1
|
Ekpruke CD, Borges-Sosa O, Hassel CA, Rousselle D, Dinwiddie L, Babayev M, Bakare A, Silveyra P. Sex-Specific Anti-Inflammatory Effects of a Ketogenic Diet in a Mouse Model of Allergic Airway Inflammation. Int J Mol Sci 2025; 26:3046. [PMID: 40243683 PMCID: PMC11989016 DOI: 10.3390/ijms26073046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Asthma, a chronic inflammatory airway disease, leads to airflow obstruction and exhibits sex differences in prevalence and severity. Immunomodulatory diets, such as the ketogenic diet (high fat, low carbohydrate, moderate protein), may offer complementary benefits in managing airway inflammation. While anti-inflammatory effects of ketogenic diets are documented in cardiovascular diseases, their impact on asthma, especially regarding sex-specific differences, remains unexplored. Few studies on diet and asthma have considered sex as a biological factor. To test the hypothesis that a ketogenic diet affects airway inflammation in a sex-specific manner, we used a mouse allergic airway inflammation model. Male and female C57BL/6J mice (3-4 weeks old, n = 5-6/group) were fed a ketogenic diet or normal chow for 12 weeks. From weeks 7 to 12, mice were challenged intranasally with house dust mite allergens (HDM) 5 days/week to induce airway inflammation. Lung tissue was analyzed 72 h post-exposure using flow cytometry to assess immune cell populations, and data were analyzed with two-way ANOVA. The ketogenic diet increased body weight in allergen-exposed mice, with a greater effect in males than females (p = 0.0512). Significant sex-diet interactions were noted for alveolar macrophages, CD103+, CD11B+, and plasmacytoid dendritic cells (p < 0.05). Eosinophil reductions were observed in males but not females on the ketogenic diet. The diet also increased NKT cells and decreased NK cells in males but not females (p < 0.001). These findings highlight sex-specific effects of ketogenic diets on lung immune responses, with stronger impacts in males.
Collapse
Affiliation(s)
- Carolyn D. Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Omar Borges-Sosa
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | | | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Lyidia Dinwiddie
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Ahmed Bakare
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Ke H, Yang T, Zhang F, Chen C, Wang J, Liu J, An X, Xiong L, He X, Zhang L, Li QX. Preclinical pharmacology characterization of HX009, a novel PD1 x CD47 Bi-specific antibody. Sci Rep 2024; 14:28201. [PMID: 39548213 PMCID: PMC11567960 DOI: 10.1038/s41598-024-79865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Certain immune-checkpoint inhibitors have a narrow therapeutic window (TW) as cancer therapeutics, and engineered dual-/multi-targeting agents could potentially widen the TW to bring true clinical benefits. We report a new rationally-designed bispecific-antibody (BsAb), HX009, simultaneously targeting PD1 and CD47 to improve both the efficacy and safety over the respective single-targeting agents by grafting the extracellular domain of SIRPα onto the parental anti-PD1-monoclonal antibody, HX008. This resulted in an IgG4-based "2 × 2" symmetric structure but with an intentionally-reduced CD47-binding affinity, suggesting a novel candidate cancer immunotherapy. Specifically, HX009 has binding affinity constant of 8.951 × 10-9 M for human PD1 and 2.557 × 10-8 M for human CD47, respectively, where the CD47 binding is significantly weaker as compared to the binding affinity of HX008 to PD1 as well as the binding affinity of SIRPα-Fc to CD47, leading to little binding to RBCs and platelets and is contrasting to many CD47-agents in development. However, HX009 effectively and simultaneously binds to the PD1 and CD47 on PD1+CD47+ T-cells via cis-binding and elicits enhanced T cell activation compared to the parental HX008. HX009 caused little cytokine-release in human peripheral blood mononuclear cells. HX009 cross-species binds to cynomolgus monkey PD1/CD47 but not to rodents, making cynomolgus monkeys the choice of species to investigate the pharmacokinetics (PK) and toxicology of HX009. HX009's anti-tumor activities were confirmed in several humanized preclinical mouse models by determining either its anti-PD1 (humanized hu-CD47-MC38 models) or anti-CD47 (HuT-102 lymphoma CDX and three PDX-AML models) functions, although limited available humanized models have hindered broadly demonstration of enhanced anti-tumor activities contributed from the dual targeting of the BsAb. The expanded DLBCL-PDX trial data suggested that both EBV-status and OX40 expression could potentially be two positive predictors for response to HX009. An intravenous (IV) infusion PK study in cynomolgus monkey revealed its largely vasculature distribution, terminal half-life (T1/2) of ~ 50 h, and dose-proportional exposure without accumulation. The anti-drug antibody (ADA) was observed in all monkeys as expected, affecting the PK parameters of repeated administration. The IV single-dose toxicology study with a 14-day observation revealed a maximum tolerated dose of 150 mg/kg, while the repeated-dose (once weekly for 4 weeks, 5 doses in total) study showed a highest non-severely toxic dose (HNSTD) of 15 mg/kg. The desired preclinical PK and safety profiles, along with its antitumor activity, support HX009's candidacy for its clinical development.
Collapse
Affiliation(s)
- Hang Ke
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | - Tao Yang
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | | | - Cen Chen
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | | | | | - Xiaoyu An
- Crown Bioscience, Inc, Taicang, China
| | | | - Xianfei He
- Shanghai Model Organisms Center (SMOC), Shanghai, China
| | - Lei Zhang
- Hanx Pharmaceuticals, Inc, Hangzhou, China
| | | |
Collapse
|
3
|
Wang YR, Tan YW, Zhang AH, Li YY, Hu JL, Wu JR, Tian ZQ, Ting-Liang, Kang YF. The highly selective and sensitive fluorescence probe for detection of copper (II) ions and its bioimaging in vitro and vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124328. [PMID: 38669986 DOI: 10.1016/j.saa.2024.124328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/28/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
We designed and developed the probe W-3 for detection of Cu2+. The results showed probe can selectively detect Cu2+, accompanied by noticeable color change. The probe can detect the Cu2+ in water samples and drinks based on absorption detection. In addition, the combination of portable test paper and the smartphone platform obtained great convenience for on-site and visual detection of Cu2+, with satisfactory sensitivity and reliability. More importantly, the fluorescence probe W-3 can be used for the detection of Cu2+ in cells and mice. Therefore, the W-3 provided potential chemical tools for detecting Cu2+ in vitro and vivo.
Collapse
Affiliation(s)
- Yi-Ru Wang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Yu-Wei Tan
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Ai-Hong Zhang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Yuan-Yuan Li
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jia-Ling Hu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Ji-Rou Wu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Zhan-Qiang Tian
- Zhangjiakou No. 1 Middle School, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Ting-Liang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China.
| |
Collapse
|
4
|
Zhou H, Mao B, Guo S. Mathematical Modeling of Tumor Growth in Preclinical Mouse Models with Applications in Biomarker Discovery and Drug Mechanism Studies. CANCER RESEARCH COMMUNICATIONS 2024; 4:2267-2281. [PMID: 39099194 PMCID: PMC11360417 DOI: 10.1158/2767-9764.crc-24-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Oncology drug efficacy is evaluated in mouse models by continuously monitoring tumor volumes, which can be mathematically described by growth kinetic models. Although past studies have investigated various growth models, their reliance on small datasets raises concerns about whether their findings are truly representative of tumor growth in diverse mouse models under different vehicle or drug treatments. In this study, we systematically evaluated six parametric models (exponential, exponential quadratic, monomolecular, logistic, Gompertz, and von Bertalanffy) and the semiparametric generalized additive model (GAM) on fitting tumor volume data from more than 30,000 mice in 930 experiments conducted in patient-derived xenografts, cell line-derived xenografts, and syngeneic models. We found that the exponential quadratic model is the best parametric model and can adequately model 87% studies, higher than other models including von Bertalanffy (82%) and Gompertz (80%) models; the latter is often considered the standard growth model. At the mouse group level, 7.5% of growth data could not be fit by any parametric model and were fitted by GAM. We show that endpoint gain integrated in time, a GAM-derived efficacy metric, is equivalent to exponential growth rate, a metric we previously proposed and conveniently calculated by simple algebra. Using five studies on paclitaxel, anti-PD1 antibody, cetuximab, irinotecan, and sorafenib, we showed that exponential and exponential quadratic models achieve similar performance in uncovering drug mechanism and biomarkers. We also compared exponential growth rate-based association analysis and exponential modeling approach in biomarker discovery and found that they complement each other. Modeling methods herein are implemented in an open-source R package freely available at https://github.com/hjzhou988/TuGroMix. SIGNIFICANCE We present a general strategy for mathematically modeling tumor growth in mouse models using data from 30,000 mice and show that modeling and nonmodeling approaches are complementary in biomarker discovery and drug mechanism studies.
Collapse
Affiliation(s)
| | | | - Sheng Guo
- Crown Bioscience Inc., Suzhou, China
| |
Collapse
|
5
|
Xue J, Chen X, An X, Wang J, Zang M, Mao B, Guo S, Yang T, Kumari R, Li QX. An NGS-based assay for accurate detection and quantification of immune gene expression in mouse tumor models. PLoS One 2024; 19:e0303171. [PMID: 38768113 PMCID: PMC11104603 DOI: 10.1371/journal.pone.0303171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer. Here, we introduce a mouse-IO NGS-based (NGSmIO) assay for accurately detecting and quantifying the mRNA expression of 1080 TME related genes in mouse tumor models. The NGSmIO panel was shown to be superior to the commonly used microarray approach by hosting 300 more relevant genes to better characterize various lineage of immune cells, exhibits improved mRNA and protein expression correlation to flow cytometry, shows stronger correlation with mRNA expression than RNAseq with 10x higher sequencing depth, and demonstrates higher sensitivity in measuring low-expressed genes. We describe two studies; firstly, detecting the pharmacodynamic change of interferon-γ expression levels upon anti-PD-1: anti-CD4 combination treatment in MC38 and Hepa 1-6 tumors; and secondly, benchmarking baseline TILs in 14 syngeneic tumors using transcript level expression of lineage specific genes, which demonstrate effective and robust applications of the NGSmIO panel.
Collapse
Affiliation(s)
- Jia Xue
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Xiaobo Chen
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Xiaoyu An
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Jingjing Wang
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Mingfa Zang
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Binchen Mao
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Sheng Guo
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Tao Yang
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Rajendra Kumari
- Crown Bioscience, Inc., San Diego, California, United States of America
| | - Qi-Xiang Li
- Crown Bioscience, Inc., San Diego, California, United States of America
| |
Collapse
|
6
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 PMCID: PMC11781865 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
7
|
Garcia J, Daniels J, Lee Y, Zhu I, Cheng K, Liu Q, Goodman D, Burnett C, Law C, Thienpont C, Alavi J, Azimi C, Montgomery G, Roybal KT, Choi J. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 2024; 626:626-634. [PMID: 38326614 PMCID: PMC11573425 DOI: 10.1038/s41586-024-07018-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.
Collapse
MESH Headings
- Humans
- CARD Signaling Adaptor Proteins/genetics
- CARD Signaling Adaptor Proteins/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cytokines/biosynthesis
- Cytokines/immunology
- Cytokines/metabolism
- Evolution, Molecular
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Immunotherapy, Adoptive/methods
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/therapy
- Mutation
- Phosphatidylinositol 3-Kinases
- Signal Transduction/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Julie Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Moonlight Bio, Seattle, WA, USA
| | - Jay Daniels
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Moonlight Bio, Seattle, WA, USA
| | - Yujin Lee
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qing Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Goodman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Cassandra Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chloë Thienpont
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Josef Alavi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Camillia Azimi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Garrett Montgomery
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, CA, USA.
- UCSF Cell Design Institute, San Francisco, CA, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Carretta M, Thorseth ML, Schina A, Agardy DA, Johansen AZ, Baker KJ, Khan S, Rømer AMA, Fjæstad KY, Linder H, Kuczek DE, Donia M, Grøntved L, Madsen DH. Dissecting tumor microenvironment heterogeneity in syngeneic mouse models: insights on cancer-associated fibroblast phenotypes shaped by infiltrating T cells. Front Immunol 2024; 14:1320614. [PMID: 38259467 PMCID: PMC10800379 DOI: 10.3389/fimmu.2023.1320614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Murine syngeneic tumor models have been used extensively for cancer research for several decades and have been instrumental in driving the discovery and development of cancer immunotherapies. These tumor models are very simplistic cancer models, but recent reports have, however, indicated that the different inoculated cancer cell lines can lead to the formation of unique tumor microenvironments (TMEs). To gain more knowledge from studies based on syngeneic tumor models, it is essential to obtain an in-depth understanding of the cellular and molecular composition of the TME in the different models. Additionally, other parameters that are important for cancer progression, such as collagen content and mechanical tissue stiffness across syngeneic tumor models have not previously been reported. Here, we compare the TME of tumors derived from six common syngeneic tumor models. Using flow cytometry and transcriptomic analyses, we show that strikingly unique TMEs are formed by the different cancer cell lines. The differences are reflected as changes in abundance and phenotype of myeloid, lymphoid, and stromal cells in the tumors. Gene expression analyses support the different cellular composition of the TMEs and indicate that distinct immunosuppressive mechanisms are employed depending on the tumor model. Cancer-associated fibroblasts (CAFs) also acquire very different phenotypes across the tumor models. These differences include differential expression of genes encoding extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and immunosuppressive factors. The gene expression profiles suggest that CAFs can contribute to the formation of an immunosuppressive TME, and flow cytometry analyses show increased PD-L1 expression by CAFs in the immunogenic tumor models, MC38 and CT26. Comparison with CAF subsets identified in other studies shows that CAFs are skewed towards specific subsets depending on the model. In athymic mice lacking tumor-infiltrating cytotoxic T cells, CAFs express lower levels of PD-L1 and lower levels of fibroblast activation markers. Our data underscores that CAFs can be involved in the formation of an immunosuppressive TME.
Collapse
Affiliation(s)
- Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Aimilia Schina
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dennis Alexander Agardy
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Astrid Zedlitz Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Kevin James Baker
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Klaire Yixin Fjæstad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Hannes Linder
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Dorota Ewa Kuczek
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Setsu G, Goto M, Ito K, Taira T, Miyamoto M, Watanabe T, Taniguchi T, Umezaki Y, Nakazawa Y, Uesugi S, Mori K, Horiuchi T, Obuchi W, Minami M, Shimada T, Wada C, Yoshida T, Higuchi S. Highly potent, orally active novel small-molecule HPK1 inhibitor DS21150768 induces anti-tumor responses in multiple syngeneic tumor mouse models. Eur J Pharmacol 2023; 961:176184. [PMID: 37944847 DOI: 10.1016/j.ejphar.2023.176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Augmenting T-cell activity is a promising approach to enhance the efficacy of cancer immunotherapy treatment. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in immune cells and negatively regulates T-cell receptor signaling. It is reported that inhibition of the kinase function of HPK1 results in tumor growth suppression by enhancing cancer immunity. Thus, developing HPK1 inhibitors has attracted considerable attention as a future cancer immunotherapy approach. However, despite recent progress in HPK1 biology and pharmacology, various challenges still remain, such as developing HPK1 inhibitors with favorable pharmacological profiles and identifying tumor characteristics that can be applied to define susceptibility to HPK1 inhibition. Here, we present the identification and pharmacological evaluation of DS21150768, a potent small-molecule HPK1 inhibitor with a novel chemical scaffold. DS21150768 shows remarkable inhibition of HPK1 kinase activity, and in vitro studies demonstrated its potent activity to enhance T-cell function. DS21150768 is orally bioavailable and shows sustained plasma exposure, which leads to enhanced cytokine responses in vivo. We conducted a comparison of the anti-tumor efficacy of DS21150768 alone or in combination with anti-PD-1 antibody in 12 different mouse cancer cell models, and observed that the treatments suppressed tumor growth in multiple models. Furthermore, Gene Set Enrichment Analysis demonstrated significant enrichment of immune-related gene signatures in the tumor models responsive to DS21150768 treatment. Our results provide a path forward for the future development of HPK1 inhibitors and fundamental insights into biomarkers of HPK1-targeted therapy.
Collapse
Affiliation(s)
- Genzui Setsu
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan.
| | - Megumi Goto
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | - Kentaro Ito
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | - Tomoe Taira
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | | | | | | | - Yuma Umezaki
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | | | | | - Kazuki Mori
- Daiichi Sankyo Co., Ltd., Tokyo, 140-8710, Japan
| | | | | | - Masako Minami
- Daiichi Sankyo RD Novare Co., Ltd., Tokyo, 134-8630, Japan
| | | | - Chisa Wada
- Daiichi Sankyo RD Novare Co., Ltd., Tokyo, 134-8630, Japan
| | | | | |
Collapse
|
10
|
Schmid-Siegert E, Qin M, Tian H, Arpat B, Chen B, Xenarios I. Reference genomes for BALB/c Nude and NOD/SCID mouse models. G3 (BETHESDA, MD.) 2023; 13:jkad188. [PMID: 37594081 PMCID: PMC10542179 DOI: 10.1093/g3journal/jkad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Mouse xenograft models play a vital role in tumor studies for research as well as for screening of drugs for the pharmaceutical industry. In particular, models with compromised immunity are favorable to increase the success of transplantation, such as, e.g. NOD/SCID and BALB/c Nude strains. The genomic sequence and alterations of many of these models still remain elusive and might hamper a model's further optimization or proper adapted usage. This can be in respect to treatments (e.g. NOD/SCID sensitivity to radiation), experiments or analysis of derived sequencing data of such models. Here we present the genome assemblies for the NOD/SCID and BALB/c Nude strains to overcome this short-coming for the future and improve our understanding of these models in the process. We highlight as well first insights into observed genomic differences for these models compared to the C57BL/6 reference genome. Genome assemblies for both are close to full-chromosome representations and provided with liftover annotations from the GRCm39 reference genome.
Collapse
Affiliation(s)
- Emanuel Schmid-Siegert
- JSR Life Sciences, NGS-AI CH DivisionRoute de la Corniche 3, 1066 Epalinges, Switzerland
| | - Mengting Qin
- JSR Life Sciences, NGS-AI CN Division, Industrial Park, Suzhou, Jiangsu 215000, P.R. China
| | - Huan Tian
- JSR Life Sciences, NGS-AI CN Division, Industrial Park, Suzhou, Jiangsu 215000, P.R. China
| | - Bulak Arpat
- JSR Life Sciences, NGS-AI CH DivisionRoute de la Corniche 3, 1066 Epalinges, Switzerland
| | - Bonnie Chen
- JSR Life Sciences, NGS-AI CN Division, Industrial Park, Suzhou, Jiangsu 215000, P.R. China
| | - Ioannis Xenarios
- JSR Life Sciences, NGS-AI CH DivisionRoute de la Corniche 3, 1066 Epalinges, Switzerland
| |
Collapse
|
11
|
Abstract
Breakthroughs in cancer treatment with immunotherapeutics have provided long-term patient benefits for many different types of cancer. However, complete response is not achieved in many patients and tumor types, and the mechanisms underlying this lack of response are poorly understood. Despite this, numerous new targets, therapeutics, and drug combinations are being developed and tested in clinical trials. Preclinical models that recapitulate the complex human tumor microenvironment and the interplay between tumor and immune cells within the cancer-immunity cycle are needed to improve our understanding and screen new therapeutics for efficacy and safety/toxicity. Humanized mice, encompassing human tumors and human immune cells engrafted on immunodeficient mice, have been widely used for many years in immuno-oncology, with developments to improve both the humanization and the translational value central to the next generation of models. In this overview, we discuss recent advances in humanized models relevant to immuno-oncology drug discovery, the advantages and limitations of such models, the application of humanized models for efficacy and safety assessments of immunotherapeutics, and the potential opportunities. © 2023 Crown Bioscience. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Gerold Feuer
- Crown Bioscience Inc., San Diego, California, USA
| | | |
Collapse
|
12
|
Ke H, Zhang F, Wang J, Xiong L, An X, Tu X, Chen C, Wang Y, Mao B, Guo S, Ju C, He X, Sun R, Zhang L, O'Connor OA, Li QX. HX009, a novel BsAb dual targeting PD1 x CD47, demonstrates potent anti-lymphoma activity in preclinical models. Sci Rep 2023; 13:5419. [PMID: 37012357 PMCID: PMC10070465 DOI: 10.1038/s41598-023-32547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Both PD1/PD-L1 and CD47 blockades have demonstrated limited activity in most subtypes of NHL save NK/T-cell lymphoma. The hemotoxicity with anti-CD47 agents in the clinic has been speculated to account for their limitations. Herein we describe a first-in-class and rationally designed bispecific antibody (BsAb), HX009, targeting PD1 and CD47 but with weakened CD47 binding, which selectively hones the BsAb for tumor microenvironment through PD1 interaction, potentially reducing toxicity. In vitro characterization confirmed: (1) Both receptor binding/ligand blockade, with lowered CD47 affinity; (2) functional PD1/CD47 blockades by reporter assays; (3) T-cell activation in Staphylococcal-enterotoxin-B-pretreated PBMC and mixed-lymphocyte-reaction. In vivo modeling demonstrated antitumor activity in Raji-B and Karpass-229-T xenograft lymphomas. In the humanized mouse syngeneic A20 B-lymphoma (huCD47-A20) HuGEMM model, which has quadruple knocked-in hPD1xhPD-L1xhCD47xhSIRPα genes and an intact autologous immune-system, a contribution of effect is demonstrated for each targeted biologic (HX008 targeting PD1 and SIRPα-Fc targeting CD47), which is clearly augmented by the dual targeting with HX009. Lastly, the expression of the immune-checkpoints PD-L1/L2 and CD47 seemed co-regulated among a panel of lymphoma-derived-xenografts, where HX009 maybe more effective in those with upregulated CD47. Our data warrants HX009's further clinical development for treating NHLs.
Collapse
Affiliation(s)
- Hang Ke
- Hanx Pharmaceuticals, Inc., Hangzhou, China
| | | | | | | | - Xiaoyu An
- Crown Bioscience, Inc., San Diego, USA
| | | | - Cen Chen
- Hanx Pharmaceuticals, Inc., Hangzhou, China
| | | | | | - Sheng Guo
- Crown Bioscience, Inc., San Diego, USA
| | | | - Xiangfei He
- Shanghai Model Organisms Center, Inc. (SMOC), Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms Center, Inc. (SMOC), Shanghai, China
| | - Lei Zhang
- Hanx Pharmaceuticals, Inc., Hangzhou, China
| | - Owen A O'Connor
- Division of Hematology and Oncology, University of Virginia Cancer Center, University of Virginia, Charlottesville, USA
| | - Qi-Xiang Li
- Hanx Pharmaceuticals, Inc., Hangzhou, China.
| |
Collapse
|
13
|
Rakhilin N, Yang B, Spilker ME, Manzuk LK, Montgomery MK, Shin E, Prashad N, Hwang J, Song Y, Loganzo F, Giddabasappa A, Ram S. Volumetric imaging of optically cleared and fluorescently labeled animal tissue (VIOLA) for quantifying the 3D biodistribution of nanoparticles at cellular resolution in tumor tissue. J Control Release 2023; 354:244-259. [PMID: 36596340 DOI: 10.1016/j.jconrel.2022.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticle (NP) technology holds significant promise to mediate targeted drug delivery to specific organs in the body. Understanding the 3D biodistribution of NPs in heterogeneous environments such as the tumor tissue can provide crucial information on efficacy, safety and potential clinical outcomes. Here we present a novel end-to-end workflow, VIOLA, which makes use of tissue clearing methodology in conjunction with high resolution imaging and advanced 3D image processing to quantify the spatiotemporal 3D biodistribution of fluorescently labeled ACCURIN® NPs. Specifically, we investigate the spatiotemporal biodistribution of NPs in three different murine tumor models (CT26, EMT6, and KPC-GEM) of increasing complexity and translational relevance. We have developed new endpoints to characterize NP biodistribution at multiple length scales. Our observations reveal that the macroscale NP biodistribution is spatially heterogeneous and exhibits a gradient with relatively high accumulation at the tumor periphery that progressively decreases towards the tumor core in all the tumor models. Microscale analysis revealed that NP extravasation from blood vessels increases in a time dependent manner and plateaus at 72 h post injection. Volumetric analysis and pharmacokinetic modeling of NP biodistribution in the vicinity of the blood vessels revealed that the local NP density exhibits a distance dependent spatiotemporal biodistribution which provide insights into the dynamics of NP extravasation in the tumor tissue. Our data represents a comprehensive analysis of NP biodistribution at multiple length scales in different tumor models providing unique insights into their spatiotemporal dynamics. Specifically, our results show that NPs exhibit a dynamic equilibrium with macroscale heterogeneity combined with microscale homogeneity.
Collapse
Affiliation(s)
| | - Bing Yang
- Comparative Medicine, Pfizer Inc., United States
| | - Mary E Spilker
- Medicine Design - Translational Modeling and Simulation, Pfizer Inc., United States
| | | | | | - Eyoung Shin
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Youngho Song
- Oncology Research Unit, Pfizer Inc., United States
| | | | | | - Sripad Ram
- Drug Safety R&D, Pfizer Inc., United States.
| |
Collapse
|
14
|
Grimaldi C, Ibraghimov A, Kiessling A, Rattel B, Ji C, Fuller CL, Brennan FR, Regenass-Lechner F, Shenton J, Price KD, Piché MS, Steeves MA, Prell R, Dudal S, Kronenberg S, Freebern W, Blanset D. Current nonclinical approaches for immune assessments of immuno-oncology biotherapeutics. Drug Discov Today 2023; 28:103440. [PMID: 36375739 DOI: 10.1016/j.drudis.2022.103440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Harnessing the immune system to kill tumors has been revolutionary and, as a result, has had an enormous benefit for patients in extending life and resulting in effective cures in some. However, activation of the immune system can come at the cost of undesirable adverse events such as cytokine release syndrome, immune-related adverse events, on-target/off-tumor toxicity, neurotoxicity and tumor lysis syndrome, which are safety risks that can be challenging to assess non-clinically. This article provides a review of the biology and mechanisms that can result in immune-mediated adverse effects and describes industry approaches using in vitro and in vivo models to aid in the nonclinical safety risk assessments for immune-oncology modalities. Challenges and limitations of knowledge and models are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sherri Dudal
- Roche Pharmaceutical Research and Early Development, United States
| | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, United States
| | | | - Diann Blanset
- Boehringer Ingelheim Pharmaceuticals, Inc., United States.
| |
Collapse
|
15
|
Yu R, Maswikiti EP, Yu Y, Gao L, Ma C, Ma H, Deng X, Wang N, Wang B, Chen H. Advances in the Application of Preclinical Models in Photodynamic Therapy for Tumor: A Narrative Review. Pharmaceutics 2023; 15:pharmaceutics15010197. [PMID: 36678826 PMCID: PMC9867105 DOI: 10.3390/pharmaceutics15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive laser light local treatment that has been utilized in the management of a wide variety of solid tumors. Moreover, the evaluation of efficacy, adverse reactions, the development of new photosensitizers and the latest therapeutic regimens are inseparable from the preliminary exploration in preclinical studies. Therefore, our aim was to better comprehend the characteristics and limitations of these models and to provide a reference for related research. METHODS We searched the databases, including PubMed, Web of Science and Scopus for the past 25 years of original research articles on the feasibility of PDT in tumor treatment based on preclinical experiments and animal models. We provided insights into inclusion and exclusion criteria and ultimately selected 40 articles for data synthesis. RESULTS After summarizing and comparing the methods and results of these studies, the experimental model selection map was drawn. There are 7 main preclinical models, which are used for different research objectives according to their characteristics. CONCLUSIONS Based on this narrative review, preclinical experimental models are crucial to the development and promotion of PDT for tumors. The traditional animal models have some limitations, and the emergence of organoids may be a promising new insight.
Collapse
Affiliation(s)
- Rong Yu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | | | - Yang Yu
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Lei Gao
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Chenhui Ma
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Huanhuan Ma
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Xiaobo Deng
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Na Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Bofang Wang
- The Second Clinical College of Medicine, Lanzhou University, Lanzhou 730030, China
| | - Hao Chen
- Department of Surgical Oncology, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumor of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-0931-5190550
| |
Collapse
|
16
|
Xu X, Kumari R, Zhou J, Chen J, Mao B, Wang J, Zheng M, Tu X, An X, Chen X, Zhang L, Tian X, Wang H, Dong X, Bao Z, Guo S, Ouyang X, Shang L, Wang F, Yan X, Zhang R, Vries RGJ, Clevers H, Li QX. A living biobank of matched pairs of patient-derived xenografts and organoids for cancer pharmacology. PLoS One 2023; 18:e0279821. [PMID: 36602988 PMCID: PMC9815646 DOI: 10.1371/journal.pone.0279821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Patient-derived tumor xenograft (PDX)/organoid (PDO), driven by cancer stem cells (CSC), are considered the most predictive models for translational oncology. Large PDX collections reflective of patient populations have been created and used extensively to test various investigational therapies, including population-trials as surrogate subjects in vivo. PDOs are recognized as in vitro surrogates for patients amenable for high-throughput screening (HTS). We have built a biobank of carcinoma PDX-derived organoids (PDXOs) by converting an existing PDX library and confirmed high degree of similarities between PDXOs and parental PDXs in genomics, histopathology and pharmacology, suggesting "biological equivalence or interchangeability" between the two. Here we demonstrate the applications of PDXO biobank for HTS "matrix" screening for both lead compounds and indications, immune cell co-cultures for immune-therapies and engineering enables in vitro/in vivo imaging. This large biobank of >550 matched pairs of PDXs/PDXOs across different cancers could become powerful tools for the future cancer drug discovery.
Collapse
Affiliation(s)
- Xiaoxi Xu
- Crown Bioscience Inc., Beijing, China
| | - Rajendra Kumari
- Crown Bioscience Inc., San Diego, California, United States of America
| | - Jun Zhou
- Crown Bioscience Inc., Taicang City, Jiangsu, China
| | - Jing Chen
- Crown Bioscience Inc., San Diego, California, United States of America
| | - Binchen Mao
- Crown Bioscience Inc., Taicang City, Jiangsu, China
| | | | | | - Xiaolong Tu
- Crown Bioscience Inc., Taicang City, Jiangsu, China
| | - Xiaoyu An
- Crown Bioscience Inc., San Diego, California, United States of America
| | | | | | - Xiaoli Tian
- Shanghai Yihao Biological Technology, Xuhui District, Shanghai, China
| | - Haojie Wang
- Suzhou NeoLogics Bioscience Co, LTD, Suzhou, China
| | - Xin Dong
- Suzhou NeoLogics Bioscience Co, LTD, Suzhou, China
| | | | - Sheng Guo
- Crown Bioscience Inc., Taicang City, Jiangsu, China
| | | | | | - Fei Wang
- Crown Bioscience Inc., Taicang City, Jiangsu, China
| | - Xuefei Yan
- Crown Bioscience Inc., Taicang City, Jiangsu, China
| | - Rui Zhang
- Crown Bioscience Inc., Taicang City, Jiangsu, China
| | - Robert G. J. Vries
- Hubrecht Organoid Technology (HUB), Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Qi-Xiang Li
- Crown Bioscience Inc., San Diego, California, United States of America
| |
Collapse
|
17
|
Fischer D, Fluegen G, Garcia P, Ghaffari-Tabrizi-Wizsy N, Gribaldo L, Huang RYJ, Rasche V, Ribatti D, Rousset X, Pinto MT, Viallet J, Wang Y, Schneider-Stock R. The CAM Model-Q&A with Experts. Cancers (Basel) 2022; 15:cancers15010191. [PMID: 36612187 PMCID: PMC9818221 DOI: 10.3390/cancers15010191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The chick chorioallantoic membrane (CAM), as an extraembryonic tissue layer generated by the fusion of the chorion with the vascularized allantoic membrane, is easily accessible for manipulation. Indeed, grafting tumor cells on the CAM lets xenografts/ovografts develop in a few days for further investigations. Thus, the CAM model represents an alternative test system that is a simple, fast, and low-cost tool to study tumor growth, drug response, or angiogenesis in vivo. Recently, a new era for the CAM model in immune-oncology-based drug discovery has been opened up. Although there are many advantages offering extraordinary and unique applications in cancer research, it has also disadvantages and limitations. This review will discuss the pros and cons with experts in the field.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Georg Fluegen
- Department of General, Visceral, Thoracic and Pediatric Surgery (A), Medical Faculty, Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Paul Garcia
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Nassim Ghaffari-Tabrizi-Wizsy
- SFL Chicken CAM Lab, Department of Immunology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Laura Gribaldo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, 89073 Ulm, Germany
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Marta Texeira Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Jean Viallet
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 94054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8526-069
| |
Collapse
|
18
|
Kumari R, Xu X, Li HQX. Translational and Clinical Relevance of PDX-Derived Organoid Models in Oncology Drug Discovery and Development. Curr Protoc 2022; 2:e431. [PMID: 35789132 DOI: 10.1002/cpz1.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patient-derived cancer disease models conserve many key features of the original human cancers, potentially allowing higher predictive power than traditional cell line models. Accordingly, in vivo patient-derived xenografts (PDX) are frequently utilized in preclinical and translational oncology studies as patient surrogates for population-based screens ("mouse clinical trials"), for which large PDX biobanks have been generated over the last decade from various cancer types. In vitro patient-derived organoids (PDO) have recently emerged as a disruptive technology, enabling early "patient in a dish" clinical trials. Like PDX, PDOs retain the histology/genomics of the original tumor and are highly predictive of the clinical response. Organoids derived from adult stem cells (ASC) in patient tissue can function as mini-organs. They have greater advantages over other 3D in vitro systems, making them highly predictive, reliable, and consistent in vitro models. Large biobanks enable the adoption of organoids in early drug screening and patient selection. PDX biobanks, as a source of human material, have been used to create 3D in vitro screens, but with limitations. However, creating organoids from the ASCs residing in PDXs has been successfully used as a rapid and cost-effective way to enable higher throughput in vitro screens and generate matched in vitro/in vivo model pairs that retain genomic, histopathological, and pharmacology profiles. This overview summarizes the generation of matched in vitro/in vivo models from patient material, the advantages over other systems, and the applications to drug discovery. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Xiaoxi Xu
- Crown Bioscience Inc., Beijing, China
| | | |
Collapse
|
19
|
Qian W, Chen X, Sheng Y, Zhang L, Wang J, Song Z, Li QX, Guo S. Tumor Purity in Preclinical Mouse Tumor Models. CANCER RESEARCH COMMUNICATIONS 2022; 2:353-365. [PMID: 36875715 PMCID: PMC9981214 DOI: 10.1158/2767-9764.crc-21-0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor biology is determined not only by immortal cancer cells but also by the tumor microenvironment consisting of noncancerous cells and extracellular matrix, together they dictate the pathogenesis and response to treatments. Tumor purity is the proportion of cancer cells in a tumor. It is a fundamental property of cancer and is associated with many clinical features and outcomes. Here we report the first systematic study of tumor purity in patient-derived xenograft (PDX) and syngeneic tumor models using next-generation sequencing data from >9,000 tumors. We found that tumor purity in PDX models is cancer specific and mimics patient tumors, with variation in stromal content and immune infiltration influenced by immune systems of host mice. After the initial engraftment, human stroma in a PDX tumor is quickly replaced by mouse stroma, and tumor purity then stays stable in subsequent transplantations and increases only slightly by passage. Similarly, in syngeneic mouse cancer cell line models, tumor purity also turns out to be an intrinsic property with model and cancer specificities. Computational and pathology analysis confirmed the impact on tumor purity by the diverse stromal and immune profiles. Our study deepens the understanding of mouse tumor models, which will enable their better and novel uses in developing cancer therapeutics, especially ones targeting tumor microenvironment. Significance PDX models are an ideal experimental system to study tumor purity because of its distinct separation of human tumor cells and mouse stromal and immune cells. This study provides a comprehensive view of tumor purity in 27 cancers in PDX models. It also investigates tumor purity in 19 syngeneic models based on unambiguously identified somatic mutations. It will facilitate tumor microenvironment research and drug development in mouse tumor models.
Collapse
Affiliation(s)
- Wubin Qian
- Crown Bioscience Inc., Suzhou, P.R. China
| | | | | | | | | | | | - Qi-Xiang Li
- Crown Bioscience, Inc., Santa Clara, California
| | - Sheng Guo
- Crown Bioscience Inc., Suzhou, P.R. China
| |
Collapse
|
20
|
Different syngeneic tumors show distinctive intrinsic tumor-immunity and mechanisms of actions (MOA) of anti-PD-1 treatment. Sci Rep 2022; 12:3278. [PMID: 35228603 PMCID: PMC8885837 DOI: 10.1038/s41598-022-07153-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Cancers are immunologically heterogeneous. A range of immunotherapies target abnormal tumor immunity via different mechanisms of actions (MOAs), particularly various tumor-infiltrate leukocytes (TILs). We modeled loss of function (LOF) in four common anti-PD-1 antibody-responsive syngeneic tumors, MC38, Hepa1-6, CT-26 and EMT-6, by systematical depleting a series of TIL lineages to explore the mechanisms of tumor immunity and treatment. CD8+-T-cells, CD4+-T-cells, Treg, NK cells and macrophages were individually depleted through either direct administration of anti-marker antibodies/reagents or using DTR (diphtheria toxin receptor) knock-in mice, for some syngeneic tumors, where specific subsets were depleted following diphtheria toxin (DT) administration. These LOF experiments revealed distinctive intrinsic tumor immunity and thus different MOAs in their responses to anti-PD-1 antibody among different syngeneic tumors. Specifically, the intrinsic tumor immunity and the associated anti-PD-1 MOA were predominately driven by CD8+ cytotoxic TILs (CTL) in all syngeneic tumors, excluding Hepa1-6 where CD4+ Teff TILs played a key role. TIL-Treg also played a critical role in supporting tumor growth in all four syngeneic models as well as M2-macrophages. Pathway analysis using pharmacodynamic readouts of immuno-genomics and proteomics on MC38 and Hepa1-6 also revealed defined, but distinctive, immune pathways of activation and suppression between the two, closely associated with the efficacy and consistent with TIL-pharmacodynamic readouts. Understanding tumor immune-pathogenesis and treatment MOAs in the different syngeneic animal models, not only assists the selection of the right model for evaluating new immunotherapy of a given MOA, but also can potentially help to understand the potential disease mechanisms and strategize optimal immune-therapies in patients.
Collapse
|
21
|
Mahdevar E, Kefayat A, Safavi A, Behnia A, Hejazi SH, Javid A, Ghahremani F. Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Sci Rep 2021; 11:23121. [PMID: 34848739 PMCID: PMC8632969 DOI: 10.1038/s41598-021-01770-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
In our previous study, immunoinformatic tools were used to design a novel multiepitope cancer vaccine based on the most immunodominant regions of BORIS cancer-testis antigen. The final vaccine construct was an immunogenic, non-allergenic, and stable protein consisted of multiple cytotoxic T lymphocytes epitopes, IFN-γ inducing epitopes, and B cell epitopes according to bioinformatic analyzes. Herein, the DNA sequence of the final vaccine construct was placed into the pcDNA3.1 vector as a DNA vaccine (pcDNA3.1-VAC). Also, the recombinant multiepitope peptide vaccine (MPV) was produced by a transfected BL21 E. coli strain using a recombinant pET-28a vector and then, purified and screened by Fast protein liquid chromatography technique (FPLC) and Western blot, respectively. The anti-tumor effects of prophylactic co-immunization with these DNA and protein cancer vaccines were evaluated in the metastatic non-immunogenic 4T1 mammary carcinoma in BALB/c mice. Co-immunization with the pcDNA3.1-VAC and MPV significantly (P < 0.001) increased the serum levels of the MPV-specific IgG total, IgG2a, and IgG1. The splenocytes of co-immunized mice exhibited a significantly higher efficacy to produce interleukin-4 and interferon-γ and proliferation in response to MPV in comparison with the control. The prophylactic co-immunization regime caused significant breast tumors' growth inhibition, tumors' weight decrease, inhibition of metastasis formation, and enlarging tumor-bearing mice survival time, without any considerable side effects. Taking together, this cancer vaccine can evoke strong immune response against breast tumor and inhibits its growth and metastasis.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/chemistry
- Cancer Vaccines/immunology
- Cell Line
- Cell Line, Tumor
- Cell Proliferation
- Chromatography, Liquid
- Computational Biology
- Computer Simulation
- DNA-Binding Proteins/biosynthesis
- Disease Models, Animal
- Epitopes
- Female
- Immunity, Humoral
- Interferon-gamma/chemistry
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/prevention & control
- Mammary Neoplasms, Animal/therapy
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Neoplasm Metastasis
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, Subunit
Collapse
Affiliation(s)
- Elham Mahdevar
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhossein Behnia
- Department of Biology, Faculty of the Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amaneh Javid
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, School of Paramedicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
22
|
Preclinical pharmacology modeling of chimeric antigen receptor T therapies. Curr Opin Pharmacol 2021; 61:49-61. [PMID: 34619442 DOI: 10.1016/j.coph.2021.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have largely been successful in treating hematological malignancies in the clinic but have not been as effective in treating solid tumors, in part, owing to poor access and the immunosuppressive tumor microenvironment. In addition, CAR-T therapy can cause potentially life-threatening side effects, including cytokine release syndrome and neurotoxicity. Current preclinical testing of CAR-T therapy efficacy is typically performed in mouse tumor models, which often fails to predict toxicity. Recent developments in humanized models and transgenic mice as well as in vitro three-dimensional organoids in early development and nonhuman primate models are being adopted for CAR-T cell efficacy and toxicity assessment. However, because no single model perfectly recapitulates the human immune system and tumor microenvironment, careful model selection based on their respective pros and cons is crucial for adequate evaluation of different CAR-T treatments, so that their clinical development can be better supported.
Collapse
|
23
|
Aicher TD, Van Huis CA, Hurd AR, Skalitzky DJ, Taylor CB, Beleh OM, Glick G, Toogood PL, Yang B, Zheng T, Huo C, Gao J, Qiao C, Tian X, Zhang J, Demock K, Hao LY, Lesch CA, Morgan RW, Moisan J, Wang Y, Scatina J, Paulos CM, Zou W, Carter LL, Hu X. Discovery of LYC-55716: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ) Agonist for Use in Treating Cancer. J Med Chem 2021; 64:13410-13428. [PMID: 34499493 DOI: 10.1021/acs.jmedchem.1c00731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retinoic acid receptor-related orphan receptor γ (RORc, RORγ, or NR1F3) is the nuclear receptor master transcription factor that drives the function and development of IL-17-producing T helper cells (Th17), cytotoxic T cells (Tc17), and subsets of innate lymphoid cells. Activation of RORγ+ T cells in the tumor microenvironment is hypothesized to render immune infiltrates more effective at countering tumor growth. To test this hypothesis, a family of benzoxazines was optimized to provide LYC-55716 (37c), a potent, selective, and orally bioavailable small-molecule RORγ agonist. LYC-55716 decreases tumor growth and enhances survival in preclinical tumor models and was nominated as a clinical development candidate for evaluation in patients with solid tumors.
Collapse
Affiliation(s)
- Thomas D Aicher
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Chad A Van Huis
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Alexander R Hurd
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Donald J Skalitzky
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Clarke B Taylor
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Omar M Beleh
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Gary Glick
- Chief Scientific Officer, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Peter L Toogood
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Bing Yang
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Tao Zheng
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Changxin Huo
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Jie Gao
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Chenxi Qiao
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Xiaolong Tian
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Junping Zhang
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Kellie Demock
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Ling-Yang Hao
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Charles A Lesch
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Rodney W Morgan
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Jacques Moisan
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Yahong Wang
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - JoAnn Scatina
- Department of Preclinical Development, Lycera Corp., 620 Germantown Pike, Plymouth Meeting, Pennsylvania 19462, United States
| | - Chrystal M Paulos
- Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, MSC 509, Room 203, Charleston, South Carolina 29425, United States
| | - Weiping Zou
- School of Medicine, Department of Surgery, University of Michigan, 2101 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Laura L Carter
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Xiao Hu
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| |
Collapse
|
24
|
Mahdevar E, Safavi A, Abiri A, Kefayat A, Hejazi SH, Miresmaeili SM, Iranpur Mobarakeh V. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J Biomol Struct Dyn 2021; 40:6363-6380. [PMID: 33599191 DOI: 10.1080/07391102.2021.1883111] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, cancer immunotherapy has gained lots of attention to replace the current chemoradiation approaches and multi-epitope cancer vaccines are manifesting as the next generation of cancer immunotherapy. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a novel multi-epitope vaccine against breast cancer. The most immunogenic regions of the BORIS cancer-testis antigen were selected according to the binding affinity to MHC-I and II molecules as well as containing multiple cytotoxic T lymphocyte (CTL) epitopes by multiple immunoinformatics servers. The selected regions were linked together by GPGPG linker. Also, a T helper epitope (PADRE) and the TLR-4/MD-2 agonist (L7/L12 ribosomal protein from mycobacterium) were incorporated by A(EAAAK)3A linker to form the final vaccine construct. Then, its physicochemical properties, cleavage sites, TAP transport efficiency, B cell epitopes, IFN-γ inducing epitopes and population coverage were predicted. The final vaccine construct was reverse translated, codon-optimized and inserted into pcDNA3.1 to form the DNA vaccine. The final vaccine construct was a stable, immunogenic and non-allergenic protein that contained numerous CTL epitopes, IFN-γ inducing epitopes and several linear and conformational B cell epitopes. Also, the final vaccine construct formed stable and significant interactions with TLR-4/MD-2 complex according to molecular docking and dynamics simulations. Moreover, its world population coverage for HLA-I and HLA-II were about 93% and 96%, respectively. Taking together, these preliminary results can be used as an appropriate platform for further experimental investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Miresmaeili
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | | |
Collapse
|
25
|
Zhang J, Huang Y, Xi G, Zhang F. HX008: a humanized PD-1 blocking antibody with potent antitumor activity and superior pharmacologic properties. MAbs 2021; 12:1724751. [PMID: 32106752 PMCID: PMC7153830 DOI: 10.1080/19420862.2020.1724751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Through reactivating tumor-infiltrating lymphocytes, therapeutics targeting programmed cell death protein 1 (PD-1) demonstrate impressive clinical efficacy in the treatment of multiple cancers. In this report, we characterize HX008, a humanized IgG4S228P anti-PD-1 monoclonal antibody with an engineered Fc domain, in a series of in vitro assays and in vivo studies. In vitro, HX008 binds to human PD-1 with high affinity and potently suppresses the interaction of PD-1 with PD-L1 and PD-L2. The lack of detectable binding to complement C1q and Fc gamma receptor III-a (FcγRIIIa) suggested that HX008 maintained reduced antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. A comparable enhancement of cytokine production and NFAT-driven luciferase expression in cell-based assays confirmed that HX008 could promote T-cell function as effectively as Nivolumab. In vivo antitumor activity studies were carried out within two special tumor models: 1) the MiXeno model with an adoptive transfer of human peripheral blood mononuclear cells into HCC827 xenograft mice; and 2) HuGEMM with human PD-1 gene knock-in syngeneic MC38-bearing mice. In both models, HX008 significantly inhibits tumor growth and shows an effective antitumor response comparable to approved anti-PD-1 drugs. Furthermore, in a pharmacokinetics study performed in cynomolgus monkeys, HX008 induced no immune-related adverse events when administered at 10 mg/kg. Although some anti-drug antibody effects were observed in the primate PK study, the safety and favorable pharmacokinetics demonstrated in human clinical trials validate HX008 as a suitable candidate for cancer immunotherapy. Taken together, our studies provide a fairly thorough characterization of HX008 and strong support for its further clinical research and application.
Collapse
Affiliation(s)
- Jibin Zhang
- School of Pharmaceutical Science, Wuhan University, Wuhan, China.,Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| | - Ying Huang
- Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| | - Gan Xi
- Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| | - Faming Zhang
- School of Pharmaceutical Science, Wuhan University, Wuhan, China.,Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| |
Collapse
|
26
|
Chen JLY, Pan CK, Huang YS, Tsai CY, Wang CW, Lin YL, Kuo SH, Shieh MJ. Evaluation of antitumor immunity by a combination treatment of high-dose irradiation, anti-PDL1, and anti-angiogenic therapy in murine lung tumors. Cancer Immunol Immunother 2021; 70:391-404. [PMID: 32761424 PMCID: PMC10991177 DOI: 10.1007/s00262-020-02690-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/31/2020] [Indexed: 12/17/2022]
Abstract
C57BL/6 mice implanted in the flank with murine Lewis lung carcinoma cells were randomized into control, anti-angiogenic, anti-PD-L1, radiotherapy (RT), RT + anti-angiogenic, RT + anti-PD-L1, and RT + anti-PD-L1 + anti-angiogenic therapy groups. Immune response and immunophenotyping were determined by flow cytometry. Vasculature analysis after RT and anti-angiogenic therapy was assessed by quantified power Doppler sonography. Antitumor response, survival, and rechallenged tumor growth were evaluated. RT increased PD-L1 expression on CD8+ T, CD4+ T, dendritic, myeloid-derived suppressor cells (MDSCs), and tumor cells and increased PD-1 expression on CD8+ and CD4+ T cells. Anti-angiogenic therapy insignificantly decreased the RT-induced PD-1 expression on CD8+ and CD4+ T cells, implying a weak reversal of the immune-suppressive environment. Transient vessel collapse was observed within days after RT, and blood flow recovered at 1 week after RT. RT + anti-PD-L1 suppressed the tumor growth, improved survival, and prolonged immune memory capable of protecting against tumor recurrence, evidenced by local accumulation of CD8+ T cells and reduction in MDSCs in microenvironment. Similar and more prominent effects were observed when anti-VEGF was added to RT + anti-PDL1 therapies, implying an additive, rather than synergistic, antitumor immunity. Phenotypic analyses revealed that anti-cancer treatments increased the proportion of effector memory T cells in TILs and splenocytes, and RT, alone or in combination with other treatments, further increased the proportion of central memory T cells in splenocytes. These results provide evidence on operating the immunosuppressive tumor environment and offer insights into the design of the new combination treatment.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, No. 7, Chung-Shan S. Road, Taipei, 100, Taiwan
| | - Yu-Sen Huang
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yi Tsai
- Department of Medical Research, National Taiwan University Hospital, No. 7, Chung-Shan S. Road, Taipei, 100, Taiwan
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Wei Wang
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, No. 7, Chung-Shan S. Road, Taipei, 100, Taiwan.
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Kim JH, Kim YS, Kim TI, Li W, Mun JG, Jeon HD, Kee JY, Choi JG, Chung HS. Unripe Black Raspberry ( Rubus coreanus Miquel) Extract and Its Constitute, Ellagic Acid Induces T Cell Activation and Antitumor Immunity by Blocking PD-1/PD-L1 Interaction. Foods 2020; 9:foods9111590. [PMID: 33147777 PMCID: PMC7693366 DOI: 10.3390/foods9111590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Rubus coreanus Miquel (R. coreanus) is a unripen fruit of black raspberry native to eastern Asia. It is used as traditional oriental medicine and supplementary foods for centuries. Previous studies have shown that the R. coreanus extract (RCE) and its main constitute ellagic acid possess diverse biological activities. However, the effects of RCE on antitumor immunity and T cell function were not fully understood. The present study describes the anti-tumor effect of RCE in humanized PD-1 mice by blocking PD-1/PD-L1 interaction. Competitive enzyme-linked immunosorbent assay (ELISA) and pull down assay were performed to elucidate the binding properties of RCE in vitro. Cellular PD-1/PD-L1 blockade activities were measured by T cell receptor (TCR)-induced nuclear factor of activated T cells-luciferase activity in co-cultured cell models with PD-1/NFAT Jurkat and PD-L1/aAPC CHO-K1 cells. The in vivo efficacy of RCE was confirmed in humanized PD-1 mice bearing MC38 colorectal tumor. RCE and ellagic acid dose-dependently block the binding of PD-1 to PD-L1. Moreover, oral administration of RCE showed the potent anti-tumor activity similar to anti-PD-1 antibody. The present study suggests that RCE possesses potent anti-tumor effect via PD-1/PD-L1 blockade, and ellagic acid is the main compound in RCE. Thus, we provide new aspects of RCE as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Ji Hye Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (T.I.K.); (W.L.)
| | - Young Soo Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (T.I.K.); (W.L.)
| | - Tae In Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (T.I.K.); (W.L.)
| | - Wei Li
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (T.I.K.); (W.L.)
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (J.-G.M.); (H.D.J.); (J.-Y.K.)
| | - Hee Dong Jeon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (J.-G.M.); (H.D.J.); (J.-Y.K.)
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (J.-G.M.); (H.D.J.); (J.-Y.K.)
| | - Jang-Gi Choi
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (T.I.K.); (W.L.)
- Correspondence: (J.-G.C.); (H.-S.C.); Tel.: +82-53-940-3865 (J.-G.C.); +82-53-940-3875 (H.-S.C.)
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Korea; (J.H.K.); (Y.S.K.); (T.I.K.); (W.L.)
- Correspondence: (J.-G.C.); (H.-S.C.); Tel.: +82-53-940-3865 (J.-G.C.); +82-53-940-3875 (H.-S.C.)
| |
Collapse
|
28
|
Chen X, Qian W, Song Z, Li QX, Guo S. Authentication, characterization and contamination detection of cell lines, xenografts and organoids by barcode deep NGS sequencing. NAR Genom Bioinform 2020; 2:lqaa060. [PMID: 33575611 PMCID: PMC7671372 DOI: 10.1093/nargab/lqaa060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Misidentification and contamination of biobank samples (e.g. cell lines) have plagued biomedical research. Short tandem repeat (STR) and single-nucleotide polymorphism assays are widely used to authenticate biosamples and detect contamination, but with insufficient sensitivity at 5–10% and 3–5%, respectively. Here, we describe a deep NGS-based method with significantly higher sensitivity (≤1%). It can be used to authenticate human and mouse cell lines, xenografts and organoids. It can also reliably identify and quantify contamination of human cell line samples, contaminated with only small amount of other cell samples; detect and quantify species-specific components in human–mouse mixed samples (e.g. xenografts) with 0.1% sensitivity; detect mycoplasma contamination; and infer population structure and gender of human samples. By adopting DNA barcoding technology, we are able to profile 100–200 samples in a single run at per-sample cost comparable to conventional STR assays, providing a truly high-throughput and low-cost assay for building and maintaining high-quality biobanks.
Collapse
Affiliation(s)
- Xiaobo Chen
- Crown Bioscience, Inc., 218 Xinghu Road, Suzhou, Jiangsu 215400, China
| | - Wubin Qian
- Crown Bioscience, Inc., 218 Xinghu Road, Suzhou, Jiangsu 215400, China
| | - Zhenzhen Song
- Crown Bioscience, Inc., 218 Xinghu Road, Suzhou, Jiangsu 215400, China
| | - Qi-Xiang Li
- Crown Bioscience, Inc., 16550 W Bernardo Dr, Building 5, San Diego, CA 92127, USA
| | - Sheng Guo
- Crown Bioscience, Inc., 218 Xinghu Road, Suzhou, Jiangsu 215400, China
| |
Collapse
|
29
|
Younis MA, Khalil IA, Harashima H. Gene Therapy for Hepatocellular Carcinoma: Highlighting the Journey from Theory to Clinical Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahmoud A. Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
- Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Ikramy A. Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
- Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
| |
Collapse
|
30
|
Taylor MA, Hughes AM, Walton J, Coenen-Stass AML, Magiera L, Mooney L, Bell S, Staniszewska AD, Sandin LC, Barry ST, Watkins A, Carnevalli LS, Hardaker EL. Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery. J Immunother Cancer 2019; 7:328. [PMID: 31779705 PMCID: PMC6883640 DOI: 10.1186/s40425-019-0794-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/30/2019] [Indexed: 02/02/2023] Open
Abstract
Background The ability to modulate immune-inhibitory pathways using checkpoint blockade antibodies such as αPD-1, αPD-L1, and αCTLA-4 represents a significant breakthrough in cancer therapy in recent years. This has driven interest in identifying small-molecule-immunotherapy combinations to increase the proportion of responses. Murine syngeneic models, which have a functional immune system, represent an essential tool for pre-clinical evaluation of new immunotherapies. However, immune response varies widely between models and the translational relevance of each model is not fully understood, making selection of an appropriate pre-clinical model for drug target validation challenging. Methods Using flow cytometry, O-link protein analysis, RT-PCR, and RNAseq we have characterized kinetic changes in immune-cell populations over the course of tumor development in commonly used syngeneic models. Results This longitudinal profiling of syngeneic models enables pharmacodynamic time point selection within each model, dependent on the immune population of interest. Additionally, we have characterized the changes in immune populations in each of these models after treatment with the combination of α-PD-L1 and α-CTLA-4 antibodies, enabling benchmarking to known immune modulating treatments within each model. Conclusions Taken together, this dataset will provide a framework for characterization and enable the selection of the optimal models for immunotherapy combinations and generate potential biomarkers for clinical evaluation in identifying responders and non-responders to immunotherapy combinations.
Collapse
Affiliation(s)
- Molly A Taylor
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK.
| | - Adina M Hughes
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Josephine Walton
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Anna M L Coenen-Stass
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Lukasz Magiera
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Lorraine Mooney
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK.,Present Address: Alderley Park Limited, Preclinical Services, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Sigourney Bell
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Anna D Staniszewska
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Linda C Sandin
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Simon T Barry
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Amanda Watkins
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Larissa S Carnevalli
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| | - Elizabeth L Hardaker
- Oncology R&D, Research and Early Development, Bioscience, AstraZeneca, Francis Crick Ave, Cambridge, CB2 0SL, UK
| |
Collapse
|
31
|
Guo S, Jiang X, Mao B, Li QX. The design, analysis and application of mouse clinical trials in oncology drug development. BMC Cancer 2019; 19:718. [PMID: 31331301 PMCID: PMC6643318 DOI: 10.1186/s12885-019-5907-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background Mouse clinical trials (MCTs) are becoming wildly used in pre-clinical oncology drug development, but a statistical framework is yet to be developed. In this study, we establish such as framework and provide general guidelines on the design, analysis and application of MCTs. Methods We systematically analyzed tumor growth data from a large collection of PDX, CDX and syngeneic mouse tumor models to evaluate multiple efficacy end points, and to introduce statistical methods for modeling MCTs. Results We established empirical quantitative relationships between mouse number and measurement accuracy for categorical and continuous efficacy endpoints, and showed that more mice are needed to achieve given accuracy for syngeneic models than for PDXs and CDXs. There is considerable disagreement between methods on calling drug responses as objective response. We then introduced linear mixed models (LMMs) to describe MCTs as clustered longitudinal studies, which explicitly model growth and drug response heterogeneities across mouse models and among mice within a mouse model. Case studies were used to demonstrate the advantages of LMMs in discovering biomarkers and exploring drug’s mechanisms of action. We introduced additive frailty models to perform survival analysis on MCTs, which more accurately estimate hazard ratios by modeling the clustered mouse population. We performed computational simulations for LMMs and frailty models to generate statistical power curves, and showed that power is close for designs with similar total number of mice. Finally, we showed that MCTs can explain discrepant results in clinical trials. Conclusions Methods proposed in this study can make the design and analysis of MCTs more rational, flexible and powerful, make MCTs a better tool in oncology research and drug development. Electronic supplementary material The online version of this article (10.1186/s12885-019-5907-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Guo
- Crown Bioscience Inc., Suzhou Industrial Park, 218 Xinghu Street, Jiangsu, 215028, China.
| | - Xiaoqian Jiang
- Crown Bioscience Inc., Suzhou Industrial Park, 218 Xinghu Street, Jiangsu, 215028, China
| | - Binchen Mao
- Crown Bioscience Inc., Suzhou Industrial Park, 218 Xinghu Street, Jiangsu, 215028, China
| | - Qi-Xiang Li
- Crown Bioscience, Inc, 3375 Scott Blvd, Suite 108, Santa Clara, CA, 95054, USA. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
32
|
Ireson CR, Alavijeh MS, Palmer AM, Fowler ER, Jones HJ. The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer 2019; 121:101-108. [PMID: 31231121 PMCID: PMC6738037 DOI: 10.1038/s41416-019-0495-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our understanding of cancer biology has increased substantially over the past 30 years. Despite this, and an increasing pharmaceutical company expenditure on research and development, the approval of novel oncology drugs during the past decade continues to be modest. In addition, the attrition of agents during clinical development remains high. This attrition can be attributed, at least in part, to the clinical development being underpinned by the demonstration of predictable efficacy in experimental models of human tumours. This review will focus on the range of models available for the discovery and development of anticancer drugs, from traditional subcutaneous injection of tumour cell lines to mice genetically engineered to spontaneously give rise to tumours. It will consider the best time to use the models, along with practical applications and shortcomings. Finally, and most importantly, it will describe how these models reflect the underlying cancer biology and how well they predict efficacy in the clinic. Developing a line of sight to the clinic early in a drug discovery project provides clear benefit, as it helps to guide the selection of appropriate preclinical models and facilitates the investigation of relevant biomarkers.
Collapse
Affiliation(s)
| | - Mo S Alavijeh
- Pharmidex Pharmaceutical Services, 14 Hanover Street, London, W1S 1YH, UK
| | - Alan M Palmer
- Reading School of Pharmacy, Whiteknights, Reading, RG6 6A, UK
| | - Emily R Fowler
- Pharmidex Pharmaceutical Services, 14 Hanover Street, London, W1S 1YH, UK.,Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, Scotland, UK
| | | |
Collapse
|
33
|
Bargon R, Bruenke J, Carli A, Fabritius M, Goel R, Goswami K, Graf P, Groff H, Grupp T, Malchau H, Mohaddes M, Novaes de Santana C, Phillips KS, Rohde H, Rolfson O, Rondon A, Schaer T, Sculco P, Svensson K. General Assembly, Research Caveats: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S245-S253.e1. [PMID: 30348560 DOI: 10.1016/j.arth.2018.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
34
|
Characterization of immune cell subtypes in three commonly used mouse strains reveals gender and strain-specific variations. J Transl Med 2019; 99:93-106. [PMID: 30353130 PMCID: PMC6524955 DOI: 10.1038/s41374-018-0137-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
The lack of consensus on bone marrow (BM) and splenic immune cell profiles in preclinical mouse strains complicates comparative analysis across different studies. Although studies have documented relative distribution of immune cells from peripheral blood in mice, similar studies for BM and spleen from naïve mice are lacking. In an effort to establish strain- and gender-specific benchmarks for distribution of various immune cell subtypes in these organs, we performed immunophenotypic analysis of BM cells and splenocytes from both genders of three commonly used murine strains (C57BL/6NCr, 129/SvHsd, and BALB/cAnNCr). Total neutrophils and splenic macrophages were significantly higher in C57BL/6NCr, whereas total B cells were lower. Within C57BL/6NCr female mice, BM B cells were elevated with respect to the males whereas splenic mDCs and splenic neutrophils were reduced. Within BALB/cAnNCr male mice, BM CD4+ Tregs were elevated with respect to the other strains. Furthermore, in male BALB/cAnNCr mice, NK cells were elevated with respect to the other strains in both BM and spleen. Splenic CD4+ Tregs and splenic CD8+ T cells were reduced in male BALB/c mice in comparison to female mice. Bone marrow CD4+ T cells and mDCs were significantly increased in 129/SvHsd whereas splenic CD8+ T cells were reduced. In general, males exhibited higher immature myeloid cells, macrophages, and NK cells. To our knowledge, this study provides a first attempt to systematically establish organ-specific benchmarks on immune cells in studies involving these mouse strains.
Collapse
|
35
|
Abstract
Experimental animal tumor models have been broadly used to evaluate anticancer drugs in the preclinical setting. They have also been widely applied for drug target discovery and validation, which usually follows four experimental strategies: first, assess the roles of putative drug targets using in vivo tumorigenicity and tumor growth kinetics assays of transplanted tumors, engineered through gain-of-function (GOF) by overexpressing transgene or knock-in (KI) or loss-of-function by gene silencing using knockdown (KD) or knockout (KO) or mutation via mutagenesis procedures; second, similarly genetically engineered mouse models (GEMM), through either germline or somatic cell procedures, are used to test the roles of potential targets in spontaneous tumorigenicity assays; third, patient-derived xenografts (PDXs), which most closely resemble patient genetics and histopathology, are used in tumor inhibition assays for evaluating target-/pathway-specific inhibitors, including large and small molecules, thus assessing the drug target; and fourth, the targets can be assessed in population-based trials, mouse clinical trials (MCT), so that the validation can be generally meaningful as performed in human clinical trials. This chapter outlines the commonly used protocols in cancer drug target research: the first four sections describe four sets of different, specific pharmacology protocols used in the respective cancer modeling stages, with the last section summarizing the common protocols applicable to all four pharmacology modeling steps.
Collapse
|
36
|
An X, Ouyang X, Zhang H, Li T, Huang YY, Li Z, Zhou D, Li QX. Immunophenotyping of Orthotopic Homograft (Syngeneic) of Murine Primary KPC Pancreatic Ductal Adenocarcinoma by Flow Cytometry. J Vis Exp 2018. [PMID: 30371656 DOI: 10.3791/57460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Homograft (syngeneic) tumors are the workhorse of today's immuno-oncology (I/O) preclinical research. The tumor microenvironment (TME), particularly its immune-components, is vital to the prognosis and prediction of treatment outcomes, especially those of immunotherapy. TME immune-components are composed of different subsets of tumor-infiltrating immune cells assessable by multi-color FACS. Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest malignances lacking good treatment options, thus an urgent and unmet medical need. One important reason for its non-responsiveness to various therapies (chemo-, targeted, I/O) has been its abundant TME, consisting of fibroblasts and leukocytes that protect tumor cells from these therapies. Orthotopically implanted PDAC is believed to more accurately recapture the TME of human pancreatic cancers than conventional subcutaneous (SC) models. Homograft tumors (KPC) are transplants of mouse spontaneous PDAC originating from genetically engineered KPC-mice (KrasG12D/+/P53-/-/Pdx1-Cre) (KPC-GEMM). The primary tumor tissue is cut into small fragments (~2 mm3) and transplanted subcutaneously (SC) to the syngeneic recipients (C57BL/6, 7-9 weeks old). The homografts were then surgically orthotopically transplanted onto the pancreas of new C57BL/6 mice, along with SC-implantation, which reached tumor volumes of 300-1,000 mm3 by 17 days. Only tumors of 400-600 mm3 were harvested per approved autopsy procedure and cleaned to remove the adjacent non-tumor tissues. They were dissociated per protocol using a tissue dissociator into single-cell suspensions, followed by staining with designated panels of fluorescently-labeled antibodies for various markers of different immune cells (lymphoid, myeloid and NK, DCs). The stained samples were analyzed using multi-color FACS to determine numbers of immune cells of different lineages, as well as their relative percentage within tumors. The immune profiles of orthotopic tumors were then compared to those of SC tumors. The preliminary data demonstrated significantly elevated infiltrating TILs/TAMs in tumors over the pancreas, and higher B-cell infiltration into orthotopic rather than SC tumors.
Collapse
Affiliation(s)
- Xiaoyu An
- Crown Bioscience Inc.; State Key Laboratory of Natural and Biomimetic Drugs, Peking University
| | | | | | | | | | | | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University
| | - Qi-Xang Li
- Crown Bioscience Inc.; State Key Laboratory of Natural and Biomimetic Drugs, Peking University;
| |
Collapse
|
37
|
Li HD, Cuevas I, Zhang M, Lu C, Alam MM, Fu YX, You MJ, Akbay EA, Zhang H, Castrillon DH. Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load. J Clin Invest 2018; 128:4179-4191. [PMID: 30124468 PMCID: PMC6118636 DOI: 10.1172/jci122095] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022] Open
Abstract
Mutations underlie all cancers, and their identification and study are the foundation of cancer biology. We describe what we believe to be a novel approach to mutagenesis and cancer studies based on the DNA polymerase ε (POLE) ultramutator phenotype recently described in human cancers, in which a single amino acid substitution (most commonly P286R) in the proofreading domain results in error-prone DNA replication. We engineered a conditional PoleP286R allele in mice. PoleP286R/+ embryonic fibroblasts exhibited a striking mutator phenotype and immortalized more efficiently. PoleP286R/+ mice were born at Mendelian ratios but rapidly developed lethal cancers of diverse lineages, yielding the most cancer-prone monoallelic model described to date, to our knowledge. Comprehensive whole-genome sequencing analyses showed that the cancers were driven by high base substitution rates in the range of human cancers, overcoming a major limitation of previous murine cancer models. These data establish polymerase-mediated ultramutagenesis as an efficient in vivo approach for the generation of diverse animal cancer models that recapitulate the high mutational loads inherent to human cancers.
Collapse
Affiliation(s)
- Hao-Dong Li
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Ileana Cuevas
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Musi Zhang
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Changzheng Lu
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Md Maksudul Alam
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - Yang-Xin Fu
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - M. James You
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Esra A. Akbay
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| | - He Zhang
- Lyda Hill Department of Bioinformatics, UTSW Medical Center, Dallas, Texas, USA
| | - Diego H. Castrillon
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern (UTSW) Medical Center, Dallas, Texas, USA
| |
Collapse
|
38
|
Ochoa de Olza M, Oliva M, Hierro C, Matos I, Martin-Liberal J, Garralda E. Early-drug development in the era of immuno-oncology: are we ready to face the challenges? Ann Oncol 2018; 29:1727-1740. [PMID: 29945232 DOI: 10.1093/annonc/mdy225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The classical development of drugs has progressively faded away, and we are currently in an era of seamless drug-development, where first-in-human trials include unusually big expansion cohorts in the search for early signs of activity and rapid regulatory approval. The fierce competition between different pharmaceutical companies and the hype for immune combinations obliges us to question the current way in which we are evaluating these drugs. In this review, we discuss critical issues and caveats in immunotherapy development. A particular emphasis is put on the limitations of pre-clinical toxicology studies, where both murine models and cynomolgus monkeys have underpredicted toxicity in humans. Moreover, relevant issues surrounding dose determination during phase I trials, such as dose-escalation methods or flat versus body-weight dosing, are discussed. A proposal of how to face these different challenges is offered, in order to achieve maximum efficacy with minimum toxicity for our patients.
Collapse
Affiliation(s)
- M Ochoa de Olza
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Molecular Therapeutics Research Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - M Oliva
- Drug Development Program, Department of Medical Oncology and Haematology, Princess Margaret Hospital, University of Toronto, Toronto, Canada
| | - C Hierro
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Molecular Therapeutics Research Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - I Matos
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Molecular Therapeutics Research Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Martin-Liberal
- Molecular Therapeutics Research Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Catalan Institute of Oncology (ICO), l'Hospitalet de Llobregat, Barcelona, Spain
| | - E Garralda
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Molecular Therapeutics Research Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
39
|
Abstract
Oncoimmunology (or immunooncology) is a burgeoning specialty of precision (“personalized”) medicine designed to heighten the antitumor response of the immune system against molecules expressed excessively or only by tumor cells. This focus is necessary, as cancers are polyclonal tissues comprised of antigenically heterogeneous cells, the exact composition of which is shaped by the balance between antitumor immunity and tumor-promoting inflammation. Key targets include enhancing immune system (especially T cell) reactivity, inhibiting immune checkpoints, and promoting tumor cytolysis. Therapeutic modalities to address these targets include administering antibodies, cytokines, or small molecules that directly stimulate the immune system, attack tumor-associated antigens, or interfere with tumor–stroma interactions; adoptive transfer of autologous T cells following ex vivo selection/expansion/activation (typically after lymphoid-depleting regimens and in conjunction with immunostimulatory therapy); and vaccination (against tumor antigens). Pathology involvement in oncoimmunology product development is critical to assess expression of target molecules in tumor cells, stromal cells, and tumor-infiltrating leukocytes.
Collapse
|