 Adenosine Receptor Ligands in the Central and Peripheral Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061890. [PMID: 35335254 PMCID: PMC8952202 DOI: 10.3390/molecules27061890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed.
Collapse
|
18
|
Miranda-Pastoriza D, Bernárdez R, Azuaje J, Prieto-Díaz R, Majellaro M, Tamhankar AV, Koenekoop L, González A, Gioé-Gallo C, Mallo-Abreu A, Brea J, Loza MI, García-Rey A, García-Mera X, Gutiérrez-de-Terán H, Sotelo E. Exploring Non-orthosteric Interactions with a Series of Potent and Selective A 3 Antagonists. ACS Med Chem Lett 2022; 13:243-249. [PMID: 35178181 PMCID: PMC8842279 DOI: 10.1021/acsmedchemlett.1c00598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
![]()
A library of potent
and highly A3AR selective pyrimidine-based
compounds was designed to explore non-orthosteric interactions within
this receptor. Starting from a prototypical orthosteric A3AR antagonist (ISVY130), the structure-based design explored functionalized
residues at the exocyclic amide L1 region and aimed to provide additional
interactions outside the A3AR orthosteric site. The novel
ligands were assembled through an efficient and succinct synthetic
approach, resulting in compounds that retain the A3AR potent
and selective profile while improving the solubility of the original
scaffold. The experimentally demonstrated tolerability of the L1 region
to structural functionalization was further assessed by molecular
dynamics simulations, giving hints of the non-orthosteric interactions
explored by these series. The results pave the way to explore newly
functionalized A3AR ligands, including covalent drugs and
molecular probes for diagnostic and delivery purposes.
Collapse
Affiliation(s)
| | | | | | - Rubén Prieto-Díaz
- Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala SE-75124, Sweden
| | | | - Ashish V. Tamhankar
- Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala SE-75124, Sweden
| | - Lucien Koenekoop
- Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala SE-75124, Sweden
| | - Alejandro González
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | - José Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Isabel Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala SE-75124, Sweden
| | | |
Collapse
|
19
|
Spinaci A, Buccioni M, Dal Ben D, Maggi F, Marucci G, Francucci B, Santoni G, Lambertucci C, Volpini R. A3 Adenosine Receptor Antagonists with Nucleoside Structures and Their Anticancer Activity. Pharmaceuticals (Basel) 2022; 15:ph15020164. [PMID: 35215276 PMCID: PMC8879107 DOI: 10.3390/ph15020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
The overexpression of the A3 adenosine receptor (AR) in a number of cancer cell types makes it an attractive target for tumor diagnosis and therapy. Hence, in the search for new A3AR ligands, a series of novel 2,N6-disubstituted adenosines (Ados) was synthesized and tested in radioligand binding and functional assays at ARs. Derivatives bearing a 2-phenethylamino group in the N6-position were found to exert higher A3AR affinity and selectivity than the corresponding N6-(2,2-diphenylethyl) analogues. 2-Chloro-N6-phenylethylAdo (15) was found to be a potent full A3AR agonist with a Ki of 0.024 nM and an EC50 of 14 nM, in a cAMP accumulation assay. Unlike 15, the other ligands behaved as A3AR antagonists, which concentration-dependently reduced cell growth and exerted cytostatic activity on the prostate cancer cell line PC3, showing comparable and even more pronounced effects with respect to the ones elicited by the reference full agonist Cl-IB-MECA. In particular, the N6-(2,2-diphenylethyl)-2-phenylethynylAdo (12: GI50 = 14 µM, TGI = 29 µM, and LC50 = 59 µM) showed the highest activity proving to be a potential antitumor agent. The cytostatic effect of both A3AR agonist (Cl-IB-MECA) and antagonists (12 and other newly synthesized compounds) confirm previous observations according to which, in addition to the involvement of A3ARs, other cellular mechanisms are responsible for the anticancer effects of these ligands.
Collapse
Affiliation(s)
- Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (A.S.); (M.B.); (D.D.B.); (G.M.); (B.F.)
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (A.S.); (M.B.); (D.D.B.); (G.M.); (B.F.)
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (A.S.); (M.B.); (D.D.B.); (G.M.); (B.F.)
| | - Federica Maggi
- Experimental Medicine Section, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (F.M.); (G.S.)
- Department of Molecular Medicine, Sapienza University, 00185 Rome, RM, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (A.S.); (M.B.); (D.D.B.); (G.M.); (B.F.)
| | - Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (A.S.); (M.B.); (D.D.B.); (G.M.); (B.F.)
| | - Giorgio Santoni
- Experimental Medicine Section, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (F.M.); (G.S.)
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (A.S.); (M.B.); (D.D.B.); (G.M.); (B.F.)
- Correspondence: (C.L.); (R.V.); Tel.: +39-073-740-2252 (C.L.); +39-073-740-2278 (R.V.)
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy; (A.S.); (M.B.); (D.D.B.); (G.M.); (B.F.)
- Correspondence: (C.L.); (R.V.); Tel.: +39-073-740-2252 (C.L.); +39-073-740-2278 (R.V.)
| |
Collapse
|
20
|
Kermanian F, Seghatoleslam M, Mahakizadeh S. MDMA related neuro-inflammation and adenosine receptors. Neurochem Int 2022; 153:105275. [PMID: 34990730 DOI: 10.1016/j.neuint.2021.105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a world-wide abused psychostimulant, which has the neurotoxic effects on dopaminergic and serotonergic neurons in both rodents and non-human primates. Adenosine acts as a neurotransmitter in the brain through the activation of four specific G-protein-coupled receptors and it acts as a neuromodulator of dopamine neurotransmission. Recent studies suggest that stimulation of adenosine receptors oppose many behavioral effects of methamphetamines. This review summarizes the specific cellular mechanisms involved in MDMA neuroinflammatory effects, along with the protective effects of adenosine receptors.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Seghatoleslam
- Evaluative Clinical Sciences, Sunnybrook Research Institute, University of Toronto, ON, Canada
| | - Simin Mahakizadeh
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
21
|
Mazziotta C, Rotondo JC, Lanzillotti C, Campione G, Martini F, Tognon M. Cancer biology and molecular genetics of A 3 adenosine receptor. Oncogene 2022; 41:301-308. [PMID: 34750517 PMCID: PMC8755539 DOI: 10.1038/s41388-021-02090-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
A3 adenosine receptor (A3AR) is a cell membrane protein, which has been found to be overexpressed in a large number of cancer types. This receptor plays an important role in cancer by interacting with adenosine. Specifically, A3AR has a dual nature in different pathophysiological conditions, as it is expressed according to tissue type and stimulated by an adenosine dose-dependent manner. A3AR activation leads to tumor growth, cell proliferation and survival in some cases, while triggering cytostatic and apoptotic pathways in others. This review aims to describe the most relevant aspects of A3AR activation and its ligands whereas it summarizes A3AR activities in cancer. Progress in the field of A3AR modulators, with a potential therapeutic role in cancer treatment are reported, as well.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
22
|
Matthee C, Terre'Blanche G, Legoabe LJ, Janse van Rensburg HD. Exploration of chalcones and related heterocycle compounds as ligands of adenosine receptors: therapeutics development. Mol Divers 2021; 26:1779-1821. [PMID: 34176057 DOI: 10.1007/s11030-021-10257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Adenosine receptors (ARs) are ubiquitously distributed throughout the mammalian body where they are involved in an extensive list of physiological and pathological processes that scientists have only begun to decipher. Resultantly, AR agonists and antagonists have been the focus of multiple drug design and development programmes within the past few decades. Considered to be a privileged scaffold in medicinal chemistry, the chalcone framework has attracted a substantial amount of interest in this regard. Due to the potential liabilities associated with its structure, however, it has become necessary to explore other potentially promising compounds, such as heterocycles, which have successfully been obtained from chalcone precursors in the past. This review aims to summarise the emerging therapeutic importance of adenosine receptors and their ligands, especially in the central nervous system (CNS), while highlighting chalcone and heterocyclic derivatives as promising AR ligand lead compounds.
Collapse
Affiliation(s)
- Chrisna Matthee
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa.,Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Helena D Janse van Rensburg
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa.
| |
Collapse
|
23
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
24
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Catarzi D, Varano F, Colotta V. Special Issue "Adenosine Receptors as Attractive Targets in Human Diseases". Pharmaceuticals (Basel) 2021; 14:ph14020140. [PMID: 33578687 PMCID: PMC7916353 DOI: 10.3390/ph14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
|
26
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM. A 2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. Int J Mol Sci 2020; 21:E9697. [PMID: 33353217 PMCID: PMC7766015 DOI: 10.3390/ijms21249697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| |
Collapse
|
27
|
Cioato SG, Medeiros LF, Lopes BC, de Souza A, Medeiros HR, Assumpção JAF, Caumo W, Roesler R, Torres ILS. Antinociceptive and neurochemical effects of a single dose of IB-MECA in chronic pain rat models. Purinergic Signal 2020; 16:573-584. [PMID: 33161497 PMCID: PMC7855191 DOI: 10.1007/s11302-020-09751-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to evaluate the effect of a single administration of IB-MECA, an A3 adenosine receptor agonist, upon the nociceptive response and central biomarkers of rats submitted to chronic pain models. A total of 136 adult male Wistar rats were divided into two protocols: (1) chronic inflammatory pain (CIP) using complete Freund's adjuvant and (2) neuropathic pain (NP) by chronic constriction injury of the sciatic nerve. Thermal and mechanical hyperalgesia was measured using von Frey (VF), Randal-Selitto (RS), and hot plate (HP) tests. Rats were treated with a single dose of IB-MECA (0.5 μmol/kg i.p.), a vehicle (dimethyl sulfoxide-DMSO), or positive control (morphine, 5 mg/kg i.p.). Interleukin 1β (IL-1β), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) levels were measured in the brainstem and spinal cord using enzyme-linked immunosorbent assay (ELISA). The establishment of the chronic pain (CIP or NP) model was observed 14 days after induction by a decreased nociceptive threshold in all three tests (GEE, P < 0.05). The antinociceptive effect of a single dose of IB-MECA was observed in both chronic pain models, but this was more effective in NP model. There was an increase in IL-1β levels promoted by CIP. NP model promoted increase in the brainstem BDNF levels, which was reversed by IB-MECA.
Collapse
Affiliation(s)
- Stefania Giotti Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
| | - Liciane Fernandes Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, RS, Brazil
| | - Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - José Antônio Fagundes Assumpção
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, HCPA, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil.
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Shaw S, Uniyal A, Gadepalli A, Tiwari V, Belinskaia DA, Shestakova NN, Venugopala KN, Deb PK, Tiwari V. Adenosine receptor signalling: Probing the potential pathways for the ministration of neuropathic pain. Eur J Pharmacol 2020; 889:173619. [DOI: 10.1016/j.ejphar.2020.173619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/05/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022]
|
29
|
Barkan K, Lagarias P, Stampelou M, Stamatis D, Hoare S, Safitri D, Klotz KN, Vrontaki E, Kolocouris A, Ladds G. Pharmacological characterisation of novel adenosine A 3 receptor antagonists. Sci Rep 2020; 10:20781. [PMID: 33247159 PMCID: PMC7695835 DOI: 10.1038/s41598-020-74521-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
The adenosine A3 receptor (A3R) belongs to a family of four adenosine receptor (AR) subtypes which all play distinct roles throughout the body. A3R antagonists have been described as potential treatments for numerous diseases including asthma. Given the similarity between (adenosine receptors) orthosteric binding sites, obtaining highly selective antagonists is a challenging but critical task. Here we screen 39 potential A3R, antagonists using agonist-induced inhibition of cAMP. Positive hits were assessed for AR subtype selectivity through cAMP accumulation assays. The antagonist affinity was determined using Schild analysis (pA2 values) and fluorescent ligand binding. Structure-activity relationship investigations revealed that loss of the 3-(dichlorophenyl)-isoxazolyl moiety or the aromatic nitrogen heterocycle with nitrogen at α-position to the carbon of carboximidamide group significantly attenuated K18 antagonistic potency. Mutagenic studies supported by molecular dynamic simulations combined with Molecular Mechanics-Poisson Boltzmann Surface Area calculations identified the residues important for binding in the A3R orthosteric site. We demonstrate that K18, which contains a 3-(dichlorophenyl)-isoxazole group connected through carbonyloxycarboximidamide fragment with a 1,3-thiazole ring, is a specific A3R (< 1 µM) competitive antagonist. Finally, we introduce a model that enables estimates of the equilibrium binding affinity for rapidly disassociating compounds from real-time fluorescent ligand-binding studies. These results demonstrate the pharmacological characterisation of a selective competitive A3R antagonist and the description of its orthosteric binding mode. Our findings may provide new insights for drug discovery.
Collapse
Affiliation(s)
- Kerry Barkan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Panagiotis Lagarias
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Margarita Stampelou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Dimitrios Stamatis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Sam Hoare
- Pharmechanics LLC, 14 Sunnyside Drive South, Owego, NY, 13827, USA
| | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Bandung, 40534, Indonesia
| | - Karl-Norbert Klotz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Eleni Vrontaki
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece.
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
30
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
31
|
Tsiampali J, Neumann S, Giesen B, Koch K, Maciaczyk D, Janiak C, Hänggi D, Maciaczyk J. Enzymatic Activity of CD73 Modulates Invasion of Gliomas via Epithelial-Mesenchymal Transition-Like Reprogramming. Pharmaceuticals (Basel) 2020; 13:E378. [PMID: 33187081 PMCID: PMC7698190 DOI: 10.3390/ph13110378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumour in adulthood. Despite strong research efforts current treatment options have a limited impact on glioma stem-like cells (GSCs) which contribute to GBM formation, progression and chemoresistance. Invasive growth of GSCs is in part associated with epithelial-mesenchymal-like transition (EMT), a mechanism associated with CD73 in several cancers. Here, we show that CD73 regulates the EMT activator SNAIL1 and further investigate the role of enzymatic and non-enzymatic CD73 activity in GBM progression. Reduction of CD73 protein resulted in significant suppression of GSC viability, proliferation and clonogenicity, whereas CD73 enzymatic activity exhibited negative effects only on GSC invasion involving impaired downstream adenosine (ADO) signalling. Furthermore, application of phosphodiesterase inhibitor pentoxifylline, a potent immunomodulator, effectively inhibited ZEB1 and CD73 expression and significantly decreased viability, clonogenicity, and invasion of GSC in vitro cultures. Given the involvement of adenosine and A3 adenosine receptor in GSC invasion, we investigated the effect of the pharmacological inhibition of A3AR on GSC maintenance. Direct A3AR inhibition promoted apoptotic cell death and impaired the clonogenicity of GSC cultures. Taken together, our data indicate that CD73 is an exciting novel target in GBM therapy. Moreover, pharmacological interference, resulting in disturbed ADO signalling, provides new opportunities to innovate GBM therapy.
Collapse
Affiliation(s)
- Julia Tsiampali
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
| | - Silke Neumann
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand; (S.N.); (D.M.)
| | - Beatriz Giesen
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (B.G.); (C.J.)
| | - Katharina Koch
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Duesseldorf, Germany
| | - Donata Maciaczyk
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand; (S.N.); (D.M.)
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (B.G.); (C.J.)
| | - Daniel Hänggi
- Neurosurgery Department, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (J.T.); (K.K.); (D.H.)
| | - Jaroslaw Maciaczyk
- Department of Neurosurgery, University Hospital Bonn, 53179 Bonn, Germany
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
32
|
Shakya AK, Naik RR, Almasri IM, Kaur A. Role and Function of Adenosine and its Receptors in Inflammation, Neuroinflammation, IBS, Autoimmune Inflammatory Disorders, Rheumatoid Arthritis and Psoriasis. Curr Pharm Des 2020; 25:2875-2891. [PMID: 31333103 DOI: 10.2174/1381612825666190716145206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The physiological effects of endogenous adenosine on various organ systems are very complex and numerous which are elicited upon activation of any of the four G-protein-coupled receptors (GPCRs) denoted as A1, A2A, A2B and A3 adenosine receptors (ARs). Several fused heterocyclic and non-xanthine derivatives are reported as a possible target for these receptors due to physiological problems and lack of selectivity of xanthine derivatives. In the present review, we have discussed the development of various new chemical entities as a target for these receptors. In addition, compounds acting on adenosine receptors can be utilized in treating diseases like inflammation, neuroinflammation, autoimmune and related diseases.
Collapse
Affiliation(s)
- Ashok K Shakya
- Medicinal Chemistry, Drug Design and Drug Metabolism, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al- Ahliyya Amman University, PO Box 263, Amman 19328, Jordan
| | - Rajashri R Naik
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ihab M Almasri
- Medicinal Chemistry and Drug Design, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al Azhar University Gaza, Gaza Strip, Palestinian Territory, Occupied
| | - Avneet Kaur
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi-110017, India
| |
Collapse
|
33
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
34
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
35
|
Ceruti S, Abbracchio MP. Adenosine Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:13-33. [PMID: 32034707 DOI: 10.1007/978-3-030-30651-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purines and pyrimidines are fundamental signaling molecules in controlling the survival and proliferation of astrocytes, as well as in mediating cell-to-cell communication between glial cells and neurons in the healthy brain. The malignant transformation of astrocytes towards progressively more aggressive brain tumours (from astrocytoma to anaplastic glioblastoma) leads to modifications in both the survival and cell death pathways which overall confer a growth advantage to malignant cells and resistance to many cytotoxic stimuli. It has been demonstrated, however, that, in astrocytomas, several purinergic (in particular adenosinergic) pathways controlling cell survival and death are still effective and, in some cases, even enhanced, providing invaluable targets for purine-based chemotherapy, that still represents an appropriate pharmacological approach to brain tumours. In this chapter, the current knowledge on both receptor-mediated and receptor-independent adenosine pathways in astrocytomas will be reviewed, with a particular emphasis on the most promising targets which could be translated from in vitro studies to in vivo pharmacology. Additionally, we have included new original data from our laboratory demonstrating a key involvement of MAP kinases in the cytostastic and cytotoxic effects exerted by an adenosine analogue, 2-CdA, which with the name of Cladribine is already clinically utilized in haematological malignancies. Here we show that 2-CdA can activate multiple intracellular pathways leading to cell cycle block and cell death by apoptosis of a human astrocytoma cell line that bears several pro-survival genetic mutations. Although in vivo data are still lacking, our results suggest that adenosine analogues could therefore be exploited to overcome resistance to chemotherapy of brain tumours.
Collapse
Affiliation(s)
- Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy.
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan - Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
36
|
Adenosine Depletion as A New Strategy to Decrease Glioblastoma Stem-Like Cells Aggressiveness. Cells 2019; 8:cells8111353. [PMID: 31671624 PMCID: PMC6912503 DOI: 10.3390/cells8111353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is the brain tumor with the worst prognosis. This is mainly due to a cell subpopulation with an extremely aggressive potential, called glioblastoma stem-like cells (GSCs). These cells produce high levels of extracellular adenosine, which are increased even more under hypoxic conditions. Under hypoxia, adenosine signaling is related to HIF-2α expression, enhancing cell aggressiveness. Adenosine can be degraded using recombinant adenosine deaminase (ADA) to revert its pathological effects. The aim of this study was to degrade adenosine using ADA in order to decrease malignancy of GSCs. Adenosine depletion was performed using recombinant ADA. Migration and invasion were measured by transwell and matrigel-coated transwell assay, respectively. HIF-2α-dependent cell migration/invasion decreased in GSCs treated with ADA under hypoxia. MRPs-mediated chemoresistance and colony formation decreased in treatment with ADA. In conclusion, adenosine depletion using adenosine deaminase decreases GSCs aggressiveness.
Collapse
|
37
|
Li J, Hong X, Li G, Conti PS, Zhang X, Chen K. PET Imaging of Adenosine Receptors in Diseases. Curr Top Med Chem 2019; 19:1445-1463. [PMID: 31284861 DOI: 10.2174/1568026619666190708163407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 01/08/2023]
Abstract
Adenosine receptors (ARs) are a class of purinergic G-protein-coupled receptors (GPCRs). Extracellular adenosine is a pivotal regulation molecule that adjusts physiological function through the interaction with four ARs: A1R, A2AR, A2BR, and A3R. Alterations of ARs function and expression have been studied in neurological diseases (epilepsy, Alzheimer's disease, and Parkinson's disease), cardiovascular diseases, cancer, and inflammation and autoimmune diseases. A series of Positron Emission Tomography (PET) probes for imaging ARs have been developed. The PET imaging probes have provided valuable information for diagnosis and therapy of diseases related to alterations of ARs expression. This review presents a concise overview of various ARs-targeted radioligands for PET imaging in diseases. The most recent advances in PET imaging studies by using ARs-targeted probes are briefly summarized.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Guoquan Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| |
Collapse
|
38
|
Marwein S, Mishra B, De UC, Acharya PC. Recent Progress of Adenosine Receptor Modulators in the Development of Anticancer Chemotherapeutic Agents. Curr Pharm Des 2019; 25:2842-2858. [DOI: 10.2174/1381612825666190716141851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
Abstract
Increased risks of peripheral toxicity and undesired adverse effects associated with chemotherapeutic
agents are the major medical hurdles in cancer treatment that worsen the quality of life of cancer patients. Although
several novel and target-specific anticancer agents have been discovered in the recent past, none of them
have proved to be effective in the management of metastatic tumor. Therefore, there is a continuous effort for the
discovery of safer and effective cancer chemotherapeutic agent. Adenosine receptors have been identified as an
important target to combat cancer because of their inherent role in the antitumor process. The antitumor property
of the adenosine receptor is primarily attributed to their inherited immune response against the tumors. These
findings have opened a new chapter in the anticancer drug discovery through adenosine receptor-mediated immunomodulation.
This review broadly outlines the biological mechanism of adenosine receptors in mediating the
selective cytotoxicity as well as the discovery of various classes of adenosine receptor modulators in the effective
management of solid tumors.
Collapse
Affiliation(s)
- Sarapynbiang Marwein
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Bijayashree Mishra
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Utpal C. De
- Department of Chemistry, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| | - Pratap C. Acharya
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar-799022, Tripura (W), India
| |
Collapse
|
39
|
Merighi S, Battistello E, Giacomelli L, Varani K, Vincenzi F, Borea PA, Gessi S. Targeting A3 and A2A adenosine receptors in the fight against cancer. Expert Opin Ther Targets 2019; 23:669-678. [DOI: 10.1080/14728222.2019.1630380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefania Merighi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Luca Giacomelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
40
|
Hou T, Xiang H, Yu L, Su W, Shu Y, Li H, Zhu H, Lin L, Hu X, Liang S, Zhang H, Li M. Electroacupuncture inhibits visceral pain via adenosine receptors in mice with inflammatory bowel disease. Purinergic Signal 2019; 15:193-204. [PMID: 31187350 DOI: 10.1007/s11302-019-09655-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
To investigate the involvement of peripheral adenosine receptors in the effect of electroacupuncture (EA) on visceral pain in mice with inflammatory bowel disease (IBD). 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was used to induce the visceral pain model. EA (1 mA, 2 Hz, 30 min) treatment was applied to bilateral acupoints "Dachangshu" (BL25) 1 day after TNBS injection once daily for 7 consecutive days. Von Frey filaments were used to measure the mechanical pain threshold. Western blot was used to detect the protein expression levels of adenosine 1 receptor (A1R), adenosine 2a receptor (A2aR), adenosine 2b receptor (A2bR), adenosine 3 receptor (A3R), substance P (SP), and interleukin 1 beta (IL-1β) in colon tissue. EA significantly ameliorated the disease-related indices and reduced the expression of SP and IL-1β in the colon tissues of mice with IBD. EA increased the expression of A1R, A2aR, and A3R and decreased the expression of A2bR in the colon tissue. Furthermore, the administration of adenosine receptor antagonists influenced the effect of EA. EA can inhibit the expression of the inflammatory factors SP and IL-1β by regulating peripheral A1, A2a, A2b, and A3 receptors, thus inhibiting visceral pain in IBD mice.
Collapse
Affiliation(s)
- Tengfei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Hongchun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lingling Yu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Su
- Department of Acupuncture, Wuhan Integrated TCM & Western Medicine Hospital, 215 Zhongshan Avenue, Wuhan, 430022, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Hongping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lixue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xuefei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shangdong Liang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, 330006, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
41
|
Keyvanloo Shahrestanaki M, Aghaei M. A3 receptor agonist, Cl-IBMECA, potentiate glucose-induced insulin secretion from MIN6 insulinoma cells possibly through transient Ca 2+ entry. Res Pharm Sci 2019; 14:107-114. [PMID: 31620186 PMCID: PMC6791172 DOI: 10.4103/1735-5362.253357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetes incidence showed ascending trends in recent years indicating urgent need for new therapeutic agents. Extracellular adenosine signaling showed promising results. However, role of its A3 receptor in pancreatic β-cells proliferation and insulin secretion is not well established. Thus, we aimed to determine its main signaling mediators in MIN6 insulinoma cell line. A3 adenosine receptor (A3AR) expression was confirmed using RT-PCR. Receptor functionality was evaluated by measurements of cAMP, using ELISA kit, and intracellular Ca2+ levels, using Fura 2/AM probe in response to the specific A3AR agonist (Cl- IBMECA). Insulin ELISA kit was used to measure insulin release. Herein, we mentioned that MIN6 cells express active form of A3AR, which decreased cAMP levels with the half maximal effective concentration (EC50) value of 5.61. [Ca2+]i Levels transiently (approximately 120 sec) increased in response to the agonist. Cl-IBMECA increase insulin secretion at 0.01-1 μM, but showed an inhibitory effects at higher concentrations (1-10 μM). Altogether, we found that in MIN6 cells, A3AR, possibly through Ca2+ mediated signaling pathways, potentiated glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Mohammad Keyvanloo Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
42
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
43
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
44
|
Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front Pharmacol 2018; 9:212. [PMID: 29593540 PMCID: PMC5861216 DOI: 10.3389/fphar.2018.00212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation-related intestinal diseases are a set of various conditions presenting an overactive enteric immune system. A continuous overproduction of pro-inflammatory cytokines and a decreased production of anti-inflammatory modulators are generally observed, while morpho-functional alterations of the enteric nervous system lead to intestinal secretory and motor dysfunctions. The factors at the basis of these conditions are still to be totally identified and current therapeutic strategies are aimed only at achieving and maintaining remission states, by using therapeutic tools like aminosalicylates, corticosteroids, immunomodulators, biological drugs (i.e., monoclonal antibodies), and eventually surgery. Recent reports described a key role of purinergic mediators (i.e., adenosine and its nucleotides ATP and ADP) in the regulation of the activity of immune cells and enteric nervous system, showing also that alterations of the purinergic signaling are linked to pathological conditions of the intestinal tract. These data prompted to a series of investigations to test the therapeutic potential for inflammation-related intestinal conditions of compounds able to restore or modulate an altered purinergic signaling within the gut. This review provides an overview on these investigations, describing the results of preclinical and/or clinical evaluation of compounds able to stimulate or inhibit specific P2 (i.e., P2X7) or P1 (i.e., A2A or A3) receptor signaling and to modify the adenosine levels through the modulation of enzymes activity (i.e., Adenosine Deaminase) or nucleoside transporters. Recent developments in the field are also reported and the most promising purine-based therapeutic strategies for the treatment of inflammation-related gastrointestinal disorders are schematically summarized.
Collapse
Affiliation(s)
- Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
45
|
Is heart rate response a reliable marker of adenosine-induced coronary hyperemia? Int J Cardiovasc Imaging 2018; 34:1117-1125. [PMID: 29445973 PMCID: PMC6280851 DOI: 10.1007/s10554-018-1309-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Introduction Growing evidence supports ischemia-guided management of chest pain, with invasive and non-invasive tests reliant upon achieving adenosine-induced coronary hyperemia (defined as increased blood flow to an organ’s perfusion bed). In the non-invasive setting, surrogate markers of hyperemia, such as increases in heart rate, are often used, despite not being formally validated. We tested whether heart rate and other non-invasive indices are reliable markers of coronary hyperemia. Methods The first part involved Doppler flow-based validation of the best pressure-wire markers of hyperemia in 53 patients. Subsequently, using these validated pressure-derived parameters, 265 pressure-wire traces were analysed to determine whether heart rate and other non-invasive parameters correlated with hyperemia. Results In the flow derivation cohort, the best determinant of hyperemia came from having 2 out of 3 of: (1) Ventriculisation of the distal pressure waveform, (2) disappearance of distal dicrotic pressure notch, (3) separation of mean aortic and distal pressures. Within the 244 patients demonstrating hyperemia, non-invasive markers of hyperemia, such as change in heart rate (p = 0.77), blood pressure (p = 0.60) and rate-pressure product (p = 0.86), were poor correlates of coronary hyperemia, with only 37.3% demonstrating a ≥ 10% increase in heart rate that is commonly used to adjudge adenosine-induced hyperemia in the non-invasive setting. Conclusions We demonstrate, by correlation with Doppler-flow data, a validated method of identifying coronary hyperemia within the catheter laboratory using the pressure-wire. We subsequently show that non-invasive parameters, such as heart rate change, are poor predictors of coronary hyperemia during stress imaging protocols that rely upon achieving adenosine-induced hyperemia.
Collapse
|
46
|
Role of adenosine A 2A receptors in motor control: relevance to Parkinson's disease and dyskinesia. J Neural Transm (Vienna) 2018; 125:1273-1286. [PMID: 29396609 DOI: 10.1007/s00702-018-1848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
Adenosine is an endogenous purine nucleoside that regulates several physiological functions, at the central and peripheral levels. Besides, adenosine has emerged as a major player in the regulation of motor behavior. In fact, adenosine receptors of the A2A subtype are highly enriched in the caudate-putamen, which is richly innervated by dopamine. Moreover, several studies in experimental animals have consistently demonstrated that the pharmacological antagonism of A2A receptors has a facilitatory influence on motor behavior. Taken together, these findings have envisaged A2A receptors as a promising target for symptomatic therapies aimed at ameliorating motor deficits. Accordingly, A2A receptor antagonists have been extensively studied as new agents for the treatment of Parkinson's disease (PD), the epitome of motor disorders. In this review, we provide an overview of the effects that adenosine A2A receptor antagonists elicit in rodent and primate experimental models of PD, with regard to the counteraction of motor deficits as well as to manifestation of dyskinesia and motor fluctuations. Moreover, we briefly present the results of clinical trials of A2A receptor antagonists in PD patients experiencing motor fluctuations, with particular regard to dyskinesia. Finally, we discuss the interaction between A2A receptor antagonists and serotonin receptor agonists, since combined administration of these drugs has recently emerged as a new potential therapeutic strategy in the treatment of dyskinesia.
Collapse
|
47
|
A binding kinetics study of human adenosine A 3 receptor agonists. Biochem Pharmacol 2018; 153:248-259. [PMID: 29305857 DOI: 10.1016/j.bcp.2017.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
The human adenosine A3 (hA3) receptor has been suggested as a viable drug target in inflammatory diseases and in cancer. So far, a number of selective hA3 receptor agonists (e.g. IB-MECA and 2-Cl-IB-MECA) inducing anti-inflammatory or anticancer effects are under clinical investigation. Drug-target binding kinetics is increasingly recognized as another pharmacological parameter, next to affinity, for compound triage in the early phases of drug discovery. However, such a kinetics-driven analysis has not yet been performed for the hA3 receptor. In this study, we first validated a competition association assay for adenosine A3 receptor agonists to determine the target interaction kinetics. Affinities and Kinetic Rate Index (KRI) values of 11 ribofurano and 10 methanocarba nucleosides were determined in radioligand binding assays. Afterwards, 15 analogues were further selected (KRI <0.70 or KRI >1.35) for full kinetics characterization. The structure-kinetics relationships (SKR) were derived and longer residence times were associated with methanocarba and enlarged adenine N6 and C2 substitutions. In addition, from a kon-koff-KD kinetic map we divided the agonists into three subgroups. A residence time "cliff" was observed, which might be relevant to (N)-methanocarba derivatives' rigid C2-arylalkynyl substitutions. Our findings provide substantial evidence that, next to affinity, additional knowledge of binding kinetics is useful for developing and selecting new hA3R agonists in the early phase of the drug discovery process.
Collapse
|
48
|
Alencar AKN, Montes GC, Barreiro EJ, Sudo RT, Zapata-Sudo G. Adenosine Receptors As Drug Targets for Treatment of Pulmonary Arterial Hypertension. Front Pharmacol 2017; 8:858. [PMID: 29255415 PMCID: PMC5722832 DOI: 10.3389/fphar.2017.00858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/09/2017] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a clinical condition characterized by pulmonary arterial remodeling and vasoconstriction, which promote chronic vessel obstruction and elevation of pulmonary vascular resistance. Long-term right ventricular (RV) overload leads to RV dysfunction and failure, which are the main determinants of life expectancy in PAH subjects. Therapeutic options for PAH remain limited, despite the introduction of prostacyclin analogs, endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, and soluble guanylyl cyclase stimulators within the last 15 years. Through addressing the pulmonary endothelial and smooth muscle cell dysfunctions associated with PAH, these interventions delay disease progression but do not offer a cure. Emerging approaches to improve treatment efficacy have focused on beneficial actions to both the pulmonary vasculature and myocardium, and several new targets have been investigated and validated in experimental PAH models. Herein, we review the effects of adenosine and adenosine receptors (A1, A2A, A2B, and A3) on the cardiovascular system, focusing on the A2A receptor as a pharmacological target. This receptor induces pulmonary vascular and heart protection in experimental models, specifically models of PAH. Targeting the A2A receptor could potentially serve as a novel and efficient approach for treating PAH and concomitant RV failure. A2A receptor activation induces pulmonary endothelial nitric oxide synthesis, smooth muscle cell hyperpolarization, and vasodilation, with important antiproliferative activities through the inhibition of collagen deposition and vessel wall remodeling in the pulmonary arterioles. The pleiotropic potential of A2A receptor activation is highlighted by its additional expression in the heart tissue, where it participates in the regulation of intracellular calcium handling and maintenance of heart chamber structure and function. In this way, the activation of A2A receptor could prevent the production of a hypertrophic and dysfunctional phenotype in animal models of cardiovascular diseases.
Collapse
Affiliation(s)
- Allan K N Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme C Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Xia L, Burger WAC, van Veldhoven JPD, Kuiper BJ, van Duijl TT, Lenselink EB, Paasman E, Heitman LH, IJzerman AP. Structure-Affinity Relationships and Structure-Kinetics Relationships of Pyrido[2,1-f]purine-2,4-dione Derivatives as Human Adenosine A 3 Receptor Antagonists. J Med Chem 2017; 60:7555-7568. [PMID: 28806076 PMCID: PMC5601358 DOI: 10.1021/acs.jmedchem.7b00950] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
We
expanded on a series of pyrido[2,1-f]purine-2,4-dione
derivatives as human adenosine A3 receptor (hA3R) antagonists to determine their kinetic profiles and affinities.
Many compounds showed high affinities and a diverse range of kinetic
profiles. We found hA3R antagonists with very short residence
time (RT) at the receptor (2.2 min for 5) and much longer
RTs (e.g., 376 min for 27 or 391 min for 31). Two representative antagonists (5 and 27) were tested in [35S]GTPγS binding assays, and
their RTs appeared correlated to their (in)surmountable antagonism.
From a kon–koff–KD kinetic map, we divided
the antagonists into three subgroups, providing a possible direction
for the further development of hA3R antagonists. Additionally,
we performed a computational modeling study that sheds light on the
crucial receptor interactions, dictating the compounds’ binding
kinetics. Knowledge of target binding kinetics appears useful for
developing and triaging new hA3R antagonists in the early
phase of drug discovery.
Collapse
Affiliation(s)
- Lizi Xia
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Wessel A C Burger
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Boaz J Kuiper
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Tirsa T van Duijl
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Eelke B Lenselink
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Ellen Paasman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2300 RA Leiden, The Netherlands
| |
Collapse
|
50
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|