1
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Fan J, Chen B, Wu H, Liang X, Shen W, Miao X. Comprehensive multi-omics analysis identifies chromatin regulator-related signatures and TFF1 as a therapeutic target in lung adenocarcinoma through a 429-combination machine learning approach. Front Immunol 2024; 15:1481753. [PMID: 39539551 PMCID: PMC11557351 DOI: 10.3389/fimmu.2024.1481753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Lung cancer is a leading cause of cancer-related deaths, with its incidence continuing to rise. Chromatin remodeling, a crucial process in gene expression regulation, plays a significant role in the development and progression of malignant tumors. However, the role of chromatin regulators (CRs) in lung adenocarcinoma (LUAD) remains underexplored. Methods This study developed a chromatin regulator-related signature (CRRS) using a 429-combination machine learning approach to predict survival outcomes in LUAD patients. The CRRS model was validated across multiple independent datasets. We also investigated the impact of CRRS on the immune microenvironment, focusing on immune cell infiltration. To identify potential therapeutic targets, TFF1, a chromatin regulator, was knocked down using siRNA in LUAD cells. We assessed its impact through apoptosis analysis, proliferation assays, and in vivo tumor growth studies. Additional validation was performed using Ki67 expression and TUNEL assays. Results The CRRS accurately predicted survival outcomes and was shown to modulate immune cell infiltration in the tumor microenvironment. High-risk patients demonstrated increased activity in cell cycle regulation and DNA repair pathways, along with distinct mutation profiles and immune responses compared to low-risk patients. TFF1 emerged as a key therapeutic target. Knockdown of TFF1 significantly inhibited LUAD cell proliferation, induced apoptosis, and suppressed in vivo tumor growth. Ki67 and TUNEL assays confirmed the role of TFF1 in regulating tumor growth and cell death. Discussion These findings highlight the potential of chromatin regulators in prognostic modeling and immune modulation in LUAD. TFF1 was identified as a promising therapeutic target, suggesting that targeting TFF1 could provide new treatment strategies. Further research is warranted to explore its full potential and therapeutic applicability.
Collapse
Affiliation(s)
- Jun Fan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - BoGuang Chen
- Oncology Department I, Huai’an 82 Hospital, Huai’an, Jiangsu, China
| | - Hao Wu
- Department of Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen Shen
- Department of Respiratory Diseases, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Xiaye Miao
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
4
|
Gowkielewicz M, Lipka A, Zdanowski W, Waśniewski T, Majewska M, Carlberg C. Anti-Müllerian hormone: biology and role in endocrinology and cancers. Front Endocrinol (Lausanne) 2024; 15:1468364. [PMID: 39351532 PMCID: PMC11439669 DOI: 10.3389/fendo.2024.1468364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a peptide belonging to the transforming growth factor beta superfamily and acts exclusively through its receptor type 2 (AMHR2). From the 8th week of pregnancy, AMH is produced by Sertoli cells, and from the 23rd week of gestation, it is produced by granulosa cells of the ovary. AMH plays a critical role in regulating gonadotropin secretion, ovarian tissue responsiveness to pituitary hormones, and the pathogenesis of polycystic ovarian syndrome. It inhibits the transition from primordial to primary follicles and is considered the best marker of ovarian reserve. Therefore, measuring AMH concentration of the hormone is valuable in managing assisted reproductive technologies. AMH was initially discovered through its role in the degeneration of Müllerian ducts in male fetuses. However, due to its ability to inhibit the cell cycle and induce apoptosis, it has also garnered interest in oncology. For example, antibodies targeting AMHR2 are being investigated for their potential in diagnosing and treating various cancers. Additionally, AMH is present in motor neurons and functions as a protective and growth factor. Consequently, it is involved in learning and memory processes and may support the treatment of Alzheimer's disease. This review aims to provide a comprehensive overview of the biology of AMH and its role in both endocrinology and oncology.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Huang Y, Yang Y, Chen X, Zeng S, Chen Y, Wang H, Lv X, Hu X, Teng L. Downregulation of malic enzyme 3 facilitates progression of gastric carcinoma via regulating intracellular oxidative stress and hypoxia-inducible factor-1α stabilization. Cell Mol Life Sci 2024; 81:375. [PMID: 39212717 PMCID: PMC11364750 DOI: 10.1007/s00018-024-05388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most malignant cancers worldwide. Metabolism disorder is a critical characteristic of malignant tumors related to tumor progression and metastasis. However, the expression and molecular mechanism of malic enzyme 3 (ME3) in GC are rarely reported. In this study, we aim to investigate the molecular mechanism of ME3 in the development of GC and to explore its potential value as a prognostic and therapeutic target in GC. METHOD ME3 mRNA and protein expression were evaluated in patients with GC using RT-qPCR, WB, and immunohistochemistry, as well as their correlation with clinicopathological indicators. The effect of ME3 on proliferation and metastasis was evaluated using Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU) assay, transwell assay, wound healing assay, and subcutaneous injection or tail vein injection of tumor cells in mice model. The effects of ME3 knockdown on the level of metabolites and hypoxia-inducible factor-1α (HIF-1α) protein were determined in GC cells. Oxidative phosphorylation was measured to evaluate adenosine triphosphate (ATP) production. RESULTS ME3 was downregulated in human GC tissues (P < 0.001). The decreased ME3 mRNA expression was associated with younger age (P = 0.02), pathological staging (P = 0.049), and lymph node metastasis (P = 0.001), while low ME3 expression was associated with tumor size (P = 0.048), tumor invasion depth (P < 0.001), lymph node metastasis (P = 0.018), TNM staging (P < 0.001), and poor prognosis (OS, P = 0.0206; PFS P = 0.0453). ME3 knockdown promoted GC cell malignancy phenotypes. Moreover, α-ketoglutarate (α-KG) and NADPH/NADP+ ratios were reduced while malate was increased in the ME3 knockdown group under normoxia. When cells were incubated under hypoxia, the NADPH/NADP+ ratio and α-KG decreased while intracellular reactive oxygen species (ROS) increased significantly. The ME3 knockdown group exhibited an increase in ATP production and while ME3 overexpression group exhibited oppositely. We discovered that ME3 and HIF-1α expression were negatively correlated in GC cells and tissues, and proposed the hypothesis: downregulation of ME3 promotes GC progression via regulating intracellular oxidative stress and HIF-1α. CONCLUSION We provide evidence that ME3 downregulation is associated with poor prognosis in GC patients and propose a hypothesis for the ME3 regulatory mechanism in GC progression. The present study is of great scientific significance and clinical value for exploring the prognostic and therapeutic targets of GC, evaluating and improving the clinical efficacy of patients, reducing recurrence and metastasis, and improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecology, Guangzhou First People's Hospital, Guangzhou, China
| | - Yan Yang
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangliu Chen
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siying Zeng
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyong Wang
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiadong Lv
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisong Teng
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Yang J, Cheng Y, Nie Y, Tian B, Huang J, Gong R, Li Z, Zhu J, Gong Y. TRPC5 expression promotes the proliferation and invasion of papillary thyroid carcinoma through the HIF-1α/Twist pathway. Transl Oncol 2024; 39:101809. [PMID: 37918167 PMCID: PMC10638037 DOI: 10.1016/j.tranon.2023.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of TRPC5 on PTC (papillary thyroid carcinoma) proliferation and invasion. METHODS Immunofluorescence and western blot were used to evaluate the expression of TRPC5 in paraffin sections and clinical tissues. Overexpression and silencing of TRPC5 to generate the cells for in vitro experiments. Wound-healing assay, transwell invasion assay, MTT assay, and in vivo tumorigenicity assay were used to determine cell proliferation and cell migration in vitro and in vivo. Real-time PCR was used to test the expression of TRPC5. Western blot was used to test the expression of downstream factors: E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, ZEB, Snail, and Twist. RESULTS The level of TRPC5 protein expression was higher in PTC than in adjacent normal thyroid tissue. TPC-1 cells overexpressing TRPC5 were more proliferative, had longer migration distances, and increased the number of invading cells. TPC-1 cells silenced with TRPC5 had a weaker proliferation capacity, shorter migration distances, and a reduced number of invading cells. Overexpression and silencing of TRPC5 modulated E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, and Twist, but did not affect ZEB and Snail. The results of tumor formation experiments in nude mice showed that inhibition of TRPC5 expression suppressed the volume and weight of transplanted tumors. CONCLUSION TRPC5 induced papillary thyroid cancer metastasis and progression via up-regulated HIF-1α signaling in vivo and in vitro. High TRPC5 expression is a biomarker for lymph node metastasis at its early stages.
Collapse
Affiliation(s)
- Jing Yang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Sichuan Electric Power Hospital, China
| | - Yan Nie
- West China School of Medicine, Sichuan University, China
| | - Bole Tian
- Department of pancreatic Surgery, West China Hospital, Sichuan University, China
| | - Jing Huang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rixiang Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Sha M, Shen C, Jeong S, Xu N, Chen C, Hang HL, Tong Y, Cao J. Novel discovery of PDPN-positive CAFs contributing to tumor-associated lymphangiogenesis through mesenchymal to lymphatic endothelial transition in intrahepatic cholangiocarcinoma. Genes Dis 2023; 10:2226-2228. [PMID: 37554192 PMCID: PMC10405000 DOI: 10.1016/j.gendis.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/23/2022] [Accepted: 02/08/2023] [Indexed: 03/30/2023] Open
Affiliation(s)
- Meng Sha
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuan Shen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
- Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
- Institute for Biomedical Informatics, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Ning Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chen Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hua-lian Hang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Cao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
8
|
Sikander M, Malik S, Apraku J, Kumari S, Khan P, Mandil H, Ganju A, Chauhan B, Bell MC, Singh MM, Khan S, Yallapu MM, Halaweish FT, Jaggi M, Chauhan SC. Synthesis and Antitumor Activity of Brominated-Ormeloxifene (Br-ORM) against Cervical Cancer. ACS OMEGA 2023; 8:38839-38848. [PMID: 37901538 PMCID: PMC10601051 DOI: 10.1021/acsomega.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 10/31/2023]
Abstract
Aberrant regulation of β-catenin signaling is strongly linked with cancer proliferation, invasion, migration, and metastasis, thus, small molecules that can inhibit this pathway might have great clinical significance. Our molecular modeling studies suggest that ormeloxifene (ORM), a triphenylethylene molecule that docks with β-catenin, and its brominated analogue (Br-ORM) bind more effectively with relatively less energy (-7.6 kcal/mol) to the active site of β-catenin as compared to parent ORM. Herein, we report the synthesis and characterization of a Br-ORM by NMR and FTIR, as well as its anticancer activity in cervical cancer models. Br-ORM treatment effectively inhibited tumorigenic features (cell proliferation and colony-forming ability, etc.) and induced apoptotic death, as evident by pronounced PARP cleavage. Furthermore, Br-ORM treatment caused cell cycle arrest at the G1-S phase. Mechanistic investigation revealed that Br-ORM targets the key proteins involved in promoting epithelial-mesenchymal transition (EMT), as demonstrated by upregulation of E-cadherin and repression of N-cadherin, Vimentin, Snail, MMP-2, and MMP-9 expression. Br-ORM also represses the expression and nuclear subcellular localization of β-catenin. Consequently, Br-ORM treatment effectively inhibited tumor growth in an orthotopic cervical cancer xenograft mouse model along with EMT associated changes as compared to vehicle control-treated mice. Altogether, experimental findings suggest that Br-ORM is a novel, promising β-catenin inhibitor and therefore can be harnessed as a potent anticancer small molecule for cervical cancer treatment.
Collapse
Affiliation(s)
- Mohammed Sikander
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shabnam Malik
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - John Apraku
- South
Dakota State University, Brookings, South Dakota 57007-2201, United States
| | - Sonam Kumari
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- National
Institutes of Health, Bathesda, South Dakota 20892-4874, United States
| | - Parvez Khan
- Jamia
Millia Islamia University, New Delhi 110025, India
| | - Hassan Mandil
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Aditya Ganju
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065 United States
| | - Bhavin Chauhan
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Maria C. Bell
- Sanford
Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, South Dakota 57104, United States
| | - Man Mohan Singh
- Endocrinology
Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Sheema Khan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Murali M. Yallapu
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Fathi T. Halaweish
- South
Dakota State University, Brookings, South Dakota 57007-2201, United States
| | - Meena Jaggi
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Subhash C. Chauhan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
9
|
Tang Y, Dai G, Yang Y, Liu H. GSG2 facilitates the progression of human breast cancer through MDM2-mediated ubiquitination of E2F1. J Transl Med 2023; 21:523. [PMID: 37537694 PMCID: PMC10398932 DOI: 10.1186/s12967-023-04358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) has posed a great threat to world health as the leading cause of cancer death among women. Previous evidence demonstrated that germ cell-specific gene 2 (GSG2) was involved in the regulation of multiple cancers. Thus, the clinical value, biological function and underlying mechanism of GSG2 in BC were investigated in this study. METHODS The expression of GSG2 in BC was revealed by immunohistochemistry (IHC), qPCR and western blotting. Secondly, the biological function of GSG2 in BC was evaluated by MTT assay, flow cytometry, Transwell assay and wound healing assay. Furthermore, the potential molecular mechanism of GSG2 regulating the progression of BC by co-immunoprecipitation (Co-IP) and protein stability detection. RESULTS Our data indicated that GSG2 was frequently overexpressed in BC. Moreover, there was a significant correlation between the GSG2 expression and the poor prognosis of BC patients. Functionally, GSG2 knockdown inhibited the malignant progression of BC characterized by reduced proliferation, enhanced apoptosis and attenuated tumor growth. Migration inhibition of GSG2 knockdown BC cells via epithelial-mesenchymal transition (EMT), such as downregulation of Vimentin and Snail. In addition, E2F transcription factor 1 (E2F1) was regarded as a target protein of GSG2. Downregulation of E2F1 attenuated the promoting role of GSG2 on BC cells. Mechanistically, knockdown of GSG2 accelerated the ubiquitination of E2F1 protein, which was mediated by E3 ubiquitin ligase MDM2. CONCLUSIONS GSG2 facilitated the development and progression of BC through MDM2-mediated ubiquitination of E2F1, which may be a promising candidate target with potential therapeutic value.
Collapse
Affiliation(s)
- Yu Tang
- Day Ward, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xianheyan Road, Shenyang, 110042, China
| | - Gaosai Dai
- Department of Breast Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yupeng Yang
- Department of Thyroid and Breast Surgery, Jinan Zhangqiu District Hospital of TCM, Xiushui Street 1463, Jinan, 250200, Shandong, China
| | - Huantao Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Zivotic M, Kovacevic S, Nikolic G, Mioljevic A, Filipovic I, Djordjevic M, Jovicic V, Topalovic N, Ilic K, Radojevic Skodric S, Dundjerovic D, Nesovic Ostojic J. SLUG and SNAIL as Potential Immunohistochemical Biomarkers for Renal Cancer Staging and Survival. Int J Mol Sci 2023; 24:12245. [PMID: 37569620 PMCID: PMC10418944 DOI: 10.3390/ijms241512245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Renal cell carcinoma (RCC) is the deadliest urological neoplasm. Up to date, no validated biomarkers are included in clinical guidelines for the screening and follow up of patients suffering from RCC. Slug (Snail2) and Snail (Snail1) belong to the Snail superfamily of zinc finger transcriptional factors that take part in the epithelial-mesenchymal transition, a process important during embryogenesis but also involved in tumor progression. We examined Slug and Snail immunohistochemical expression in patients with different stages of renal cell carcinomas with the aim to investigate their potential role as staging and prognostic factors. A total of 166 samples of malignant renal cell neoplasms were analyzed using tissue microarray and immunohistochemistry. Slug and Snail expressions were evaluated qualitatively (presence or absence), in nuclear and cytoplasmic cell compartments and compared in relation to clinical parameters. The Kaplan-Meier survival analysis showed the impact of the sarcomatoid component and Slug expression on the survival longevity. Cox regression analysis separated Slug as the only independent prognostic factor (p = 0.046). The expression of Snail was associated with higher stages of the disease (p = 0.004), especially observing nuclear Snail expression (p < 0.001). All of the tumors that had metastasized showed nuclear immunoreactivity (p < 0.001). In clear cell RCC, we showed a significant relationship between a high nuclear grade and nuclear Snail expression (p = 0.039). Our results suggest that Slug and Snail could be useful immunohistochemical markers for staging and prognosis in patients suffering from various RCCs, representing potential targets for further therapy strategies of renal cancer.
Collapse
Affiliation(s)
- Maja Zivotic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Sanjin Kovacevic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 9 Dr. Subotic Street, 11000 Belgrade, Serbia;
| | - Gorana Nikolic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Ana Mioljevic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Isidora Filipovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Marija Djordjevic
- Faculty of Organization Sciences, University of Belgrade, 11010 Belgrade, Serbia;
| | - Vladimir Jovicic
- Clinic for Cardiac Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Topalovic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Kristina Ilic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Sanja Radojevic Skodric
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Dusko Dundjerovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 1 Dr. Subotic Street, 11000 Belgrade, Serbia; (M.Z.); (G.N.); (A.M.); (I.F.); (K.I.); (S.R.S.)
| | - Jelena Nesovic Ostojic
- Department of Pathological Physiology, Faculty of Medicine, University of Belgrade, 9 Dr. Subotic Street, 11000 Belgrade, Serbia;
| |
Collapse
|
11
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
12
|
Wang K, Chen Z, Qiao X, Zheng J. Hsa_circ_0084003 modulates glycolysis and epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma through targeting hsa-miR-143-3p/DNMT3A axis. Toxicol Res (Camb) 2023; 12:457-467. [PMID: 37397922 PMCID: PMC10311161 DOI: 10.1093/toxres/tfad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma, one of the deadliest tumors of the digestive tract, is a difficult and invasive malignancy. Current treatment for pancreatic ductal adenocarcinoma mainly depends on surgery combined with radiotherapy and chemotherapy, which, however, often resulting in questionable curative effect. Therefore, new targeted therapies are needed in future treatment. We first interfered with hsa_circ_0084003 expression in pancreatic ductal adenocarcinoma cells, and further studied how hsa_circ_0084003 functioned in regulating pancreatic ductal adenocarcinoma cell aerobic glycolysis and epithelial-mesenchymal transition, and also evaluated the regulatingeffect of hsa_circ_0084003 on hsa-miR-143-3p and its target DNA methyltransferase 3A. Hsa_circ_0084003 knockdown could notably inhibit the aerobic glycolysis and epithelial-mesenchymal transition of pancreatic ductal adenocarcinoma cells. Mechanistically, hsa_circ_0084003 could regulate its downstream target DNA methyltransferase 3A by binding to hsa-miR-143-3p, and overexpression of hsa_circ_0084003 could reverse the anticarcinogenic effect of hsa-miR-143-3p on aerobic glycolysis and epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells. Hsa_circ_0084003, as a carcinogenic circular RNA, regulated its downstream target DNA methyltransferase 3A to promote pancreatic ductal adenocarcinoma cell aerobic glycolysis and epithelial-mesenchymal transition through sponging hsa-miR-143-3p. Therefore, hsa_circ_0084003 could be studied as a possible therapeutic target regarding pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou 570311, Hainan Province, China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan Provincial People’s Hospital, Haikou 570311, Hainan Province, China
| | - Xin Qiao
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou 570311, Hainan Province, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou 570311, Hainan Province, China
| |
Collapse
|
13
|
Chen M, Li H, Xu X, Bao X, Xue L, Ai X, Xu J, Xu M, Shi Y, Zhen T, Li J, Yang Y, Ji Y, Fu Z, Xing K, Qing T, Wang Q, Zhong P, Zhu S. Identification of RAC1 in promoting brain metastasis of lung adenocarcinoma using single-cell transcriptome sequencing. Cell Death Dis 2023; 14:330. [PMID: 37202394 DOI: 10.1038/s41419-023-05823-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
This study aims to give a new perspective to the biomarkers in the lung adenocarcinoma (LUAD) brain metastasis, pathways involved and potential therapeutics. We performed a comprehensive single-cell level transcriptomic analysis on one LUAD patient with circulating tumor cells (CTCs), primary tumor tissue and metastatic tumor tissue using scRNA-seq approach to identify metastasis related biomarkers. Further scRNA-seq were performed on 7 patients to validate the cancer metastatic hallmark. with single cells collected from either metastatic or primary LUAD tissues. Pathological and functional studies were also performed to evidence the critical role of RAC1 in the LUAD metastasis. Hallmark gene was verified based on immunohistochemistry staining, cytological experiment, survival information from The Cancer Genome Atlas (TCGA), and staining results from Human Protein Atlas (HPA) databases. PCA analysis revealed that CTCs were in the intermediate place between the metastatic group and primary group. In the unsupervised clustering analysis CTCs were closer to one of the metastatic tumor cells, implying heterogeneity of the metastatic tumor and origin of the CTCs were from metastatic site. Transitional phase related gene analysis identified RAC1 was enriched in metastatic tumor tissue (MTT) preferred gene set functioning as regulated cell death and apoptosis as well as promoted macromolecule organization. Compared with normal tissue, expression levels of RAC1 increased significantly in LUAD tissue based on HPA database. High expression of RAC1 predicts worse prognosis and higher-risk. EMT analysis identified the propensity of mesenchymal state in primary cells while epithelial signals were higher in the metastatic site. Functional clustering and pathway analyses suggested genes in RAC1 highly expressed cells played critical roles in adhesion, ECM and VEGF signaling pathways. Inhibition of RAC1 attenuates the proliferation, invasiveness and migration ability of lung cancer cells. Besides, through MRI T2WI results, we proved that RAC1 can promote brain metastasis in the RAC1-overexpressed H1975 cell burden nude mouse model. RAC1 and its mechanisms might promote drug design against LUAD brain metastasis.
Collapse
Affiliation(s)
- Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China
- School of Life Sciences, Fudan University, 200438, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Hanyue Li
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, 200030, Shanghai, China
| | - Xiaolin Xu
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Naval Military Medical University, 200003, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, 507 Zhengmin Road, Shanghai, PR China
| | - Xunxia Bao
- School of Life Science, Anhui Medical University, 230032, Hefei, China
| | - Lei Xue
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003, Shanghai, China
| | - Xinghao Ai
- Department of Lung Tumor Clinical Center, Shanghai Chest Hospital, Shanghai Jiaotong University, 200030, Shanghai, China
| | - Jian Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China
- School of Life Sciences, Fudan University, 200438, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Ming Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China
- School of Life Sciences, Fudan University, 200438, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Yong Shi
- Cinoasia Institute, 200438, Shanghai, China
| | | | - Jie Li
- Cinoasia Institute, 200438, Shanghai, China
| | - Yi Yang
- Cinoasia Institute, 200438, Shanghai, China
| | - Yang Ji
- Cinoasia Institute, 200438, Shanghai, China
| | | | | | - Tao Qing
- Cinoasia Institute, 200438, Shanghai, China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, 214000, Wuxi, Jiangsu, China.
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China.
- School of Life Sciences, Fudan University, 200438, Shanghai, China.
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences, Beijing, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
| | - Sibo Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 200040, Shanghai, China.
- School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
14
|
Feng Z, Ding H, Peng Z, Hu K. Downregulated KDM6A mediates gastric carcinogenesis via Wnt/β-catenin signaling pathway mediated epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 245:154461. [PMID: 37060821 DOI: 10.1016/j.prp.2023.154461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
This study explored the connection between KDM6A expression and patient prognosis and the mechanism of KDM6A's role in developing GC (GC). From the immunohistochemical Analysis of 107 GC patients' tumors, we discovered that patients with reduced KDM6A expression had a shorter survival time. There was a correlation between KDM6A expression and the degree of differentiation of tumor tissue, T stage, N stage, and TNM stage. KDM6A gene expression was positively connected with the expression level of E-cadherin and negatively connected with the expression level of N-cadherin and vimentin in vitro tests. KDM6A gene suppression prevented GC cell proliferation, migration, and invasion, whereas high KDM6A gene expression promoted these processes. Second, low expression of KDM6A down-regulates GSK3β, p-GSK3β, up-regulates C-Myc, CyclinD1, and promotes β-catenin protein expression in the nucleus, while the high expression does the opposite. Then, we used ICG001 to block the Wnt/β-catenin signal transduction pathway, and the results revealed that ICG001 could reduce the promoting effect of low KDM6A expression on aggressiveness and EMT in GC cells. KDM6A down-regulation stimulates the proliferation of GC cells, while ICG001 reverses this action in vivo tests. Patients whose KDM6A expression was found to be low had a poor prognosis, as this study found. The EMT is inhibited by regulating theWnt/β-catenin signaling by KDM6A, which reduces GC cell proliferation, migration, and invasion. KDM6A may be a viable target for GC in clinical therapy.
Collapse
Affiliation(s)
- Zhenyou Feng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Huiming Ding
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Fuyang Hospital Affiliated to Anhui Medical University, Fuyang 236000, China.
| |
Collapse
|
15
|
Zhang B, Cao W, Liu Y, Zhao Y, Liu C, Sun B. Circ_0056618 enhances PRRG4 expression by competitively binding to miR-411-5p to promote the malignant progression of colorectal cancer. Mol Cell Biochem 2023; 478:503-516. [PMID: 35916967 DOI: 10.1007/s11010-022-04525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
The purpose of this paper was to explore the role of circ_0056618 and associated mechanisms in colorectal cancer (CRC). The expression of circ_0056618, proline rich and Gla domain 4 (PRRG4) mRNA and miR-411-5p was measured by quantitative real-time PCR (qPCR).The protein levels of PRRG4 and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. Cell proliferation was assessed by cell counting kit-8, EdU, and colony formation assays. Cell migration and invasion were assessed by transwell assay. Cell apoptosis was detected by flow cytometry assay. The putative relationship between miR-411-5p and circ_0056618 or PRRG4 was verified by dual-luciferase reporter assay. The effects of circ_0056618 on tumor growth in vivo were determined by animal study. Circ_0056618 and PRRG4 was upregulated, while miR-411-5p was downregulated in CRC tumor tissues and cells. Circ_0056618 knockdown or PRRG4 knockdown inhibited CRC cell proliferation, migration/invasion, EMT, and survival. Circ_0056618 positively modulated PRRG4 expression by targeting miR-411-5p. MiR-411-5p absence or PRRG4 overexpression could rescue circ_0056618 knockdown-induced inhibition on proliferation, migration/invasion, and EMT in CRC cells. Animal assay showed circ_0056618 knockdown impeded tumor growth in vivo. Circ_0056618 promoted CRC growth and development by upregulating PRRG4 expression via competitively targeting miR-411-5p.
Collapse
Affiliation(s)
- Bo Zhang
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, No.73 South Jianshe Road, Tangshan, 063000, Hebei, China
| | - Wenbin Cao
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, No.73 South Jianshe Road, Tangshan, 063000, Hebei, China
| | - Yang Liu
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, No.73 South Jianshe Road, Tangshan, 063000, Hebei, China
| | - Yongkui Zhao
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, No.73 South Jianshe Road, Tangshan, 063000, Hebei, China
| | - Chunhui Liu
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, No.73 South Jianshe Road, Tangshan, 063000, Hebei, China
| | - Bingfu Sun
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, No.73 South Jianshe Road, Tangshan, 063000, Hebei, China.
| |
Collapse
|
16
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif 2023:e13423. [PMID: 36808651 DOI: 10.1111/cpr.13423] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
17
|
Liu R, Zhao K, Wang K, Zhang L, Ma W, Qiu Z, Wang W. Prognostic value of nectin-4 in human cancers: A meta-analysis. Front Oncol 2023; 13:1081655. [PMID: 36937394 PMCID: PMC10020226 DOI: 10.3389/fonc.2023.1081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Many reports have described that abnormal nectin-4 expression may be used as a prognostic marker in many tumors. However, these studies failed to reach a consensus. Here, we performed a meta-analysis to comprehensively evaluate the prognostic value of nectin-4 in cancers. Methods Relevant studies were identified through a comprehensive search of PubMed, EMBASE and Web of science until August 31, 2022. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to evaluate the relationship between nectin-4 expression and overall survival (OS) and disease-free survival/progression-free survival/relapse-free survival (DFS/PFS/RFS). Odds ratios (ORs) with 95% CIs were applied to assess the relationship between nectin-4 expression and clinicopathologic features. Subgroup analysis was performed to explore the sources of heterogeneity. Sensitivity analysis and funnel plot were used to test the reliability of the results. All data analyses were performed using STATA version 12.0 software. Results Fifteen articles involving 2245 patients were included in the meta-analysis. The pooled analysis showed that high nectin-4 expression was significantly associated with poor OS (HR: 1.75, 95% CI: 1.35-2.28). There was no relationship between high nectin-4 expression and DFS/PFS/RFS (HR: 178, 95% CI: 0.78-4.08).Subgroup analyses revealed that that high nectin-4 expression mainly presented adverse OS in esophageal cancer (EC) (HR: 1.78, 95% CI: 1.30-2.44) and gastric cancer (GC) (HR: 1.92, 95% CI: 1.43-2.58). We also found that high nectin-4 expression was associated with tumor diameter (big vs small) (OR: 1.96, 95% CI: 1.02-3.75), tumor stage (III-IV vs I-II) (OR: 2.04, 95% CI: 1.01-4.12) and invasion depth (T3+T4 vs T2+T1) (OR: 3.95, 95% CI: 2.06-7.57). Conclusions Nectin-4 can be used as an effective prognostic indicator for specific cancers.
Collapse
|
18
|
Liu Z, Zhao L, Sun W, Zhang Z, Wang D, Ding D, Xie D, Bi L, Yu D. p-Phenylenediamine induces epithelial-mesenchymal transition in SV-40 immortalized human urothelial cells via the ERK5/AP-1 signaling. Toxicol Lett 2022; 371:1-8. [PMID: 36174792 DOI: 10.1016/j.toxlet.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/21/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate whether p-Phenylenediamine (PPD) could triggered EMT inSV-40 immortalized human urothelial cells (SV-HUC-1), and the regulation role of ERK5/AP-1 during this process. MATERIALS AND METHODS SV-HUC-1 cells were treated with different concentrations of PPD. MTT assay was employed to detect cell viability. Wound healing and transwell assay were performed to detect migrative and invasive capacity. Western blot and qRT-PCR were utilized for detecting molecular changes. ERK5 specific inhibitor was used to suppress ERK5 signaling. RESULTS Migration and invasion capacity of SV-HUC-1cells were enhanced after PPD exposure. Expression of epithelial markers E-cadherin and ZO-1 was decreased and expression of mesenchymal markers N-cadherin and vimentin was increased after being cultured with low concentrations of PPD, indicating that PPD induced EMT in PPD-cultured SV-HUC-1 cells. Meanwhile, PPD triggered activation of ERK5signaling and downstream AP-1 was activated, but no obvious influence of PPD on other sub-families of MAPK was detected. After inhibition of ERK5/AP-1, PPD-induced enhancement of migrative and invasive abilities were attenuated and expression of EMT markers was also reversed. CONCLUSION PPD may be a carcinogen, which could induce EMT in SV-40 immortalized human urothelial cells (SV-HUC-1) via activating ERK5/AP-1 signaling.
Collapse
Affiliation(s)
- Zhiqi Liu
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China
| | - Li Zhao
- Department of Urology, Anhui Zhongke Gengjiu Hospital, Hefei, PR China
| | - Wei Sun
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China
| | - Zhiqiang Zhang
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China
| | - Daming Wang
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China
| | - Demao Ding
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China
| | - Dongdong Xie
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China
| | - Liangkuan Bi
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China
| | - Dexin Yu
- Department of Urology, the second hospital of Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
19
|
cyy-287, a novel pyrimidine-2,4-diamine derivative, inhibits tumor growth of EGFR-driven non-small cell lung cancer via the ERK pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1540-1551. [PMID: 36239356 PMCID: PMC9828441 DOI: 10.3724/abbs.2022139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In recent decades, EGFR-targeted tyrosine kinase inhibitors (TKIs) have been proven to be an effective therapy for EGFR-mutant non-small cell lung cancer (NSCLC). However, resistance to EGFR-TKIs limits their clinical application. In the present study, we investigate the antitumor effect and underlying mechanism of a novel pyrimidine-2,4-diamine derivative, cyy-287, in NSCLC. We find that cyy-287 has a high affinity for lung tissue and inhibits the proliferation of NSCLC cells. Interestingly, the significant suppression of migration and induction of apoptosis by cyy-287 are only observed in EGFR-driven but not in EGFR-wild-type (wt) cells. According to the RNA sequencing and KEGG enrichment analysis results, cyy-287 markedly inhibits the MAPK pathway in EGFR-driven PC9 cells, and western blot analysis results further indicate that cyy-287 selectively blocks the ERK pathway in EGFR-driven cells. Meanwhile, apoptosis induced by cyy-287 could be partially reversed by ERK pathway inhibition. Further experiment indicates that cyy-287 inhibits the EGFR pathway in both EGFR-driven and EGFR-overexpressing cells. Interestingly, it only induces apoptosis in EGFR-driven cells, not in EGFR-overexpressing cells. The growth of EGFR-driven cells is suppressed by cyy-287 in vivo, with fewer side effects. Our results suggest that cyy-287 may be a potential therapeutic drug with promising antitumor effects against NSCLC.
Collapse
|
20
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
21
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
22
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
23
|
Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Front Immunol 2022; 13:939523. [PMID: 36091049 PMCID: PMC9452727 DOI: 10.3389/fimmu.2022.939523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is the most prominent and aggressive primary brain tumor in adults. Anoikis is a specific form of programmed cell death that plays a key role in tumor invasion and metastasis. The presence of anti-anoikis factors is associated with tumor aggressiveness and drug resistance.MethodsThe non-negative matrix factorization algorithm was used for effective dimension reduction for integrated datasets. Differences in the tumor microenvironment (TME), stemness indices, and clinical characteristics between the two clusters were analyzed. Difference analysis, weighted gene coexpression network analysis (WGCNA), univariate Cox regression, and least absolute shrinkage and selection operator regression were leveraged to screen prognosis-related genes and construct a risk score model. Immunohistochemistry was performed to evaluate the expression of representative genes in clinical specimens. The relationship between the risk score and the TME, stemness, clinical traits, and immunotherapy response was assessed in GBM and pancancer.ResultsTwo definite clusters were identified on the basis of anoikis-related gene expression. Patients with GBM assigned to C1 were characterized by shortened overall survival, higher suppressive immune infiltration levels, and lower stemness indices. We further constructed a risk scoring model to quantify the regulatory patterns of anoikis-related genes. The higher risk score group was characterized by a poor prognosis, the infiltration of suppressive immune cells and a differentiated phenotype, whereas the lower risk score group exhibited the opposite effects. In addition, patients in the lower risk score group exhibited a higher frequency of isocitrate dehydrogenase (IDH) mutations and a more sensitive response to immunotherapy. Drug sensitivity analysis was performed, revealing that the higher risk group may benefit more from drugs targeting the PI3K/mTOR signaling pathway.ConclusionWe revealed potential relationships between anoikis-related genes and clinical features, TME, stemness, IDH mutation, and immunotherapy and elucidated their therapeutic value.
Collapse
Affiliation(s)
- Zhongzheng Sun
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Yongquan Zhao
- Department of Neurosurgery, Dongying City District People’s Hospital, Dongying, China
| | - Yan Wei
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Xuan Ding
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chenyang Tan
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Chengwei Wang,
| |
Collapse
|
24
|
Jacob A, Xu HN, Stout AL, Li LZ. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210375GR. [PMID: 35945669 PMCID: PMC9360498 DOI: 10.1117/1.jbo.27.8.086001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Stratification of malignancy is valuable for cancer treatment. Both optical redox imaging (ORI) indices and nuclear-to-cytoplasmic volume/area ratio (N:C ratio) have been investigated to differentiate between cancers with varying aggressiveness, but these two methods have not been directly compared. The redox status in the cell nucleus has not been studied by ORI, and it remains unknown whether nuclear ORI indices add new biological information. AIM We sought to compare the capacity of whole-cell and subcellular ORI indices and N:C ratio to differentiate between breast cancer subtypes with varying aggressiveness and between mitotic and nonmitotic cells. APPROACH ORI indices for whole cell, cytoplasm, and nucleus as well as the N:C area ratio were generated for two triple-negative (more aggressive) and two receptor-positive (less aggressive) breast cancer cell lines by fluorescence microscopy. RESULTS We found positive correlations between nuclear and cytoplasmic ORI indices within individual cells. On average, a nuclear redox status was found to be more oxidized than cytoplasm in triple-negative cells but not in receptor-positive cells. Whole-cell and subcellular ORI indices distinguished between the receptor statuses better than the N:C ratio. However, N:C ratio was a better differentiator between nonmitotic and mitotic triple-negative cells. CONCLUSIONS Subcellular ORI analysis differentiates breast cancer subtypes with varying aggressiveness better than N:C area ratio.
Collapse
Affiliation(s)
- Annemarie Jacob
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
| | - He N. Xu
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Institute of Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States
| | - Andrea L. Stout
- University of Pennsylvania, Perelman School of Medicine, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States
| | - Lin Z. Li
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Britton Chance Laboratory of Redox Imaging, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Institute of Translational Medicine and Therapeutics, Philadelphia, Pennsylvania, United States
| |
Collapse
|
25
|
Rawal P, Tripathi D, Nain V, Kaur S. VEGF‑mediated tumour growth and EMT in 2D and 3D cell culture models of hepatocellular carcinoma. Oncol Lett 2022; 24:315. [PMID: 35949600 PMCID: PMC9353766 DOI: 10.3892/ol.2022.13435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present study was to evaluate the effects of vascular endothelial growth factor (VEGF) on tumorigenic properties in two-dimensional (2D) and three-dimensional (3D) cultures of hepatoma cells. The proliferation and invasion of hepatoma cells was assessed using wound healing, chemotaxis Transwell, invasion, tube-forming and hanging drop assays in both 2D and 3D cultures. The expression levels of epithelial-mesenchymal transition (EMT) and stemness markers were analysed using reverse transcription-quantitative PCR (RT-qPCR) for mRNA expression and immunofluorescence assay for protein expression. To validate the role of VEGF in tumour growth, a VEGF receptor (VEGFR) inhibitor (sorafenib) was used. The results demonstrated that the hepatoma cells formed 3D spheroids that differed in size and density in the absence and presence of the growth factor, VEGF. In all spheroids, invasion and angiogenesis were more aggressive in 3D cultures in comparison to 2D conditions following treatment with VEGF. Mechanistically, the VEGF-mediated increase in the levels of EMT markers, including Vimentin, N-cadherin 2 (Cadherin 2) and Thy-1 Cell Surface Antigen was observed in the 2D and 3D cultures. Sorafenib treatment for 24 h culminated in a marked reduction in cell migration, cell-cell adhesion, spheroid compaction and EMT gene expression in 3D models as compared to the 2D models. On the whole, the findings of the present study suggested that as compared to the 2D cell cultures, 3D cell cultures model may be used as a more realistic model for the study of tumour growth and invasion in the presence of angiogenic factors, as well as for tumour inhibitor screening.
Collapse
Affiliation(s)
- Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Dinesh Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| |
Collapse
|
26
|
Chen L, Qing J, Xiao Y, Huang X, Chi Y, Chen Z. TIM-1 promotes proliferation and metastasis, and inhibits apoptosis, in cervical cancer through the PI3K/AKT/p53 pathway. BMC Cancer 2022; 22:370. [PMID: 35392845 PMCID: PMC8991826 DOI: 10.1186/s12885-022-09386-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022] Open
Abstract
Background T-cell immunoglobulin mucin-1 (TIM-1) has been reported to be associated with the biological behavior of several malignant tumors; however, it is not clear whether it has a role in cervical cancer (CC). Methods TIM-1 expression in cervical epithelial tumor tissues and cells was detected by immunohistochemistry or real-time quantitative-PCR and western blotting. CC cells from cell lines expressing low levels of TIM-1 were infected with lentiviral vectors encoding TIM-1. Changes in the malignant behavior of CC cells were assessed by CCK-8, wound healing, Transwell migration and invasion assays, and flow cytometry in vitro; while a xenograft tumor model was established to analyze the effects of TIM-1 on tumor growth in vivo. Changes in the levels of proteins related to the cell cycle, apoptosis, and Epithelial-mesenchymal transition (EMT) were determined by western blotting. Results TIM-1 expression was higher in CC tissues, than in high grade squamous intraepithelial lesion, low grade squamous intraepithelial lesion, or normal cervical tissues, and was also expressed in three CC cell lines. In HeLa and SiHa cells overexpressing TIM-1, proliferation, invasion, and migration increased, while whereas apoptosis was inhibited. Furthermore, TIM-1 downregulated the expression of p53, BAX, and E-cadherin, and increased cyclin D1, Bcl-2, Snail1, N-cadherin, vimentin, MMP-2, and VEGF. PI3K, p-AKT, and mTOR protein levels also increased, while total AKT protein levels remained unchanged. Conclusions Our study indicated that TIM-1 overexpression promoted cell migration and invasion, and inhibited cell apoptosis in CC through modulation of the PI3K/AKT/p53 and PI3K/AKT/mTOR signaling pathways, and may be a candidate diagnostic biomarker of this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09386-7.
Collapse
Affiliation(s)
- Liuyan Chen
- Joint Inspection Center of Precision Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, People's Republic of China.,Department of Clinical Laboratory, the first affiliated hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, People's Republic of China
| | - Yangyang Xiao
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Xiaomei Huang
- Joint Inspection Center of Precision Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, People's Republic of China.,Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Yanlin Chi
- Department of Clinical Laboratory, the first affiliated hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Zhizhong Chen
- Joint Inspection Center of Precision Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
27
|
Trinh NT, Nguyen TMN, Yook JI, Ahn SG, Kim SA. Quercetin and Quercitrin from Agrimonia pilosa Ledeb Inhibit the Migration and Invasion of Colon Cancer Cells through the JNK Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15030364. [PMID: 35337161 PMCID: PMC8951172 DOI: 10.3390/ph15030364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Considering the high metastatic potential of colorectal cancer (CRC), the inhibition of metastasis is important for anti-CRC therapy. Agrimonia pilosa Ledeb (A. pilosa) is a perennial herbaceous plant that is widely distributed in Asia. The extracts of A. pilosa have shown diverse pharmacological properties, such as antimicrobial, anti-inflammatory, and antitumor activities. In the present study, the antimetastatic activity of A. pilosa was evaluated. Methanol extraction from the roots of A. pilosa was performed by high-performance liquid chromatography (HPLC) and 12 fractions were obtained. Among these, fraction 4 showed the most potent inhibitory effect on the migration of colon cancer cells. Using LC-HR MS analysis, quercetin and quercitrin were identified as flavonoids contained in fraction 4. Like fraction 4, quercetin and quercitrin effectively inhibited the migration and invasion of RKO cells. While the level of E-cadherin was increased, the levels of N-cadherin and vimentin were decreased by the same agents. Although they all activate the p38, JNK, and ERK signaling pathways, only SP600125, an inhibitor of the JNK pathway, specifically inhibited the effect of fraction 4, quercetin, and quercitrin on cell migration. An in vivo experiment also confirmed the antitumor activity of quercetin and quercitrin. Collectively, these results suggest that A. pilosa and its two flavonoids, quercetin and quercitrin, are candidates for the antimetastatic treatment of CRC.
Collapse
Affiliation(s)
- Nguyet-Tran Trinh
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
| | - Thi Minh Ngoc Nguyen
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
| | - Jong-In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Sang-Gun Ahn
- Department of Pathology, Chosun University College of Dentistry, Gwangju 61452, Korea;
| | - Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 38066, Korea; (N.-T.T.); (T.M.N.N.)
- Correspondence: ; Tel.: +82-54-770-2836
| |
Collapse
|
28
|
LINC01128 facilitates the progression of pancreatic cancer through up-regulation of LDHA by targeting miR-561-5p. Cancer Cell Int 2022; 22:93. [PMID: 35193567 PMCID: PMC8862213 DOI: 10.1186/s12935-022-02490-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) regulate tumor development and metastasis in several types of cancers through various molecular mechanisms. However, the biological role of most lncRNAs in pancreatic cancer (PC) remains unclear. Here, we explored the expression, biological functions, and molecular mechanism of LINC01128 in PC. Methods Quantitive reverse transcription PCR was used to detect the expression level of LINC01128 in PC tissues and different PC cell lines. A loss-of-function and gain-of-function experiment was used to explore the biological effects of LINC01128 on PC carcinogenesis in vitro and in vivo. Western blot analysis, subcellular fractionation experiment, luciferase reporter gene assay, and MS2-RNA immunoprecipitation experiment were used to study the potential molecular mechanism of LINC01128 during carcinogenesis. Results The expression of LINC01128 was upregulated in PC tissues and cell lines, and overexpression of LINC01128 was significantly related to the poor prognosis of patients with PC. Furthermore, silencing LINC01128 significantly inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of PC cells in vitro and tumor growth in vivo, while LINC01128 overexpression promoted these processes. Further research showed that LINC01128 acted as a sponge for microRNA miR-561-5p, and lactate dehydrogenase A (LDHA) was the downstream target gene of miR-561-5p. It was also revealed that the expression of miR-561-5p in PC was decreased, and a negative correlation between miR-561-5p and LINC01128 was revealed. Based on rescue experiments, LDHA overexpression partially restored the inhibitory effect of LINC01128 knockdown on proliferation, migration, and invasion of PC cells. Conclusions LINC01128 promotes the proliferation, migration, invasion, and EMT of PC by regulating the miR-561-5p/LDHA axis, suggesting LINC01128 may be a new prognostic marker and therapeutic target in PC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02490-5.
Collapse
|
29
|
Li R, Liu R, Wu S, Zheng S, Ye L, Shao Y. Prognostic value of STC1 in solid tumors: a meta-analysis. Biomark Med 2022; 16:253-263. [PMID: 35176895 DOI: 10.2217/bmm-2021-0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: The prognostic value of STC1 has been evaluated in solid tumors. However, the results remain controversial. Materials & methods: Relevant studies published up to 27 February 2021 were identified by a comprehensive search of the PubMed, EMBASE and Web of Science databases. Hazard ratios (HRs) and odds ratios with 95% CIs were applied to explore the association between STC1 and survival outcome and clinical characteristics. Results: Sixteen articles involving 2942 participants were included in this meta-analysis. The pooled analysis showed that high STC1 expression was significantly associated with worse overall survival (HR: 1.91; 95% CI: 1.63-2.24) and disease-free survival/progression-free survival/relapse-free survival (HR: 2.01; 95% CI: 1.34-3.02). Conclusion: STC1 may be an effective prognostic marker in solid tumors.
Collapse
Affiliation(s)
- Rongqi Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Department of Hepatobiliary Surgery, Foshan hospital of Traditional Chinese Medical University, Foshan, Guangdong, 528000, China
| | - Rongqiang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510220, China
| | - Shinan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shiyang Zheng
- Department of breast surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
30
|
Habib I, Anjum F, Mohammad T, Sulaimani MN, Shafie A, Almehmadi M, Yadav DK, Sohal SS, Hassan MI. Differential gene expression and network analysis in head and neck squamous cell carcinoma. Mol Cell Biochem 2022; 477:1361-1370. [PMID: 35142951 DOI: 10.1007/s11010-022-04379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a poor prognosis, whose biomarkers have not been studied in great detail. We have collected genomic data of HNSCC patients from The Cancer Genome Atlas (TCGA) and analyzed them to get deeper insights into the gene expression pattern. Initially, 793 differentially expressed genes (DEGs) were categorized, and their enrichment analysis was performed. Later, a protein-protein interaction network for the DEGs was constructed using the STRING plugin in Cytoscape to study their interactions. A set of 10 hub genes was selected based on Maximal Clique Centrality score, and later their survival analysis was studied. The elucidated set of 10 genes, i.e., PRAME, MAGEC2, MAGEA12, LHX1, MAGEA3, CSAG1, MAGEA6, LCE6A, LCE2D, LCE2C, referred to as potential candidates to be explored as HNSCC biomarkers. The Kaplan-Meier overall survival of the selected genes suggested that the alterations in the candidate genes were linked to the decreased survival of the HNSCC patients. Altogether, the results of this study signify that the genomic alterations and differential expression of the selected genes can be explored in therapeutic interpolations of HNSCC, exploiting early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
31
|
Zhang P, Chen X, Zhang L, Cao D, Chen Y, Guo Z, Chen J. POLE2 facilitates the malignant phenotypes of glioblastoma through promoting AURKA-mediated stabilization of FOXM1. Cell Death Dis 2022; 13:61. [PMID: 35039475 PMCID: PMC8763902 DOI: 10.1038/s41419-021-04498-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is a type of brain cancer with high morbidity and mortality worldwide. The clinical significance, biological roles, and underlying molecular mechanisms of DNA poly ε-B subunit (POLE2) in GBM were investigated in the study. Firstly, the Cancer Genome Atlas (TCGA) database found that POLE2 was highly expressed in GBM. Immunohistochemistry (IHC) results further confirmed that POLE2 was abnormally elevated in GBM. In addition, loss-of-function assays revealed that POLE2 knockdown could inhibit the malignant behaviors of GBM, especially reduce cell viability, weaken cell clone formation, enhance the sensitivity of apoptosis, restrain migration and inhibit epithelial-mesenchymal transition (EMT) in vitro. In vivo experiments further clarified the suppressive effects of reduced POLE2 expression on tumors. Mechanically, POLE2 knockdown promoted the ubiquitination as well as reduced the stability of Forkhead transcription factor (FOXM1), which is a known tumor promotor in GBM, through Aurora kinase A (AURKA). Moreover, the knockdown of FOXM1 could weaken the promoting effects of POLE2 on malignant behaviors of GBM. In conclusion, our study revealed crucial roles and a novel mechanism of POLE2 involved in GBM through AURKA-mediated stability of FOXM1 and may provide the theoretical basis of molecular therapy for GBM.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, No.1 Jianshe East Road, Zhengzhou City, Henan Province, China
| | - Xu Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China.
| | - LingYun Zhang
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu City, Sichuan Province, China
| | - Dan Cao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| | - Yong Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| | - ZhengQian Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan City, Hubei Province, China
| |
Collapse
|
32
|
Xu HN, Jacob A, Li LZ. Optical Redox Imaging Is Responsive to TGFβ Receptor Signalling in Triple-Negative Breast Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:269-274. [PMID: 36527648 PMCID: PMC11289671 DOI: 10.1007/978-3-031-14190-4_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Co-enzyme nicotinamide adenine dinucleotide NAD(H) regulates hundreds of biochemical reactions within the cell. We previously reported that NAD(H) redox status may have prognostic value for predicting breast cancer metastasis. However, the mechanisms of NAD(H) involvement in metastasis remain elusive. Given the important roles of TGFβ signalling in metastatic processes, such as promoting the epithelial-to-mesenchymal transition, we aimed to investigate the involvement of the mitochondrial NAD(H) redox status in TGFβ receptor signalling. Here we present the initial evidence that NAD(H) redox status is responsive to TGFβ receptor signalling in triple-negative breast cancer cells in culture. The mitochondrial NAD(H) redox status was determined by the optical redox imaging (ORI) technique. Cultured HCC1806 (less aggressive) and MDA-MB-231 (more aggressive) cells were subjected to ORI after treatment with exogenous TGFβ1 or LY2109761, which stimulates or inhibits TGFβ receptor signalling, respectively. Cell migration was determined with the transwell migration assay. Global averaging quantification of the ORI images showed that 1) TGFβ1 stimulation resulted in differential responses between HCC1806 and MDA-MB-231 lines, with HCC1806 cells having a significant change in the mitochondrial redox status, corresponding to a larger increase in cell migration; 2) HCC1806 cells acutely treated with LY2109761 yielded immediate increases in ORI signals. These preliminary data are the first evidence that suggests the existence of a cell line-dependent shift of the mitochondrial NAD(H) redox status in the TGFβ receptor signalling induced migratory process of breast cancer cells. Further research should be conducted to confirm these results as improved understanding of the underlying mechanisms of metastatic process may contribute to the identification of prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Annemarie Jacob
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Z Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology 2021; 15:1380-1402. [PMID: 35108494 PMCID: PMC9484543 DOI: 10.1080/17435390.2022.2030822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
34
|
Wang G, Han JJ. Connections between metabolism and epigenetic modifications in cancer. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:199-221. [PMID: 37724300 PMCID: PMC10388788 DOI: 10.1515/mr-2021-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 09/20/2023]
Abstract
How cells sense and respond to environmental changes is still a key question. It has been identified that cellular metabolism is an important modifier of various epigenetic modifications, such as DNA methylation, histone methylation and acetylation and RNA N6-methyladenosine (m6A) methylation. This closely links the environmental nutrient availability to the maintenance of chromatin structure and gene expression, and is crucial to regulate cellular homeostasis, cell growth and differentiation. Cancer metabolic reprogramming and epigenetic alterations are widely observed, and facilitate cancer development and progression. In cancer cells, oncogenic signaling-driven metabolic reprogramming modifies the epigenetic landscape via changes in the key metabolite levels. In this review, we briefly summarized the current evidence that the abundance of key metabolites, such as S-adenosyl methionine (SAM), acetyl-CoA, α-ketoglutarate (α-KG), 2-hydroxyglutarate (2-HG), uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and lactate, affected by metabolic reprogramming plays an important role in dynamically regulating epigenetic modifications in cancer. An improved understanding of the roles of metabolic reprogramming in epigenetic regulation can contribute to uncover the underlying mechanisms of metabolic reprogramming in cancer development and identify the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Guangchao Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jingdong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| |
Collapse
|
35
|
Molecular Activation of the Kv11.1 Channel Reprograms EMT in Colon Cancer by Inhibiting TGFβ Signaling via Activation of Calcineurin. Cancers (Basel) 2021; 13:cancers13236025. [PMID: 34885136 PMCID: PMC8656647 DOI: 10.3390/cancers13236025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
Control of ionic gradients is critical to maintain cellular homeostasis in both physiological and pathological conditions, but the role of ion channels in cancer cells has not been studied thoroughly. In this work we demonstrated that activity of the Kv11.1 potassium channel plays a vital role in controlling the migration of colon cancer cells by reversing the epithelial-to-mesenchymal transition (EMT) into the mesenchymal-to-epithelial transition (MET). We discovered that pharmacological stimulation of the Kv11.1 channel with the activator molecule NS1643 produces a strong inhibition of colon cancer cell motility. In agreement with the reversal of EMT, NS1643 treatment leads to a depletion of mesenchymal markers such as SNAIL1, SLUG, TWIST, ZEB, N-cadherin, and c-Myc, while the epithelial marker E-cadherin was strongly upregulated. Investigating the mechanism linking Kv11.1 activity to reversal of EMT into MET revealed that stimulation of Kv11.1 produced a strong and fast inhibition of the TGFβ signaling. Application of NS1643 resulted in de-phosphorylation of the TGFβ downstream effectors R-SMADs by activation of the serine/threonine phosphatase PP2B (calcineurin). Consistent with the role of TGFβ in controlling cancer stemness, NS1643 also produced a strong inhibition of NANOG, SOX2, and OCT4 while arresting the cell cycle in G0/G1. Our data demonstrate that activation of the Kv11.1 channel reprograms EMT into MET by inhibiting TGFβ signaling, which results in inhibition of motility in colon cancer cells.
Collapse
|
36
|
Li Y, Liu M, Yang K, Tian J. 6,6′-Bieckol induces apoptosis and suppresses TGF-β-induced epithelial-mesenchymal transition in non-small lung cancer cells. CHINESE HERBAL MEDICINES 2021; 14:254-262. [PMID: 36117661 PMCID: PMC9476679 DOI: 10.1016/j.chmed.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Objective In this study, the aim was to investigate the inhibitory effect of 6,6′-bieckol on the migration and epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC) cells, and explore its potential molecular mechanisms. Methods Cell migration was measured using a CCK8, wound healing, and transwell migration assay. Apoptosis was determined using an Annexin V/propidium iodide staining. Western blotting and immunofluorescence were used to examine the expression level of apoptosis-related proteins and EMT marker proteins. Results The results showed that 6,6′-bieckol inhibited migration and induced apoptosis of NSCLC cells. Furthermore, 6,6′-bieckol had significantly up-regulated the E-cadherin and down-regulated Snail1 and Twist1 transcriptional levels. 6,6′-Bieckol might inhibit TGF-β-induced EMT by down-regulating Snail1 and Twist1 and up-regulating E-cadherin in lung cancer cells. Conclusion It is suggested that 6,6′-bieckol has the potential to be developed as a therapeutic candidate for lung cancer.
Collapse
|
37
|
Tsai YC, Chen SL, Peng SL, Tsai YL, Chang ZM, Chang VHS, Ch’ang HJ. Upregulating sirtuin 6 ameliorates glycolysis, EMT and distant metastasis of pancreatic adenocarcinoma with krüppel-like factor 10 deficiency. Exp Mol Med 2021; 53:1623-1635. [PMID: 34702956 PMCID: PMC8569177 DOI: 10.1038/s12276-021-00687-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Krüppel-like factor 10 (KLF10) is a tumor suppressor in multiple cancers. In a murine model of spontaneous pancreatic adenocarcinoma (PDAC), additional KLF10 depletion accelerated distant metastasis. However, Klf10 knockout mice, which suffer from metabolic disorders, do not develop malignancy. The mechanisms of KLF10 in PDAC progression deserve further exploration. KLF10-depleted and KLF10-overexpressing PDAC cells were established to measure epithelial-mesenchymal transition (EMT), glycolysis, and migration ability. A murine model was established to evaluate the benefit of genetic or pharmacological manipulation in KLF10-depleted PDAC cells (PDACshKLF10). Correlations of KLF10 deficiency with rapid metastasis, elevated EMT, and glycolysis were demonstrated in resected PDAC tissues, in vitro assays, and murine models. We identified sirtuin 6 (SIRT6) as an essential mediator of KLF10 that modulates EMT and glucose homeostasis. Overexpressing SIRT6 reversed the migratory and glycolytic phenotypes of PDACshKLF10 cells. Linoleic acid, a polyunsaturated essential fatty acid, upregulated SIRT6 and prolonged the survival of mice injected with PDACshKLF10. Modulating HIF1α and NFκB revealed that EMT and glycolysis in PDAC cells were coordinately regulated upstream by KLF10/SIRT6 signaling. Our study demonstrated a novel KLF10/SIRT6 pathway that modulated EMT and glycolysis coordinately via NFκB and HIF1α. Activation of KLF10/SIRT6 signaling ameliorated the distant progression of PDAC.Clinical Trial Registration: ClinicalTrials.gov. identifier: NCT01666184.
Collapse
Affiliation(s)
- Yi-Chih Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Liang Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Ling Peng
- grid.412040.30000 0004 0639 0054Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ya-Li Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Zuong-Ming Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Vincent Hung-Shu Chang
- grid.412896.00000 0000 9337 0481Program for Translation Biology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Ch’ang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan ,grid.412896.00000 0000 9337 0481Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
38
|
Fukano M, Park M, Deblois G. Metabolic Flexibility Is a Determinant of Breast Cancer Heterogeneity and Progression. Cancers (Basel) 2021; 13:4699. [PMID: 34572926 PMCID: PMC8467722 DOI: 10.3390/cancers13184699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer progression is characterized by changes in cellular metabolism that contribute to enhanced tumour growth and adaptation to microenvironmental stresses. Metabolic changes within breast tumours are still poorly understood and are not as yet exploited for therapeutic intervention, in part due to a high level of metabolic heterogeneity within tumours. The metabolic profiles of breast cancer cells are flexible, providing dynamic switches in metabolic states to accommodate nutrient and energy demands and further aggravating the challenges of targeting metabolic dependencies in cancer. In this review, we discuss the intrinsic and extrinsic factors that contribute to metabolic heterogeneity of breast tumours. Next, we examine how metabolic flexibility, which contributes to the metabolic heterogeneity of breast tumours, can alter epigenetic landscapes and increase a variety of pro-tumorigenic functions. Finally, we highlight the difficulties in pharmacologically targeting the metabolic adaptations of breast tumours and provide an overview of possible strategies to sensitize heterogeneous breast tumours to the targeting of metabolic vulnerabilities.
Collapse
Affiliation(s)
- Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC H3T 1J4, Canada;
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 2M1, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
| | - Morag Park
- Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3G 2M1, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer (IRIC), University of Montréal, Montréal, QC H3T 1J4, Canada;
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montréal, QC H3A 1A3, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
39
|
Xie A, Xu X, Kuang P, Zhang L, Yu F. TMED3 promotes the progression and development of lung squamous cell carcinoma by regulating EZR. Cell Death Dis 2021; 12:804. [PMID: 34429402 PMCID: PMC8385054 DOI: 10.1038/s41419-021-04086-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and lacks effective targeted therapy. The transmembrane emp24 trafficking protein 3 (TMED3) belongs to the TMED family, which is responsible for the transport of intracellular proteins. This study was to explore the clinicopathological significance and biological effects of TMED3 in LUSC. Expression of TMED3 in LUSC was detected by immunohistochemical (IHC). The loss-of-function assays were used to investigate the effects of TMED3 on proliferation, apoptosis, cell cycle, and migration of LUSC cells. The influence of TMED3 knockdown on tumor growth in vivo was evaluated by mice xenograft models. In addition, the downstream target of TMED3 was recognized by RNA sequencing and Ingenuity Pathway Analysis (IPA). Moreover, TMED3 was upregulated in LUSC tissue, which was positively correlated with pathological grade. TMED3 knockdown was involved in the regulation of LUSC cell function, such as inhibition of proliferation, reduction of colony formation, induction of apoptosis, and reduction of migration. TMED3 knockdown induced abnormalities in apoptosis-related proteins in LUSC cells. In addition, the inhibition of cell migration by TMED3 knockdown was achieved by regulating EMT. Mechanically, EZR was considered as a potential target for TMED3 to regulate the progress of LUSC. Inhibition of EZR can inhibit the progression of LUSC, and even reduce the promoting effects of TMED3 overexpression on LUSC. In conclusion, TMED3 promoted the progression and development of LUSC by EZR, which may be a novel therapeutic target for LUSC.
Collapse
Affiliation(s)
- An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Peng Kuang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
40
|
Ni J, Ni A. Histone deacetylase inhibitor induced pVHL-independent degradation of HIF-1α and hierarchical quality control of pVHL via chaperone system. PLoS One 2021; 16:e0248019. [PMID: 34329303 PMCID: PMC8323912 DOI: 10.1371/journal.pone.0248019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
The mortality rate of ovarian cancer is increasing and the role of hypoxia inducible factor-1α (HIF-1α) in tumor progression has been confirmed. von Hippel-Lindau tumor suppressor protein (pVHL) binds HIF-1α and mediates proteasome degradation of HIF-1α. Besides, histone deacetylase inhibitor (HDACi) mitigates tumor growth via targeting HIF-1α, whereas underlying mechanism still requires investigation. In this research, we exposed ovarian cancer cell lines OV-90 and SKOV-3 to escalating concentrations of HDACi LBH589. As a result, cell viability was significantly suppressed and expression of HIF-1α was remarkably reduced along with decreased levels of signal molecules, including phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) (P = 0.000). Interestingly, pVHL was expressed in a notably declining tendency (P = 0.000). Chaperone heat shock protein-70 (HSP70) was expressed in an ascending manner, whereas expression of chaperonin TCP-1α was reduced clearly (P = 0.000). Besides, co-inhibition of pVHL plus HDAC did not contribute to a remarkable difference in HIF-1α expression as compared with single HDAC inhibition. Furthermore, both cell lines were transfected with plasmids of VHL plus VHL binding protein-1 (VBP-1). Consequently, the expression of HIF-1α as well as lactate dehydrogenase-A (LDHA) was remarkably decreased (P = 0.000). These findings indicate HDACi may repress expression of HIF-1α via inhibiting PI3K and GSK3β and promote degradation of HIF-1α via HSP70, independent of pVHL. Additionally, a sophisticated network of HDAC and chaperones may involve in pVHL quality control.
Collapse
Affiliation(s)
- Jieming Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Anping Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
41
|
Dardis C, Donner D, Sanai N, Xiu J, Mittal S, Michelhaugh SK, Pandey M, Kesari S, Heimberger AB, Gatalica Z, Korn MW, Sumrall AL, Phuphanich S. Gliosarcoma vs. glioblastoma: a retrospective case series using molecular profiling. BMC Neurol 2021; 21:231. [PMID: 34162346 PMCID: PMC8220715 DOI: 10.1186/s12883-021-02233-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Gliosarcoma (GS) refers to the presence of mesenchymal differentiation (as seen using light microscopy) in the setting of glioblastoma (GB, an astrocytoma, WHO Grade 4). Although the same approach to treatment is typically adopted for GS and GB, there remains some debate as to whether GS should be considered a discrete pathological entity. Differences between these tumors have not been clearly established at the molecular level. Methods Patients with GS (n=48) or GB (n=1229) underwent molecular profiling (MP) with a pan-cancer panel of tests as part of their clinical care. The methods employed included next-generation sequencing (NGS) of DNA and RNA, copy number variation (CNV) of DNA and immunohistochemistry (IHC). The MP comprised 1153 tests in total, although results for each test were not available for every tumor profiled. We analyzed this data retrospectively in order to determine if our results were in keeping with what is known about the pathogenesis of GS by contrast with GB. We also sought novel associations between the MP and GS vs. GB which might improve our understanding of pathogenesis of GS. Results Potentially meaningful associations (p<0.1, Fisher’s exact test (FET)) were found for 14 of these tests in GS vs. GB. A novel finding was higher levels of proteins mediating immuno-evasion (PD-1, PD-L1) in GS. All of the differences we observed have been associated with epithelial-to-mesenchymal transition (EMT) in other tumor types. Many of the changes we saw in GS are novel in the setting of glial tumors, including copy number amplification in LYL1 and mutations in PTPN11. Conclusions GS shows certain characteristics of EMT, by contrast with GB. Treatments targeting immuno-evasion may be of greater therapeutic value in GS relative to GB. Supplementary Information The online version contains supplementary material available at (10.1186/s12883-021-02233-5).
Collapse
Affiliation(s)
- Christopher Dardis
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | - David Donner
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Nader Sanai
- Barrow Brain Tumor Research Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Joanne Xiu
- Precision Oncology Alliance, Caris Life Sciences, Phoenix, AZ, USA
| | - Sandeep Mittal
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Sharon K Michelhaugh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Manjari Pandey
- Department of Medical Oncology, West Cancer Center, University of Tennessee Health Science Center, Germantown, TN, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute and Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, CA, USA
| | - Amy B Heimberger
- Simpson Querry Biomedical Research Center, Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael W Korn
- Precision Oncology Alliance, Caris Life Sciences, Phoenix, AZ, USA
| | - Ashley L Sumrall
- Department of Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Surasak Phuphanich
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
42
|
Zhong M, Zhou L, Zou J, He Y, Fang Z, Xiang X. Cullin-4B promotes cell proliferation and invasion through inactivation of p53 signaling pathway in colorectal cancer. Pathol Res Pract 2021; 224:153520. [PMID: 34153655 DOI: 10.1016/j.prp.2021.153520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Cullin 4B (CUL4B) is a member of the Cullin RING E3 ligase family, which is found to be overexpressed in multiple cancers, thus facilitating tumorigenesis and progression. However, the correlation between CUL4B and p53 in colorectal cancer cells (CRC) remains to be further elucidated. In this study, we newly identified that CUL4B functions as a negative regulator of p53, thereby facilitating CRC tumorigenesis and progression. Our data has demonstrated that CUL4B was frequently overexpressed in CRC tissues, and its upregulation was closely correlated with disease progression and poor prognosis. Moreover, CUL4B knockdown suppressed cell proliferation, invasion and epithelial-mesenchymal transition (EMT) of CRC cells. Mechanistically, CUL4B depletion increased the expression of p53 protein and its downstream targets p21, PUMA and MDM2. Furthermore, CUL4B depletion prolonged the half-life of p53 protein, and CUL4B is a binding partner of MDM2. In conclusion, our study shed new lights on the complex regulatory network between CUL4B and p53, and clarifies this CUL4B-p53 axis contributes greatly to CRC tumorigenesis and progression.
Collapse
Affiliation(s)
- Min Zhong
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Ling Zhou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jianping Zou
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yan He
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Ziling Fang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Xiaojun Xiang
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
43
|
Cardona-Mendoza A, Olivares-Niño G, Díaz-Báez D, Lafaurie GI, Perdomo SJ. Chemopreventive and Anti-tumor Potential of Natural Products in Oral Cancer. Nutr Cancer 2021; 74:779-795. [PMID: 34100309 DOI: 10.1080/01635581.2021.1931698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Oral cancer (OC) is a multifactorial disease caused by isolated or combined risk factors related to tobacco, alcohol consumption, and human papillomavirus infection. It is an aggressive pathology with a low five-year survival rate after surgery, chemotherapy, and/or radiotherapy, frequently associated with severe side effects. Drugs with the highest anti-tumor effect are obtained from natural products with diverse biological and molecular activities and potential chemopreventive and anticancer properties. This review summarizes the natural products reported to have the chemopreventive and anti-tumor potential for OC treatment, showing that several of these compounds are promising candidates as chemopreventive agents, and those with the highest anti-tumor potential induce apoptosis and inhibit proliferation and metastasis-related processes. For this reason, natural products have the potential to be important preventive and therapeutic options for OC in the future.
Collapse
Affiliation(s)
- Andrés Cardona-Mendoza
- Grupo de Inmunología Celular y Molecular Universidad El Bosque-INMUBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | | | - David Díaz-Báez
- Unidad de Investigación Básica Oral-UIBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Sandra J Perdomo
- Grupo de Inmunología Celular y Molecular Universidad El Bosque-INMUBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
44
|
Carmona-Ule N, González-Conde M, Abuín C, Cueva JF, Palacios P, López-López R, Costa C, Dávila-Ibáñez AB. Short-Term Ex Vivo Culture of CTCs from Advance Breast Cancer Patients: Clinical Implications. Cancers (Basel) 2021; 13:cancers13112668. [PMID: 34071445 PMCID: PMC8198105 DOI: 10.3390/cancers13112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) are responsible for metastasis, they represent tumor biology and have also predictive value for therapy monitoring and prognosis of metastatic breast cancer patients. In the blood, CTCs are found in low frequency and a small percentage of them survive. Therefore, achieving their expansion in vitro will allow performing characterization and functional analysis. In this work, we used growth factors and Nanoemulsions to support CTCs culture. We have seen that the CTCs subpopulation capable of ex vivo expanding presented mesenchymal and stem characteristics and loss of epithelial markers. Besides, CTC culture predicted progression-free survival. Abstract Background: Circulating tumor cells (CTC) have relevance as prognostic markers in breast cancer. However, the functional properties of CTCs or their molecular characterization have not been well-studied. Experimental models indicate that only a few cells can survive in the circulation and eventually metastasize. Thus, it is essential to identify these surviving cells capable of forming such metastases. Methods: We isolated viable CTCs from 50 peripheral blood samples obtained from 35 patients with advanced metastatic breast cancer using RosetteSepTM for ex vivo culture. The CTCs were seeded and monitored on plates under low adherence conditions and with media supplemented with growth factors and Nanoemulsions. Phenotypic analysis was performed by immunofluorescence and gene expression analysis using RT-PCR and CTCs counting by the Cellsearch® system. Results: We found that in 75% of samples the CTC cultures lasted more than 23 days, predicting a shorter Progression-Free Survival in these patients, independently of having ≥5 CTC by Cellsearch®. We also observed that CTCs before and after culture showed a different gene expression profile. Conclusions: the cultivability of CTCs is a predictive factor. Furthermore, the subset of cells capable of growing ex vivo show stem or mesenchymal features and may represent the CTC population with metastatic potential in vivo.
Collapse
Affiliation(s)
- Nuria Carmona-Ule
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
| | - Miriam González-Conde
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
| | - Juan F. Cueva
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Patricia Palacios
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Translational Medical Oncology Group (Oncomet), Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (J.F.C.); (P.P.)
- Correspondence: (C.C.); (A.B.D.-I.); Tel.: +34-981-955-602 (C.C.)
| | - Ana Belén Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (N.C.-U.); (M.G.-C.); (C.A.); (R.L.-L.)
- Correspondence: (C.C.); (A.B.D.-I.); Tel.: +34-981-955-602 (C.C.)
| |
Collapse
|
45
|
Nath A, Cosgrove PA, Mirsafian H, Christie EL, Pflieger L, Copeland B, Majumdar S, Cristea MC, Han ES, Lee SJ, Wang EW, Fereday S, Traficante N, Salgia R, Werner T, Cohen AL, Moos P, Chang JT, Bowtell DDL, Bild AH. Evolution of core archetypal phenotypes in progressive high grade serous ovarian cancer. Nat Commun 2021; 12:3039. [PMID: 34031395 PMCID: PMC8144406 DOI: 10.1038/s41467-021-23171-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution of resistance in high-grade serous ovarian cancer (HGSOC) cells following chemotherapy is only partially understood. To understand the selection of factors driving heterogeneity before and through adaptation to treatment, we profile single-cell RNA-sequencing (scRNA-seq) transcriptomes of HGSOC tumors collected longitudinally during therapy. We analyze scRNA-seq data from two independent patient cohorts to reveal that HGSOC is driven by three archetypal phenotypes, defined as oncogenic states that describe the majority of the transcriptome variation. Using a multi-task learning approach to identify the biological tasks of each archetype, we identify metabolism and proliferation, cellular defense response, and DNA repair signaling as consistent cell states found across patients. Our analysis demonstrates a shift in favor of the metabolism and proliferation archetype versus cellular defense response archetype in cancer cells that received multiple lines of treatment. While archetypes are not consistently associated with specific whole-genome driver mutations, they are closely associated with subclonal populations at the single-cell level, indicating that subclones within a tumor often specialize in unique biological tasks. Our study reveals the core archetypes found in progressive HGSOC and shows consistent enrichment of subclones with the metabolism and proliferation archetype as resistance is acquired to multiple lines of therapy.
Collapse
Affiliation(s)
- Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Patrick A Cosgrove
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Hoda Mirsafian
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Lance Pflieger
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Benjamin Copeland
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Sumana Majumdar
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Mihaela C Cristea
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Ernest S Han
- Division of Gynecologic Oncology, Department of Surgery, City of Hope, Duarte, CA, USA
| | - Stephen J Lee
- Division of Gynecologic Oncology, Department of Surgery, City of Hope, Duarte, CA, USA
| | - Edward W Wang
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Theresa Werner
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Adam L Cohen
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Philip Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA.
| |
Collapse
|
46
|
Zhang X, Liu X, Cui W, Zhang R, Liu Y, Li Y, Hao J. Sohlh2 alleviates malignancy of EOC cells under hypoxia via inhibiting the HIF1α/CA9 signaling pathway. Biol Chem 2021; 401:263-271. [PMID: 31318683 DOI: 10.1515/hsz-2019-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/08/2019] [Indexed: 01/26/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most common and deadly ovarian cancer. Most of the patients have abdominal/pelvic invasion and metastasis at the time of diagnosis, but the underlying mechanism remains unclear. Insufficiency of blood perfusion and diffusion within most solid tumors can lead to a hypoxic tumor microenvironment and promotes tumor malignancy. In the present study, we detected the role of the spermatogenesis- and oogenesis-specific basic helix-loop-helix (bHLH) transcription factor 2 (sohlh2) on migration, invasion and epithelial-mesenchymal transition (EMT) of EOC cell lines under hypoxia in vitro. We also investigated the possible mechanism underlying it. The results showed that sohlh2 inhibited the migration, invasion and EMT of EOC cells and might function through suppression of the hypoxia-inducible factor 1α (HIF1α)/carbonic anhydrase 9 (CA9) signaling pathway. Our results may open a new avenue for the further development of diagnostic tools and novel therapeutics that will benefit EOC patients.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Xinyu Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Weiwei Cui
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Yang Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Yongkun Li
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
47
|
Kang E, Seo J, Yoon H, Cho S. The Post-Translational Regulation of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Cancer Metastasis. Int J Mol Sci 2021; 22:3591. [PMID: 33808323 PMCID: PMC8037257 DOI: 10.3390/ijms22073591] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is generally observed in normal embryogenesis and wound healing. However, this process can occur in cancer cells and lead to metastasis. The contribution of EMT in both development and pathology has been studied widely. This transition requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (E.K.); (J.S.); (H.Y.)
| |
Collapse
|
48
|
Sung VYC, Knight JF, Johnson RM, Stern YE, Saleh SM, Savage P, Monast A, Zuo D, Duhamel S, Park M. Co-dependency for MET and FGFR1 in basal triple-negative breast cancers. NPJ Breast Cancer 2021; 7:36. [PMID: 33772015 PMCID: PMC7997957 DOI: 10.1038/s41523-021-00238-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks both effective patient stratification strategies and therapeutic targets. Whilst elevated levels of the MET receptor tyrosine kinase are associated with TNBCs and predict poor clinical outcome, the functional role of MET in TNBC is still poorly understood. In this study, we utilise an established Met-dependent transgenic mouse model of TNBC, human cell lines and patient-derived xenografts to investigate the role of MET in TNBC tumorigenesis. We find that in TNBCs with mesenchymal signatures, MET participates in a compensatory interplay with FGFR1 to regulate tumour-initiating cells (TICs). We demonstrate a requirement for the scaffold protein FRS2 downstream from both Met and FGFR1 and find that dual inhibition of MET and FGFR1 signalling results in TIC depletion, hindering tumour progression. Importantly, basal breast cancers that display elevated MET and FGFR1 signatures are associated with poor relapse-free survival. Our results support a role for MET and FGFR1 as potential co-targets for anti-TIC therapies in TNBC.
Collapse
Affiliation(s)
- Vanessa Y C Sung
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jennifer F Knight
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Radia M Johnson
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Yaakov E Stern
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sadiq M Saleh
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Paul Savage
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, CA, USA
| | - Anie Monast
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Stéphanie Duhamel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, McGill University, Montreal, QC, Canada. .,Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, CA, USA. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis 2021; 12:325. [PMID: 33771980 PMCID: PMC7997956 DOI: 10.1038/s41419-021-03618-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
TEFM (transcription elongation factor of mitochondria) has been identified as a novel nuclear-encoded transcription elongation factor in the transcription of mitochondrial genome. Our bioinformatics analysis of TCGA data revealed an aberrant over-expression of TEFM in hepatocellular carcinoma (HCC). We analyzed its biological effects and clinical significance in this malignancy. TEFM expression was analyzed by quantitative real-time PCR, western blot, and immunohistochemistry analysis in HCC tissues and cell lines. The effects of TEFM on HCC cell growth and metastasis were determined by cell proliferation, colony formation, flow cytometric cell cycle and apoptosis, migration, and invasion assays. TEFM expression was significantly increased in HCC tissues mainly caused by down-regulation of miR-194-5p. Its increased expression is correlated with poor prognosis of HCC patients. TEFM promoted HCC growth and metastasis both in vitro and in vivo by promoting G1–S cell transition, epithelial-to-mesenchymal transition (EMT), and suppressing cell apoptosis. Mechanistically, TEFM exerts its tumor growth and metastasis promoting effects at least partly through increasing ROS production and subsequently by activation of ERK signaling. Our study suggests that TEFM functions as a vital oncogene in promoting growth and metastasis in HCC and may contribute to the targeted therapy of HCC.
Collapse
|
50
|
He P, Zhang C, Chen G, Shen S. Loss of lncRNA SNHG8 promotes epithelial-mesenchymal transition by destabilizing CDH1 mRNA. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1858-1867. [PMID: 33754289 DOI: 10.1007/s11427-020-1895-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 10/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are widely involved in a variety of biological processes, including epithelial-mesenchymal transition (EMT). In the current study, we found that lncRNA small nucleolar RNA host gene 8 (SNHG8) was tightly correlated with EMT-associated gene signatures, and was down-regulated by Zinc finger E-box-binding homeobox 1 (ZEB1) during EMT progress. Functionally, knockdown of SNHG8 induced EMT in epithelial cells, through destabilizing the CDH1 mRNA dependent on a 17-nucleotide sequence shared by SNHG8 and CDH1. In addition, analysis with public database showed that SNHG8 tended to be down-regulated in different cancer types and the lower expression of SNHG8 predicted poorer prognosis. Taken together, our study reports a ZEB1-repressed lncRNA SNHG8 which is important for stabilizing CDH1 mRNA, thereby maintaining the epithelial status of epithelial cells.
Collapse
Affiliation(s)
- Ping He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shaoming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|