1
|
Cao R, Lin B, He H, Wang D, Wang X, Huang Y, Zhou R. CRM1 mediates ASC nuclear export and inflammasome activation. Int Immunopharmacol 2025; 153:114503. [PMID: 40139094 DOI: 10.1016/j.intimp.2025.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Inflammasomes are multiprotein complexes of the innate immune system that sense different pathogens or danger signals, and have been implicated in the pathogenesis of multiple human inflammatory diseases. The translocation of adaptor protein ASC from the nucleus to the cytosol is important for inflammasome assembly and activation, but the mechanism remains unclear. Here we show that pharmacological inhibition or genetic deletion of chromosome region maintenance 1 (CRM1) in macrophages significantly inhibits the activation of NLRP3, AIM2, NLRC4 and pyrin inflammasomes. Mechanistically, CRM1 directly binds to the PYD domain of ASC to promote its nuclear-cytosolic transport. More importantly, treatment with CRM1 inhibitor KPT-330 or deletion of CRM1 in myeloid cells attenuates the pathological symptoms of experimental autoimmune encephalomyelitis (EAE) in mice. Thus, our findings reveal that CRM1 is an essential mediator for ASC nuclear export to promote inflammasome assembly and activation, which provides a potential target for inflammasome-related diseases.
Collapse
Affiliation(s)
- Rui Cao
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bolong Lin
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongbin He
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaqiong Wang
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yi Huang
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
2
|
Fisher JG, Bartlett LG, Kashyap T, Walker CJ, Khakoo SI, Blunt MD. Modulation of anti-tumour immunity by XPO1 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002310. [PMID: 40291981 PMCID: PMC12022495 DOI: 10.37349/etat.2025.1002310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Exportin-1 (XPO1) is a nuclear export protein that, when overexpressed, can facilitate cancer cell proliferation and survival and is frequently overexpressed or mutated in cancer patients. As such, selective inhibitors of XPO1 (XPO1i) function have been developed to inhibit cancer cell proliferation and induce apoptosis. This review outlines the evidence for the immunomodulatory properties of XPO1 inhibition and discusses the potential for combining and sequencing XPO1i with immunotherapy to improve the treatment of patients with cancer. Selinexor is a first-in-class XPO1i that is FDA-approved for the treatment of patients with relapsed and refractory (RR) multiple myeloma and RR diffuse large B cell lymphoma. In addition to the cancer cell intrinsic pro-apoptotic activity, increasing evidence suggests that XPO1 inhibition has immunomodulatory properties. In this review, we describe how XPO1i can lead to a skewing of macrophage polarisation, inhibition of neutrophil extracellular traps, modulation of immune checkpoint expression, blockade of myeloid-derived suppressor cells (MDSCs) and sensitisation of cancer cells to T cell and NK (natural killer) cell immunosurveillance. As such, there is an opportunity for selinexor to enhance immunotherapy efficacy and thus a need for clinical trials assessing selinexor in combination with immunotherapies such as immune checkpoint inhibitors, direct targeting monoclonal antibodies, chimeric antigen receptor (CAR)-T cells and cereblon E3 ligase modulators (CELMoDs).
Collapse
Affiliation(s)
- Jack G. Fisher
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Laura G. Bartlett
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | | | | | - Salim I. Khakoo
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Matthew D. Blunt
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| |
Collapse
|
3
|
Soto-Ponce A, De Ita M, Castro-Obregón S, Cortez D, Landesman Y, Magaña JJ, Gonzalo S, Zavaleta T, Soberano-Nieto A, Unzueta J, Arrieta-Cruz I, Nava P, Candelario-Martínez A, García-Aguirre I, Cisneros B. Targeting CRM1 for Progeria Syndrome Therapy. Aging Cell 2025:e14495. [PMID: 39871520 DOI: 10.1111/acel.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by progerin, a mutant variant of lamin A. Progerin anchors aberrantly to the nuclear envelope disrupting a plethora of cellular processes, which in turn elicits senescence. We previously showed that the chromosomal region maintenance 1 (CRM1)-driven nuclear export pathway is abnormally enhanced in patient-derived fibroblasts, due to overexpression of CRM1. Interestingly, pharmacological inhibition of CRM1 using leptomycin B rescues the senescent phenotype of HGPS fibroblasts, delineating CRM1 as a potential therapeutic target against HGPS. As a proof of concept, we analyzed the beneficial effects of pharmacologically modulating CRM1 in dermal fibroblasts from HGPS patients and the LMNAG609G/G609G mouse, using the first-in-class selective inhibitor of CRM1 termed selinexor. Remarkably, treatment of HGPS fibroblasts with selinexor mitigated senescence and promoted progerin clearance via autophagy, while at the transcriptional level restored the expression of numerous differentially-expressed genes and rescued cellular processes linked to aging. In vivo, oral administration of selinexor to the progeric mouse resulted in decreased progerin immunostaining in the liver and aorta, decreased progerin levels in most liver, lung and kidney samples analyzed by immunoblotting, and improved aortic histopathology. Collectively our data indicate that selinexor exerts its geroprotective action by at least two mechanisms: normalizing the nucleocytoplasmic partition of proteins with a downstream effect on the aging-associated transcriptome and decreasing progerin levels. Further investigation of the overall effect of selinexor on LmnaG609G/G609G mouse physiology, with emphasis in cardiovascular function is warranted, to determine its therapeutic utility for HGPS and aging-associated disorders characterized by CRM1 overactivity.
Collapse
Affiliation(s)
- Adriana Soto-Ponce
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSSS, Ciudad de México, Mexico
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Diego Cortez
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, Mexico
| | | | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra (INR-LGII), Ciudad de México, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México, Mexico
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Tania Zavaleta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Angelica Soberano-Nieto
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Juan Unzueta
- Unidad Iztapalapa, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, División de Investigación, Instituto Nacional de Geriatría, Secretaría de Salud, Ciudad de México, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Aurora Candelario-Martínez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Ian García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| |
Collapse
|
4
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. XPO1/Exportin-1 in Acute Myelogenous Leukemia; Biology and Therapeutic Targeting. Biomolecules 2025; 15:175. [PMID: 40001478 PMCID: PMC11852384 DOI: 10.3390/biom15020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Exportin 1 is responsible for the export of hundreds of proteins, several RNA species and ribosomal components from the nucleus to the cytoplasm. Several transported proteins are important for regulation of cell proliferation and survival both in normal and malignant cells. We review the biological importance and the possibility of therapeutic targeting of Exportin 1 in acute myeloid leukemia (AML). Exportin 1 levels can be increased in human primary AML cells, and even exportin inhibition as monotherapy seems to have an antileukemic effect. The results from Phase I/II studies also suggest that exportin inhibition can be combined with conventional chemotherapy, including intensive induction and consolidation therapy possibly followed by allogeneic stem cell transplantation as well as AML-stabilizing therapy in elderly/unfit patients with hypomethylating agents. However, the risk of severe toxicity needs to be further evaluated; hematological toxicity is common together with constitutional side effects, electrolyte disturbances, and gastrointestinal toxicity. A recent randomized study of intensive chemotherapy with and without the Exportin inhibitor selinexor in elderly patients showed reduced survival in the selinexor arm; this was due to a high frequency of relapse and severe infections during neutropenia. Experimental studies suggest that Exportin 1 inhibition can be combined with other forms of targeted therapy. Thus, Exportin 1 inhibition should still be regarded as a promising strategy for AML treatment, but future studies should focus on the risk of toxicity when combined with conventional chemotherapy, especially in elderly/unfit patients, combinations with targeted therapies, identification of patient subsets (AML is a heterogeneous disease) with high susceptibility, and the possible use of less toxic next-generation Exportin 1 inhibitors.
Collapse
MESH Headings
- Humans
- Exportin 1 Protein
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Karyopherins/metabolism
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Molecular Targeted Therapy
- Hydrazines/therapeutic use
- Animals
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5007 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs. Granada, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5007 Bergen, Norway
| |
Collapse
|
5
|
Peng Y, Li Y, Wang L, Lin S, Xu H. Impact of pan-cancer analysis of the exportins family on prognosis, the tumor microenvironment and its potential therapeutic efficacy. Clin Exp Med 2024; 25:18. [PMID: 39708137 DOI: 10.1007/s10238-024-01534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
This study aims to comprehensively analyze the role of the exportin (XPO) family in the development and progression of cancer. These nuclear transport proteins have been increasingly recognized for their involvement in oncogenic processes and tumor growth. We utilized updated public databases and bioinformatics tools to assess the expression levels of the XPO family and their associations with key oncological markers including patient survival, immune subtypes, tumor microenvironment, stemness scores, drug sensitivity, and DNA methylation across various cancers. Expression levels of XPO family proteins varied significantly across different cancer types, indicating cancer-specific roles. Specific XPO proteins were linked to adverse prognosis in particular cancers. Additionally, expression levels were correlated with classifications of immune subtypes and tumor purity; notably, lower expression levels were often found in tumors with elevated stromal and immune scores. A marked correlation was observed between XPO proteins and RNA stemness scores, whereas the correlation with DNA stemness scores varied. Furthermore, XPO expression levels significantly influenced cancer cell drug sensitivity and generally showed correlations with gene methylation patterns, although these correlations differed among cancer types. Our findings underscore the distinct roles of XPO family members in cancer, linking them to immune infiltration, the tumor microenvironment, and drug sensitivity. These insights not only enhance our understanding of the prognostic and therapeutic potentials of XPO proteins in cancer but also lay the groundwork for further studies into their mechanisms and applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- First Clinical College of Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
- Nanshan District Clinical Pathological Diagnosis Center, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Youheng Li
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Lingmei Wang
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Shenglai Lin
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Hong Xu
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Xiao Y, Yang K, Huang Q, Wei C, Wei M, Geng Z, Wu H, Zhou T, Yin X, Zhou Y. Selinexor in combination with venetoclax and decitabine in patients with refractory myelodysplastic syndrome previously exposed to hypomethylating agents: three case reports. Front Oncol 2024; 14:1477697. [PMID: 39749030 PMCID: PMC11693730 DOI: 10.3389/fonc.2024.1477697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The management of patients with myelodysplastic syndrome (MDS) refractory to hypomethylating agents (HMAs) remains a challenge with few reliably effective treatments. Preclinical studies have shown that the inhibition of the nuclear export protein XPO1 causes nuclear accumulation of p53 and disruption of NF-κB signaling; both of which are relevant targets for MDS. Selinexor is an XPO1 inhibitor with demonstrated efficacy in MDS patients. Herein, we report three patients with MDS refractory to HMAs, however, when selinexor and venetoclax were added to the treatment regimen, the patients achieved a complete response and a significant reduction in spleen size. All patients successfully underwent hematopoietic stem cell transplantation. These cases demonstrate that the combination therapy can achieve CR and significant reductions in spleen size, offering a promising therapeutic option for patients with limited treatment choices. Combination therapy would also offer a potential way for patients to bridge to transplantation. Formal evaluations of this regimen in patients with MDS refractory to HMAs may be meaningful.
Collapse
Affiliation(s)
- Yunshuo Xiao
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Kun Yang
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
- Department of Hematology, West China Hospital, Chengdu, China
| | - Qiuying Huang
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Changqing Wei
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Manlv Wei
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Zhili Geng
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Hui Wu
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Tianhong Zhou
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Xialoin Yin
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Yali Zhou
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| |
Collapse
|
7
|
Miao H, Qin Y, Shao D, Chen Q, Pan Y, Lei M, Wu R, Ye X, Wang X, Zhu Y. Discovery of SZJK-0421: A Novel Potent, Low Toxicity, Selective Second Generation of CRM1 Inhibitor for the Treatment of Both Hematological and Solid Tumors. J Med Chem 2024; 67:20595-20618. [PMID: 39509481 DOI: 10.1021/acs.jmedchem.4c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Nuclear export factor chromosome region maintenance 1 (CRM1) mediated the transport of various growth-regulatory proteins and was frequently overexpressed in many hematologic and solid tumors. Selinexor (KPT-330) was the only approved CRM1 inhibitor, but the severe gastrointestinal and central nervous system toxicities limited its clinical application. In this manuscript, a series of novel second-generation CRM1 inhibitors were designed, in which SZJK-0421 was a more reversible inhibitor than KPT-330. The treatment of various tumor cells with SZJK-0421 significantly inhibited the function of CRM1. SZJK-0421 displayed good liver microsome stabilities and pharmacokinetic properties. Most importantly, SZJK-0421 reduced the direct damage to the gastrointestinal mucosa, and the brain plasma distribution ratio of SZJK-0421 was very low in Sprague-Dawley (SD) rats (3%), which avoided gastrointestinal reactions such as central nausea and vomiting caused by large permeability of blood-brain barrier. In addition, SZJK-0421 exhibited strong anticancer efficacy in xenograft models of both solid and hematological tumors.
Collapse
Affiliation(s)
- Hang Miao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yanru Qin
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - DingLu Shao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Qinghua Chen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yupeng Pan
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Meng Lei
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Ruokun Wu
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xinran Ye
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P. R. China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, P. R. China
| |
Collapse
|
8
|
Rashid H, Ullah A, Ahmad S, Aljahdali SM, Waheed Y, Shaker B, Al-Harbi AI, Alabbas AB, Alqahtani SM, Akiel MA, Irfan M. Identification of Novel Genes and Pathways of Ovarian Cancer Using a Comprehensive Bioinformatic Framework. Appl Biochem Biotechnol 2024; 196:3056-3075. [PMID: 37615851 DOI: 10.1007/s12010-023-04702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Ovarian cancer (OC) is a significant contributor to gynecological cancer-related deaths worldwide, with a high mortality rate. Despite several advances in understanding the pathogenesis of OC, the molecular mechanisms underlying its development and prognosis remain poorly understood. Therefore, the current research study aimed to identify hub genes involved in the pathogenesis of OC that could serve as selective diagnostic and therapeutic targets. To achieve this, the dataset GEO2R was used to retrieve differentially expressed genes. The study identified a total of five genes (CDKN1A, DKK1, CYP1B1, NTS, and GDF15) that were differentially expressed in OC. Subsequently, a network analysis was performed using the STRING database, followed by the construction of a network using Cytoscape. The network analyzer tool in Cytoscape predicted 276 upregulated and 269 downregulated genes. Furthermore, KEGG analysis was conducted to identify different pathways related to OC. Subsequently, survival analysis was performed to validate gene expression alterations and predict hub genes, using a p-value of 0.05 as a threshold. Four genes (CDKN1A, DKK1, CYP1B1, and NTS) were predicted as significant hub genes, while one gene (GDF15) was predicted as non-significant. The adjusted P values of said predicted genes are 2.85E - 07, 5.49E - 06, 4.28E - 07, 1.43E - 07, and 3.70E - 07 for CDKN1A, DKK1, NTS, GDF15, and CYP1B1 respectively; additionally 6.08, 5.76, 5.74, 5.01, and 4.9 LogFc values of the said genes were predicted in GEO data set. In a boxplot analysis, the expression of these genes was analyzed in normal and tumor cells. The study found that three genes were highly expressed in tumor cells, while two genes (CDKN1A and DKK1) were more elevated in normal cells. According to the boxplot analysis for CDKN1A, 50% of tumor cells ranged between approx 3.8 and 5, while 50% of normal cells ranged between approx 6.9 and 7.9, which is greater than tumor cells. This shows that in normal cells, the CYP1B1 has a high expression level according to the GEPIA boxplot; addtionally the boxplot for DKK1 indicated that 50% of tumor cells ranged between approx 0 and 0.5, which was less than that of normal cells which ranged between approx 0.3 and 0.9. It shows that DKK1 is highly expressed in normal genes. Overall, the current study provides novel insights into the molecular mechanisms underlying OC. The identified hub genes and drug candidate targets could potentially serve as alternative diagnostic and therapeutic options for OC patients. Further research is needed to investigate the clinical significance of these findings and develop effective interventions that can improve the prognosis of patients with OC.
Collapse
Affiliation(s)
- Hibba Rashid
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan.
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon.
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon, Beirut, Lebanon.
| | - Salma Mohammed Aljahdali
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safar M Alqahtani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Maaged A Akiel
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
9
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
10
|
Fofana M, Li Z, Li H, Li W, Wu L, Lu L, Liu Q. Decreased Ubiquitination and Acetylation of Histones 3 and 4 Are Associated with Obesity-Induced Disorders of Spermatogenesis in Mice. TOXICS 2024; 12:296. [PMID: 38668519 PMCID: PMC11055147 DOI: 10.3390/toxics12040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Obesity, a chronic metabolic disorder, is related to cardiovascular diseases, diabetes, cancer, and reproductive disorders. The relationship between obesity and male infertility is now well recognized, but the mechanisms involved are unclear. We aimed to observe the effect of obesity on spermatogenesis and to investigate the role of histone ubiquitination and acetylation modifications in obesity-induced spermatogenesis disorders. METHODS Thirty male C57BL/6J mice were randomly divided into two groups. The control group was fed with a general maintenance diet (12% fat), while a high-fat diet (HFD) group was fed with 40% fat for 10 weeks; then, they were mated with normal females. The fertility of male mice was calculated, testicular and sperm morphology were observed, and the expression levels of key genes and the levels of histone acetylation and ubiquitination modification during spermatogenesis were detected. RESULTS The number of sperm was decreased, as well as the sperm motility, while the number of sperm with malformations was increased. In the testes, the mRNA and protein expression levels of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), chromosome region maintenance-1 protein (CRM1), high-mobility group B2 (HMGB2), phosphoglycerate kinase 2 (PGK2), and testicular angiotensin-converting enzyme (tACE) were decreased. Furthermore, obesity led to a decrease in ubiquitinated H2A (ubH2A) and reduced levels of histone H3 acetylation K18 (H3AcK18) and histone H4 acetylation K5, K8, K12, and K16 (H4tetraAck), which disrupted protamine 1 (Prm1) deposition in testis tissue. CONCLUSION These results suggest that low levels of histone ubiquitination and acetylation are linked with obesity-induced disorders during spermatogenesis, contributing to a better understanding of obesity-induced damage to male reproduction.
Collapse
Affiliation(s)
- Mahamadou Fofana
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Zhenyang Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
| | - Lu Wu
- Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Suzhou School, Nanjing Medical University, Suzhou 215004, China;
| | - Lu Lu
- Animal Core Facility, The Key Laboratory of Model Animal, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (M.F.); (Z.L.); (H.L.); (W.L.)
- Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Suzhou School, Nanjing Medical University, Suzhou 215004, China;
| |
Collapse
|
11
|
Liu J, Shao Y, Li C. YTHDC1/CRM1 Facilitates m6A-Modified circRNA388 Nuclear Export to Induce Coelomocyte Autophagy via the miR-2008/ULK Axis in Apostichopus japonicus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1319-1333. [PMID: 38426898 DOI: 10.4049/jimmunol.2300761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Chen C, Miao X, Guo X, Xu J, Liang J, Zheng Y, Chi L, Chen X, Wei L, Zhang H, Ye X, He J. Safety of selinexor as the only exportin 1 (XPO1) inhibitor so far: a post-marketing study based on the world Health Organization pharmacovigilance database (Vigibase). Expert Opin Drug Saf 2024; 23:247-255. [PMID: 37608630 DOI: 10.1080/14740338.2023.2248888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Exportin 1 (XPO1) inhibitors are being developed as a new agent for anti-cancer therapies. This study aimed to broadly portray the adverse event (AE) profile of selinexor, an XPO1 inhibitor, in actual clinical practice. RESEARCH DESIGN AND METHODS Disproportionality analyses were conducted by calculating the information component and reporting odds ratio in VigiBase over different reporting periods. All selinexor-related AEs were classified by system organ class (SOC) and preferred term (PT) according to the Medical Dictionary for Regulatory Activities. RESULTS A total of 116,443 AEs were identified in 2,608 patients that received selinexor. Patients with cardiac disorders had a higher propensity for death. Thirteen SOCs and 125 PTs were identified as having a potential connection with selinexor. Notably, 29 suspected signals detected in our study were defined as significant AEs by the European Medicines Agency, including febrile neutropenia, pancytopenia, and acute kidney injury. Attention should be paid to these AEs, despite most toxicities being manageable and reversible. CONCLUSIONS This study highlights a number of AEs associated with selinexor. Most toxicities are reversible but require careful management. The benefit of selinexor still outweighs the potential risks, indicating XPO1 inhibitors as promising agents.
Collapse
Affiliation(s)
- Chenxin Chen
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xiaojing Guo
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jinfang Xu
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jizhou Liang
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Yi Zheng
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Lijie Chi
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Xiao Chen
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Lianhui Wei
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Hewei Zhang
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Xiaofei Ye
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| | - Jia He
- Department of Health Statistics, Faculty of Health Service, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Sharma T, Mondal T, Khan S, Churqui MP, Nyström K, Thombare K, Baig MH, Dong JJ. Identifying novel inhibitors targeting Exportin-1 for the potential treatment of COVID-19. Arch Microbiol 2024; 206:69. [PMID: 38240823 DOI: 10.1007/s00203-023-03761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/23/2024]
Abstract
The nuclear export protein 1 (XPO1) mediates the nucleocytoplasmic transport of proteins and ribonucleic acids (RNAs) and plays a prominent role in maintaining cellular homeostasis. XPO1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses. In our earlier study, we proved the inhibition of XPO1 as a therapeutic strategy for managing SARS-COV-2 and its variants. In this study, we have utilized pharmacophore-assisted computational methods to identify prominent XPO1 inhibitors. After several layers of screening, a few molecules were shortlisted for further experimental validation on the in vitro SARS-CoV-2 cell infection model. It was observed that these compounds reduced spike positivity, suggesting inhibition of SARS-COV-2 infection. The outcome of this study could be considered further for developing novel antiviral therapeutic strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sajid Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Marianela Patzi Churqui
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
14
|
Hou C, Wen X, Yan S, Gu X, Jiang Y, Chen F, Liu Y, Zhu Y, Liu X. Network-based pharmacology-based research on the effect and mechanism of the Hedyotis diffusa-Scutellaria Barbata pair in the treatment of hepatocellular carcinoma. Sci Rep 2024; 14:963. [PMID: 38200019 PMCID: PMC10781672 DOI: 10.1038/s41598-023-50696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedyotis diffusa-Scutellaria officinalis pair (HD-SB) has therapeutic effects on a variety of cancers. Our study was to explore the mechanism of HD-SB in the treatment of hepatocellular carcinoma (HCC). A total of 217 active ingredients of HD-SB and 1196 HCC-related targets were reserved from the TCMSP and the SwissTarget Prediction database, and we got 63 intersection targets from GeneCards. We used a Venn diagram, and Cytoscape found that the three core ingredients were quercetin, luteolin, and baicalein. The PPI analysis showed that the core targets were TP53, CDK2, XPO1, and APP. Molecular docking results showed that these core ingredients had good binding potential with the core targets. HD-SB acts simultaneously on various HCC-related signaling pathways, including proteoglycans in cancer and the P53 signaling pathway. In vitro experiments confirmed that HD-SB can inhibit HepG2 cell proliferation by increasing TP53 and APP levels and decreasing XPO1 and CDK2 levels. This study analyzed active ingredients, core targets, and central mechanisms of HD-SB in the treatment of HCC. It reveals the role of HD-SB in targeting the P53 signaling pathway in the treatment of HCC. We hope that our research could provide a new perspective to the therapy of HCC and find new anticancer drugs.
Collapse
Affiliation(s)
- Changmiao Hou
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiao Wen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Shifan Yan
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiaoxiao Gu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Chen
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yanjuan Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yimin Zhu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
| | - Xiehong Liu
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China.
| |
Collapse
|
15
|
Li C, Zhang Q, Huang W, Huang L, Long Q, Lei Y, Jia D, Yang S, Yang Y, Zhang X, Sun Q. Discovery of a Hidden Pocket beneath the NES Groove by Novel Noncovalent CRM1 Inhibitors. J Med Chem 2023; 66:17044-17058. [PMID: 38105606 DOI: 10.1021/acs.jmedchem.3c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Protein localization is frequently manipulated to favor tumor initiation and progression. In cancer cells, the nuclear export factor CRM1 is often overexpressed and aberrantly localizes many tumor suppressors via protein-protein interactions. Although targeting protein-protein interactions is usually challenging, covalent inhibitors, including the FDA-approved drug KPT-330 (selinexor), were successfully developed. The development of noncovalent CRM1 inhibitors remains scarce. Here, by shifting the side chain of two methionine residues and virtually screening against a large compound library, we successfully identified a series of noncovalent CRM1 inhibitors with a stable scaffold. Crystal structures of inhibitor-protein complexes revealed that one of the compounds, B28, utilized a deeply hidden protein interior cavity for binding. SAR analysis guided the development of several B28 derivatives with enhanced inhibition on nuclear export and growth of multiple cancer cell lines. This work may benefit the development of new CRM1-targeted therapies.
Collapse
Affiliation(s)
- Cong Li
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610032, China
| | - Qian Zhang
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Wenxin Huang
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610032, China
| | - Luyi Huang
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400010, China
| | - Qing Long
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Shengyong Yang
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610032, China
| | - Xia Zhang
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy, and Collaborative Innovation Centre of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610032, China
| |
Collapse
|
16
|
Xiao K, Ullah I, Yang F, Wang J, Hou C, Liu Y, Li X. Comprehensive bioinformatics analysis of FXR1 across pan-cancer: Unraveling its diagnostic, prognostic, and immunological significance. Medicine (Baltimore) 2023; 102:e36456. [PMID: 38050239 PMCID: PMC10695598 DOI: 10.1097/md.0000000000036456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Fragile X-related protein 1 (FXR1) is an RNA-binding protein that belongs to the fragile X-related (FXR) family. Studies have shown that FXR1 plays an important role in cancer cell proliferation, invasion and migration and is differentially expressed in cancers. This study aimed to gain a comprehensive and systematic understanding of the analysis of FXR1's role in cancers. This would lead to a better understanding of how it contributes to the development and progression of various malignancies. this study conducted through The Cancer Genome Atlas (TCGA), GTEx, cBioPortal, TISIDB, GEPIA2 and HPA databases to investigated FXR1's role in cancers. For data analysis, various software platforms and web platforms were used, such as R, Cytoscape, hiplot plateform. A significant difference in FXR1 expression was observed across molecular and immune subtypes and across types of cancer. FXR1 expression correlates with disease-specific survival (DSS), and overall survival (OS) in several cancer pathways, further in progression-free interval (PFI) in most cancers. Additionally, FXR1 showed a correlation with genetic markers of immunomodulators in different cancer types. Our study provides insights into the role of FXR1 in promoting, inhibiting, and treating diverse cancers. FXR1 has the potential to serve as a diagnostic and prognostic biomarker for cancer, with therapeutic value in immune-based, targeted, or cytotoxic treatments. Further clinical validation and exploration of FXR1 in cancer treatment is necessary.
Collapse
Affiliation(s)
- Keyuan Xiao
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Yang
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jiao Wang
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Chunxia Hou
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yuqiang Liu
- National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinghua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
17
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
18
|
Duan Z, Zhang Q, Liu M, Hu Z. Multifunctionality of matrix protein in the replication and pathogenesis of Newcastle disease virus: A review. Int J Biol Macromol 2023; 249:126089. [PMID: 37532184 DOI: 10.1016/j.ijbiomac.2023.126089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Mittal S, Kadamberi IP, Chang H, Wang F, Kumar S, Tsaih SW, Walker CJ, Chaluvally-Raghavan P, Charlson J, Landesman Y, Pradeep S. Preclinical activity of selinexor in combination with eribulin in uterine leiomyosarcoma. Exp Hematol Oncol 2023; 12:78. [PMID: 37715291 PMCID: PMC10503035 DOI: 10.1186/s40164-023-00443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Leiomyosarcoma (LMS) is a rare soft tissue sarcoma (STS) that begins in smooth muscle tissue and most often initiates in the abdomen or uterus. Compared with other uterine cancers, uterine LMS (ULMS) is an aggressive tumor with poor prognosis and a high risk of recurrence and death, regardless of the stage at presentation. Selinexor is a first-in-class selective inhibitor of nuclear export (SINE) compound that reversibly binds to exportin 1 (XPO1), thereby reactivating tumor suppressor proteins and downregulating the expression of oncogenes and DNA damage repair (DDR) proteins. In this study, we evaluated the effects of selinexor in combination with doxorubicin and eribulin in the LMS tumor model in vitro and in vivo. Treatment of selinexor combined with eribulin showed synergistic effects on tumor growth inhibition in SK-UT1 LMS-derived xenografts. Immunohistochemical assessment of the tumor tissues showed a significantly reduced expression of proliferation (Ki67) and XPO1 markers following combination therapy compared to the control group. Global transcriptome analyses on tumor tissue revealed that the combination therapy regulates genes from several key cancer-related pathways that are differentially expressed in ULMS tumors. To our knowledge, this is the first preclinical study demonstrating the anti-cancer therapeutic potential of using a combination of selinexor and eribulin in vivo. Results from this study further warrant clinical testing a combination of chemotherapy agents with selinexor to reduce the morbidity and mortality from ULMS.
Collapse
Affiliation(s)
- Sonam Mittal
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Hua Chang
- Karyopharm Therapeutics, Inc, Newton, MA, USA
| | - Feng Wang
- Karyopharm Therapeutics, Inc, Newton, MA, USA
| | - Sudhir Kumar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin-Cancer Center, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John Charlson
- Medical Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin-Cancer Center, Milwaukee, WI, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
20
|
Tong X, Jin J, Xu B, Su S, Li L, Li M, Peng Y, Mao X, Huang W, Zhang D. Real-world experience with selinexor-containing chemotherapy-free or low-dose chemotherapy regimens for patients with relapsed/refractory acute myeloid leukemia and myeloid sarcoma. Front Pharmacol 2023; 14:1217701. [PMID: 37601075 PMCID: PMC10436481 DOI: 10.3389/fphar.2023.1217701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: Treatment of relapsed or refractory acute myeloid leukemia (R/R AML) and myeloid sarcoma (MS) has presented challenges for decades. Studies on selinexor in combination with various standard or intensive chemotherapy regimens for the treatment of R/R AML have demonstrated promising results. This study aimed to evaluate the efficacy and safety of chemotherapy-free or low-dose chemotherapy regimens with selinexor for R/R AML and MS patients. Methods: Ten patients with R/R AML or MS who received chemotherapy-free or low-dose chemotherapy regimens in combination with selinexor at Tongji Hospital from October 2021 to August 2022 were included in this study. The primary endpoint was overall response rate (ORR) and secondary endpoints included complete remission (CR), CR with incomplete hematological recovery (CRi), partial remission (PR), transplantation rate, and safety. Results: All patients were evaluable for response, achieving CR in four (40.0%) patients and CRi in two (20.0%) patients for a total CR/CRi of 60.0%. The ORR was 80.0% when patients with PR were included. Five (50.0%) patients underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) after treatment with selinexor-containing regimens. At the end of the follow-up, seven (70.0%) patients were alive, and three patients died of transplant-related complications or disease progression. The most frequently reported nonhematologic adverse events (AEs) in patients were grade 1 or 2 asymptomatic hyponatremia. Conclusion: The chemotherapy-free or low-dose chemotherapy regimens in combination with selinexor for R/R AML are feasible and tolerable and provide an opportunity for patients to receive transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Dang TT, Kim MJ, Lee YY, Le HT, Kim KH, Nam S, Hyun SH, Kim HL, Chung SW, Chung HT, Jho EH, Yoshida H, Kim K, Park CY, Lee MS, Back SH. Phosphorylation of EIF2S1 (eukaryotic translation initiation factor 2 subunit alpha) is indispensable for nuclear translocation of TFEB and TFE3 during ER stress. Autophagy 2023; 19:2111-2142. [PMID: 36719671 PMCID: PMC10283430 DOI: 10.1080/15548627.2023.2173900] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3β: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.
Collapse
Affiliation(s)
- Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Yoon Young Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Hien Thi Le
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 03722, Seoul, Korea
| | - Somi Nam
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Seung Hwa Hyun
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, 678-1297, Hyogo, Japan
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, 02841, Seoul, Korea
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science & Division of Endocrinology, Department of Internal Medicine, SIMS (Soonchunhyang Institute of Medi-bio Science) & Soonchunhyang University Hospital, Soonchunhyang University, 31151, Cheonan, Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| |
Collapse
|
22
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
23
|
Li Z, Chen S, Zhao L, Huang G, Xu H, Yang X, Wang P, Gao N, Sui SF. Nuclear export of pre-60S particles through the nuclear pore complex. Nature 2023:10.1038/s41586-023-06128-y. [PMID: 37258668 DOI: 10.1038/s41586-023-06128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The nuclear pore complex (NPC) is the bidirectional gate that mediates the exchange of macromolecules or their assemblies between nucleus and cytoplasm1-3. The assembly intermediates of the ribosomal subunits, pre-60S and pre-40S particles, are among the largest cargoes of the NPC and the export of these gigantic ribonucleoproteins requires numerous export factors4,5. Here we report the cryo-electron microscopy structure of native pre-60S particles trapped in the channel of yeast NPCs. In addition to known assembly factors, multiple factors with export functions are also included in the structure. These factors in general bind to either the flexible regions or subunit interface of the pre-60S particle, and virtually form many anchor sites for NPC binding. Through interactions with phenylalanine-glycine (FG) repeats from various nucleoporins of NPC, these factors collectively facilitate the passage of the pre-60S particle through the central FG repeat network of the NPC. Moreover, in silico analysis of the axial and radial distribution of pre-60S particles within the NPC shows that a single NPC can take up to four pre-60S particles simultaneously, and pre-60S particles are enriched in the inner ring regions close to the wall of the NPC with the solvent-exposed surface facing the centre of the nuclear pore. Our data suggest a translocation model for the export of pre-60S particles through the NPC.
Collapse
Affiliation(s)
- Zongqiang Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuaijiabin Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liang Zhao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huiqin Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyun Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Sen-Fang Sui
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
24
|
Naren P, Samim KS, Tryphena KP, Vora LK, Srivastava S, Singh SB, Khatri DK. Microtubule acetylation dyshomeostasis in Parkinson's disease. Transl Neurodegener 2023; 12:20. [PMID: 37150812 PMCID: PMC10165769 DOI: 10.1186/s40035-023-00354-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The inter-neuronal communication occurring in extensively branched neuronal cells is achieved primarily through the microtubule (MT)-mediated axonal transport system. This mechanistically regulated system delivers cargos (proteins, mRNAs and organelles such as mitochondria) back and forth from the soma to the synapse. Motor proteins like kinesins and dynein mechanistically regulate polarized anterograde (from the soma to the synapse) and retrograde (from the synapse to the soma) commute of the cargos, respectively. Proficient axonal transport of such cargos is achieved by altering the microtubule stability via post-translational modifications (PTMs) of α- and β-tubulin heterodimers, core components constructing the MTs. Occurring within the lumen of MTs, K40 acetylation of α-tubulin via α-tubulin acetyl transferase and its subsequent deacetylation by HDAC6 and SIRT2 are widely scrutinized PTMs that make the MTs highly flexible, which in turn promotes their lifespan. The movement of various motor proteins, including kinesin-1 (responsible for axonal mitochondrial commute), is enhanced by this PTM, and dyshomeostasis of neuronal MT acetylation has been observed in a variety of neurodegenerative conditions, including Alzheimer's disease and Parkinson's disease (PD). PD is the second most common neurodegenerative condition and is closely associated with impaired MT dynamics and deregulated tubulin acetylation levels. Although the relationship between status of MT acetylation and progression of PD pathogenesis has become a chicken-and-egg question, our review aims to provide insights into the MT-mediated axonal commute of mitochondria and dyshomeostasis of MT acetylation in PD. The enzymatic regulators of MT acetylation along with their synthetic modulators have also been briefly explored. Moving towards a tubulin-based therapy that enhances MT acetylation could serve as a disease-modifying treatment in neurological conditions that lack it.
Collapse
Affiliation(s)
- Padmashri Naren
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Khan Sabiya Samim
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
25
|
Wen T, Geng M, Bai E, Wang X, Miao H, Chen Z, Zhou H, Wang J, Shi J, Zhang Y, Lei M, Zhu Y. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-κB signaling. FEBS Open Bio 2023; 13:751-762. [PMID: 36847599 PMCID: PMC10068319 DOI: 10.1002/2211-5463.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Tiantian Wen
- College of Life Science, Nanjing Normal University, China
| | - Mengzhu Geng
- College of Life Science, Nanjing Normal University, China
| | - Enhe Bai
- College of Life Science, Nanjing Normal University, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, China
| | - Hang Miao
- College of Science, Nanjing Forestry University, China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Yin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| | - Meng Lei
- College of Science, Nanjing Forestry University, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, China
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| |
Collapse
|
26
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
27
|
Zhao C, Ma B, Yang Z, Li O, Liu S, Pan L, Gong W, Dong P, Shu Y. Inhibition of XPO1 impairs cholangiocarcinoma cell proliferation by triggering p53 intranuclear accumulation. Cancer Med 2023; 12:5751-5763. [PMID: 36200270 PMCID: PMC10028126 DOI: 10.1002/cam4.5322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND XPO1 mediates the nuclear export of several proteins, mainly tumor suppressors. KPT-330 (Selinexor) is a selective inhibitor of XPO1 that has demonstrated good therapeutic effects in hematologic cancers. METHODS We used TCGA and GTEx pan-cancer database to evaluate XPO1 mRNA expression in various tumors. Cell proliferation assay and colony formation assay were used to analyze the in vitro antitumor effects of XPO1 inhibitor KPT-330. Western blot was performed to explore the specific mechanisms. RESULTS We found that XPO1 was highly expressed across a range of cancers and associated with poor prognosis in hepatobiliary and pancreatic tumors. We revealed that the XPO1 inhibitor KPT-330 triggered the nuclear accumulation of the p53 protein and significantly disrupted the proliferation of cholangiocarcinoma cells. Mechanistically, the XPO1 inhibitor, KPT-330, reduced BIRC6 expression by inhibiting the PI3K/AKT pathway to decrease p53 degradation and improve its stability. CONCLUSION Therefore, XPO1 may be a potential therapeutic target in cholangiocarcinoma, mediated by its effects on KPT-330.
Collapse
Affiliation(s)
- Cheng Zhao
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ben Ma
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Zi‐yi Yang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ou Li
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Shi‐lei Liu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Li‐jia Pan
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yi‐jun Shu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
28
|
Hsa_circ_0005050 interacts with ILF3 and affects cell apoptosis and proliferation by disrupting the balance between p53 and p65. Chem Biol Interact 2022; 368:110208. [DOI: 10.1016/j.cbi.2022.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
|
29
|
Zhao C, Yang ZY, Zhang J, Li O, Liu SL, Cai C, Shu YJ, Pan LJ, Gong W, Dong P. Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway. J Transl Med 2022; 20:434. [PMID: 36180918 PMCID: PMC9524043 DOI: 10.1186/s12967-022-03635-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a highly aggressive malignant cancer in the biliary system with poor prognosis. XPO1 (chromosome region maintenance 1 or CRM1) mediates the nuclear export of several proteins, mainly tumor suppressors. Thus, XPO1 functions as a pro-oncogenic factor. KPT-330 (Selinexor) is a United States Food and Drug Administration approved selective inhibitor of XPO1 that demonstrates good therapeutic effects in hematologic cancers. However, the function of XPO1 and the effect of KPT-330 have not been reported in GBC. METHODS We analyzed the correlation between XPO1 expression levels by q-PCR and clinical features of GBC patients. Cell proliferation assays were used to analyze the in vitro antitumor effects of XPO1 inhibitor KPT-330. mRNA sequencing was used to explore the underlying mechanisms. Western blot was performed to explore the relationship between apoptosis and autophagy. The in vivo antitumor effect of KPT-330 was investigated in a nude mouse model of gallbladder cancer. RESULTS We found that high expression of XPO1 was related to poor prognosis of GBC patients. We observed that XPO1 inhibitor KPT-330 inhibited the proliferation of GBC cells in vitro. Furthermore, XPO1 inhibitor KPT-330 induced apoptosis by reducing the mitochondrial membrane potential and triggering autophagy in NOZ and GBC-SD cells. Indeed, XPO1 inhibitor KPT-330 led to nuclear accumulation of p53 and activated the p53/mTOR pathway to regulate autophagy-dependent apoptosis. Importantly, KPT-330 suppressed tumor growth with no obvious toxic effects in vivo. CONCLUSION XPO1 may be a promising prognostic indicator for GBC, and KPT-330 appears to be a potential drug for treating GBC effectively and safely.
Collapse
Affiliation(s)
- Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Zi-yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Jian Zhang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Ou Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Shi-lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Chen Cai
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Yi-jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Li-jia Pan
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated With Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092 China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092 China
| |
Collapse
|
30
|
Nie D, Xiao X, Chen J, Xie S, Xiao J, Yang W, Liu H, Wang J, Ma L, Du Y, Huang K, Li Y. Prognostic and therapeutic significance of XPO1 in T-cell lymphoma. Exp Cell Res 2022; 416:113180. [PMID: 35489384 DOI: 10.1016/j.yexcr.2022.113180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
Abstract
T-cell lymphoma (TCL) is a highly heterogeneous group of invasive non-Hodgkin lymphoma with adverse prognosis and limited treatment options. The relationship between TCL and Exportin-1 (XPO1), a major nuclear export receptor, has not been established yet. We here investigated the prognostic role and therapeutic implication of XPO1 in TCL. We analyzed XPO1 expression in a cohort of 69 TCL tumors and found that XPO1 was over-expressed in 76.8% of TCL and correlated with decreased progression-free survival (PFS) and overall survival (OS). In vitro treatment of TCL cell lines with KPT-8602, the second-generation selective inhibitor of nuclear export (SINE), inhibited XPO1 expression and showed significant anti-proliferative, cell-cycle arrest and pro-apoptotic efficacy. In mechanism, KPT-8602 restored the localization of cytoplasmic FOXO3A, p27, p21, IκBα and PP2A into the nucleus, leading to AKT and NF-κB deactivation. Our data demonstrate for the first time that XPO1 could be an unfavorable prognostic factor for TCL, and provide a rationale for further investigation of the efficacy of KPT-8602 in TCL patients.
Collapse
Affiliation(s)
- Danian Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaohui Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiaoting Chen
- Department of Hematology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Shuangfeng Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenjuan Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hongyun Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jieyu Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liping Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yumo Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Respirology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Kezhi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yiqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
31
|
Enhancement of MDM2 Inhibitory Effects through Blocking Nuclear Export Mechanisms in Ovarian Cancer Cells. Cancer Genet 2022; 266-267:57-68. [DOI: 10.1016/j.cancergen.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
|
32
|
Nachmias B, Khan DH, Voisin V, Mer AS, Thomas GE, Segev N, St-Germain J, Hurren R, Gronda M, Botham A, Wang X, Maclean N, Seneviratne AK, Duong N, Xu C, Arruda A, Orouji E, Algouneh A, Hakem R, Shlush L, Minden MD, Raught B, Bader GD, Schimmer AD. IPO11 regulates the nuclear import of BZW1/2 and is necessary for AML cells and stem cells. Leukemia 2022; 36:1283-1295. [PMID: 35152270 PMCID: PMC9061300 DOI: 10.1038/s41375-022-01513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022]
Abstract
AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin β family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.
Collapse
|
33
|
Zhang J, Xu X, Chen Y, Guan X, Zhu H, Qi Y. The abnormal expression of chromosomal region maintenance 1 (CRM1)-survivin axis in ovarian cancer and its related mechanisms regulating proliferation and apoptosis of ovarian cancer cells. Bioengineered 2022; 13:624-633. [PMID: 34898375 PMCID: PMC8805823 DOI: 10.1080/21655979.2021.2012416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/25/2021] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer (OC) is the main type of cancer that affects the female reproductive system and has a high morbidity and mortality rate. This study aimed to explore the regulatory effect of the chromosomal region maintenance 1 (CRM1)-survivin axis on the progression of OC. Ovarian cancer cells were transfected with pcDNA3.1-survivin and short hairpin RNA (sh)-CRM1. Cell proliferation was analyzed by cell counting kit-8 (CCK8), 5-ethynyl-2´-deoxyuridine (EdU) staining, and colony formation assays. Apoptosis was detected using flow cytometry. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to analyze the expression of RNA and protein, respectively. qRT-PCR and prognostic correlation analyses revealed that CRM1 is highly expressed in OC cells and related to survival. The results of qRT-PCR, CCK8, colony formation test, EdU staining, flow cytometry, and Western blotting showed that CRM1 silencing inhibited the proliferation and colony formation of OVCAR 3 and SKOV3 cells and promoted cell apoptosis by promoting Caspase-3 activation. Survivin was positively regulated by CRM1 and promoted the development of OC. The results of the rescue experiment showed that overexpression of survivin reversed the inhibitory effect of CRM1 knockdown on the proliferation of ovarian cancer cells and its inhibitory effect on apoptosis. Our findings confirm the role of the CRM1-survivin signal transduction axis in OC by regulating the proliferation and apoptosis of OC cells, and may thus serve as a potential therapeutic target for OC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gynecology, Urumqi Maternal and Child Health Hospital of Xinjiang Uygur, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xinyan Xu
- Department of Gynecology, Urumqi Maternal and Child Health Hospital of Xinjiang Uygur, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yongfeng Chen
- Pathology Department, Urumqi Maternal and Child Health Hospital of Xinjiang Uygur, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiaoju Guan
- Department of Gynecology, Urumqi Maternal and Child Health Hospital of Xinjiang Uygur, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hong Zhu
- Department of Gynecology, Urumqi Maternal and Child Health Hospital of Xinjiang Uygur, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuhong Qi
- Department of Gynecology, Urumqi Maternal and Child Health Hospital of Xinjiang Uygur, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
34
|
Galinski B, Alexander TB, Mitchell DA, Chatwin HV, Awah C, Green AL, Weiser DA. Therapeutic Targeting of Exportin-1 in Childhood Cancer. Cancers (Basel) 2021; 13:6161. [PMID: 34944778 PMCID: PMC8699059 DOI: 10.3390/cancers13246161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2023] Open
Abstract
Overexpression of Exportin-1 (XPO1), a key regulator of nuclear-to-cytoplasmic transport, is associated with inferior patient outcomes across a range of adult malignancies. Targeting XPO1 with selinexor has demonstrated promising results in clinical trials, leading to FDA approval of its use for multiple relapsed/refractory cancers. However, XPO1 biology and selinexor sensitivity in childhood cancer is only recently being explored. In this review, we will focus on the differential biology of childhood and adult cancers as it relates to XPO1 and key cargo proteins. We will further explore the current state of pre-clinical and clinical development of XPO1 inhibitors in childhood cancers. Finally, we will outline potentially promising future therapeutic strategies for, as well as potential challenges to, integrating XPO1 inhibition to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Thomas B. Alexander
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel A. Mitchell
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Hannah V. Chatwin
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Chidiebere Awah
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Daniel A. Weiser
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| |
Collapse
|
35
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
37
|
Nagasaka M, Asad MFB, Al Hallak MN, Uddin MH, Sukari A, Baca Y, Xiu J, Magee D, Mamdani H, Uprety D, Kim C, Xia B, Liu SV, Nieva JJ, Lopes G, Bepler G, Borghaei H, Demeure MJ, Raez LE, Ma PC, Puri S, Korn WM, Azmi AS. Impact of XPO1 mutations on survival outcomes in metastatic non-small cell lung cancer (NSCLC). Lung Cancer 2021; 160:92-98. [PMID: 34482103 PMCID: PMC8853639 DOI: 10.1016/j.lungcan.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/08/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nuclear protein transport is essential in guiding the traffic of important proteins and RNAs between the nucleus and cytoplasm. Export of proteins from the nucleus is mostly regulated by Exportin 1 (XPO1). In cancer, XPO1 is almost universally hyperactive and can promote the export of important tumor suppressors to the cytoplasm. Currently, there are no studies evaluating XPO1 amplifications and mutations in NSCLC and the impact on outcomes. METHODS Tumor samples were analyzed using next-generation sequencing (NGS) (NextSeq, 592 Genes), immunohistochemistry (IHC), and whole transcriptome sequencing (WTS, NovaSeq) (Caris Life Sciences, Phoenix, AZ). Survival was extracted from insurance claims data and calculated from time of tissue collection to last contact using Kaplan-Meier estimate. RESULTS Among 18,218 NSCLC tumors sequenced, 26 harbored XPO1 mutations and 24 had amplifications. XPO1 mutant tumors were more likely to have high TMB (79% vs. 52%, p = 0.007) and less likely to have high PD-L1 (32% vs. 68%, p = 0.03). KRAS co-mutations were seen in 19% (n = 5) and EGFR co-mutations were rare (n = 2). Among the 17,449 NSCLC tumors with clinical data, there were 24 XPO1 mutant. Comparison of survival between XPO1 mutant and WT showed a negative association with a hazard ratio (HR) of 1.932 (95% CI: 1.144-3.264 p = 0.012). XPO1 amplification was not associated with survival. CONCLUSIONS XPO1 pathogenic mutations were associated with a poor survival in NSCLC. Although XPO1 mutations are rare in NSCLC, further studies to assess its associations with treatment responses are warranted.
Collapse
Affiliation(s)
- Misako Nagasaka
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA; Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
| | - Mohammad Fahad B Asad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | - Dan Magee
- Caris Life Sciences, Phoenix, AZ, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Dipesh Uprety
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | - Chul Kim
- Georgetown University, Washington, DC, USA
| | - Bing Xia
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Jorge J Nieva
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Gilberto Lopes
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gerold Bepler
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA
| | | | - Michael J Demeure
- Hoag Family Cancer Institute, Newport Beach, CA, USA; Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Luis E Raez
- Memorial Cancer Institute/Florida International University, Miami, FL, USA
| | - Patrick C Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sonam Puri
- Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | | | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
38
|
Li Q, Huang Z, Peng Y, Wang X, Jiang G, Wang T, Mou K, Feng W. RanBP3 Regulates Proliferation, Apoptosis and Chemosensitivity of Chronic Myeloid Leukemia Cells via Mediating SMAD2/3 and ERK1/2 Nuclear Transport. Front Oncol 2021; 11:698410. [PMID: 34504783 PMCID: PMC8421687 DOI: 10.3389/fonc.2021.698410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Abnormal subcellular localization of proteins is an important cause of tumorigenesis and drug resistance. Chromosome region maintenance 1 (CRM1), the nuclear export regulator of most proteins, has been confirmed to be over-expressed in various malignancies and is regarded as an efficient target. But the potential role of the CRM1 cofactor RanBP3 (Ran Binding Protein 3) is left unrevealed in chronic myeloid leukemia (CML). Here, we first detected the level of RanBP3 in CML and found an elevated RanBP3 expression in CML compared with control. Then we used shRNA lentivirus to down-regulated RanBP3 in imatinib sensitive K562 cells and resistant K562/G01 cells and found RanBP3 silencing inhibited cell proliferation by up-regulating p21, induced caspase3-related cell apoptosis, and enhanced the drug sensitivity of IM in vitro. Notably, we observed that RanBP3 silencing restored imatinib sensitivity of K562 cells in NOD/SCID mice. Mechanistically, the nuclear aggregation of SMAD2/3 revealed that tumor suppressor axis (TGF-β)-SMAD2/3-p21 was the anti-proliferation program related to RanBP3 knockdown, and the decrease of cytoplasmic ERK1/2 caused by RanBP3 interference leaded to the down-regulation of anti-apoptosis protein p(Ser112)-BAD, which was the mechanism of increased cell apoptosis and enhanced chemosensitivity to imatinib in CML. In summary, this study revealed the expression and potential role of RanBP3 in CML, suggesting that targeting RanBP3 alone or combined with TKIs could improve the clinical response of CML.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Yuhang Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoyun Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Mou
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Wenli Feng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
40
|
Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021; 97:1383-1403. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.
Collapse
Affiliation(s)
- Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
41
|
Pan L, Cheng C, Duan P, Chen K, Wu Y, Wu Z. XPO1/CRM1 is a promising prognostic indicator for neuroblastoma and represented a therapeutic target by selective inhibitor verdinexor. J Exp Clin Cancer Res 2021; 40:255. [PMID: 34384466 PMCID: PMC8359549 DOI: 10.1186/s13046-021-02044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND High-risk neuroblastoma patients have a 5-year survival rate of less than 50%. It's an urgent need to identify new therapeutic targets and the appropriate drugs. Exportin-1 (XPO1), also known as chromosomal region maintenance 1, plays important roles in the progression of tumorigenesis. However, the prognostic and therapeutic values of XPO1 in neuroblastoma have not been reported. METHODS Correlations between XPO1 expression level and clinical characteristics were analyzed using the Neuroblastoma Research Consortium (NRC) dataset and tissue microarray analysis. Cell proliferation assays, colony formation assays, apoptosis assays, cell cycle analysis were performed to analyze the anti-tumor effects of verdinexor (KPT-335) in vitro. Western blot and mRNA sequencing were performed to explore underlying mechanism. In vivo anti-tumor effects of verdinexor were studied in a neuroblastoma xenograft model. RESULTS Higher XPO1 levels were associated with advanced stage and poor prognosis in neuroblastoma patients. The specific inhibitor of XPO1 verdinexor suppressed the neuroblastoma cell growth both in vitro and in vivo. Specifically, inhibition of XPO1 suppressed the neuroblastoma cell proliferation and induced cell apoptosis by nuclear accumulation of FOXO1 and RB1 in the neuroblastoma due to the inhibition of the PI3K/AKT pathway, and induced G0/G1 phase cell cycle arrest by activation of P53 function. CONCLUSIONS XPO1 is a promising prognostic indicator for neuroblastoma and a novel target for antitumor treatment with selective inhibitor verdinexor.
Collapse
Affiliation(s)
- Lijia Pan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Peiwen Duan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China.
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China.
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, 200092, China.
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
42
|
von Fallois M, Kosyna FK, Mandl M, Landesman Y, Dunst J, Depping R. Selinexor decreases HIF-1α via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity. J Cancer Res Clin Oncol 2021; 147:2025-2033. [PMID: 33856525 PMCID: PMC8164574 DOI: 10.1007/s00432-021-03626-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 10/29/2022]
Abstract
BACKGROUND The nuclear pore complexes (NPCs) are built of about 30 different nucleoporins and act as key regulators of molecular traffic between the cytoplasm and the nucleus for sizeable proteins (> 40 kDa) which must enter the nucleus. Various nuclear transport receptors are involved in import and export processes of proteins through the nuclear pores. The most prominent nuclear export receptor is chromosome region maintenance 1 (CRM1), also known as exportin 1 (XPO1). One of its cargo proteins is the prolyl hydroxylase 2 (PHD2) which is involved in the initiation of the degradation of hypoxia-inducible factors (HIFs) under normoxia. HIFs are proteins that regulate the cellular adaptation under hypoxic conditions. They are involved in many aspects of cell viability and play an important role in the hypoxic microenvironment of cancer. In cancer, CRM1 is often overexpressed thus being a putative target for the development of new cancer therapies. The newly FDA-approved pharmaceutical Selinexor (KPT-330) selectively inhibits nuclear export via CRM1 and is currently tested in additional Phase-III clinical trials. In this study, we investigated the effect of CRM1 inhibition on the subcellular localization of HIF-1α and radiosensitivity. METHODS Human hepatoma cells Hep3B and human osteosarcoma cells U2OS were treated with Selinexor. Intranuclear concentration of HIF-1α protein was measured using immunoblot analysis. Furthermore, cells were irradiated with 2-8 Gy after treatment with Selinexor compared to untreated controls. RESULTS Selinexor significantly reduced the intranuclear level of HIF-1α protein in human hepatoma cells Hep3B and human osteosarcoma cells U2OS. Moreover, we demonstrated by clonogenic survival assays that Selinexor leads to dose-dependent radiosensitization in Hep3B-hepatoma and U2OS-osteosarcoma cells. CONCLUSION Targeting the HIF pathway by Selinexor might be an attractive tool to overcome hypoxia-induced radioresistance.
Collapse
MESH Headings
- Apoptosis
- Bone Neoplasms/drug therapy
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Bone Neoplasms/radiotherapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/radiotherapy
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Hydrazines/pharmacology
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/radiotherapy
- Osteosarcoma/drug therapy
- Osteosarcoma/metabolism
- Osteosarcoma/pathology
- Osteosarcoma/radiotherapy
- Radiation Tolerance/drug effects
- Radiation-Sensitizing Agents/pharmacology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Triazoles/pharmacology
- Tumor Cells, Cultured
- Exportin 1 Protein
Collapse
Affiliation(s)
- Moritz von Fallois
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Friederike Katharina Kosyna
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Markus Mandl
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Yosef Landesman
- Karyopharm Therapeutics, 85 Wells Ave, Newton, MA, 02459, USA
| | - Jürgen Dunst
- Universitätsklinikum Schleswig-Holstein, Campus Kiel-Klinik für Strahlentherapie, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Reinhard Depping
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
43
|
Uddin MH, Li Y, Khan HY, Muqbil I, Aboukameel A, Sexton RE, Reddy S, Landesman Y, Kashyap T, Azmi AS, Heath EI. Nuclear Export Inhibitor KPT-8602 Synergizes with PARP Inhibitors in Escalating Apoptosis in Castration Resistant Cancer Cells. Int J Mol Sci 2021; 22:6676. [PMID: 34206543 PMCID: PMC8268282 DOI: 10.3390/ijms22136676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/25/2022] Open
Abstract
Aberrant nuclear protein transport, often observed in cancer, causes mislocalization-dependent inactivation of critical cellular proteins. Earlier we showed that overexpression of exportin 1 is linked to higher grade and Gleason score in metastatic castration resistant prostate cancer (mCRPC). We also showed that a selective inhibitor of nuclear export (SINE) selinexor and second generation eltanexor (KPT-8602) could suppress mCRPC growth, reduce androgen receptor (AR), and re-sensitize to androgen deprivation therapy. Here we evaluated the combination of KPT-8602 with PARP inhibitors (PARPi) olaparib, veliparib and rucaparib in 22rv1 mCRPC cells. KPT-8602 synergized with PARPi (CI < 1) at pharmacologically relevant concentrations. KPT-8602-PARPi showed superior induction of apoptosis compared to single agent treatment and caused up-regulation of pro-apoptotic genes BAX, TP53 and CASPASE 9. Mechanistically, KPT-8602-PARPi suppressed AR, ARv7, PSA and AR targets FOXA1 and UBE2C. Western blot analysis revealed significant down-regulation of AR, ARv7, UBE2C, SAM68, FOXA1 and upregulation of cleaved PARP and cleaved CASPASE 3. KPT-8602 with or without olaparib was shown to reduce homologous recombination-regulated DNA damage response targets including BRCA1, BRCA2, CHEK1, EXO1, BLM, RAD51, LIG1, XRCC3 and RMI2. Taken together, this study revealed the therapeutic potential of a novel combination of KPT-8602 and PARP inhibitors for the treatment of mCRPC.
Collapse
Affiliation(s)
- Md. Hafiz Uddin
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| | - Yiwei Li
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| | - Husain Yar Khan
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| | - Irfana Muqbil
- Department of Chemistry, University of Detroit Mercy, Detroit, MI 48221, USA;
| | - Amro Aboukameel
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| | - Rachel E. Sexton
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| | - Shriya Reddy
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| | - Yosef Landesman
- Karyopharm Therapeutics Inc., Newton, MA 02459, USA; (Y.L.); (T.K.)
| | - Trinayan Kashyap
- Karyopharm Therapeutics Inc., Newton, MA 02459, USA; (Y.L.); (T.K.)
| | - Asfar S. Azmi
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| | - Elisabeth I. Heath
- Departments of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (M.H.U.); (Y.L.); (H.Y.K.); (A.A.); (R.E.S.); (S.R.)
| |
Collapse
|
44
|
Lei Y, Li Y, Tan Y, Qian Z, Zhou Q, Jia D, Sun Q. Novel Mechanistic Observations and NES-Binding Groove Features Revealed by the CRM1 Inhibitors Plumbagin and Oridonin. JOURNAL OF NATURAL PRODUCTS 2021; 84:1478-1488. [PMID: 33890470 DOI: 10.1021/acs.jnatprod.0c01231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The protein chromosome region maintenance 1 (CRM1) is an important nuclear export factor and drug target in diseases such as cancer and viral infections. Several plant-derived CRM1 inhibitors including plumbagin and oridonin possess potent antitumor activities. However, their modes of CRM1 inhibition remain unclear. Here, a multimutant CRM1 was engineered to enable crystallization of these two small molecules in its NES groove. Plumbagin and oridonin share the same three conjugation sites in CRM1. In solution, these two inhibitors targeted more CRM1 sites and inhibited its activity through promoting its aggregation, in addition to directly targeting the NES groove. While the plumbagin-bound NES groove resembles the NES-bound groove state, the oridonin complex reveals for the first time a more open NES groove. The observed greater NES groove dynamics may improve cargo loading through a "capture-and-tighten" mechanism. This work thus provides new insights on the mechanism of CRM1 inhibition by two natural products and a structural basis for further development of these or other CRM1 inhibitors.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuping Tan
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Zhiyong Qian
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| |
Collapse
|
45
|
Lei Y, An Q, Shen XF, Sui M, Li C, Jia D, Luo Y, Sun Q. Structure-Guided Design of the First Noncovalent Small-Molecule Inhibitor of CRM1. J Med Chem 2021; 64:6596-6607. [PMID: 33974430 DOI: 10.1021/acs.jmedchem.0c01675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear export factor chromosome region maintenance 1 (CRM1) is an attractive anticancer and antiviral drug target that spurred several research efforts to develop its inhibitor. Noncovalent CRM1 inhibitors are desirable, but none is reported to date. Here, we present the crystal structure of yeast CRM1 in complex with S109, a substructure of CBS9106 (under clinical test). Superimposition with the LFS-829 (another covalent CRM1 inhibitor) complex inspired the design of a noncovalent CRM1 inhibitor. Among nine synthesized compounds, noncovalent CRM1 inhibitor 1 (NCI-1) showed a high affinity to human and yeast CRM1 in the absence or presence of GST-bound Ras-related nuclear protein (RanGTP). Unlike covalent inhibitors, the crystal structure showed that NCI-1 is bound in the "open" nuclear export signal (NES) groove of CRM1, simultaneously occupying two hydrophobic pockets. NCI-1 additionally inhibited the nuclear export and proliferation of cells harboring the human CRM1-C528S mutant. Our work opens up the avenue of noncovalent CRM1 inhibitor development toward a more potent, less toxic, and broad-spectrum anticancer/antiviral therapy.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Qi An
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Min Sui
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Chungen Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| |
Collapse
|
46
|
Galinski B, Luxemburg M, Landesman Y, Pawel B, Johnson KJ, Master SR, Freeman KW, Loeb DM, Hébert JM, Weiser DA. XPO1 inhibition with selinexor synergizes with proteasome inhibition in neuroblastoma by targeting nuclear export of IkB. Transl Oncol 2021; 14:101114. [PMID: 33975179 PMCID: PMC8131731 DOI: 10.1016/j.tranon.2021.101114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
XPO1 is overabundant in high-risk neuroblastoma and correlates with poor survival. Neuroblastoma cells are sensitive to XPO1 inhibition with selinexor. Use of selinexor results in nuclear retention of IkB, diminishing NF-kB activity. Selinexor and bortezomib act synergistically through promotion of apoptosis. Synergy is mediated in part, through IkB regulation of NF-kB activity.
Across many cancer types in adults, upregulation of the nuclear-to-cytoplasmic transport protein Exportin-1 (XPO1) correlates with poor outcome and responsiveness to selinexor, an FDA-approved XPO1 inhibitor. Similar data are emerging in childhood cancers, for which selinexor is being evaluated in early phase clinical studies. Using proteomic profiling of primary tumor material from patients with high-risk neuroblastoma, as well as gene expression profiling from independent cohorts, we have demonstrated that XPO1 overexpression correlates with poor patient prognosis. Neuroblastoma cell lines are also sensitive to selinexor in the low nanomolar range. Based on these findings and knowledge that bortezomib, a proteasome inhibitor, blocks degradation of XPO1 cargo proteins, we hypothesized that combination treatment with selinexor and bortezomib would synergistically inhibit neuroblastoma cellular proliferation. We observed that selinexor promoted nuclear retention of IkB and that bortezomib augmented the ability of selinexor to induce cell-cycle arrest and cell death by apoptosis. This synergy was abrogated through siRNA knockdown of IkB. The synergistic effect of combining selinexor and bortezomib in vitro provides rationale for further investigation of this combination treatment for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States.
| | - Marcus Luxemburg
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States
| | | | - Bruce Pawel
- Clinical Pathology, Children's Hospital Los Angeles, United States
| | - Katherine J Johnson
- Pathology and Laboratory Medicine, University of Pennsylvania, United States
| | - Stephen R Master
- Pathology and Laboratory Medicine, University of Pennsylvania, United States
| | - Kevin W Freeman
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, United States
| | - Jean M Hébert
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States; Department of Neuroscience, Albert Einstein College of Medicine, United States
| | - Daniel A Weiser
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue Ullmann 813 Bronx, NY 10461, United States; Department of Pediatrics, Albert Einstein College of Medicine, United States
| |
Collapse
|
47
|
Sukocheva OA, Hu DG, Meech R, Bishayee A. Divergence of Intracellular Trafficking of Sphingosine Kinase 1 and Sphingosine-1-Phosphate Receptor 3 in MCF-7 Breast Cancer Cells and MCF-7-Derived Stem Cell-Enriched Mammospheres. Int J Mol Sci 2021; 22:4314. [PMID: 33919234 PMCID: PMC8122545 DOI: 10.3390/ijms22094314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer MCF-7 cell-line-derived mammospheres were shown to be enriched in cells with a CD44+/CD24- surface profile, consistent with breast cancer stem cells (BCSC). These BCSC were previously reported to express key sphingolipid signaling effectors, including pro-oncogenic sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1P3). In this study, we explored intracellular trafficking and localization of SphK1 and S1P3 in parental MCF-7 cells, and MCF-7 derived BCSC-enriched mammospheres treated with growth- or apoptosis-stimulating agents. Intracellular trafficking and localization were assessed using confocal microscopy and cell fractionation, while CD44+/CD24- marker status was confirmed by flow cytometry. Mammospheres expressed significantly higher levels of S1P3 compared to parental MCF-7 cells (p < 0.01). Growth-promoting agents (S1P and estrogen) induced SphK1 and S1P3 translocation from cytoplasm to nuclei, which may facilitate the involvement of SphK1 and S1P3 in gene regulation. In contrast, pro-apoptotic cytokine tumor necrosis factor α (TNFα)-treated MCF-7 cells demonstrated increased apoptosis and no nuclear localization of SphK1 and S1P3, suggesting that TNFα can inhibit nuclear translocation of SphK1 and S1P3. TNFα inhibited mammosphere formation and induced S1P3 internalization and degradation. No nuclear translocation of S1P3 was detected in TNFα-stimulated mammospheres. Notably, SphK1 and S1P3 expression and localization were highly heterogenous in mammospheres, suggesting the potential for a large variety of responses. The findings provide further insights into the understanding of sphingolipid signaling and intracellular trafficking in BCs. Our data indicates that the inhibition of SphK1 and S1P3 nuclear translocation represents a novel method to prevent BCSCs proliferation.
Collapse
Affiliation(s)
- Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia; (D.G.H.); (R.M.)
| | - Robyn Meech
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia; (D.G.H.); (R.M.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
48
|
Sui M, Xiong M, Li Y, Zhou Q, Shen X, Jia D, Gou M, Sun Q. Cancer Therapy with Nanoparticle-Medicated Intracellular Expression of Peptide CRM1-Inhibitor. Int J Nanomedicine 2021; 16:2833-2847. [PMID: 33883894 PMCID: PMC8054660 DOI: 10.2147/ijn.s266398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Peptides can be rationally designed as non-covalent inhibitors for molecularly targeted therapy. However, it remains challenging to efficiently deliver the peptides into the targeted cells, which often severely affects their therapeutic efficiency. METHODS Herein, we created a novel non-covalent peptide inhibitor against nuclear export factor CRM1 by a structure-guided drug design method and targetedly delivered the peptide into cancer cells by a nanoparticle-mediated gene expression system for use as a cancer therapy. RESULTS The nuclear export signal (NES)-optimized CRM1 peptide inhibitor colocalized with CRM1 to the nuclear envelope and inhibited nuclear export in cancer cell lines in vitro. The crystal structures of the inhibitors complexed with CRM1 were solved. In contrast to the covalent inhibitors, the peptides were similarly effective against cells harboring the CRM1 C528S mutation. Moreover, a plasmid encoding the peptides was delivered by a iRGD-modified nanoparticle to efficiently target and transfect the cancer cells in vivo after intravenous administration. The peptides could be selectively expressed in the tumor, resulting in the efficient inhibition of subcutaneous melanoma xenografts without obvious systemic toxicity. DISCUSSION This work provides an effective strategy to design peptide-based molecularly targeted therapeutics, which could lead to the development of future targeted therapy.
Collapse
Affiliation(s)
- Min Sui
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Yuling Li
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Qiao Zhou
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Qingxiang Sun
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
49
|
Phosphorylation of Phylogenetically Conserved Amino Acid Residues Confines HBx within Different Cell Compartments of Human Hepatocarcinoma Cells. Molecules 2021; 26:molecules26051254. [PMID: 33652602 PMCID: PMC7956559 DOI: 10.3390/molecules26051254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a circular, and partially double-stranded DNA virus. Upon infection, the viral genome is translocated into the cell nucleus, generating the covalently closed circular DNA (cccDNA) intermediate, and forming a mini chromosome. HBV HBx is a small protein displaying multiple roles in HBV-infected cells, and in different subcellular locations. In the nucleus, the HBx protein is required to initiate and maintain viral transcription from the viral mini chromosome. In contrast, HBx also functions in the cytoplasm, where it is able to alter multiple cellular functions such as mitochondria metabolism, apoptosis and signal transduction pathways. It has been reported that in cultured cells, at low expression levels, the HBx protein is localized in the nucleus, whereas at high expression levels, it accumulates in the cytoplasm. This dynamic subcellular distribution of HBx might be essential to exert its multiple roles during viral infection. However, the mechanism that regulates different subcellular localizations of the HBx protein is unknown. We have previously taken a bioinformatics approach to investigate whether HBx might be regulated via post-translational modification, and we have proposed that the multiple nucleocytoplasmic functions of HBx might be regulated by an evolutionarily conserved mechanism via phosphorylation. In the current study, phylogenetically conserved amino acids of HBx with a high potential of phosphorylation were targeted for site-directed mutagenesis. Two conserved serine (Ser25 and Ser41), and one conserved threonine (Thr81) amino acids were replaced by either alanine or aspartic acid residues to simulate an unphosphorylated or phosphorylated state, respectively. Human hepatoma cells were transfected with increasing amounts of the HBx DNA constructs, and the cells were analyzed by fluorescence microscopy. Together, our results show that the nucleocytoplasmic distribution of the HBx protein could be regulated by phosphorylation since some of the modified proteins were mainly confined to distinct subcellular compartments. Remarkably, both HBx Ser41A, and HBx Thr81D proteins were predominantly localized within the nuclear compartment throughout the different expression levels of HBx mutants.
Collapse
|
50
|
Nuclear Localization of Heme Oxygenase-1 in Pathophysiological Conditions: Does It Explain the Dual Role in Cancer? Antioxidants (Basel) 2021; 10:antiox10010087. [PMID: 33440611 PMCID: PMC7826503 DOI: 10.3390/antiox10010087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022] Open
Abstract
Heme Oxygenase-1 (HO-1) is a type II detoxifying enzyme that catalyzes the rate-limiting step in heme degradation leading to the formation of equimolar quantities of carbon monoxide (CO), free iron and biliverdin. HO-1 was originally shown to localize at the smooth endoplasmic reticulum membrane (sER), although increasing evidence demonstrates that the protein translocates to other subcellular compartments including the nucleus. The nuclear translocation occurs after proteolytic cleavage by proteases including signal peptide peptidase and some cysteine proteases. In addition, nuclear translocation has been demonstrated to be involved in several cellular processes leading to cancer progression, including induction of resistance to therapy and enhanced metastatic activity. In this review, we focus on nuclear HO-1 implication in pathophysiological conditions with special emphasis on malignant processes. We provide a brief background on the current understanding of the mechanisms underlying how HO-1 leaves the sER membrane and migrates to the nucleus, the circumstances under which it does so and, maybe the most important and unknown aspect, what the function of HO-1 in the nucleus is.
Collapse
|