1
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Bränström R, van Krieken PP, Fröbom R, Juhlin CC, Shabo I, Leibiger B, Leibiger IB, Berggren PO, Aspinwall CA. Transplantation and Noninvasive Longitudinal In Vivo Imaging of Parathyroid Cells: A Proof-of-Concept Study. Cell Transplant 2024; 33:9636897241241995. [PMID: 38554052 PMCID: PMC10981846 DOI: 10.1177/09636897241241995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/01/2024] Open
Abstract
The parathyroid cell is a vital regulator of extracellular calcium levels, operating through the secretion of parathyroid hormone (PTH). Despite its importance, the regulation of PTH secretion remains complex and not fully understood, representing a unique interplay between extracellular and intracellular calcium, and hormone secretion. One significant challenge in parathyroid research has been the difficulty in maintaining cells ex vivo for in-depth cellular investigations. To address this issue, we introduce a novel platform for parathyroid cell transplantation and noninvasive in vivo imaging using the anterior chamber of the eye as a transplantation site. We found that parathyroid adenoma tissue transplanted into the mouse eye engrafted onto the iris, became vascularized, and retained cellular composition. Transplanted animals exhibited elevated PTH levels, indicating a functional graft. With in vivo confocal microscopy, we were able to repetitively monitor parathyroid graft morphology and vascularization. In summary, there is a pressing need for new methods to study complex cellular processes in parathyroid cells. Our study provides a novel approach for noninvasive in vivo investigations that can be applied to understand parathyroid physiology and pathology under physiological and pathological conditions. This innovative strategy can deepen our knowledge on parathyroid function and disease.
Collapse
Affiliation(s)
- Robert Bränström
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Pim P. van Krieken
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Robin Fröbom
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - C. Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Ivan Shabo
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Ingo B. Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Craig A. Aspinwall
- Departments of Chemistry & Biochemistry and Biomedical Engineering, and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
In Vivo CaV3 Channel Inhibition Promotes Maturation of Glucose-Dependent Ca2+ Signaling in Human iPSC-Islets. Biomedicines 2023; 11:biomedicines11030807. [PMID: 36979793 PMCID: PMC10045717 DOI: 10.3390/biomedicines11030807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
CaV3 channels are ontogenetically downregulated with the maturation of certain electrically excitable cells, including pancreatic β cells. Abnormally exaggerated CaV3 channels drive the dedifferentiation of mature β cells. This led us to question whether excessive CaV3 channels, retained mistakenly in engineered human-induced pluripotent stem cell-derived islet (hiPSC-islet) cells, act as an obstacle to hiPSC-islet maturation. We addressed this question by using the anterior chamber of the eye (ACE) of immunodeficient mice as a site for recapitulation of in vivo hiPSC-islet maturation in combination with intravitreal drug infusion, intravital microimaging, measurements of cytoplasmic-free Ca2+ concentration ([Ca2+]i) and patch clamp analysis. We observed that the ACE is well suited for recapitulation, observation and intervention of hiPSC-islet maturation. Intriguingly, intraocular hiPSC-islet grafts, retrieved intact following intravitreal infusion of the CaV3 channel blocker NNC55-0396, exhibited decreased basal [Ca2+]i levels and increased glucose-stimulated [Ca2+]i responses. Insulin-expressing cells of these islet grafts indeed expressed the NNC55-0396 target CaV3 channels. Intraocular hiPSC-islets underwent satisfactory engraftment, vascularization and light scattering without being influenced by the intravitreally infused NNC55-0396. These data demonstrate that inhibiting CaV3 channels facilitates the maturation of glucose-activated Ca2+ signaling in hiPSC-islets, supporting the notion that excessive CaV3 channels as a developmental error impede the maturation of engineer ed hiPSC-islet insulin-expressing cells.
Collapse
|
4
|
Abstract
Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting β-cells, the α-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Metabolic Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Uncommon Transplantation Sites: Transplantation of Islets and Islet Organoids in the Anterior Chamber of the Eye of Rodents and Monkeys. Methods Mol Biol 2022; 2592:21-36. [PMID: 36507983 DOI: 10.1007/978-1-0716-2807-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The anterior chamber of the eye is a highly vascularized and innervated location that is also particularly rich in oxygen and immune privileged. This uncommon transplantation site offers unique possibilities for the observation of the transplanted material as well as for local pharmacological intervention. Transplantation of islets and islet organoids to the anterior chamber of the eye of mice and monkeys facilitates a multitude of new approaches for research into islet physiology and pathophysiology and for the treatment of diabetes. We now present a short overview of the experimental possibilities and describe an updated protocol for transplantation of islets and islet organoids into mice and monkeys.
Collapse
|
6
|
Coppola A, Zorzetto G, Piacentino F, Bettoni V, Pastore I, Marra P, Perani L, Esposito A, De Cobelli F, Carcano G, Fontana F, Fiorina P, Venturini M. Imaging in experimental models of diabetes. Acta Diabetol 2022; 59:147-161. [PMID: 34779949 DOI: 10.1007/s00592-021-01826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/30/2021] [Indexed: 12/01/2022]
Abstract
Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy.
| | | | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Valeria Bettoni
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Paolo Marra
- Department of Diagnostic Radiology, Giovanni XXIII Hospital, Milano-Bicocca University, Bergamo, Italy
| | - Laura Perani
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Francesco De Cobelli
- Radiology Unit, San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Giulio Carcano
- Insubria University, Varese, Italy
- General, Emergency, and Transplant Surgery Unit, ASST Settelaghi, Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| | - Paolo Fiorina
- International Center for T1D, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Varese, Italy
- Insubria University, Varese, Italy
| |
Collapse
|
7
|
Zhao K, Shi Y, Yu J, Yu L, Mael A, Li Y, Kolton A, Joyce T, Odorico J, Berggren PO, Yang SN. Intracameral Microimaging of Maturation of Human iPSC Derivatives into Islet Endocrine Cells. Cell Transplant 2022; 31:9636897211066508. [PMID: 35156411 PMCID: PMC8848082 DOI: 10.1177/09636897211066508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We exploited the anterior chamber of the eye (ACE) of immunodeficient mice as an ectopic site for both transplantation and microimaging of engineered surrogate islets from human induced pluripotent stem cells (hiPSC-SIs). These islets contained a majority of insulin-expressing cells, positive or negative for PDX1 and NKX6.1, and a minority of glucagon- or somatostatin-positive cells. Single, non-aggregated hiPSC-SIs were satisfactorily engrafted onto the iris. They underwent gradual vascularization and progressively increased their light scattering signals, reflecting the abundance of zinc-insulin crystal packaged inside mature insulin secretory granules. Intracameral hiPSC-SIs retrieved from recipients showed enhanced insulin immunofluorescence in correlation with the parallel increase in overall vascularization and light backscattering during the post-transplantation period. This approach enables longitudinal, nondestructive and intravital microimaging of cell fates, engraftment, vascularization and mature insulin secretory granules of single hiPSC-SI grafts, and may offer a feasible and reliable means to screen compounds for promoting in vivo hiPSC-SI maturation.
Collapse
Affiliation(s)
- Kaixuan Zhao
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Jia Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Lina Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Amber Mael
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | | | - Thomas Joyce
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Jon Odorico
- Regenerative Medical Solutions, Inc., Madison, WI, USA
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Abdulreda MH, Berggren PO. Challenges in stem cell-derived islet replacement therapy can be overcome. Cell Transplant 2021; 30:9636897211045320. [PMID: 34565192 PMCID: PMC8485158 DOI: 10.1177/09636897211045320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this Commentary, we echo the conclusions of a recent review titled
“The promise of stem cell-derived islet replacement
therapy,” which highlighted recent advances in
producing glucose responsive “islets” from stem cells and the benefits
of their use in islet transplant therapy in type 1 diabetes (T1D). The
review also outlined the status of clinical islet transplantation and
the challenges that have prevented it from reaching its full
therapeutic promise. We agree with the conclusions of the review and
suggest that the identified challenges may be overcome by using the
eye anterior chamber as an islet transplant site. We anticipate that
the combination of stem cell-derived islets and intraocular transplant
could help this promising T1D therapy reach full fruition.
Collapse
Affiliation(s)
- Midhat H Abdulreda
- Diabetes Research Institute, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Per-Olof Berggren
- Diabetes Research Institute, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, Stockholm, Sweden
| |
Collapse
|
9
|
Stožer A, Skelin Klemen M, Gosak M, Križančić Bombek L, Pohorec V, Slak Rupnik M, Dolenšek J. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices. Am J Physiol Endocrinol Metab 2021; 321:E305-E323. [PMID: 34280052 DOI: 10.1152/ajpendo.00043.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Many details of glucose-stimulated intracellular calcium changes in β cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on β cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.NEW & NOTEWORTHY We assessed concentration-dependence in coupled β cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
10
|
dos Santos T, MacDonald PE. Novel mouse model expands potential human α-cell research. Islets 2021; 13:80-83. [PMID: 33853502 PMCID: PMC8282280 DOI: 10.1080/19382014.2021.1914507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A glucagon knock-out mouse with preserved GLP-1 and GLP-2 secretion allows for the improved study of transplanted human islets and glucagon responses- providing an unprecedented resource in human α-cell and diabetes research.
Collapse
Affiliation(s)
- Theodore dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- CONTACT Theodore dos Santos Department of Pharmacology, University of Alberta, Edmonton, AlbertaT6G2R3, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Ilegems E, Berggren PO. The Eye as a Transplantation Site to Monitor Pancreatic Islet Cell Plasticity. Front Endocrinol (Lausanne) 2021; 12:652853. [PMID: 33967961 PMCID: PMC8104082 DOI: 10.3389/fendo.2021.652853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
The endocrine cells confined in the islets of Langerhans are responsible for the maintenance of blood glucose homeostasis. In particular, beta cells produce and secrete insulin, an essential hormone regulating glucose uptake and metabolism. An insufficient amount of beta cells or defects in the molecular mechanisms leading to glucose-induced insulin secretion trigger the development of diabetes, a severe disease with epidemic spreading throughout the world. A comprehensive appreciation of the diverse adaptive procedures regulating beta cell mass and function is thus of paramount importance for the understanding of diabetes pathogenesis and for the development of effective therapeutic strategies. While significant findings were obtained by the use of islets isolated from the pancreas, in vitro studies are inherently limited since they lack the many factors influencing pancreatic islet cell function in vivo and do not allow for longitudinal monitoring of islet cell plasticity in the living organism. In this respect a number of imaging methodologies have been developed over the years for the study of islets in situ in the pancreas, a challenging task due to the relatively small size of the islets and their location, scattered throughout the organ. To increase imaging resolution and allow for longitudinal studies in individual islets, another strategy is based on the transplantation of islets into other sites that are more accessible for imaging. In this review we present the anterior chamber of the eye as a transplantation and imaging site for the study of pancreatic islet cell plasticity, and summarize the major research outcomes facilitated by this technological platform.
Collapse
Affiliation(s)
- Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Center for Diabetes and Metabolism Research, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
12
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
13
|
Abstract
The islet of Langerhans is a complex endocrine micro-organ consisting of a multitude of endocrine and non-endocrine cell types. The two most abundant and prominent endocrine cell types, the beta and the alpha cells, are essential for the maintenance of blood glucose homeostasis. While the beta cell produces insulin, the only blood glucose-lowering hormone of the body, the alpha cell releases glucagon, which elevates blood glucose. Under physiological conditions, these two cell types affect each other in a paracrine manner. While the release products of the beta cell inhibit alpha cell function, the alpha cell releases factors that are stimulatory for beta cell function and increase glucose-stimulated insulin secretion. The aim of this review is to provide a comprehensive overview of recent research into the regulation of beta cell function by alpha cells, focusing on the effect of alpha cell-secreted factors, such as glucagon and acetylcholine. The consequences of differences in islet architecture between species on the interplay between alpha and beta cells is also discussed. Finally, we give a perspective on the possibility of using an in vivo imaging approach to study the interactions between human alpha and beta cells under in vivo conditions. Graphical abstract.
Collapse
Affiliation(s)
- Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden.
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| |
Collapse
|
14
|
Investigation of Cytotoxic T Lymphocyte Function during Allorejection in the Anterior Chamber of the Eye. Int J Mol Sci 2020; 21:ijms21134660. [PMID: 32629968 PMCID: PMC7369940 DOI: 10.3390/ijms21134660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/12/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) are an essential part of our immune system by killing infected and malignant cells. To fully understand this process, it is necessary to study CTL function in the physiological setting of a living organism to account for their interplay with other immune cells like CD4+ T helper cells and macrophages. The anterior chamber of the eye (ACE), originally developed for diabetes research, is ideally suited for non-invasive and longitudinal in vivo imaging. We take advantage of the ACE window to observe immune responses, particularly allorejection of islets of Langerhans cells by CTLs. We follow the onset of the rejection after vascularization on islets until the end of the rejection process for about a month by repetitive two-photon microscopy. We find that CTLs show reduced migration on allogeneic islets in vivo compared to in vitro data, indicating CTL activation. Interestingly, the temporal infiltration pattern of T cells during rejection is precisely regulated, showing enrichment of CD4+ T helper cells on the islets before arrival of CD8+ CTLs. The adaptation of the ACE to immune responses enables the examination of the mechanism and regulation of CTL-mediated killing in vivo and to further investigate the killing in gene-deficient mice that resemble severe human immune diseases.
Collapse
|
15
|
Enhanced expression of β cell Ca V3.1 channels impairs insulin release and glucose homeostasis. Proc Natl Acad Sci U S A 2019; 117:448-453. [PMID: 31871187 PMCID: PMC6955371 DOI: 10.1073/pnas.1908691117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We reveal that increased expression of CaV3.1 channels in rat islets selectively impairs first-phase glucose-stimulated insulin secretion. This deterioration is recapitulated in human islets. Its causal role in diabetes development is clearly manifested in an in vivo diabetic model. Mechanistically, this is due to reduction of phosphorylated FoxO1 in the cytoplasm, elevated FoxO1 nuclear retention, and decreased syntaxin 1A, SNAP-25, and synaptotagmin III in a CaV3.1 channel- and calcineurin-dependent manner. Our findings suggest that elevated expression of CaV3.1 channels in pancreatic islets drives FoxO1-mediated down-regulation of exocytotic proteins resulting in the diabetic phenotypes of impaired insulin secretion and aberrant glucose homeostasis. This causal connection pinpoints β cell CaV3.1 channels as a potential druggable target for antidiabetes therapy. Voltage-gated calcium 3.1 (CaV3.1) channels are absent in healthy mouse β cells and mediate minor T-type Ca2+ currents in healthy rat and human β cells but become evident under diabetic conditions. Whether more active CaV3.1 channels affect insulin secretion and glucose homeostasis remains enigmatic. We addressed this question by enhancing de novo expression of β cell CaV3.1 channels and exploring the consequent impacts on dynamic insulin secretion and glucose homeostasis as well as underlying molecular mechanisms with a series of in vitro and in vivo approaches. We now demonstrate that a recombinant adenovirus encoding enhanced green fluorescent protein–CaV3.1 subunit (Ad-EGFP-CaV3.1) efficiently transduced rat and human islets as well as dispersed islet cells. The resulting CaV3.1 channels conducted typical T-type Ca2+ currents, leading to an enhanced basal cytosolic-free Ca2+ concentration ([Ca2+]i). Ad-EGFP-CaV3.1-transduced islets released significantly less insulin under both the basal and first phases following glucose stimulation and could no longer normalize hyperglycemia in recipient rats rendered diabetic by streptozotocin treatment. Furthermore, Ad-EGFP-CaV3.1 transduction reduced phosphorylated FoxO1 in the cytoplasm of INS-1E cells, elevated FoxO1 nuclear retention, and decreased syntaxin 1A, SNAP-25, and synaptotagmin III. These effects were prevented by inhibiting CaV3.1 channels or the Ca2+-dependent phosphatase calcineurin. Enhanced expression of β cell CaV3.1 channels therefore impairs insulin release and glucose homeostasis by means of initial excessive Ca2+ influx, subsequent activation of calcineurin, consequent dephosphorylation and nuclear retention of FoxO1, and eventual FoxO1-mediated down-regulation of β cell exocytotic proteins. The present work thus suggests an elevated expression of CaV3.1 channels plays a significant role in diabetes pathogenesis.
Collapse
|
16
|
IgGs from patients with amyotrophic lateral sclerosis and diabetes target Ca Vα 2δ1 subunits impairing islet cell function and survival. Proc Natl Acad Sci U S A 2019; 116:26816-26822. [PMID: 31826954 PMCID: PMC6936400 DOI: 10.1073/pnas.1911956116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We provide evidence of a mechanistic link between ALS and T2DM. Our data show that a subgroup of ALS-T2DM patients have sera that enhance CaV1 channel-mediated Ca2+ influx and exaggerate [Ca2+]i. These effects occur because the sera accommodate cytotoxic IgG autoantibodies that immunocapture CaVα2δ1 subunits. As a consequence, impairments in [Ca2+]i dynamics, mitochondrial function, insulin secretion, and cell viability appear. We could clarify not only the identity of this serum factor but also the molecular mechanisms underlying its effects on the islet cells. Our findings may lay the foundation for a treatment strategy for this complex and severe group of diabetic patients. Patients with amyotrophic lateral sclerosis (ALS) often show hallmarks of type 2 diabetes mellitus (T2DM). However, the causal link between ALS and T2DM has remained a mystery. We now demonstrate that 60% of ALS patients with T2DM (ALS-T2DM) have sera that exaggerated K+-induced increases in cytosolic free Ca2+ concentration ([Ca2+]i) in mouse islet cells. The effect was attributed to the presence of pathogenic immunoglobulin Gs (IgGs) in ALS-T2DM sera. The pathogenic IgGs immunocaptured the voltage-dependent Ca2+ (CaV) channel subunit CaVα2δ1 in the plasma membrane enhancing CaV1 channel-mediated Ca2+ influx and [Ca2+]i, resulting in impaired mitochondrial function. Consequently, impairments in [Ca2+]i dynamics, insulin secretion, and cell viability occurred. These data reveal that patients with ALS-T2DM carry cytotoxic ALS-T2DM-IgG autoantibodies that serve as a causal link between ALS and T2DM by immunoattacking CaVα2δ1 subunits. Our findings may lay the foundation for a pharmacological treatment strategy for patients suffering from a combination of these diseases.
Collapse
|