1
|
Zhang B, Jin Z, Luo P, Yin H, Chen X, Yang B, Qin X, Zhu L, Xu B, Ma G, Zhang D. Ischemia-reperfusion injury after spinal cord decompressive surgery-An in vivo rat model. Animal Model Exp Med 2025; 8:405-420. [PMID: 39225110 PMCID: PMC11904113 DOI: 10.1002/ame2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Although decompression surgery is the optimal treatment for patients with severe degenerative cervical myelopathy (DCM), some individuals experience no improvement or even a decline in neurological function after surgery, with spinal cord ischemia-reperfusion injury (SCII) identified as the primary cause. Spinal cord compression results in local ischemia and blood perfusion following decompression is fundamental to SCII. However, owing to inadequate perioperative blood flow monitoring, direct evidence regarding the occurrence of SCII after decompression is lacking. The objective of this study was to establish a suitable animal model for investigating the underlying mechanism of spinal cord ischemia-reperfusion injury following decompression surgery for degenerative cervical myelopathy (DCM) and to elucidate alterations in neurological function and local blood flow within the spinal cord before and after decompression. METHODS Twenty-four Sprague-Dawley rats were allocated to three groups: the DCM group (cervical compression group, with implanted compression material in the spinal canal, n = 8), the DCM-D group (cervical decompression group, with removal of compression material from the spinal canal 4 weeks after implantation, n = 8), and the SHAM group (sham operation, n = 8). Von Frey test, forepaw grip strength, and gait were assessed within 4 weeks post-implantation. Spinal cord compression was evaluated using magnetic resonance imaging. Local blood flow in the spinal cord was monitored during the perioperative decompression. The rats were sacrificed 1 week after decompression to observe morphological changes in the compressed or decompressed segments of the spinal cord. Additionally, NeuN expression and the oxidative damage marker 8-oxoG DNA were analyzed. RESULTS Following spinal cord compression, abnormal mechanical pain worsened, and a decrease in forepaw grip strength was observed within 1-4 weeks. Upon decompression, the abnormal mechanical pain subsided, and forepaw grip strength was restored; however, neither reached the level of the sham operation group. Decompression leads to an increase in the local blood flow, indicating improved perfusion of the spinal cord. The number of NeuN-positive cells in the spinal cord of rats in the DCM-D group exceeded that in the DCM group but remained lower than that in the SHAM group. Notably, a higher level of 8-oxoG DNA expression was observed, suggesting oxidative stress following spinal cord decompression. CONCLUSION This model is deemed suitable for analyzing the underlying mechanism of SCII following decompressive cervical laminectomy, as we posit that the obtained results are comparable to the clinical progression of degenerative cervical myelopathy (DCM) post-decompression and exhibit analogous neurological alterations. Notably, this model revealed ischemic reperfusion in the spinal cord after decompression, concomitant with oxidative damage, which plausibly underlies the neurological deterioration observed after decompression.
Collapse
Affiliation(s)
- Boyu Zhang
- Sports medicine department 3Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Zhefeng Jin
- Sports medicine department 3Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Pengren Luo
- Sports medicine department 3Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - He Yin
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Xin Chen
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Bowen Yang
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Xiaokuan Qin
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - LiGuo Zhu
- Sports medicine department 3Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Bo Xu
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Guoliang Ma
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| | - Dian Zhang
- Spine Department 2Wangjing Hospital Affiliated to China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
2
|
Papanikolaou C, Economopoulou P, Gavrielatou N, Mavroeidi D, Psyrri A, Souliotis VL. UVC-Induced Oxidative Stress and DNA Damage Repair Status in Head and Neck Squamous Cell Carcinoma Patients with Different Responses to Nivolumab Therapy. BIOLOGY 2025; 14:195. [PMID: 40001963 PMCID: PMC11852043 DOI: 10.3390/biology14020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Accumulation of evidence highlighted the crosstalk between DNA damage repair and the immune system. Herein, we tested the hypothesis that in head and neck squamous cell carcinoma (HNSCC), the DNA repair capacity of patients' PBMCs correlates with therapeutic response to immune checkpoint blockade. Following in vitro UVC irradiation, oxidative stress, apurinic/apyrimidinic (AP) lesions, endogenous/baseline DNA damage, and DNA damage repair efficiency were evaluated in three HNSCC (UM-SCC-11A, Cal-33, BB49) and two normal cell lines (RPMI-1788, 1BR-3h-T), as well as in peripheral blood mononuclear cells (PBMCs) from 15 healthy controls (HC) and 49 recurrent/metastatic HNSCC patients at baseline (8 responders, 41 non-responders to subsequent nivolumab therapy). HNSCC cell lines showed lower DNA repair efficiency, increased oxidative stress, and higher AP sites than normal ones (all p < 0.001). Moreover, patients' PBMCs exhibited increased endogenous/baseline DNA damage, decreased DNA repair capacity, augmented oxidative stress, and higher AP sites than PBMCs from HC (all p < 0.001). Importantly, PBMCs from responders to nivolumab therapy showed lower endogenous/baseline DNA damage, higher DNA repair capacities, decreased oxidative stress, and reduced AP sites than non-responders (all p < 0.05). Together, we demonstrated that oxidative stress status and DNA repair efficiency in PBMCs from HNSCC patients are correlated with the response to immune checkpoint blockade.
Collapse
Affiliation(s)
- Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.P.); (D.M.)
| | - Panagiota Economopoulou
- Second Department of Internal Medicine, Medical Oncology Section, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (N.G.); (A.P.)
| | - Niki Gavrielatou
- Second Department of Internal Medicine, Medical Oncology Section, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (N.G.); (A.P.)
| | - Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.P.); (D.M.)
| | - Amanda Psyrri
- Second Department of Internal Medicine, Medical Oncology Section, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (P.E.); (N.G.); (A.P.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (C.P.); (D.M.)
| |
Collapse
|
3
|
Borrmann K, Troschel FM, Brücksken KA, Espinoza-Sánchez NA, Rezaei M, Eder KM, Kemper B, Eich HT, Greve B. Antioxidants Hydroxytyrosol and Thioredoxin-Mimetic Peptide CB3 Protect Irradiated Normal Tissue Cells. Antioxidants (Basel) 2024; 13:961. [PMID: 39199207 PMCID: PMC11351936 DOI: 10.3390/antiox13080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Reducing side effects in non-cancerous tissue is a key aim of modern radiotherapy. Here, we assessed whether the use of the antioxidants hydroxytyrosol (HT) and thioredoxin-mimetic peptide CB3 (TMP) attenuated radiation-induced normal tissue toxicity in vitro. We used primary human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (HaCaT) as normal tissue models. Cells were treated with HT and TMP 24 h or immediately prior to irradiation. Reactive oxygen species (ROS) were assessed via luminescent- and fluorescence-based assays, migration was investigated using digital holographic microscopy, and clonogenic survival was quantified by colony formation assays. Angiogenesis and wound healing were evaluated via time-dependent microscopy. Secreted cytokines were validated in quantitative polymerase chain reaction (qPCR) studies. Treatment with HT or TMP was well tolerated by cells. The application of either antioxidant before irradiation resulted in reduced ROS formation and a distinct decrease in cytokines compared to similarly irradiated, but otherwise untreated, controls. Antioxidant treatment also increased post-radiogenic migration and angiogenesis while accelerating wound healing. HT or TMP treatment immediately before radiotherapy increased clonogenic survival after radiotherapy, while treatment 24 h before radiotherapy enhanced baseline proliferation. Both antioxidants may decrease radiation-induced normal tissue toxicity and deserve further pre-clinical investigation.
Collapse
Affiliation(s)
- Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | | | | | - Nancy Adriana Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Tatanis V, Veroutis D, Pantelis P, Theocharous G, Sarlanis H, Georgiou A, Mulita F, Peteinaris A, Natsos A, Moulavasilis N, Kavantzas N, Kotsinas A, Adamakis I. Cellular Senescence in Germ Cell Neoplasia In Situ (GCNIS) and Other Histological Types of Testicular Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1108. [PMID: 39064537 PMCID: PMC11278860 DOI: 10.3390/medicina60071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: The presence and contribution of senescent cells in premalignant lesions is well documented, but not in germ cell neoplasia in situ. The purpose of this study is to identify the presence of senescent cells in pre-malignant testicular conditions and in different histological types of testicular cancer. Materials and Methods: Thirty patients who underwent orchiectomy due to testicular tumors were included. Formalin-fixed paraffin-embedded (FFPE) testicular tissue for each patient was available. Sections from these specimens were examined by immunohistochemical analysis with the following markers: GL13 for cellular senescence, p21WAF1/Cip1 for cell cycle arrest, and Ki67 for cell proliferation. Results: Thirteen (43.3%) suffered from seminoma with a mean total proportion of GCNIS senescence of 20.81 ± 6.81%. In the group of embryonal testicular tumors, nine (30%) patients were included, with an average rate of 6.64 ± 5.42% of senescent cells in GCNIS. One (3.3%) patient suffered from chondrosarcoma in which 7.9% of GL13+ cells were detected in GCNIS. Four (13.4%) patients suffered from teratoma and three (10%) from yolk sac tumors, while GCNIS senescence was detected in a range of 4.43 ± 1.78% and 3.76 ± 1.37%, respectively. Conclusions: Cellular senescence was detected in both germ cell neoplasia in situ and testicular cancer, but was more prevalent within the premalignant lesions.
Collapse
Affiliation(s)
- Vasileios Tatanis
- Department of Urology, University of Patras, 26504 Patras, Greece; (V.T.); (A.P.); (A.N.)
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (D.V.); (P.P.); (G.T.); (A.K.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (D.V.); (P.P.); (G.T.); (A.K.)
| | - George Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (D.V.); (P.P.); (G.T.); (A.K.)
| | - Helen Sarlanis
- Department of Pathology, Medical School, National and Kapodistrian University, 10680 Athens, Greece; (H.S.); (A.G.); (N.K.)
| | - Alexandros Georgiou
- Department of Pathology, Medical School, National and Kapodistrian University, 10680 Athens, Greece; (H.S.); (A.G.); (N.K.)
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, 26504 Patras, Greece
| | - Angelis Peteinaris
- Department of Urology, University of Patras, 26504 Patras, Greece; (V.T.); (A.P.); (A.N.)
| | - Anastasios Natsos
- Department of Urology, University of Patras, 26504 Patras, Greece; (V.T.); (A.P.); (A.N.)
| | - Napoleon Moulavasilis
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10680 Athens, Greece; (N.M.); (I.A.)
| | - Nikolaos Kavantzas
- Department of Pathology, Medical School, National and Kapodistrian University, 10680 Athens, Greece; (H.S.); (A.G.); (N.K.)
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (D.V.); (P.P.); (G.T.); (A.K.)
| | - Ioannis Adamakis
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10680 Athens, Greece; (N.M.); (I.A.)
| |
Collapse
|
5
|
Zhou L, Liu Y, Wu Y, Yang X, Spring Kong FM, Lu Y, Xue J. Low-dose radiation therapy mobilizes antitumor immunity: New findings and future perspectives. Int J Cancer 2024; 154:1143-1157. [PMID: 38059788 DOI: 10.1002/ijc.34801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Radiotherapy has unique immunostimulatory and immunosuppressive effects. Although high-dose radiotherapy has been found to have systemic antitumor effects, clinically significant abscopal effects were uncommon on the basis of irradiating single lesion. Low-dose radiation therapy (LDRT) emerges as a novel approach to enhance the antitumor immune response due to its role as a leverage to reshape the tumor immune microenvironment (TIME). In this article, from bench to bedside, we reviewed the possible immunomodulatory role of LDRT on TIME and systemic tumor immune environment, and outlined preclinical evidence and clinical application. We also discussed the current challenges when LDRT is used as a combination therapy, including the optimal dose, fraction, frequency, and combination of drugs. The advantage of low toxicity makes LDRT potential to be applied in multiple lesions to amplify antitumor immune response in polymetastatic disease, and its intersection with other disciplines might also make it a direction for radiotherapy-combined modalities.
Collapse
Affiliation(s)
- Laiyan Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanjun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Işıksaçan N, Adaş G, Kasapoğlu P, Çukurova Z, Yılmaz R, Kurt Yaşar K, Irmak Koyuncu D, Tuncel FC, Şahingöz Erdal G, Gedikbaşı A, Pehlivan S, Karaoz E. The effect of mesenchymal stem cells administration on DNA repair gene expressions in critically ill COVID-19 patients: prospective controlled study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1431-1446. [PMID: 38459810 DOI: 10.1080/15257770.2024.2327478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
When the studies are evaluated, immunomodulatory effect of MSCs, administration in critically ill patients, obstacle situations in use and side effects, pulmonary fibrosis prevention, which stem cells and their products, regeneration effect, administration route, and dosage are listed under the main heading like. The effect of MSC administration on DNA repair genes in COVID-19 infection is unknown. Our aim is to determine the effect of mesenchymal stem cells (MSCs) therapy applied in critically ill patients with coronavirus infection on DNA repair pathways and genes associated with those pathways. Patients (n = 30) divided into two equal groups. Group-1: Patients in a critically ill condition, Group-2: Patients in critically ill condition and transplanted MSCs. The mechanism was investigated in eleven genes of five different pathways; Base excision repair: PARP1, Nucleotide excision repair (NER): RAD23B and ERCC1, Homologous recombinational repair (HR): ATM, RAD51, RAD52 and WRN, Mismatch repair (MMR): MLH1, MSH2, and MSH6, Direct reversal repair pathway: MGMT. It was found that MSCs application had a significant effect on 6 genes located in 3 different DNA damage response pathways. These are NER pathway genes; RAD23 and ERCC1, HR pathway genes; ATM and RAD51, MMR pathway genes; MSH2 and MSH6 (p < 0.05). Two main points were shown. First, as a result of cellular damage in critical patients with COVID-19, DNA damage occurs and then DNA repair pathways and genes are activated in reaction to this situation. Second, administration of MSC to patients with COVID-19 infection plays a positive role by increasing the expression of DNA repair genes located in DNA damage pathways.
Collapse
Affiliation(s)
- Nilgün Işıksaçan
- Department of Biochemistry, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gökhan Adaş
- Stem Cell And Gene Therapies Application And Research Center, Department Of Surgery, Bakırköy Dr. Sadi Konuk Training And Research Hospital, University Of Health Sciences, Istanbul, Turkey
| | - Pınar Kasapoğlu
- Department of Biochemistry, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Zafer Çukurova
- Department of Anesthesia and Intensive Care, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Rabia Yılmaz
- Department of Anesthesia and Intensive Care, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Kadriye Kurt Yaşar
- Department of Infectious Disease, Istanbul Bakırköy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Duygu Irmak Koyuncu
- Center of Stem Cells and Tissue Engineering Research & Practice, Istinye University, Istanbul, Turkey
| | - Fatima Ceren Tuncel
- Department of Medical Biology Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gülçin Şahingöz Erdal
- Department of Oncology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Asuman Gedikbaşı
- Department of Pediatric Basic Science, Division of Medical Genetics, Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Sacide Pehlivan
- Department of Medical Biology Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erdal Karaoz
- Department of Histology & Embrology, Faculty of Medicine, Istinye University, LIV Hospital, Center of Regenerative Medicine and Stem Cell Manufacturing, Istanbul, Turkey
| |
Collapse
|
7
|
Maliar NL, Talbot EJ, Edwards AR, Khoronenkova SV. Microglial inflammation in genome instability: A neurodegenerative perspective. DNA Repair (Amst) 2024; 135:103634. [PMID: 38290197 DOI: 10.1016/j.dnarep.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.
Collapse
Affiliation(s)
- Nina L Maliar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
8
|
Pappa M, Ntouros PA, Papanikolaou C, Sfikakis PP, Souliotis VL, Tektonidou MG. Augmented oxidative stress, accumulation of DNA damage and impaired DNA repair mechanisms in thrombotic primary antiphospholipid syndrome. Clin Immunol 2023; 254:109693. [PMID: 37454866 DOI: 10.1016/j.clim.2023.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Antiphospholipid syndrome (APS) is a rare autoimmune disorder with complex pathogenesis. Studies have shown that oxidative stress may contribute to APS pathophysiology. In peripheral blood mononuclear cells (PBMCs) from thrombotic Primary APS (thrPAPS) patients and age/sex-matched healthy controls (HC), as well as a control group of asymptomatic antiphospholipid antibody (aPL) positive individuals without APS (aPL+/non-APS), we examined oxidative stress, abasic (apurinic/apyrimidinic) sites, and DNA damage response (DDR)-associated parameters, including endogenous DNA damage (single- and double-strand breaks) and DNA repair mechanisms, namely nucleotide excision repair (NER) and double-strand breaks repair (DSB/R). We found that thrPAPS patients exhibited significantly higher levels of endogenous DNA damage, increased oxidative stress and abasic sites, as well as lower NER and DSB/R capacities versus HC (all P < 0.001) and versus aPL+/non-APS subjects (all P < 0.05). Our findings demonstrate that oxidative stress and decreased DNA repair mechanisms contribute to the accumulation of endogenous DNA damage in PBMCs from thrPAPS patients and, if further validated, may be exploited as therapeutic targets and potential biomarkers.
Collapse
Affiliation(s)
- Maria Pappa
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine, Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Zhang W, Zhong R, Qu X, Xiang Y, Ji M. Effect of 8-Hydroxyguanine DNA Glycosylase 1 on the Function of Immune Cells. Antioxidants (Basel) 2023; 12:1300. [PMID: 37372030 DOI: 10.3390/antiox12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Excess reactive oxygen species (ROS) can cause an imbalance between oxidation and anti-oxidation, leading to the occurrence of oxidative stress in the body. The most common product of ROS-induced base damage is 8-hydroxyguanine (8-oxoG). Failure to promptly remove 8-oxoG often causes mutations during DNA replication. 8-oxoG is cleared from cells by the 8-oxoG DNA glycosylase 1 (OGG1)-mediated oxidative damage base excision repair pathway so as to prevent cells from suffering dysfunction due to oxidative stress. Physiological immune homeostasis and, in particular, immune cell function are vulnerable to oxidative stress. Evidence suggests that inflammation, aging, cancer, and other diseases are related to an imbalance in immune homeostasis caused by oxidative stress. However, the role of the OGG1-mediated oxidative damage repair pathway in the activation and maintenance of immune cell function is unknown. This review summarizes the current understanding of the effect of OGG1 on immune cell function.
Collapse
Affiliation(s)
- Weiran Zhang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ranwei Zhong
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Ming Ji
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410078, China
| |
Collapse
|
10
|
Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel) 2023; 12:1250. [PMID: 37371980 DOI: 10.3390/antiox12061250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Collapse
Affiliation(s)
- Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
11
|
Vlachogiannis NI, Ntouros PA, Pappa M, Verrou KM, Arida A, Souliotis VL, Sfikakis PP. Deregulated DNA damage response network in Behcet's disease. Clin Immunol 2023; 246:109189. [PMID: 36400336 DOI: 10.1016/j.clim.2022.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Behcet's disease (BD) is a chronic, relapsing systemic vasculitis of unknown etiology. Since the DNA repair enzyme NEIL1 has been identified as one of the two genetic risk factors for BD by whole exome study, we examined the potential involvement of the DNA damage response (DDR) network in BD. Peripheral blood mononuclear cells from 26 patients and 26 age-/sex-matched healthy controls were studied. Endogenous DNA damage levels were increased in active BD patients compared to controls or patients in remission. In parallel, BD patients had defective nucleotide excision repair capacity. RNA-sequencing revealed reduced expression of NEIL1 that negatively correlated with DNA damage accumulation. On the other hand, expression of genes involved in senescence and senescence-associated secretory phenotype positively correlated with individual endogenous DNA damage levels. We conclude that deregulated DDR contributes to the proinflammatory environment in BD.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Panagiotis A Ntouros
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kleio-Maria Verrou
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aikaterini Arida
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L Souliotis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
12
|
Drug Repurposing at the Interface of Melanoma Immunotherapy and Autoimmune Disease. Pharmaceutics 2022; 15:pharmaceutics15010083. [PMID: 36678712 PMCID: PMC9865219 DOI: 10.3390/pharmaceutics15010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells have a remarkable ability to evade recognition and destruction by the immune system. At the same time, cancer has been associated with chronic inflammation, while certain autoimmune diseases predispose to the development of neoplasia. Although cancer immunotherapy has revolutionized antitumor treatment, immune-related toxicities and adverse events detract from the clinical utility of even the most advanced drugs, especially in patients with both, metastatic cancer and pre-existing autoimmune diseases. Here, the combination of multi-omics, data-driven computational approaches with the application of network concepts enables in-depth analyses of the dynamic links between cancer, autoimmune diseases, and drugs. In this review, we focus on molecular and epigenetic metastasis-related processes within cancer cells and the immune microenvironment. With melanoma as a model, we uncover vulnerabilities for drug development to control cancer progression and immune responses. Thereby, drug repurposing allows taking advantage of existing safety profiles and established pharmacokinetic properties of approved agents. These procedures promise faster access and optimal management for cancer treatment. Together, these approaches provide new disease-based and data-driven opportunities for the prediction and application of targeted and clinically used drugs at the interface of immune-mediated diseases and cancer towards next-generation immunotherapies.
Collapse
|
13
|
Song JX, Villagomes D, Zhao H, Zhu M. cGAS in nucleus: The link between immune response and DNA damage repair. Front Immunol 2022; 13:1076784. [PMID: 36591232 PMCID: PMC9797516 DOI: 10.3389/fimmu.2022.1076784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
As the first barrier of host defense, innate immunity sets up the parclose to keep out external microbial or virus attacks. Depending on the type of pathogens, several cytoplasm pattern recognition receptors exist to sense the attacks from either foreign or host origins, triggering the immune response to battle with the infections. Among them, cGAS-STING is the major pathway that mainly responds to microbial DNA, DNA virus infections, or self-DNA, which mainly comes from genome instability by-product or released DNA from the mitochondria. cGAS was initially found functional in the cytoplasm, although intriguing evidence indicates that cGAS exists in the nucleus where it is involved in the DNA damage repair process. Because the close connection between DNA damage response and immune response and cGAS recognizes DNA in length-dependent but DNA sequence-independent manners, it is urgent to clear the function balance of cGAS in the nucleus versus cytoplasm and how it is shielded from recognizing the host origin DNA. Here, we outline the current conception of immune response and the regulation mechanism of cGAS in the nucleus. Furthermore, we will shed light on the potential mechanisms that are restricted to be taken away from self-DNA recognition, especially how post-translational modification regulates cGAS functions.
Collapse
Affiliation(s)
- Jia-Xian Song
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deana Villagomes
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA, United States
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA, United States
| | - Min Zhu
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China,*Correspondence: Min Zhu,
| |
Collapse
|
14
|
Liao C, Talluri S, Zhao J, Mu S, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. RAD51 Is Implicated in DNA Damage, Chemoresistance and Immune Dysregulation in Solid Tumors. Cancers (Basel) 2022; 14:cancers14225697. [PMID: 36428789 PMCID: PMC9688595 DOI: 10.3390/cancers14225697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In normal cells, homologous recombination (HR) is tightly regulated and plays an important role in the maintenance of genomic integrity and stability through precise repair of DNA damage. RAD51 is a recombinase that mediates homologous base pairing and strand exchange during DNA repair by HR. Our previous data in multiple myeloma and esophageal adenocarcinoma (EAC) show that dysregulated HR mediates genomic instability. Purpose of this study was to investigate role of HR in genomic instability, chemoresistance and immune dysregulation in solid tumors including colon and breast cancers. METHODS The GEO dataset were used to investigate correlation of RAD51 expression with patient survival and expression of various immune markers in EAC, breast and colorectal cancers. RAD51 was inhibited in cancer cell lines using shRNAs and a small molecule inhibitor. HR activity was evaluated using a plasmid-based assay, DNA breaks assessed by evaluating expression of γ-H2AX (a marker of DNA breaks) and p-RPA32 (a marker of DNA end resection) using Western blotting. Genomic instability was monitored by investigating micronuclei (a marker of genomic instability). Impact of RAD51 inhibitor and/or a DNA-damaging agent was assessed on viability and apoptosis in EAC, breast and colon cancer cell lines in vitro and in a subcutaneous tumor model of EAC. Impact of RAD51 inhibitor on expression profile was monitored by RNA sequencing. RESULTS Elevated RAD51 expression correlated with poor survival of EAC, breast and colon cancer patients. RAD51 knockdown in cancer cell lines inhibited DNA end resection and strand exchange activity (key steps in the initiation of HR) as well as spontaneous DNA breaks, whereas its overexpression increased DNA breaks and genomic instability. Treatment of EAC, colon and breast cancer cell lines with a small molecule inhibitor of RAD51 inhibited DNA breaking agent-induced DNA breaks and genomic instability. RAD51 inhibitor potentiated cytotoxicity of DNA breaking agent in all cancer cell types tested in vitro as well as in a subcutaneous model of EAC. Evaluation by RNA sequencing demonstrated that DNA repair and cell cycle related pathways were induced by DNA breaking agent whereas their induction either prevented or reversed by RAD51 inhibitor. In addition, immune-related pathways such as PD-1 and Interferon Signaling were also induced by DNA breaking agent whereas their induction prevented by RAD51 inhibitor. Consistent with these observations, elevated RAD51 expression also correlated with that of genes involved in inflammation and other immune surveillance. CONCLUSIONS Elevated expression of RAD51 and associated HR activity is involved in spontaneous and DNA damaging agent-induced DNA breaks and genomic instability thus contributing to chemoresistance, immune dysregulation and poor prognosis in cancer. Therefore, inhibitors of RAD51 have great potential as therapeutic agents for EAC, colon, breast and probably other solid tumors.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Srikanth Talluri
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jiangning Zhao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Shidai Mu
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | - Nikhil C. Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Masood A. Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
15
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
16
|
Mourkioti I, Angelopoulou A, Belogiannis K, Lagopati N, Potamianos S, Kyrodimos E, Gorgoulis V, Papaspyropoulos A. Interplay of Developmental Hippo-Notch Signaling Pathways with the DNA Damage Response in Prostate Cancer. Cells 2022; 11:cells11152449. [PMID: 35954292 PMCID: PMC9367915 DOI: 10.3390/cells11152449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer belongs in the class of hormone-dependent cancers, representing a major cause of cancer incidence in men worldwide. Since upon disease onset almost all prostate cancers are androgen-dependent and require active androgen receptor (AR) signaling for their survival, the primary treatment approach has for decades relied on inhibition of the AR pathway via androgen deprivation therapy (ADT). However, following this line of treatment, cancer cell pools often become resistant to therapy, contributing to disease progression towards the significantly more aggressive castration-resistant prostate cancer (CRPC) form, characterized by poor prognosis. It is, therefore, of critical importance to elucidate the molecular mechanisms and signaling pathways underlying the progression of early-stage prostate cancer towards CRPC. In this review, we aim to shed light on the role of major signaling pathways including the DNA damage response (DDR) and the developmental Hippo and Notch pathways in prostate tumorigenesis. We recapitulate key evidence demonstrating the crosstalk of those pathways as well as with pivotal prostate cancer-related 'hubs' such as AR signaling, and evaluate the clinical impact of those interactions. Moreover, we attempt to identify molecules of the complex DDR-Hippo-Notch interplay comprising potentially novel therapeutic targets in the battle against prostate tumorigenesis.
Collapse
Affiliation(s)
- Ioanna Mourkioti
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Konstantinos Belogiannis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Spyridon Potamianos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, University of Athens, 11527 Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.G.); (A.P.); Tel.: +30-210-7462352 (V.G.); +30-210-7462174 (A.P.)
| |
Collapse
|
17
|
Karsten S. Targeting the DNA repair enzymes MTH1 and OGG1 as a novel approach to treat inflammatory diseases. Basic Clin Pharmacol Toxicol 2022; 131:95-103. [PMID: 35708697 PMCID: PMC9545756 DOI: 10.1111/bcpt.13765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Autoimmune diseases and acute inflammation like sepsis cause significant morbidity and disability globally, and new targeted therapies are urgently needed. DNA repair and reactive oxygen species (ROS) pathways have long been investigated as targets for cancer treatment, but their role in immunological research has been limited. In this MiniReview, we discuss the DNA repair enzymes MTH1 and OGG1 as targets to treat both T cell-driven diseases and acute inflammation. The MiniReview is based on a PhD thesis where both enzymes were investigated with cell and animal models. For MTH1, we found that its inhibition selectively kills activated T cells without being toxic to resting cells or other tissues. MTH1 inhibition also had an alleviating role in disease models of psoriasis and multiple sclerosis. We further identified a novel MTH1low ROSlow phenotype among activated T cells. Regarding OGG1, we demonstrated a mechanism of action of the OGG1 inhibitor TH5487, which prevents the assembly of pro-inflammatory transcription factors and mitigates acute airway infection in mouse models of pneumonia. Hence, we propose both enzymes to be promising novel targets to treat inflammation and suggest that redox and DNA repair pathways could be useful targets for future immunomodulating therapies.
Collapse
Affiliation(s)
- Stella Karsten
- Department of Clinical Immunology and Transfusion MedicineKarolinska University HospitalStockholmSweden
- Department of Clinical Science, Intervention and Technology, CLINTECKarolinska InstituteStockholmSweden
- Department of Oncology Pathology, SciLifeLabKarolinska InstituteStockholmSweden
| |
Collapse
|
18
|
Mechanism and Protection of Radiotherapy Induced Sensorineural Hearing Loss for Head and Neck Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2021:3548706. [PMID: 34970625 PMCID: PMC8714384 DOI: 10.1155/2021/3548706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022]
Abstract
Purpose Radiotherapy-induced sensorineural hearing loss (RISNHL) is a common adverse effect in patients with head and neck cancer. Given that there are few studies on the pathogenesis of RISNHL at present, we summarized the possible pathogenesis of RISNHL and possible protective measures found at present by referring to relevant literatures. Methods We performed a comprehensive literature search in the PubMed database, using keywords “sensorineural hearing loss,” “radiotherapy,” and “cancer,” among others. The literature was examined for the possible mechanism and preventive measures of sensorineural hearing loss induced by radiotherapy. Results We found that the incidence of RISNHL was closely related to the damage directly caused by ionizing radiation and the radiation-induced bystander effect. It also depends on the dose of radiation and the timing of chemotherapy. Studies confirmed that RISNHL is mainly involved in post-RT inflammatory response and changes in reactive oxygen species, mitogen-activated protein kinase, and p53 signaling pathways, leading to specific manners of cell death. We expect to reduce the incidence of hearing loss through advanced radiotherapy techniques, dose limitation of organs at risk, application of cell signaling inhibitors, use of antioxidants, induction of cochlear hair cell regeneration, and cochlear implantation. Conclusion RISNHL is associated with radiation damage to DNA, oxidative stress, and inflammation of cochlear cells, stria vascularis endothelial cells, vascular endothelial cells, spiral ganglion neurons, and other supporting cells. At present, the occurrence mechanism of RISNHL has not been clearly illustrated, and further studies are needed to better understand the underlying mechanism, which is crucial to promote the formulation of better strategies and prevent the occurrence of RISNHL.
Collapse
|
19
|
Karsten S, Fiskesund R, Zhang XM, Marttila P, Sanjiv K, Pham T, Rasti A, Bräutigam L, Almlöf I, Marcusson-Ståhl M, Sandman C, Platzack B, Harris RA, Kalderén C, Cederbrant K, Helleday T, Warpman Berglund U. MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death Differ 2022; 29:246-261. [PMID: 34453118 PMCID: PMC8738733 DOI: 10.1038/s41418-021-00854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
T cell-driven diseases account for considerable morbidity and disability globally and there is an urgent need for new targeted therapies. Both cancer cells and activated T cells have an altered redox balance, and up-regulate the DNA repair protein MTH1 that sanitizes the oxidized nucleotide pool to avoid DNA damage and cell death. Herein we suggest that the up-regulation of MTH1 in activated T cells correlates with their redox status, but occurs before the ROS levels increase, challenging the established conception of MTH1 increasing as a direct response to an increased ROS status. We also propose a heterogeneity in MTH1 levels among activated T cells, where a smaller subset of activated T cells does not up-regulate MTH1 despite activation and proliferation. The study suggests that the vast majority of activated T cells have high MTH1 levels and are sensitive to the MTH1 inhibitor TH1579 (Karonudib) via induction of DNA damage and cell cycle arrest. TH1579 further drives the surviving cells to the MTH1low phenotype with altered redox status. TH1579 does not affect resting T cells, as opposed to the established immunosuppressor Azathioprine, and no sensitivity among other major immune cell types regarding their function can be observed. Finally, we demonstrate a therapeutic effect in a murine model of experimental autoimmune encephalomyelitis. In conclusion, we show proof of concept of the existence of MTH1high and MTH1low activated T cells, and that MTH1 inhibition by TH1579 selectively suppresses pro-inflammatory activated T cells. Thus, MTH1 inhibition by TH1579 may serve as a novel treatment option against autoreactive T cells in autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Stella Karsten
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roland Fiskesund
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Xing-Mei Zhang
- grid.4714.60000 0004 1937 0626Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Petra Marttila
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Therese Pham
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bräutigam
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maritha Marcusson-Ståhl
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Carolina Sandman
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Björn Platzack
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Robert A. Harris
- grid.4714.60000 0004 1937 0626Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Kalderén
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Cederbrant
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Thomas Helleday
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.11835.3e0000 0004 1936 9262Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Ulrika Warpman Berglund
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,Oxcia AB, Stockholm, Sweden
| |
Collapse
|
20
|
Tanno B, Babini G, Leonardi S, De Stefano I, Merla C, Novelli F, Antonelli F, Casciati A, Tanori M, Pasquali E, Giardullo P, Pazzaglia S, Mancuso M. miRNA-Signature of Irradiated Ptch1+/- Mouse Lens is Dependent on Genetic Background. Radiat Res 2022; 197:22-35. [PMID: 33857324 DOI: 10.1667/rade-20-00245.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
One harmful long-term effect of ionizing radiation is cataract development. Recent studies have been focused on elucidating the mechanistic pathways involved in this pathogenesis. Since accumulating evidence has established a role of microRNAs in ocular diseases, including cataract, the goal of this work was to determine the microRNA signature of the mouse lens, at short time periods postirradiation, to understand the mechanisms related to radio-induced cataractogenesis. To evaluate the differences in the microRNA profiles, 10-week-old Patched1 heterozygous (Ptch1+/-) mice, bred onto two different genetic backgrounds (CD1 and C57Bl/6J), received whole-body 2 Gy γ-ray irradiation, and 24 h later lenses were collected. Next-generation sequencing and bioinformatics analysis revealed that genetic background markedly influenced the list of the deregulated microRNAs and the mainly predicted perturbed biological functions of 2 Gy irradiated Ptch1+/- mouse lenses. We identified a subset of microRNAs with a contra-regulated expression between strains, with a key role in regulating Toll-like receptor (TLR)-signaling pathways. Furthermore, a detailed analysis of miRNome data showed a completely different DNA damage response in mouse lenses 24 h postirradiation, mainly mediated by a marked upregulation of p53 signaling in Ptch1+/-/C57Bl/6J lenses that was not detected on a CD1 background. We propose a strict interplay between p53 and TLR signaling in Ptch1+/-/C57Bl/6J lenses shortly after irradiation that could explain both the resistance of this strain to developing lens opacities and the susceptibility of CD1 background to radiation-induced cataractogenesis through activation of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - C Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
21
|
Stefanou DT, Souliotis VL, Zakopoulou R, Liontos M, Bamias A. DNA Damage Repair: Predictor of Platinum Efficacy in Ovarian Cancer? Biomedicines 2021; 10:82. [PMID: 35052761 PMCID: PMC8773153 DOI: 10.3390/biomedicines10010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) is the seventh most common type of cancer in women worldwide. Treatment for OC usually involves a combination of surgery and chemotherapy with carboplatin and paclitaxel. Platinum-based agents exert their cytotoxic action through development of DNA damage, including the formation of intra- and inter-strand cross-links, as well as single-nucleotide damage of guanine. Although these agents are highly efficient, intrinsic and acquired resistance during treatment are relatively common and remain a major challenge for platinum-based therapy. There is strong evidence to show that the functionality of various DNA repair pathways significantly impacts tumor response to treatment. Various DNA repair molecular components were found deregulated in ovarian cancer, including molecules involved in homologous recombination repair (HRR), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end-joining (NHEJ), and base excision repair (BER), which can be possibly exploited as novel therapeutic targets and sensitive/effective biomarkers. This review attempts to summarize published data on this subject and thus help in the design of new mechanistic studies to better understand the involvement of the DNA repair in the platinum drugs resistance, as well as to suggest new therapeutic perspectives and potential targets.
Collapse
Affiliation(s)
- Dimitra T. Stefanou
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
22
|
Wang QQ, Yin G, Huang JR, Xi SJ, Qian F, Lee RX, Peng XC, Tang FR. Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells 2021; 10:3570. [PMID: 34944078 PMCID: PMC8700624 DOI: 10.3390/cells10123570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
Population aging is occurring rapidly worldwide, challenging the global economy and healthcare services. Brain aging is a significant contributor to various age-related neurological and neuropsychological disorders, including Alzheimer's disease and Parkinson's disease. Several extrinsic factors, such as exposure to ionizing radiation, can accelerate senescence. Multiple human and animal studies have reported that exposure to ionizing radiation can have varied effects on organ aging and lead to the prolongation or shortening of life span depending on the radiation dose or dose rate. This paper reviews the effects of radiation on the aging of different types of brain cells, including neurons, microglia, astrocytes, and cerebral endothelial cells. Further, the relevant molecular mechanisms are discussed. Overall, this review highlights how radiation-induced senescence in different cell types may lead to brain aging, which could result in the development of various neurological and neuropsychological disorders. Therefore, treatment targeting radiation-induced oxidative stress and neuroinflammation may prevent radiation-induced brain aging and the neurological and neuropsychological disorders it may cause.
Collapse
Affiliation(s)
- Qin-Qi Wang
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou 434023, China; (Q.-Q.W.); (S.-J.X.)
- Health Science Center, Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China
| | - Gang Yin
- Department of Neurology, Jingzhou Central Hospital, Jingzhou 434023, China;
| | - Jiang-Rong Huang
- Health Science Center, Department of Integrative Medicine, School of Health Sciences, Yangtze University, Jingzhou 434023, China;
| | - Shi-Jun Xi
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou 434023, China; (Q.-Q.W.); (S.-J.X.)
- Health Science Center, Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Health Science Center, Department of Physiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China;
| | - Rui-Xue Lee
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore;
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou 434023, China; (Q.-Q.W.); (S.-J.X.)
- Health Science Center, Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore;
| |
Collapse
|
23
|
Tsakanova G, Babayan N, Karalova E, Hakobyan L, Abroyan L, Avetisyan A, Avagyan H, Hakobyan S, Poghosyan A, Baghdasaryan B, Arakelova E, Ayvazyan V, Matevosyan L, Navasardyan A, Davtyan H, Apresyan L, Yeremyan A, Aroutiounian R, Osipov AN, Grigoryan B, Karalyan Z. Low-Energy Laser-Driven Ultrashort Pulsed Electron Beam Irradiation-Induced Immune Response in Rats. Int J Mol Sci 2021; 22:ijms222111525. [PMID: 34768958 PMCID: PMC8584044 DOI: 10.3390/ijms222111525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The development of new laser-driven electron linear accelerators, providing unique ultrashort pulsed electron beams (UPEBs) with low repetition rates, opens new opportunities for radiotherapy and new fronts for radiobiological research in general. Considering the growing interest in the application of UPEBs in radiation biology and medicine, the aim of this study was to reveal the changes in immune system in response to low-energy laser-driven UPEB whole-body irradiation in rodents. Forty male albino Wistar rats were exposed to laser-driven UPEB irradiation, after which different immunological parameters were studied on the 1st, 3rd, 7th, 14th, and 28th day after irradiation. According to the results, this type of irradiation induces alterations in the rat immune system, particularly by increasing the production of pro- and anti-inflammatory cytokines and elevating the DNA damage rate. Moreover, such an immune response reaches its maximal levels on the third day after laser-driven UPEB whole-body irradiation, showing partial recovery on subsequent days with a total recovery on the 28th day. The results of this study provide valuable insight into the effect of laser-driven UPEB whole-body irradiation on the immune system of the animals and support further animal experiments on the role of this novel type of irradiation.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
- Correspondence: ; Tel.: +374-941-23070
| | - Nelly Babayan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
| | - Elena Karalova
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Experimental Laboratory, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Lina Hakobyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Liana Abroyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Aida Avetisyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Experimental Laboratory, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Hranush Avagyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Experimental Laboratory, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Sona Hakobyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Arpine Poghosyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Bagrat Baghdasaryan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Elina Arakelova
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Violetta Ayvazyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Lusine Matevosyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Arpine Navasardyan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Hakob Davtyan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Lilit Apresyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| | - Arsham Yeremyan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Rouben Aroutiounian
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
| | - Andreyan N. Osipov
- Group for Radiation Biochemistry of Nucleic Acids, N.N. Semenov Federal Research for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Laboratory for the Development of Innovative Drugs and Agricultural Biotechnology, Moscow Institute of Physics and Technology, 141701 Moscow, Russia
- Experimental Radiobiology and Radiation Medicine Department, State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Bagrat Grigoryan
- CANDLE Synchrotron Research Institute, Yerevan 0040, Armenia; (A.N.); (H.D.); (A.Y.); (B.G.)
| | - Zaven Karalyan
- Institute of Molecular Biology NAS RA, Yerevan 0014, Armenia; (N.B.); (E.K.); (L.H.); (L.A.); (A.A.); (H.A.); (S.H.); (A.P.); (B.B.); (E.A.); (V.A.); (L.M.); (L.A.); (R.A.); (Z.K.)
| |
Collapse
|
24
|
Papaspyropoulos A, Hazapis O, Lagopati N, Polyzou A, Papanastasiou AD, Liontos M, Gorgoulis VG, Kotsinas A. The Role of Circular RNAs in DNA Damage Response and Repair. Cancers (Basel) 2021; 13:cancers13215352. [PMID: 34771517 PMCID: PMC8582540 DOI: 10.3390/cancers13215352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNA) comprise a distinct class of non-coding RNAs that are abundantly expressed in the cell. CircRNAs have the capacity to regulate gene expression by interacting with regulatory proteins and/or other classes of RNAs. While a vast number of circRNAs have been discovered, the majority still remains poorly characterized. Particularly, there is no detailed information on the identity and functional role of circRNAs that are transcribed from genes encoding components of the DNA damage response and repair (DDRR) network. In this article, we not only review the available published information on DDRR-related circRNAs, but also conduct a bioinformatic analysis on data obtained from public repositories to uncover deposited, yet uncharacterized circRNAs derived from components of the DDRR network. Finally, we interrogate for potential targets that are regulated by this class of molecules and look into potential functional implications.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
| | - Orsalia Hazapis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
| | - Anastasios D. Papanastasiou
- Department of Biomedical Sciences, University of West Attica, GR-12462 Athens, Greece;
- Histopathology Unit, Biomedical Sciences Research Center ‘Alexander Fleming’, GR-16672 Vari, Greece
| | - Michalis Liontos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Oncology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, GR-11528 Athens, Greece
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Biomedical Research Foundation, Academy of Athens, GR-11527 Athens, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
- Correspondence: (V.G.G.); (A.K.); Tel.: +30-210-746-2352 (V.G.G.); +30-210-746-2420 (A.K.)
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (A.P.); (O.H.); (N.L.); (A.P.); (M.L.)
- Correspondence: (V.G.G.); (A.K.); Tel.: +30-210-746-2352 (V.G.G.); +30-210-746-2420 (A.K.)
| |
Collapse
|
25
|
Özgümüş T, Sulaieva O, Jessen LE, Jain R, Falhammar H, Nyström T, Catrina SB, Jörneskog G, Groop L, Eliasson M, Eliasson B, Brismar K, Stokowy T, Nilsson PM, Lyssenko V. Reduced expression of OXPHOS and DNA damage genes is linked to protection from microvascular complications in long-term type 1 diabetes: the PROLONG study. Sci Rep 2021; 11:20735. [PMID: 34671071 PMCID: PMC8528906 DOI: 10.1038/s41598-021-00183-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease requiring insulin treatment for survival. Prolonged duration of type 1 diabetes is associated with increased risk of microvascular complications. Although chronic hyperglycemia and diabetes duration have been considered as the major risk factors for vascular complications, this is not universally seen among all patients. Persons with long-term type 1 diabetes who have remained largely free from vascular complications constitute an ideal group for investigation of natural defense mechanisms against prolonged exposure of diabetes. Transcriptomic signatures obtained from RNA sequencing of the peripheral blood cells were analyzed in non-progressors with more than 30 years of diabetes duration and compared to the patients who progressed to microvascular complications within a shorter duration of diabetes. Analyses revealed that non-progressors demonstrated a reduction in expression of the oxidative phosphorylation (OXPHOS) genes, which were positively correlated with the expression of DNA repair enzymes, namely genes involved in base excision repair (BER) machinery. Reduced expression of OXPHOS and BER genes was linked to decrease in expression of inflammation-related genes, higher glucose disposal rate and reduced measures of hepatic fatty liver. Results from the present study indicate that at transcriptomic level reduction in OXPHOS, DNA repair and inflammation-related genes is linked to better insulin sensitivity and protection against microvascular complications in persons with long-term type 1 diabetes.
Collapse
Affiliation(s)
- Türküler Özgümüş
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, Center for Diabetes Research, University of Bergen, 5032 Bergen, Norway
| | | | - Leon Eyrich Jessen
- grid.5170.30000 0001 2181 8870Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ruchi Jain
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02 Malmö, Sweden
| | - Henrik Falhammar
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Nyström
- Unit for Diabetes Research, Division of Internal Medicine, Department of Clinical Science and Education, Karolinska Institute, South Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden ,Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Gun Jörneskog
- Division of Internal Medicine, Department of Clinical Sciences, Karolinska Institute, Danderyd University Hospital, Stockholm, Sweden
| | - Leif Groop
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02 Malmö, Sweden ,grid.7737.40000 0004 0410 2071Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Mats Eliasson
- grid.12650.300000 0001 1034 3451Sunderby Research Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Björn Eliasson
- grid.8761.80000 0000 9919 9582Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Brismar
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Tomasz Stokowy
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Peter M. Nilsson
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02 Malmö, Sweden
| | - Valeriya Lyssenko
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, Center for Diabetes Research, University of Bergen, 5032 Bergen, Norway ,grid.4514.40000 0001 0930 2361Department of Clinical Sciences/Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, 205 02 Malmö, Sweden
| |
Collapse
|
26
|
Ntouros PA, Vlachogiannis NI, Pappa M, Nezos A, Mavragani CP, Tektonidou MG, Souliotis VL, Sfikakis PP. Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol 2021; 229:108765. [PMID: 34089859 PMCID: PMC8171000 DOI: 10.1016/j.clim.2021.108765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.
Collapse
Affiliation(s)
- Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
27
|
Regulatory and Functional Involvement of Long Non-Coding RNAs in DNA Double-Strand Break Repair Mechanisms. Cells 2021; 10:cells10061506. [PMID: 34203749 PMCID: PMC8232683 DOI: 10.3390/cells10061506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.
Collapse
|
28
|
Mathiasen SL, Gall-Mas L, Pateras IS, Theodorou SDP, Namini MRJ, Hansen MB, Martin OCB, Vadivel CK, Ntostoglou K, Butter D, Givskov M, Geisler C, Akbar AN, Gorgoulis VG, Frisan T, Ødum N, Krejsgaard T. Bacterial genotoxins induce T cell senescence. Cell Rep 2021; 35:109220. [PMID: 34107253 DOI: 10.1016/j.celrep.2021.109220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.
Collapse
Affiliation(s)
- Sarah L Mathiasen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Laura Gall-Mas
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sofia D P Theodorou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten B Hansen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantinos Ntostoglou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Deborah Butter
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arne N Akbar
- Division of Medicine, University College London, London WC1E 6JF, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Molecular Biology and Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
29
|
Manolakou T, Verginis P, Boumpas DT. DNA Damage Response in the Adaptive Arm of the Immune System: Implications for Autoimmunity. Int J Mol Sci 2021; 22:5842. [PMID: 34072535 PMCID: PMC8198144 DOI: 10.3390/ijms22115842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
In complex environments, cells have developed molecular responses to confront threats against the genome and achieve the maintenance of genomic stability assuring the transfer of undamaged DNA to their progeny. DNA damage response (DDR) mechanisms may be activated upon genotoxic or environmental agents, such as cytotoxic drugs or ultraviolet (UV) light, and during physiological processes requiring DNA transactions, to restore DNA alterations that may cause cellular malfunction and affect viability. In addition to the DDR, multicellular organisms have evolved specialized immune cells to respond and defend against infections. Both adaptive and innate immune cells are subjected to DDR processes, either as a prerequisite to the immune response, or as a result of random endogenous and exogenous insults. Aberrant DDR activities have been extensively studied in the immune cells of the innate arm, but not in adaptive immune cells. Here, we discuss how the aberrant DDR may lead to autoimmunity, with emphasis on the adaptive immune cells and the potential of therapeutic targeting.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece;
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| |
Collapse
|
30
|
Zaki MES, Abdelsalam M, Bassiouni SARAK, Osman A. Gene Polymorphism of XRCC1 in Systemic Lupus Erythematous. Open Rheumatol J 2021. [DOI: 10.2174/1874312902115010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
There are debates about the role of the X-ray repair cross-complementation group 1 (XRCC1) Arg399Gln gene in the pathogenesis of Systemic Lupus Erythematosus (SLE).
Methods:
The study was a case-control study carried out on 100 recently diagnosed SLE patients compared to 100 control subjects. The study of XRCC1 Arg399Gln polymorphism was performed by a polymerase chain reaction and restriction fragment length polymorphism.
Results and Discussion:
A higher frequency of ‘G’ allele in SLE (38.5%) versus control (32%) was noticed; however, this difference was not statistically significant (p = 0.174). Besides, a slightly higher frequency of G/G genotype was found in SLE (22%) vs. control (12%); again, this difference was not statistically significant (p = 0.157). A statistically significantly higher proportion of arthritis, serositis, and thrombocytopenia was observed in the A/A genotype (p = 0.010, 0.032, and 0.036, respectively). Furthermore, we noticed a statistically significant lower hemoglobin level in G/G genotype (p = 0.027). Otherwise, there was no statistically significant difference between the three genotypes regarding other parameters: photosensitivity, malar rash, oral ulceration, ANA, anti-dsDNA antibody, anemia, leucopenia, neurologic manifestations, and all lab parameters except hemoglobin level. Similar results were reported previously.
According to genotype, in the study of Clinical and laboratory parameters in SLE patients, a statistically significantly higher proportion of arthritis, serositis, and thrombocytopenia was observed in the A/A genotype (p =0 .01, 0.032, and 0.036 respectively). Furthermore, we noticed a statistically significant lower hemoglobin level in G/G genotype (p = 0.027). These findings suggest a pathogenic connection between the seriousness of the defective DNA repair and the autoimmune severity; such connection is consistent with that found in several murine models. Additionally, negative regulation of the genes encoding the proteins involved in the NER pathway in SLE patients, specifically and XPC, has been found previously.
Conclusion:
The present study highlights the higher insignificant increase of G allele and GG genotype of XRCC1 399 gene in patients with SLE compared to healthy control. This increase was significantly associated with anemia in patients, which may reflect the aggravation of environmental risk factors to SLE associated with the reduced repair of DNA. Further longitudinal studies are required to validate the present findings.
Collapse
|
31
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
32
|
Psyrri A, Gkotzamanidou M, Papaxoinis G, Krikoni L, Economopoulou P, Kotsantis I, Anastasiou M, Souliotis VL. The DNA damage response network in the treatment of head and neck squamous cell carcinoma. ESMO Open 2021; 6:100075. [PMID: 33714009 PMCID: PMC7957155 DOI: 10.1016/j.esmoop.2021.100075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We sought to determine whether DNA damage response (DDR)-related aberrations predict therapeutic benefit in cisplatin-treated head and neck squamous cell carcinoma (HNSCC) patients and how DDR pathways are modulated after treatment with olaparib alone or in combination with cisplatin or durvalumab. PATIENTS AND METHODS Oxidative stress, abasic sites and DDR-related parameters, including endogenous DNA damage, DNA repair mechanisms and apoptosis rates, were evaluated in HNSCC cell lines and peripheral blood mononuclear cells from 46 healthy controls (HC) and 70 HNSCC patients at baseline and following treatment with cisplatin-containing chemoradiation or nivolumab or enrolled in the OPHELIA phase II trial (NCT02882308; olaparib alone, olaparib plus cisplatin, olaparib plus durvalumab). RESULTS HNSCC patients at diagnosis exhibited deregulated DDR-related parameters and higher levels of oxidative stress and abasic sites compared with HC (all P < 0.05). Accordingly, nucleotide excision repair (NER; ERCC1, ERCC2/XPD, XPA, XPC) and base excision repair (APEX1, XRCC1) genes were downregulated in patients versus HC whereas double-strand breaks repair (MRE11A, RAD50, RAD51, XRCC2) and mismatch repair (MLH1, MSH2, MSH3) genes were overexpressed. Corresponding results were obtained in cell lines (all P < 0.001). Excellent correlations were observed between individual ex vivo and in vivo/therapeutic results, with cisplatin non-responders showing higher levels of endogenous DNA damage, augmented oxidative stress and abasic sites, increased NER capacities and reduced apoptosis than responders (all P < 0.05). Also, longer progression-free survival correlated with lower NER capacity (P = 0.037) and increased apoptosis (P = 0.029). Interestingly, treatment with olaparib-containing regimens results in the accumulation of cytotoxic DNA damage and exerts an extra antitumor effect by elevating oxidative stress (all P < 0.05). Nivolumab induced no significant changes in the DDR parameters examined. CONCLUSIONS Aberrations in DDR signals are implicated in the response to HNSCC chemotherapy and can be exploited as novel therapeutic targets, sensitive/effective non-invasive biomarkers as well as for the design of novel clinical trials.
Collapse
Affiliation(s)
- A Psyrri
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M Gkotzamanidou
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - G Papaxoinis
- Agios Savvas Anticancer Hospital, Athens, Greece
| | - L Krikoni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - P Economopoulou
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - I Kotsantis
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - M Anastasiou
- Section of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - V L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece; First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
33
|
Li Y, Zhao X, Xiao H, Yang B, Liu J, Rao W, Dai X, Li M, Dai N, Yang Y, Wang D. APE1 may influence CD4+ naïve T cells on recurrence free survival in early stage NSCLC. BMC Cancer 2021; 21:233. [PMID: 33676448 PMCID: PMC7937314 DOI: 10.1186/s12885-021-07950-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background It was demonstrated that multifunctional protein APE1 (Apurinic/apyrimidinic endonuclease 1) is closely related to tumor immune microenvironment in a number of investigations, Meanwhile, the abundance of tumor infiltrating lymphocytes (TILs) has been shown as a prognosis indicator in some researches. However, it remains unclear whether APE1 is involved in the process of TILs affecting the prognosis of patients. To this end, we investigated the associations between APE1 and TILs in non-small cell lung cancer (NSCLC) and explored whether APE1 would influence the associations of CD4+ T cells infiltration with the prognosis of patients. Methods Genome-wide expression datasets were obtained from the Gene Expression Omnibus (GEO) public database under accession number GSE68465, GSE30219, GSE31210 and GSE50081. MCPcounter and CIBERSORT analysis was conducted to evaluate the abundance of TILs in 1006 NSCLC patients of GEO database. Spearman correlation tests were used to evaluate correlations between abundance of various TILs and APE1 expression. RFS (recurrence free survival) was estimated using the Kaplan–Meier method and the Cox proportional-hazards model. The expression level of APE1 and tumor-infiltrating CD4+ T cells was evaluated by immunohistochemistry (IHC). Results The results showed that the abundance of CD4+ naïve T cells was negatively associated with the APE1 expression. CD4+ naïve T cells infiltration was a favorable prognostic factor for RFS, however, there was no effect of CD4+ T cells infiltration on RFS in patients with high APE1 expression. Subsequently, it was further confirmed that CD4+ T cells infiltration was negatively associated with the APE1 expression level in 108 NSCLC tissue samples; high CD4+ T cells infiltration was associated with longer RFS in low APE1 expression group but not in APE1 high expression group. Conclusion These results suggested that APE1 may affect the relationship between CD4+ T cells infiltration and prognosis in NSCLC. This study provides new insights into predictors of outcome in patients with NSCLC, and suggests that combining immunotherapy and APE1-targeted therapy may be a promising treatment for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07950-1.
Collapse
Affiliation(s)
- Yanping Li
- School of Nursing, Chongqing Medical and Pharmaceutical College, No. 82, Daxuecheng Rd, Shapingba Dist, Chongqing, 401331, China
| | - Xiaolong Zhao
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - He Xiao
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Bo Yang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Jie Liu
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Wen Rao
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Xiaoyan Dai
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Mengxia Li
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Nan Dai
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Yuxin Yang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Zhi Rd., Yuzhong Dist, Chongqing, 400042, China.
| |
Collapse
|
34
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
35
|
Tremi I, Nowsheen S, Aziz K, Siva S, Ventura J, Hatzi VI, Martin OA, Georgakilas AG. Inflammation and oxidatively induced DNA damage: A synergy leading to cancer development. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Rosenblatt RB, Frank JA, Burks SR. Cytosolic Ca 2+ transients during pulsed focused ultrasound generate reactive oxygen species and cause DNA damage in tumor cells. Am J Cancer Res 2021; 11:602-613. [PMID: 33391495 PMCID: PMC7738866 DOI: 10.7150/thno.48353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical forces from non-ablative pulsed focused ultrasound (pFUS) generate pro-inflammatory tumor microenvironments (TME), marked by increased cytokines, chemokines, and trophic factors, as well as immune cell infiltration and reduced tumor growth. pFUS also causes DNA damage within tumors, which is a potent activator of immunity and could contribute to changes in the TME. This study investigated mechanisms behind the mechanotransductive effects of pFUS causing DNA damage in several tumor cell types. Methods: 4T1 (murine breast tumor), B16 (murine melanoma), C6 (rat glioma), or MDA-MB-231 (human breast tumor) cells were sonicated in vitro (1.1MHz; 6MPa PNP; 10ms pulses; 10% duty cycle; 300 pulses). DNA damage was detected by TUNEL, apoptosis was measured by immunocytochemistry for cleaved caspase-3. Calcium, superoxide, and H2O2 were detected by fluorescent indicators and modulated by BAPTA-AM, mtTEMPOL, or Trolox, respectively. Results: pFUS increased TUNEL reactivity (range = 1.6-2.7-fold) in all cell types except C6 and did not induce apoptosis in any cell line. All lines displayed cytosolic Ca2+ transients during sonication. pFUS increased superoxide (range = 1.6-2.0-fold) and H2O2 (range = 2.3-2.8-fold) in all cell types except C6. BAPTA-AM blocked increased TUNEL reactivity, superoxide and H2O2 formation, while Trolox also blocked increased TUNEL reactivity increased after pFUS. mtTEMPOL allowed H2O2 formation and did not block increased TUNEL reactivity after pFUS. Unsonicated C6 cells had higher baseline concentrations of cytosolic Ca2+, superoxide, and H2O2, which were not associated with greater baseline TUNEL reactivity than the other cell lines. Conclusions: Mechanotransduction of pFUS directly induces DNA damage in tumor cells by cytosolic Ca2+ transients causing formation of superoxide and subsequently, H2O2. These results further suggest potential clinical utility for pFUS. However, the lack of pFUS-induced DNA damage in C6 cells demonstrates a range of potential tumor responses that may arise from physiological differences such as Ca2+ or redox homeostasis.
Collapse
|
37
|
Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2020; 15:9407-9430. [PMID: 33262595 PMCID: PMC7699443 DOI: 10.2147/ijn.s272902] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
The rapid development of nanotechnology offers a variety of potential therapeutic strategies for cancer treatment. High atomic element nanomaterials are often utilized as radiosensitizers due to their unique photoelectric decay characteristics. Among them, gold nanoparticles (GNPs) are one of the most widely investigated and are considered to be an ideal radiosensitizers for radiotherapy due to their high X-ray absorption and unique physicochemical properties. Over the last few decades, multi-disciplinary studies have focused on the design and optimization of GNPs to achieve greater dosing capability and higher therapeutic effects and highlight potential mechanisms for radiosensitization of GNPs. Although the radiosensitizing potential of GNPs has been widely recognized, its clinical translation still faces many challenges. This review analyses the different roles of GNPs as radiosensitizers in cancer radiotherapy and summarizes recent advances. In addition, the underlying mechanisms of GNP radiosensitization, including physical, chemical and biological mechanisms are discussed, which may provide new directions for the optimization and clinical transformation of next-generation GNPs.
Collapse
Affiliation(s)
- Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| |
Collapse
|
38
|
Vlachogiannis NI, Pappa M, Ntouros PA, Nezos A, Mavragani CP, Souliotis VL, Sfikakis PP. Association Between DNA Damage Response, Fibrosis and Type I Interferon Signature in Systemic Sclerosis. Front Immunol 2020; 11:582401. [PMID: 33123169 PMCID: PMC7566292 DOI: 10.3389/fimmu.2020.582401] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
Increased endogenous DNA damage and type I interferon pathway activation have been implicated in systemic sclerosis (SSc) pathogenesis. Because experimental evidence suggests an interplay between DNA damage response/repair (DDR/R) and immune response, we hypothesized that deregulated DDR/R is associated with a type I interferon signature and/or fibrosis extent in SSc. DNA damage levels, oxidative stress, induction of abasic sites and the efficiency of DNA double-strand break repair (DSB/R) and nucleotide excision repair (NER) were assessed in peripheral blood mononuclear cells (PBMCs) derived from 37 SSc patients and 55 healthy controls; expression of DDR/R-associated genes and type I interferon-induced genes was also quantified. Endogenous DNA damage was significantly higher in untreated diffuse or limited SSc (Olive tail moment; 14.7 ± 7.0 and 9.5 ± 4.1, respectively) as well as in patients under cytotoxic treatment (15.0 ± 5.4) but not in very early onset SSc (5.6 ± 1.2) compared with controls (4.9 ± 2.6). Moreover, patients with pulmonary fibrosis had significantly higher DNA damage levels than those without (12.6 ± 5.8 vs. 8.8 ± 4.8, respectively). SSc patients displayed increased oxidative stress and abasic sites, defective DSB/R but not NER capacity, downregulation of genes involved in DSB/R (MRE11A, PRKDC) and base excision repair (PARP1, XRCC1), and upregulation of apoptosis-related genes (BAX, BBC3). Individual levels of DNA damage in SSc PBMCs correlated significantly with the corresponding mRNA expression of type I interferon-induced genes (IFIT1, IFI44 and MX1, r=0.419-0.490) as well as with corresponding skin involvement extent by modified Rodnan skin score (r=0.481). In conclusion, defective DDR/R may exert a fuel-on-fire effect on type I interferon pathway activation and contribute to tissue fibrosis in SSc.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
39
|
Liu J, Bi K, Yang R, Li H, Nikitaki Z, Chang L. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future. Int J Radiat Biol 2020; 96:1329-1338. [PMID: 32776818 DOI: 10.1080/09553002.2020.1807641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Radiation Therapy (RT), a widely used modality against cancer, depends its effectiveness on three pillars: tumor targeting precision, minimum dose determination and co-administrated agents. The underlying biological processes of the latter two pillars are DNA damage and repair. Hopefully, Radiation treatment has nowadays been improved a lot, in terms of tumor targeting precision as well as in minimization of side effects, by reducing normal tissue radiation exposure and therefore its occurred toxicity. Normal tissue toxicity is a major risk factor for induction of genomic instability which may lead to secondary cancer development, due to the radiation therapy itself. We discuss, in this review, the biological significance of IR-induced complex DNA damage, which is currently accepted as the definite regulator of biological response to radiation, as well as the regulator of the implications of this IR signature in radiation therapy. We unite accumulating evidence and knowledge over the last 20 years or so on the importance of radiation treatment of cancer. This radiation-based therapy comes unfortunately with a deficit and this is the radiation-induced genetic instability which can fuel radiation toxicity, even several years after the initial treatment on patients through the activation of DNA damage response (DDR) and the immune system.
Collapse
Affiliation(s)
- Jingya Liu
- Department of Community Medicine, Tangshan Workers' Hospital, Tangshan, China
| | - Kun Bi
- Department of Neurosurgery, Tangshan Workers' Hospital, Tangshan, China
| | - Run Yang
- Department of Preventive Healthcare, Qishan Hospital, Yantai, China
| | - Hongxia Li
- Department of Interventional Medicine, Yantaishan Hospital, Yantai, China
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Li Chang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Sebastian-Valverde M, Pasinetti GM. The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells 2020; 9:cells9061552. [PMID: 32604771 PMCID: PMC7348816 DOI: 10.3390/cells9061552] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.
Collapse
Affiliation(s)
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
- Correspondence: ; Tel.: +1-212-241-1952
| |
Collapse
|
41
|
Kanakoglou DS, Michalettou TD, Vasileiou C, Gioukakis E, Maneta D, Kyriakidis KV, Georgakilas AG, Michalopoulos I. Effects of High-Dose Ionizing Radiation in Human Gene Expression: A Meta-Analysis. Int J Mol Sci 2020; 21:E1938. [PMID: 32178397 PMCID: PMC7139561 DOI: 10.3390/ijms21061938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022] Open
Abstract
The use of high-dose Ionizing Radiation (IR) is currently one of the most common modalities in treatment of many types of cancer. The objective of this work was to investigate the effects of high-dose ionizing radiation on healthy human tissue, utilizing quantitative analysis of gene expression. To this end, publicly available transcriptomics datasets from human samples irradiated with a high dose of radiation and non-irradiated (control) ones were selected, and gene expression was determined using RNA-Seq data analysis. Raw data from these studies were subjected to quality control and trimming. Mapping of RNA-Seq reads was performed by the partial selective alignment method, and differential gene expression analysis was conducted. Subsequently, a meta-analysis was performed to select differentially expressed genes across datasets. Based on the differentially expressed genes discovered by meta-analysis, we constructed a protein-to-protein interaction network, and we identified biological pathways and processes related to high-dose IR effects. Our findings suggest that cell cycle arrest is activated, supported by our top down-regulated genes associated with cell cycle activation. DNA repair genes are down-regulated in their majority. However, several genes implicated in the nucleotide excision repair pathway are upregulated. Nevertheless, apoptotic mechanisms seem to be activated probably due to severe high-dose-induced complex DNA damage. The significant upregulation of CDKN1A, as a downstream gene of TP53, further validates programmed cell death. Finally, down-regulation of TIMELESS, signifies a correlation between IR response and circadian rhythm. Nonetheless, high-dose IR exposure effects regarding normal tissue (radiation toxicity) and its possible long-term outcomes should be studied to a greater extend.
Collapse
Affiliation(s)
- Dimitrios S. Kanakoglou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; (D.S.K.); (T.-D.M.); (C.V.); (E.G.); (D.M.); (K.V.K.)
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Theodora-Dafni Michalettou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; (D.S.K.); (T.-D.M.); (C.V.); (E.G.); (D.M.); (K.V.K.)
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 157 01 Athens, Greece
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece;
| | - Christina Vasileiou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; (D.S.K.); (T.-D.M.); (C.V.); (E.G.); (D.M.); (K.V.K.)
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece;
| | - Evangelos Gioukakis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; (D.S.K.); (T.-D.M.); (C.V.); (E.G.); (D.M.); (K.V.K.)
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece;
| | - Dorothea Maneta
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; (D.S.K.); (T.-D.M.); (C.V.); (E.G.); (D.M.); (K.V.K.)
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece;
| | - Konstantinos V. Kyriakidis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; (D.S.K.); (T.-D.M.); (C.V.); (E.G.); (D.M.); (K.V.K.)
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 115 27 Athens, Greece; (D.S.K.); (T.-D.M.); (C.V.); (E.G.); (D.M.); (K.V.K.)
| |
Collapse
|
42
|
DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. Int J Mol Sci 2019; 21:ijms21010055. [PMID: 31861764 PMCID: PMC6982230 DOI: 10.3390/ijms21010055] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The DNA damage response and repair (DDR/R) network, a sum of hierarchically structured signaling pathways that recognize and repair DNA damage, and the immune response to endogenous and/or exogenous threats, act synergistically to enhance cellular defense. On the other hand, a deregulated interplay between these systems underlines inflammatory diseases including malignancies and chronic systemic autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Patients with these diseases are characterized by aberrant immune response to self-antigens with widespread production of autoantibodies and multiple-tissue injury, as well as by the presence of increased oxidative stress. Recent data demonstrate accumulation of endogenous DNA damage in peripheral blood mononuclear cells from these patients, which is related to (a) augmented DNA damage formation, at least partly due to the induction of oxidative stress, and (b) epigenetically regulated functional abnormalities of fundamental DNA repair mechanisms. Because endogenous DNA damage accumulation has serious consequences for cellular health, including genomic instability and enhancement of an aberrant immune response, these results can be exploited for understanding pathogenesis and progression of systemic autoimmune diseases, as well as for the development of new treatments.
Collapse
|
43
|
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019; 11:E1789. [PMID: 31739493 PMCID: PMC6895987 DOI: 10.3390/cancers11111789] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Biological responses to ionizing radiation (IR) have been studied for many years, generally showing the dependence of these responses on the quality of radiation, i.e., the radiation particle type and energy, types of DNA damage, dose and dose rate, type of cells, etc. There is accumulating evidence on the pivotal role of complex (clustered) DNA damage towards the determination of the final biological or even clinical outcome after exposure to IR. In this review, we provide literature evidence about the significant role of damage clustering and advancements that have been made through the years in its detection and prediction using Monte Carlo (MC) simulations. We conclude that in the future, emphasis should be given to a better understanding of the mechanistic links between the induction of complex DNA damage, its processing, and systemic effects at the organism level, like genomic instability and immune responses.
Collapse
Affiliation(s)
| | | | | | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
44
|
Michael KC, Bonneau RH, Bourne RA, Godbolt L, Caruso MJ, Hohmann C, Cavigelli SA. Divergent immune responses in behaviorally-inhibited vs. non-inhibited male rats. Physiol Behav 2019; 213:112693. [PMID: 31629765 PMCID: PMC6934092 DOI: 10.1016/j.physbeh.2019.112693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Stable behavioral traits (temperament, personality) often predict health outcomes. Temperament-specific differences in immune function could explain temperament-specific health outcomes, however, we have limited information on whether immune function varies by personality. In the present study, we examined the relationship between a basic behavioral trait (behavioral-inhibition vs. non-inhibition) and two immune responses (innate inflammation and delayed-type hypersensitivity, DTH) in a rodent model. In humans, behavioral inhibition (fearful temperament) is associated with altered stress physiology and allergies. In laboratory rats, the trait is associated with elevated glucocorticoid production. We hypothesized that behavioral inhibition is associated with glucocorticoid resistance and dampened T-helper 1 cell responses often associated with chronic stress and allergies. Further, this immune profile would predict poorly-regulated innate inflammation and dampened DTH. In male Sprague-Dawley rats, we quantified consistent behavioral phenotypes by measuring latency to contact two kinds of novelty (object vs. social), then measured lipopolysaccharide(LPS)-induced innate inflammation or keyhole limpet hemocyanin(KLH)-induced DTH. Behaviorally-inhibited rats had heightened glucocorticoid and interleukin-6 responses to a low/moderate dose of LPS and reduced DTH swelling to KLH re-exposure compared to non-inhibited rats. These results suggest that behavioral inhibition is associated with a glucocorticoid resistant state with poorly regulated innate inflammation and dampened cell-mediated immune responses. This immune profile may be associated with exaggerated T-helper 2 responses, which could set the stage for an allergic/asthmatic/atopic predisposition in inhibited individuals. Human and animal models of temperament-specific immune responses represent an area for further exploration of mechanisms involved in individual differences in health.
Collapse
Affiliation(s)
- Kerry C Michael
- Department of Psychology, University of Minnesota, Morris, USA
| | - Robert H Bonneau
- Department of Microbiology and Immunology and Department of Pediatrics, The Pennsylvania State University Hershey Medical Center, USA
| | - Rebecca A Bourne
- Department of Biobehavioral Health, The Pennsylvania State University, USA
| | | | - Michael J Caruso
- Department of Biobehavioral Health, The Pennsylvania State University, USA; Center for Brain, Behavior, and Cognition, The Pennsylvania State University, USA
| | | | - Sonia A Cavigelli
- Department of Biobehavioral Health, The Pennsylvania State University, USA; Center for Brain, Behavior, and Cognition, The Pennsylvania State University, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, USA.
| |
Collapse
|
45
|
Palumbo E, Piotto C, Calura E, Fasanaro E, Groff E, Busato F, El Khouzai B, Rigo M, Baggio L, Romualdi C, Zafiropoulos D, Russo A, Mognato M, Corti L. Individual Radiosensitivity in Oncological Patients: Linking Adverse Normal Tissue Reactions and Genetic Features. Front Oncol 2019; 9:987. [PMID: 31632918 PMCID: PMC6779824 DOI: 10.3389/fonc.2019.00987] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Introduction: Adverse effects of radiotherapy (RT) significantly affect patient's quality of life (QOL). The possibility to identify patient-related factors that are associated with individual radiosensitivity would optimize adjuvant RT treatment, limiting the severity of normal tissue reactions, and improving patient's QOL. In this study, we analyzed the relationships between genetic features and toxicity grading manifested by RT patients looking for possible biomarkers of individual radiosensitivity. Methods: Early radiation toxicity was evaluated on 143 oncological patients according to the Common Terminology Criteria for Adverse Events (CTCAE). An individual radiosensitivity (IRS) index defining four classes of radiosensitivity (highly radiosensitive, radiosensitive, normal, and radioresistant) was determined by a G2-chromosomal assay on ex vivo irradiated, patient-derived blood samples. The expression level of 15 radioresponsive genes has been measured by quantitative real-time PCR at 24 h after the first RT fraction, in blood samples of a subset of 57 patients, representing the four IRS classes. Results: By applying univariate and multivariate statistical analyses, we found that fatigue was significantly associated with IRS index. Interestingly, associations were detected between clinical radiation toxicity and gene expression (ATM, CDKN1A, FDXR, SESN1, XPC, ZMAT3, and BCL2/BAX ratio) and between IRS index and gene expression (BBC3, FDXR, GADD45A, and BCL2/BAX). Conclusions: In this prospective cohort study we found that associations exist between normal tissue reactions and genetic features in RT-treated patients. Overall, our findings can contribute to the identification of biological markers to predict RT toxicity in normal tissues.
Collapse
Affiliation(s)
- Elisa Palumbo
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Celeste Piotto
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Elena Fasanaro
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elena Groff
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Fabio Busato
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Badr El Khouzai
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Michele Rigo
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Laura Baggio
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Demetre Zafiropoulos
- National Laboratories of Legnaro, Italian Institute of Nuclear Physics (LNL-INFN), Padua, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Luigi Corti
- Department of Radiotherapy, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
46
|
Pateras IS. Refining classification of malignant pleural mesothelioma reveals its Achilles’ heel. EBioMedicine 2019; 48:3-4. [PMID: 31629676 PMCID: PMC6838428 DOI: 10.1016/j.ebiom.2019.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
47
|
Logotheti S, Pützer BM. STAT3 and STAT5 Targeting for Simultaneous Management of Melanoma and Autoimmune Diseases. Cancers (Basel) 2019; 11:cancers11101448. [PMID: 31569642 PMCID: PMC6826843 DOI: 10.3390/cancers11101448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Melanoma is a skin cancer which can become metastatic, drug-refractory, and lethal if managed late or inappropriately. An increasing number of melanoma patients exhibits autoimmune diseases, either as pre-existing conditions or as sequelae of immune-based anti-melanoma therapies, which complicate patient management and raise the need for more personalized treatments. STAT3 and/or STAT5 cascades are commonly activated during melanoma progression and mediate the metastatic effects of key oncogenic factors. Deactivation of these cascades enhances antitumor-immune responses, is efficient against metastatic melanoma in the preclinical setting and emerges as a promising targeting strategy, especially for patients resistant to immunotherapies. In the light of the recent realization that cancer and autoimmune diseases share common mechanisms of immune dysregulation, we suggest that the systemic delivery of STAT3 or STAT5 inhibitors could simultaneously target both, melanoma and associated autoimmune diseases, thereby decreasing the overall disease burden and improving quality of life of this patient subpopulation. Herein, we review the recent advances of STAT3 and STAT5 targeting in melanoma, explore which autoimmune diseases are causatively linked to STAT3 and/or STAT5 signaling, and propose that these patients may particularly benefit from treatment with STAT3/STAT5 inhibitors.
Collapse
Affiliation(s)
- Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
48
|
DNA Repair Deficiency in Breast Cancer: Opportunities for Immunotherapy. JOURNAL OF ONCOLOGY 2019; 2019:4325105. [PMID: 31320901 PMCID: PMC6607732 DOI: 10.1155/2019/4325105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Historically the development of anticancer treatments has been focused on their effect on tumor cells alone. However, newer treatments have shifted attention to targets on immune cells, resulting in dramatic responses. The effect of DNA repair deficiency on the microenvironment remains an area of key interest. Moreover, established therapies such as DNA damaging treatments such as chemotherapy and PARP inhibitors further modify the tumor microenvironment. Here we describe DNA repair pathways in breast cancer and activation of innate immune pathways in DNA repair deficiency, in particular, the STING (STimulator of INterferon Genes) pathway. Breast tumors with DNA repair deficiency are associated with upregulation of immune checkpoints including PD-L1 (Programmed Death Ligand-1) and may represent a target population for single agent or combination immunotherapy treatment.
Collapse
|
49
|
DNA damage accumulation, defective chromatin organization and deficient DNA repair capacity in patients with rheumatoid arthritis. Clin Immunol 2019; 203:28-36. [DOI: 10.1016/j.clim.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
|
50
|
Izumi Y, Nakashima T, Masuda T, Shioya S, Fukuhara K, Yamaguchi K, Sakamoto S, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Suplatast tosilate reduces radiation-induced lung injury in mice through suppression of oxidative stress. Free Radic Biol Med 2019; 136:52-59. [PMID: 30930296 DOI: 10.1016/j.freeradbiomed.2019.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE Although radiotherapy is important in the treatment of malignant thoracic tumors, it has harmful effects on healthy tissues. We previously showed that suplatast tosilate, an anti-allergic agent, scavenged reactive oxygen species (ROS), including hydroxyl radicals. Because ROS-mediated oxidative stress is involved in radiation-induced lung injury, we hypothesized that suplatast tosilate could reduce radiation-induced lung injury via suppression of oxidative stress. METHODS AND MATERIALS Murine alveolar epithelial cells were irradiated with or without a medium containing suplatast tosilate in vitro to determine whether the agent had cytoprotective effects against radiation-induced injury. On the other hand, the thoracic region of C57BL/6 mice was exposed to a single irradiation dose of 15 Gy and the effects of suplatast tosilate were determined by a histological evaluation and assessment of the following parameters: cell number and inflammatory cytokine levels in bronchoalveolar lavage fluid, and oxidative stress markers and hydroxyproline content in pulmonary tissues. RESULTS Suplatast tosilate protected murine alveolar epithelial cells in vitro from irradiation-induced inhibition of cell proliferation, which was accompanied by the suppression of intracellular ROS and DNA double-strand breaks induced by irradiation. Oxidative stress markers and the levels of inflammatory and fibrogenic cytokines were upregulated in irradiated murine lungs in vivo. Suplatast tosilate suppressed both oxidative stress markers and the levels of cytokines, which resulted in reduced pulmonary fibrosis and clearly improved the survival rate after irradiation. CONCLUSIONS These findings demonstrate that suplatast tosilate could be a useful lung-protective agent that acts via suppression of oxidative stress associated with thoracic radiotherapy.
Collapse
Affiliation(s)
- Yusuke Izumi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Sachiko Shioya
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kazuhide Fukuhara
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|