1
|
Sarkisian KI, Yang JL, Marshall C, Stanczyk FZ. Allopregnanolone in the pathogenesis of the psychiatric comorbidities of polycystic ovarian syndrome. J Steroid Biochem Mol Biol 2025; 250:106719. [PMID: 40064425 DOI: 10.1016/j.jsbmb.2025.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/18/2025]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine disorder affecting 10-15 % of women of reproductive age, with significant implications for both physical and mental health. Several recent research studies have examined the connection between PCOS and psychiatric disorders; however, the mechanism linking the two is not fully understood. Allopregnanolone is a neurosteroid that modulates GABAA receptors and is naturally affected by the pathophysiology of PCOS. It is thought to play a role in mood disorders, including premenstrual dysphoric disorder and postpartum depression. Recent research has begun to focus on the relationship between PCOS and allopregnanolone. A literature review was conducted using databases, including PubMed, MEDLINE, and Cochrane Library. Keywords included "PCOS," "psychiatric disorders," "allopregnanolone," and "neurosteroids." Articles were selected based on relevance to psychiatric implications of PCOS, with a focus on high-quality, original research studies. Quality assessment of the sources was informed using the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) Handbook criteria. The literature review revealed a growing body of evidence suggesting a strong association between PCOS and an increased risk of psychiatric disorders, particularly depression, anxiety, and mood disorders. The role of allopregnanolone, a neurosteroid, was identified as an important factor in this relationship, with some studies indicating its potential impact on mood regulation in PCOS patients. There is a dire need for clinicians to consider the mental health implications of PCOS during diagnosis and management. The integration of psychiatric screening in PCOS management could lead to earlier detection and improved outcomes. Future research should focus on the therapeutic potential of allopregnanolone and other neurosteroids in treating psychiatric disorders associated with PCOS.
Collapse
Affiliation(s)
- Karis I Sarkisian
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; University of California, Berkeley, United States.
| | - Jane L Yang
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
3
|
Moreno-Fernández M, Luján V, Baliyan S, Poza C, Capellán R, de Las Heras-Martínez N, Morcillo MÁ, Oteo M, Ambrosio E, Ucha M, Higuera-Matas A. A Hidden Mark of a Troubled Past: Neuroimaging and Transcriptomic Analyses Reveal Interactive Effects of Maternal Immune Activation and Adolescent THC Exposure Suggestive of Increased Neuropsychiatric Risk. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100452. [PMID: 40115746 PMCID: PMC11925510 DOI: 10.1016/j.bpsgos.2025.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 01/12/2025] [Indexed: 03/23/2025] Open
Abstract
Background Maternal exposure to infections during gestation has been shown to predispose individuals to neuropsychiatric disorders. Additionally, clinical data suggest that cannabis use may trigger the onset of schizophrenia in vulnerable individuals. However, the direction of causality remains unclear. Methods To elucidate this issue, we utilized a rat model of maternal immune activation combined with exposure to increasing doses of Δ9-tetrahydrocannabinol during adolescence in both male and female rats. We investigated several behaviors in adulthood relevant for neuropsychiatric disorders, including impairments in working memory, deficits in sensorimotor gating, alterations in social behavior, anhedonia, and potential changes in implicit learning (conditioned taste aversion). Furthermore, we conducted a longitudinal positron emission tomography study to target affected brain regions and, subsequently, collected brain samples of one such region (the orbitofrontal cortex) for RNA sequencing analyses, which were also performed on peripheral blood mononuclear cells to identify peripheral biomarkers. Results While adolescent Δ9-tetrahydrocannabinol did not unmask latent behavioral disruptions, positron emission tomography scans revealed several brain alterations dependent on the combination of both hits. Additionally, the transcriptomic studies demonstrated that maternal immune activation affected dopaminergic, glutamatergic, and serotoninergic genes, with the combination of both exposures in most cases shifting the expression from downregulation to upregulation. In peripheral cells, interactive effects were observed on inflammatory pathways, and some genes were proposed as biomarkers. Conclusions These results suggest that the combination of these 2 vulnerability factors leaves a lasting mark on the body, potentially predisposing individuals to neuropsychiatric disorders even before behavioral alterations manifest.
Collapse
Affiliation(s)
- Mario Moreno-Fernández
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Víctor Luján
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
- National University of Distance Education International Graduate School (EIDUNED), Madrid, Spain
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Shishir Baliyan
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Celia Poza
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | | | - Miguel Ángel Morcillo
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| |
Collapse
|
4
|
Begni V, Marchesin A, Riva MA. IUPHAR review - Novel therapeutic targets for schizophrenia treatment: A translational perspective. Pharmacol Res 2025; 214:107690. [PMID: 40073951 DOI: 10.1016/j.phrs.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Schizophrenia is a severe and debilitating psychiatric disorder that profoundly impacts cognitive, emotional, and social functioning. Despite its devastating personal and societal toll, current treatments often provide only partial relief, underscoring the urgent need for innovative therapeutic strategies. This review explores emerging approaches that target the complex neurobiological underpinnings of schizophrenia, moving beyond traditional dopamine-centric models. Among these, some novel drugs still employ multimodal mechanisms, simultaneously targeting dopaminergic and serotonergic systems to enhance efficacy and tolerability. Given the well-documented excitatory/inhibitory imbalance in schizophrenia, significant efforts have been directed toward addressing NMDA receptor hypofunctionality. However, strategies targeting this pathway have yet to demonstrate consistent clinical efficacy. In contrast, therapies targeting the cholinergic system have shown greater promise. For instance, the xanomeline-trospium combination, which modulates muscarinic receptors, has recently gained approval, and other molecules with similar mechanisms are currently under development. Beyond these approaches, novel strategies are being explored to target innovative pathways, including neuroplasticity, neuroinflammation, and mitochondrial dysfunction. These efforts are often designed as part of a combinatorial strategy to enhance the efficacy of currently available antipsychotic drugs. Despite significant progress, challenges remain in translating experimental discoveries into effective clinical applications. Future research should prioritize biomarker-driven approaches and precision medicine to optimize individualized treatment outcomes. By integrating these emerging therapeutic targets, schizophrenia treatment may evolve toward a more comprehensive and personalized approach, addressing the disorder's full spectrum of symptoms and improving patient quality of life.
Collapse
Affiliation(s)
- Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, Brescia 25125, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
5
|
Cheng J, Sun Z, Zhang H, Zhao D, Wang P, Chen H, Lyv W, Deng Q, Fu Y, Lyv X, Gao T, Xu J, Zhou F, Wu Y, Yang X, Ma P, Tong Z. External stress, formaldehyde, and schizophrenia: a new mouse model for mental illness research. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:50. [PMID: 40140372 PMCID: PMC11947252 DOI: 10.1038/s41537-025-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Although MK801-induced NMDA receptor (NMDAR) hypofunction mimics schizophrenia symptoms, the exact factors causing NMDAR inhibition are unknown. Unexpectedly, external stress elicits formaldehyde (FA) generation; FA can induce depression and cognitive impairments by blocking NMDARs. This study explores using FA injection to establish a schizophrenia-like model in mice. Here, we reported that external stress-derived FA induces schizophrenia-like behaviors. Four experimental methods were used to induce schizophrenia-like symptoms in wild-type mice: double electrode stimulation of the ventral tegmental area (VTA), microinjection of FA or tetrahydroisoquinoline (TIQ) into the VTA, and intraperitoneal injection of MK801. Then the metabolic levels of FA and dopamine (DA) in the prefrontal cortex (PFC) and VTA were quantified using ELISA kits. We found that external stress-electrical stimulation via VTA caused schizophrenia-like behaviors, including despairing behavior as measured by the tail suspension test, anhedonia as evaluated by the sucrose preference test, stereotypical behavior as assessed by the marble burying test (MBT), anxiety-like behavior as measured by the open-field test and memory deficit as detected by the Y-maze. These behaviors correlated with increased DA and TIQ levels in the VTA and decreased DA levels in the PFC. High-resolution mass spectrometry (HRMS) and high-performance liquid chromatography (HPLC) confirmed TIQ formation from FA and DA. Furthermore, injecting TIQ into the VTA induced schizophrenia-like symptoms in mice, marked by higher FA and lower DA levels in the PFC than control mice. Strikingly, injecting FA into the VTA as well as administering MK-801 induced schizophrenia-like behaviors associated with reduced DA levels and low activity of tyrosine hydroxylase (TH) and monoamine oxidase (MAO) in the PFC. Hence, microinfusion of FA into the VTA can be used to prepare schizophrenia-like changes mouse model, suggesting that stress-derived FA may act as an endogenous trigger of schizophrenia-like changes.
Collapse
Affiliation(s)
- Junhao Cheng
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
- Wenzhou semir united international school, Wenzhou, China
| | - Zihui Sun
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
- Beijing Geriatric Hospital, Beijing, 100049, China
| | - Hao Zhang
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Danrui Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Panpan Wang
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Haishu Chen
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Wanjia Lyv
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Qiangfeng Deng
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Yuanyu Fu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Xingzhou Lyv
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Tingting Gao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Jinan Xu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Feiyan Zhou
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Yiqing Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China
- University of Alberta, Edmonton, AB, Canada
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhiqian Tong
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P.R. China.
- Beijing Geriatric Hospital, Beijing, 100049, China.
| |
Collapse
|
6
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Influence of antipsychotic drugs on microglia-mediated neuroinflammation in schizophrenia: perspectives in an astrocyte-microglia co-culture model. Front Psychiatry 2025; 16:1522128. [PMID: 40171306 PMCID: PMC11959008 DOI: 10.3389/fpsyt.2025.1522128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/12/2025] [Indexed: 04/03/2025] Open
Abstract
Schizophrenia is a severe mental disorder with a strong lifetime impact on patients' health and wellbeing. Usually, symptomatic treatment includes typical or atypical antipsychotics. Study findings show an involvement of low-grade inflammation (blood, brain parenchyma, and cerebrospinal fluid) in schizophrenia. Moreover, experimental and neuropathological evidence suggests that reactive microglia, which are the main resident immune cells of the central nervous system (CNS), have a negative impact on the differentiation and function of oligodendrocytes, glial progenitor cells, and astrocytes, which results in the disruption of neuronal networks and dysregulated synaptic transmission, contributing to the pathophysiology of schizophrenia. Here, the role of microglial cells related to neuroinflammation in schizophrenia was discussed to be essential. This review aims to summarize the evidence for the influence of antipsychotics on microglial inflammatory mechanisms in schizophrenia. Furthermore, we propose an established astrocyte-microglia co-culture model for testing regulatory mechanisms and examining the effects of antipsychotics on glia-mediated neuroinflammation. This could lead to a better understanding of how typical and atypical antipsychotics can be used to address positive and negative symptoms in schizophrenia and comorbidities like inflammatory diseases or the status of low-grade inflammation.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Pedro M. Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| |
Collapse
|
7
|
Banzato M, Furlan A, Locatelli P, Sgrignani J, Ongaro A, Dolmella A, De Martin S, Comai S, Cavalli A, Inturrisi C, Bettini E, Manfredi PL, Mattarei A. New Synthesis and Pharmacological Evaluation of Enantiomerically Pure ( R)- and ( S)-Methadone Metabolites as N-Methyl-d-aspartate Receptor Antagonists. J Med Chem 2025; 68:5455-5470. [PMID: 39999356 PMCID: PMC11912475 DOI: 10.1021/acs.jmedchem.4c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
N-Methyl-d-aspartate receptor (NMDAR) is gaining increasing interest as a pharmacological target for the development of fast-acting antidepressants. (S)-Methadone (esmethadone), has recently shown promising efficacy for the treatment of major depressive disorder. However, methods for its enantiopure preparation still rely on complex and expensive resolution procedures. In addition, enantiopure methadone metabolites have never been evaluated for their NMDAR activity. Here, we report the development of a novel chiral pool approach, based on cyclic sulfamidate ring-opening reaction, for the asymmetric synthesis of (R)- and (S)-methadone, and the application of this methodology to the stereodivergent synthesis of 20 enantiopure methadone metabolites. The compounds were evaluated for their NMDAR antagonism and for their affinity toward a series of relevant CNS receptors. Strikingly, N-demethylated (6R)-methadol metabolites retain the higher NMDAR uncompetitive antagonism of (R)-methadone, while presenting lower opioid receptor affinity compared to (S)-methadone. These compounds could represent novel candidates for drug development in CNS disorders.
Collapse
Affiliation(s)
- Marco Banzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Alberto Furlan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Alberto Ongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padua, Italy
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada
- IRCSS San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | | | - Ezio Bettini
- In Vitro Pharmacology Department, Aptuit, An Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Paolo L Manfredi
- Relmada Therapeutics, Coral Gables, Florida 33134, United States
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| |
Collapse
|
8
|
Li N, Wei Y, Li R, Meng Y, Zhao J, Bai Q, Wang G, Zhao Y. Modulation of the human GlyT1 by clinical drugs and cholesterol. Nat Commun 2025; 16:2412. [PMID: 40069141 PMCID: PMC11897355 DOI: 10.1038/s41467-025-57613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
Glycine transporter 1 (GlyT1) is a key player in shaping extracellular glutamatergic signaling processes and holds promise for treating cognitive impairments associated with schizophrenia by inhibiting its activity and thus enhancing the function of NMDA receptors. Despite its significant role in physiological and pharmacology, its modulation mechanism by clinical drugs and internal lipids remains elusive. Here, we determine cryo-EM structures of GlyT1 in its apo state and in complex with clinical trial drugs iclepertin and sarcosine. The GlyT1 in its apo state is determined in three distinct conformations, exhibiting a conformational equilibrium of the transport cycle. The complex structures with inhibitor iclepertin and sarcosine elucidate their unique binding poses with GlyT1. Three binding sites of cholesterol are determined in GlyT1, two of which are conformation-dependent. Transport kinetics studies reveal that a delicate binding equilibrium for cholesterol is crucial for the conformational transition of GlyT1. This study significantly enhances our understanding of the physiological and pharmacological aspects of GlyT1.
Collapse
Affiliation(s)
- Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yiqing Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Sapienza J, Agostoni G, Repaci F, Spangaro M, Comai S, Bosia M. Metabolic Syndrome and Schizophrenia: Adding a Piece to the Interplay Between the Kynurenine Pathway and Inflammation. Metabolites 2025; 15:176. [PMID: 40137141 PMCID: PMC11944102 DOI: 10.3390/metabo15030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of schizophrenia are neuroinflammation and alterations of neurotransmission. The kynurenine (KYN) pathway (KP) is of particular importance because it is inducted by systemic low-grade inflammation in peripheral tissues, producing metabolites that are neuroactive (i.e., modulating glutamatergic and cholinergic neurotransmission), neuroprotective, or neurotoxic. Consequently, the KP is at the crossroads between two primary systems involved in the pathogenesis of schizophrenia. It bridges the central nervous system (CNS) and the periphery, as KP metabolites can cross the blood-brain barrier and modulate neuronal activity. Metabolic syndrome plays a crucial role in this context, as it frequently co-occurs with schizophrenia, contributing to a sub-inflammatory state able to activate the KP. This narrative review provides valuable insights into these complex interactions, offering a framework for developing targeted therapeutic interventions or precision psychiatry approaches of the disorder.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Giulia Agostoni
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Federica Repaci
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Marco Spangaro
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35123 Padua, Italy
- Division of Neurosciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biomedical Sciences, University of Padua, 35123 Padua, Italy
| | - Marta Bosia
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
10
|
Li B, Zhang T, Tan G, Pu Z, Shen Y. Neuroprotective Effects of Astragalus Polysaccharide on Retina Cells and Ganglion Cell Projection in NMDA-Induced Retinal Injury. Curr Eye Res 2025; 50:282-294. [PMID: 39373214 DOI: 10.1080/02713683.2024.2412304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE Astragalus polysaccharide (APS), a water-soluble heteropolysaccharide, possesses immunomodulatory, anti-inflammatory, and cardioprotective properties. This study investigates the neuroprotective potential of APS in a model of N-Methyl-d-aspartic acid (NMDA)-induced retinal neurodegeneration, aiming to explore its potential as a treatment for retinal degenerative diseases. METHODS Retinal function was evaluated using electroretinography (ERG), optomotor reflex (OMR), and flash visual evoked potentials (FVEP). Retinal inflammatory responses were examined through immunohistochemistry, western blotting (WB), and quantitative reverse transcription PCR (qRT-PCR). To assess the integrity of visual projections, an intravitreal injection of adeno-associated virus (AAV) was employed to trace the projections of retinal ganglion cells (RGCs) to the visual centers. RESULTS APS treatment conferred protection to retinal cells, as indicated by ERG and OMR assessments. And APS intervention mitigated NMDA-induced apoptosis, evidenced by a decrease in TUNEL-positive cells. Furthermore, APS treatment attenuated the NMDA-induced reduction in RGC projections to the visual centers, including the superior colliculus and lateral geniculate nucleus, as demonstrated by AAV tracing. CONCLUSIONS Our findings reveal that APS shields the retina from NMDA-induced damage by inhibiting the NF-κB signaling pathway and reduces the detrimental effects of NMDA on RGC projections to the visual centers. These findings propose APS as a potential novel therapeutic agent for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
- Frontier Science Center for lmmunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
11
|
Lin CH, Lin E, Lane HY. Interpretable machine learning to evaluate relationships between DAO/DAOA (pLG72) protein data and features in clinical assessments, functional outcome, and cognitive function in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:27. [PMID: 39987274 PMCID: PMC11846841 DOI: 10.1038/s41537-024-00548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 02/24/2025]
Abstract
Machine learning has been proposed to utilize D-amino acid oxidase (DAO) and DAO activator (DAOA [or pLG72]) protein levels to ascertain disease status in schizophrenia. However, it remains unclear whether machine learning can effectively evaluate clinical features in relation to DAO and DAOA in schizophrenia patients. We employed an interpretable machine learning (IML) framework including linear regression, least absolute shrinkage and selection operator (Lasso) models, and generalized additive models (GAMs) to analyze DAO/DAOA levels using 380 Taiwanese schizophrenia patients. Additionally, we incorporated 27 parameters encompassing demographic variables, clinical assessments, functional outcomes, and cognitive function as features. The IML framework facilitated linear and non-linear relationships between features and DAO/DAOA. DAO levels demonstrated significant associations with the 17-item Hamilton Depression Rating Scale (HAMD17) based on linear regression. The Lasso model identified four features-HAMD17, age, working memory, and overall cognitive function (OCF)-and highlighted HAMD17 as the most significant feature, using DAO from chronically stable patients. Utilizing DAOA from acutely exacerbated patients, the Lasso model also identified four features-OCF, Scale for the Assessment of Negative Symptoms 20-item, quality of life scale (QLS), and category fluency-and emphasized OCF as the most significant feature. Furthermore, GAMs revealed a non-linear relationship between category fluency and DAO in chronically stable patients, as well as between QLS and DAOA in acutely exacerbated patients. The study suggests that an IML framework holds promise for assessing linear and non-linear relationships between DAO/DAOA and various features in clinical assessments, functional outcomes, and cognitive function in patients with schizophrenia.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA.
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan.
- Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
12
|
Manns M, Juckel G, Freund N. The Balance in the Head: How Developmental Factors Explain Relationships Between Brain Asymmetries and Mental Diseases. Brain Sci 2025; 15:169. [PMID: 40002502 PMCID: PMC11852682 DOI: 10.3390/brainsci15020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute to the primary symptoms and cognitive impairments of a specific disorder. Since multiple genetic and epigenetic factors influence both the pathogenesis of mental illness and the development of brain asymmetries, it is likely that the neural developmental pathways overlap or are even causally intertwined, although the timing, magnitude, and direction of interactions may vary depending on the specific disorder. However, the underlying developmental steps and neuronal mechanisms are still unclear. In this review article, we briefly summarise what we know about structural, functional, and developmental relationships and outline hypothetical connections, which could be investigated in appropriate animal models. Altered cerebral asymmetries may causally contribute to the development of the structural and/or functional features of a disorder, as neural mechanisms that trigger neuropathogenesis are embedded in the asymmetrical organisation of the developing brain. Therefore, the occurrence and severity of impairments in neural processing and cognition probably cannot be understood independently of the development of the lateralised organisation of intra- and interhemispheric neuronal networks. Conversely, impaired cellular processes can also hinder favourable asymmetry development and lead to cognitive deficits in particular.
Collapse
Affiliation(s)
- Martina Manns
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany;
| | - Nadja Freund
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| |
Collapse
|
13
|
Knight SR, Abbasova L, Zeighami Y, Hansen JY, Martins D, Zelaya F, Dipasquale O, Liu T, Shin D, Bossong M, Azis M, Antoniades M, Howes OD, Bonoldi I, Egerton A, Allen P, O'Daly O, McGuire P, Modinos G. Transcriptional and Neurochemical Signatures of Cerebral Blood Flow Alterations in Individuals With Schizophrenia or at Clinical High Risk for Psychosis. Biol Psychiatry 2025:S0006-3223(25)00076-9. [PMID: 39923816 DOI: 10.1016/j.biopsych.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The brain integrates multiple scales of description, from the level of cells and molecules to large-scale networks and behavior. Understanding relationships across these scales may be fundamental to advancing understanding of brain function in health and disease. Recent neuroimaging research has shown that functional brain alterations that are associated with schizophrenia spectrum disorders (SSDs) are already present in young adults at clinical high risk for psychosis (CHR-P), but the cellular and molecular determinants of these alterations remain unclear. METHODS Here, we used regional cerebral blood flow (rCBF) data from 425 individuals (122 with an SSD compared with 116 healthy control participants [HCs] and 129 individuals at CHR-P compared with 58 HCs) and applied a novel pipeline to integrate brainwide rCBF case-control maps with publicly available transcriptomic data (17,205 gene maps) and neurotransmitter atlases (19 maps) from 1074 healthy volunteers. RESULTS We identified significant correlations between astrocyte, oligodendrocyte, oligodendrocyte precursor cell, and vascular leptomeningeal cell gene modules for both SSD and CHR-P rCBF phenotypes. Additionally, endothelial cell genes were correlated in SSD, and microglia in CHR-P. Receptor distribution significantly predicted case-control rCBF differences, with dominance analysis highlighting dopamine (D1, D2, dopamine transporter), acetylcholine (VAChT, M1), gamma-aminobutyric acid A (GABAA), and glutamate (NMDA) receptors as key predictors for SSD (R2adjusted = 0.58, false discovery rate [FDR]-corrected p < .05) and CHR-P (R2adjusted = 0.6, pFDR < .05) rCBF phenotypes. These associations were primarily localized in subcortical regions and implicate cell types involved in stress response and inflammation, alongside specific neuroreceptor systems, in shared and distinct rCBF phenotypes in psychosis. CONCLUSIONS Our findings underscore the value of integrating multiscale data as a promising hypothesis-generating approach toward decoding biological pathways involved in neuroimaging-based psychosis phenotypes, potentially guiding novel interventions.
Collapse
Affiliation(s)
- Samuel R Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Leyla Abbasova
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Olea Medical, La Ciotat, France
| | - Thomas Liu
- Centre for Functional MRI, University of California San Diego, San Diego, California
| | - David Shin
- Global MR Applications and Workflow, GE Healthcare, Menlo Park, California
| | - Matthijs Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Brain Center Rudoph Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mathilde Antoniades
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Nejat H, Sherfey J, Bastos AM. Predictive routing emerges from self-supervised stochastic neural plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630823. [PMID: 39803482 PMCID: PMC11722284 DOI: 10.1101/2024.12.31.630823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms preparing specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking for predictable inputs. This is called predictive routing model. It is unclear which circuit mechanisms implement this push-pull interaction between alpha/beta and gamma rhythms. To explore how predictive routing is implemented, we developed a self-supervised learning algorithm we call generalized Stochastic Delta Rule (gSDR). Development of this algorithm was necessary because manual tuning of parameters (frequently used in computational modeling) is inefficient to search through a non-linear parameter space that leads to emergence of neuronal rhythms. We used gSDR to train biophysical neural circuits and validated the algorithm on simple objectives. Then we applied gSDR to model observed neurophysiology. We asked the model to reproduce a shift from baseline oscillatory dynamics (~<20Hz) to stimulus induced gamma (~40-90Hz) dynamics recorded in the macaque visual cortex. This gamma oscillation during stimulation emerged by self-modulation of synaptic weights via gSDR. We further showed that the gamma-beta push-pull interactions implied by predictive routing could emerge via stochastic modulation of the local circuitry as well as top-down modulatory inputs to a network. To summarize, gSDR succeeded in training biophysical neural circuits to satisfy a series of neuronal objectives. This revealed the inhibitory neuron mechanisms underlying the gamma-beta push-pull dynamics that are observed during predictive processing tasks in systems and cognitive neuroscience.
Collapse
Affiliation(s)
- Hamed Nejat
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Jason Sherfey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - André M. Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
15
|
Lahogue C, Boulouard M, Menager F, Freret T, Billard JM, Bouet V. A new 2-hit model combining serine racemase deletion and maternal separation displays behavioral and cognitive deficits associated with schizophrenia. Behav Brain Res 2025; 477:115301. [PMID: 39442565 DOI: 10.1016/j.bbr.2024.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Schizophrenia (SCZ) is a multifactorial psychotic disorder characterized by positive and negative symptoms as well as cognitive impairments. To advance the current treatments, it is important to improve animal models by considering the multifactorial etiology, thus by combining different risk factors. The objective of our study was to explore in a new mouse model, the impact of genetic deletion of serine racemase (genetic vulnerability) combined with an early stress factor induced by maternal separation (early environmental exposure) in the context of SCZ development. The face validity of the model was assessed through a wide range of behavioral experiments. The 2-hit mice displayed an increased locomotor activity mimicking positive symptoms, working memory impairment, cognitive deficits and recognition memory alterations, which could reflect neophobia. This new multifactorial model therefore presents an interesting phenotype for modelling animal model with partial behavioral and cognitive deficits associated with SCZ.
Collapse
Affiliation(s)
- Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France.
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France
| | - François Menager
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France
| | | | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, FHU A2M2P, COMETE, Caen 14000, France.
| |
Collapse
|
16
|
Phadke RA, Brack A, Fournier LA, Kruzich E, Sha M, Picard I, Johnson C, Stroumbakis D, Salgado M, Yeung C, Escude Velasco B, Liu YY, Cruz-Martín A. The schizophrenia risk gene C4 induces pathological synaptic loss by impairing AMPAR trafficking. Mol Psychiatry 2025; 30:796-809. [PMID: 39227431 PMCID: PMC11746135 DOI: 10.1038/s41380-024-02701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Neuroimmune interactions play a significant role in regulating synaptic plasticity in both the healthy and diseased brain. The complement pathway, an extracellular proteolytic cascade, exemplifies these interactions. Its activation triggers microglia-dependent synaptic elimination via the complement receptor 3 (CR3). Current models of pathological complement activity in the brain propose that accelerated synaptic loss resulting from overexpression of C4 (C4-OE), a gene associated with schizophrenia, follows this pathway. Here, we report that C4-mediated cortical hypoconnectivity is CR3-independent. Instead, C4-OE triggers impaired GluR1 trafficking through an intracellular mechanism involving the endosomal protein SNX27, resulting in pathological synaptic loss. Moreover, C4 circuit alterations in the prefrontal cortex, a brain region associated with neuropsychiatric disorders, were rescued by increasing neuronal levels of SNX27, which we identify as an interacting partner of this neuroimmune protein. Our results link excessive complement activity to an intracellular endo-lysosomal trafficking pathway altering synaptic plasticity.
Collapse
Affiliation(s)
- Rhushikesh A Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Luke A Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Ezra Kruzich
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Mingqi Sha
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Ines Picard
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Connor Johnson
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Dimitri Stroumbakis
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Charlotte Yeung
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Berta Escude Velasco
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Yen Yu Liu
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA.
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA.
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
17
|
Uehara JM, Gomez Acosta M, Bello EP, Belforte JE. Early postnatal NMDA receptor ablation in cortical interneurons impairs affective state discrimination and social functioning. Neuropsychopharmacology 2025:10.1038/s41386-025-02051-0. [PMID: 39833563 DOI: 10.1038/s41386-025-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Emotion recognition is fundamental for effective social interactions among conspecifics. Impairments in affective state processing underlie several neuropsychiatric disorders, including schizophrenia, although the neurobiological substrate of these deficits remains unknown. We investigated the impact of early NMDA receptor hypofunction on socio-affective behaviors. Male mice lacking NMDA receptors in GABAergic interneurons of cerebral and hippocampal cortices from an early postnatal age (interNMDAr-KO mutants) were evaluated in affective state discrimination, social preference and social novelty preference, hierarchy and dominance, aggression and territoriality, and long-term social interaction. We show that interNMDAr-KO mice failed to discriminate conspecifics based on their affective states, unlike control littermates, while exhibiting an intact preference for social stimuli over inanimate objects. This discrimination deficit was observed regardless of whether affective valences were manipulated positively or negatively, via a palatable reward or social defeat, respectively. Additionally, interNMDAr-KO mice failed to establish a normal social hierarchy, consistently assuming subordinate roles against control littermates, and presented an abnormal response to conspecifics in the resident-intruder test. Finally, mice lacking NMDA receptors in GABAergic interneurons exhibited social withdrawal following exposure to unfamiliar conspecifics in a custom setting designed to monitor social behavior over extended time periods. This deficit was reversed by subchronic clozapine treatment. Our study thoroughly assessed the impact of a pathophysiological manipulation relevant to schizophrenia on social behavior in mice. Overall, this study provides evidence demonstrating that altered NMDAr-dependent development of cortical and hippocampal interneurons impairs affective state discrimination and leads to deficits in social functioning and long-term sociality.
Collapse
Affiliation(s)
- Juan M Uehara
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina
| | - Martina Gomez Acosta
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina
| | - Estefanía P Bello
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina.
| | - Juan E Belforte
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Olivares-Berjaga D, Martínez-Pinteño A, Rodríguez N, Mas S, Morén C, Parellada E, Gassó P. Effectiveness of positive allosteric modulators of metabotropic glutamate receptor 2/3 (mGluR2/3) in animal models of schizophrenia. Transl Psychiatry 2025; 15:11. [PMID: 39809758 PMCID: PMC11733226 DOI: 10.1038/s41398-024-03194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder characterised by its heterogeneity and complex symptomatology consisting of positive, negative and cognitive deficits. Current antipsychotic drugs ameliorate the positive symptomatology, but are inefficient in treating the negative symptomatology and cognitive deficits. The neurodevelopmental glutamate hypothesis of SZ has opened new avenues in the development of drugs targeting the glutamatergic system. One of these new therapies involves the positive allosteric modulators (PAMs) of metabotropic glutamate receptors, mainly types 2/3 (mGluR2/3). mGluR2/3 PAMs are selective for the receptor, present high tolerability and can modulate the activity of the receptor for long periods. There is not much research in clinical trials regarding mGluR2/3 PAMs. However, several lines of evidence from animal models have indicated the efficiency of mGluR2/3 PAMs. In this review, focusing on in vivo animal studies, we will specifically discuss the utilization of SZ animal models and the various methods employed to assess animal behaviour before summarising the evidence obtained to date in the field of mGluR2/3 PAMs. By doing so, we aim to deepen our understanding of the underlying mechanisms and the potential efficiency of mGluR2/3 PAMs in treating SZ. Overall, mGluR2/3 PAMs have demonstrated efficiency in attenuating SZ-like behavioural and molecular deficits in animal models and could be useful for the early management of the disorder or to treat specific subsets of patients.
Collapse
Affiliation(s)
- David Olivares-Berjaga
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Constanza Morén
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Department of Fundamental and Clinical Nursing, Faculty of Nursing, University of Barcelona, Barcelona, Spain
| | - Eduard Parellada
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain.
| | - Patricia Gassó
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| |
Collapse
|
19
|
Nakauchi S, Su H, Sumikawa K. Nicotine and a positive allosteric modulator of m1 muscarinic receptor increase NMDA/AMPA ratio in the hippocampus and medial prefrontal cortex. Neuropharmacology 2025; 262:110213. [PMID: 39522675 DOI: 10.1016/j.neuropharm.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Chronic nicotine exposure has been shown to improve memory in rodents. However, the molecular mechanism for such an enhancement remains poorly understood. Chronic nicotine exposure increases NMDA/AMPA ratio due to enhanced NMDAR-mediated responses in hippocampal CA1 pyramidal cells and facilitates LTP. Here, we found that the same nicotine treatment increases NMDA/AMPA ratios in parvalbumin-expressing interneurons in the hippocampus and in layer 5 pyramidal cells in the medial prefrontal cortex (mPFC) of male and female rats. To gain further insight into the nicotine-initiated signaling pathway, we used a positive allosteric modulator (PAM) of m1 muscarinic acetylcholine receptor (m1 receptor), VU0453595. We found that chronic VU0453595 treatment mimics the effects of chronic nicotine exposure, causing increased NMDA/AMPA ratio in hippocampal CA1 pyramidal cells and LTP facilitation. Furthermore, chronic exposure to VU0453595 also caused increased NMDA/AMPA ratio in layer 5 pyramidal cells of mPFC. As the PAM only activates m1 receptors when the endogenous agonist acetylcholine (ACh) is present, the findings suggest that the release of ACh from cholinergic neurons is involved in the effect. Thus, chronic nicotine exposure, by increasing ACh release, may stimulate a signaling pathway in various neuron types, which receive cholinergic input and express m1 receptors, leading to the enhancement of NMDAR responses. The nicotine-initiated signaling pathway, in which ACh and m1 receptors are downstream of nicotinic ACh receptor activation, may represent an important cholinergic pathway involved in cognitive function.
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697-4550, USA
| | - Hailing Su
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697-4550, USA.
| |
Collapse
|
20
|
Lee YJ, Oh JH, Park S, Choi J, Hong MH, Kweon H, Chae WS, Che X, Choi JY, Kim SG. The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats. Tissue Eng Regen Med 2025; 22:91-104. [PMID: 39694984 PMCID: PMC11711554 DOI: 10.1007/s13770-024-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives. METHODS This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses. RESULTS The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group. Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity. CONCLUSION These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.
Collapse
Affiliation(s)
- Yoon-Jo Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, 25457, Republic of Korea
| | - Ji-Hyeon Oh
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, 25457, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, 25457, Republic of Korea
| | - Min-Ho Hong
- Department of Dental Biomaterials and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, 25457, Republic of Korea
| | - HaeYong Kweon
- Industrial Insect and Sericulture Division, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu, 41566, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do, 25457, Republic of Korea.
| |
Collapse
|
21
|
Miranda L. Antidepressant and anxiolytic effects of activating 5HT2A receptors in the anterior cingulate cortex and the theoretical mechanisms underlying them - A scoping review of available literature. Brain Res 2025; 1846:149226. [PMID: 39251056 DOI: 10.1016/j.brainres.2024.149226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Psychedelic drugs that activate the 5HT2A receptor have long been the target of extensive clinical research, particularly in models of psychiatric illness. The aim of this literature review was to investigate the therapeutic effects of 5HT2A receptor activation in the anterior cingulate cortex (ACC) and the respective mechanisms that underlie them. Based on the available research, I suggest that 5HT2A receptors in the ACC exert profound changes in excitatory neurotransmission and brain network connectivity in a way that reduces anxious preoccupation and obsessional thoughts, as well as promoting cognitive flexibility and long-lasting mood improvements in anhedonia. This is possibly due to a complex interplay with glutamate and gamma-butyric acid neurotransmission, particularly 5HT2A activation enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor signalling, thus altering the ratio of AMPA to N-methyl-D-Aspartate (NMDA) activity in the ACC, which can dismantle previously established neuronal connections and aid the formation of new ones, an effect that may be beneficial for fear extinction and reversal learning. Psychedelics potentially change intra- and internetwork connectivity, strengthening connectivity from the dorsal ACC / Salience Network to the Default Mode Network (DMN) and Central Executive Network (CEN), which correlates with improvements in attentional shifting and anti-anhedonic effects. Additionally, they may decrease inhibitory influence of the DMN over the CEN which may reduce overevaluation of internal states and ameliorate cognitive deficits. Activation of ACC 5HT2A receptors also has important downstream effects on subcortical areas, including reducing amygdala reactivity to threatening stimuli and enhancing mesolimbic dopamine, respectively improving anxiety and the experience of natural rewards.
Collapse
|
22
|
Mouffok I, Lahogue C, Cailly T, Freret T, Bouet V, Boulouard M. A New Three-Hit Mouse Model of Neurodevelopmental Disorder with Cognitive Impairments and Persistent Sociability Deficits. Brain Sci 2024; 14:1281. [PMID: 39766480 PMCID: PMC11674404 DOI: 10.3390/brainsci14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cognitive deficits and negative symptoms associated with schizophrenia are poorly managed by current antipsychotics. In order to develop effective treatments, refining animal models of neurodevelopmental disorders is essential. METHODS To address their multifactorial etiology, we developed a new three-hit mouse model based on the hypoglutamatergic hypothesis of the pathology combined with early stress, offering strong construct validity. Thus, a genetic susceptibility (serine racemase deletion) was associated with an early environmental stress (24 h maternal separation at 9 days of age) and a further pharmacological treatment with phencyclidine (PCP, a glutamate receptor antagonist treatment, 10 mg/kg/day, from 8 to 10 weeks of age). The face validity of this model was assessed in female mice 1 and 6 weeks after the end of PCP treatment by a set of behavioral experiments investigating positive- and negative-like symptoms and cognitive deficits. RESULTS Our results showed that the three-hit mice displayed persistent hyperlocomotion (positive-like symptoms) and social behavior impairment deficits (negative-like symptoms) but non-persistent spatial working memory deficits (cognitive symptoms). CONCLUSIONS Our work confirms the usefulness of a three-hit combination to model, particularly for negative-like symptoms associated with schizophrenia and other psychiatric disorders. The model therefore gathers powerful construct and face validities and supports an involvement of glutamate dysfunction in behavioral symptoms.
Collapse
Affiliation(s)
- Imane Mouffok
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Caroline Lahogue
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Thomas Cailly
- CERMN UR (Unité de Recherche) 4258, Campus 5, Université de Caen Normandie, 14000 Caen, France;
- CYCERON UAR (Unité d’Appui à la Recherche) 3408-US50, IMOGERE, Campus 1, Université de Caen Normandie, 14000 Caen, France
- Department of Nuclear Medicine, CHU Côte de Nacre, 14000 Caen, France
| | - Thomas Freret
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Valentine Bouet
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| | - Michel Boulouard
- Department of Health, Normandie Université, UNICAEN (Université de Caen Normandie), INSERM (Institut National de la Santé et de la Recherche Médicale), UMR (Unité Mixte de Recherche) 1075 COMETE, Campus 5, CYCERON, FHU (Fédération Hospitalo-Universitaire) A2M2P, CHU (Centre Hospitalo-Universitaire) Caen, 14000 Caen, France; (I.M.); (C.L.); (T.F.); (M.B.)
| |
Collapse
|
23
|
Omori NE, Malys MK, Woo G, Mansor L. Exogenous ketone bodies and the ketogenic diet as a treatment option for neurodevelopmental disorders. Front Nutr 2024; 11:1485280. [PMID: 39749357 PMCID: PMC11693454 DOI: 10.3389/fnut.2024.1485280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025] Open
Abstract
Background Despite being the most prevalent neurodevelopmental disorders, there are comparatively few treatment options available to patients presenting with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The ketogenic diet has historically shown therapeutic utility in treating refractory epilepsy, an adjacent neuropsychiatric condition, in children, adolescents and adults. The following review explores preclinical and clinical literature focusing on the therapeutic potential of the ketogenic diet and exogenous ketone body supplementation in treating common neurodevelopmental disorders. Method A narrative review of extant literature was conducted across the domains of perinatal nutrition, ASD, and ADHD. Preclinical and clinical studies focusing on the effect of either the ketogenic diet or exogenous ketone supplementation as a treatment option were included for review. Results 14 preclinical and 10 clinical studies were included for discussion. Data supporting the use of a ketogenic intervention for neurodevelopmental disorders is mixed. High heterogeneity in study design was noted for preclinical models, ketogenic intervention, and outcomes measured. Conclusion Studies evaluating ketogenic interventions for neurodevelopmental disorders remain in their infancy in terms of both the depth and scope of available literature. The safety and tolerability of ketogenic diets and supplements means there would be value in exploring their effectiveness further in clinical studies.
Collapse
Affiliation(s)
- Naomi Elyse Omori
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Mantas Kazimieras Malys
- Department of Psychological Medicine, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Geoffrey Woo
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Latt Mansor
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| |
Collapse
|
24
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Jansakova K, Hill M, Celusakova H, Repiska G, Bicikova M, Macova L, Polonyiova K, Kopcikova M, Ostatnikova D. Steroidogenic pathway in girls diagnosed with autism spectrum disorders. PLoS One 2024; 19:e0312933. [PMID: 39636905 PMCID: PMC11620458 DOI: 10.1371/journal.pone.0312933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The diagnostic prevalence of autism spectrum disorders (ASD) shows boys to be more affected than girls. Due to this reason, there is a lack of research including and observing ASD girls. Present study was aimed to detect hormones of steroidogenesis pathway in prepubertal girls (n = 16) diagnosed with ASD and sex and age matched neurotypical controls (CTRL, n = 16). Collected plasma served for detection of conjugated and unconjugated steroids using gas chromatography tandem-mass spectrometry. We observed higher levels of steroids modulating ionotropic receptors, especially, GABAergic steroids and pregnenolone sulfate in ASD group. Concentration of many steroids throughout the pathway tend to be higher in ASD girls compared to CTRL. Pregnenolone and its isomers together with polar progestins and androstanes, i.e. sulfated steroids, were found to be higher in ASD group in comparison with CTRL group. Based on steroid product to precursor ratios, ASD group showed higher levels of sulfated/conjugated steroids suggesting higher sulfotransferase or lower steroid sulfatase activity and we also obtained data indicating lower activity of steroid 11β-hydroxylase compared to CTRL group despite higher corticosterone level observed in ASD. These findings need to be generalized in future studies to examine both genders and other age groups.
Collapse
Affiliation(s)
- Katarina Jansakova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Martin Hill
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Hana Celusakova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Gabriela Repiska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marie Bicikova
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Ludmila Macova
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Katarína Polonyiova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Mária Kopcikova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
26
|
Tian Z, Zhang Q, Wang L, Li M, Li T, Wang Y, Cao Z, Jiang X, Luo P. Progress in the mechanisms of pain associated with neurodegenerative diseases. Ageing Res Rev 2024; 102:102579. [PMID: 39542176 DOI: 10.1016/j.arr.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases (NDDs) represent a class of neurological disorders characterized by the progressive degeneration or loss of neurons, impacting millions of individuals globally. In addition to the typical manifestations, pain is a prevalent symptom associated with NDDs, seriously impacting the quality of life for patients. The pathogenesis of pain associated with NDDs is intricate and multifaceted. Currently, the clinical management of NDDs-related pain symptoms predominantly relies on conventional pharmacological agents or physical therapy. However, these approaches often fail to produce satisfactory outcomes. This article summarizes the underlying mechanisms of major NDDs-associated pain: Neuroinflammation, Brain and spinal cord dysfunctions, Mitochondrial dysfunction, Risk gene and pathological protein, as well as Receptor, channel, and neurotransmitter. While numerous studies have investigated the downstream pathological processes associated with these mechanisms, there remains a significant gap in identifying the key initiating factors. Specifically, there is insufficient evidence for the upstream elements that activate microglia and astrocytes in neuroinflammation leading to pain in NDDs. Likewise, there is an absence of upstream factors elucidating how dysfunctions in the brain and spinal cord, as well as mitochondrial impairments, contribute to the development of pain. Furthermore, the specific mechanisms through which hallmark pathological proteins related to NDDs contribute to these pathological processes remain inadequately understood. The objective of this article is to synthesize the existing mechanisms underlying pain associated with NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, Schizophrenia, Amyotrophic lateral sclerosis, and Multiple sclerosis, while also identifying gaps and deficiencies in these mechanisms. This paper offers insights for future research trajectories. Given the intricate pathogenesis of NDDs-related pain, it emphasizes that a promising short-term strategy is combination therapy-intervening concurrently in multiple pathological processes-akin to the cocktail approach utilized in treating acquired immunodeficiency syndrome (AIDS). For long-term advancements, achieving breakthroughs in the treatment of the NDDs themselves will remain essential for alleviating accompanying pain symptoms.
Collapse
Affiliation(s)
- Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Wang
- Xi'an Children's Hospital, Xi'an 710002, China
| | - Mengxiang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tianjing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yujie Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zixuan Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Zhang J, Toulopoulou T, Li Q, Niu L, Peng L, Dai H, Chen K, Wang X, Huang R, Wei X, Zhang R. Charting brain GABA and glutamate levels across psychiatric disorders by quantitative analysis of 121 1H-MRS studies. Psychol Med 2024:1-12. [PMID: 39564744 DOI: 10.1017/s0033291724001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
BACKGROUND Psychiatric diagnosis is based on categorical diagnostic classification, yet similarities in genetics and clinical features across disorders suggest that these classifications share commonalities in neurobiology, particularly regarding neurotransmitters. Glutamate (Glu) and gamma-aminobutyric acid (GABA), the brain's primary excitatory and inhibitory neurotransmitters, play critical roles in brain function and physiological processes. METHODS We examined the levels of Glu, combined glutamate and glutamine (Glx), and GABA across psychiatric disorders by pooling data from 121 1H-MRS studies and further divided the sample based on Axis I disorders. RESULTS Statistically significant differences in GABA levels were found in the combined psychiatric group compared with healthy controls (Hedge's g = -0.112, p = 0.008). Further analyses based on brain regions showed that brain GABA levels significantly differed across Axis I disorders and controls in the parieto-occipital cortex (Hedge's g = 0.277, p = 0.019). Furthermore, GABA levels were reduced in affective disorders in the occipital cortex (Hedge's g = -0.468, p = 0.043). Reductions in Glx levels were found in neurodevelopmental disorders (Hedge's g = -0.287, p = 0.022). Analysis focusing on brain regions suggested that Glx levels decreased in the frontal cortex (Hedge's g = -0.226, p = 0.025), and the reduction of Glu levels in patients with affective disorders in the frontal cortex is marginally significant (Hedge's g = -0.172, p = 0.052). When analyzing the anterior cingulate cortex and prefrontal cortex separately, reductions were only found in GABA levels in the former (Hedge's g = - 0.191, p = 0.009) across all disorders. CONCLUSIONS Altered glutamatergic and GABAergic metabolites were found across psychiatric disorders, indicating shared dysfunction. We found reduced GABA levels across psychiatric disorders and lower Glu levels in affective disorders. These results highlight the significance of GABA and Glu in psychiatric etiology and partially support rethinking current diagnostic categories.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Qian Li
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lanxin Peng
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haowei Dai
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Keyin Chen
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingqin Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First Affiliated Hospital, Guangzhou, PR China
| | - Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
28
|
Klimczak P, Alcaide J, Gramuntell Y, Castillo-Gómez E, Varea E, Perez-Rando M, Nacher J. Long-term effects of a double hit murine model for schizophrenia on parvalbumin expressing cells and plasticity-related molecules in the thalamic reticular nucleus and the habenula. Transl Psychiatry 2024; 14:450. [PMID: 39448557 PMCID: PMC11502763 DOI: 10.1038/s41398-024-03166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The exposure to aversive experiences during early-life affects brain maturation and induces changes in behavior. Additionally, when these experiences coincide with subtle neurodevelopmental alterations, they may contribute to the emergence of psychiatric disorders, such as schizophrenia. Studies in patients and animal models have identified changes in parvalbumin (PV) expressing inhibitory neurons, highlighting their significance in the etiology of this disorder. Most studies have been focused on the cortex, but PV+ neurons also provide inhibitory input to diencephalic regions, particularly to the thalamus (through cells in the thalamic reticular nucleus, TRN) and the habenula. Remarkably, alterations in both nuclei have been described in schizophrenia. Some of these changes in PV+ cells may be mediated by perineuronal nets (PNN), specialized regions of the extracellular matrix that often surround them and regulate their synaptic input and activity. Interestingly, the physiological maturation and integration of PV+ neurons, which involves the assembly of PNN, occurs during early postnatal life. Plasticity molecules associated to inhibitory neurons, such as PSA-NCAM, or NMDA receptors (NMDAR) can also influence the structure and function of these cells. Growing evidence also indicates that glial cells regulate the physiology of PV+ neurons by influencing their maturation and modulating their synaptic connectivity. To explore the impact of early-life aversive experiences and concomitant subtle neurodevelopmental alterations on diencephalic PV+ cells, we analyzed adult male mice subjected to a double-hit model (DHM) of schizophrenia, combining a single injection of an NMDAR antagonist at P7 and post-weaning social isolation. We observed that exploratory behavior, PV+ neurons and their associated PNN, as well as PSA-NCAM and NMDAR expression and glial cells, in the TRN and the habenula were affected by the DHM or one of its factors. To our knowledge, this is the first report on such alterations in these diencephalic structures in an animal model combining neurodevelopmental alterations and early-life stress during adolescence. Our findings complement previous work on PV+ neurons in cortical regions and underscore the importance of studying diencephalic inhibitory networks and their intricate interactions with aversive experiences and neurodevelopmental alterations during early life in the context of schizophrenia.
Collapse
Affiliation(s)
- Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Emilio Varea
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain.
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, 46100, Spain.
- Spanish National Network for Research in Mental Health CIBERSAM, Madrid, 28029, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
29
|
Ortiz-Valladares M, Gonzalez-Perez O, Pedraza-Medina R. Bridging the gap: Prenatal nutrition, myelination, and schizophrenia etiopathogenesis. Neuroscience 2024; 558:58-69. [PMID: 39159841 DOI: 10.1016/j.neuroscience.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Schizophrenia (SZ) is a complex mental illness characterized by disturbances in thinking, emotionality, and behavior, significantly impacting the quality of life for individuals affected and those around them. The etiology of SZ involves intricate interactions between genetic and environmental factors, although the precise mechanisms remain incompletely understood. Genetic predisposition, neurotransmitter dysregulation (particularly involving dopamine and serotonin), and structural brain abnormalities, including impaired prefrontal cortex function, have been implicated in SZ development. However, increasing evidence reveals the role of environmental factors, such as nutrition, during critical periods like pregnancy and lactation. Epidemiological studies suggest that early malnutrition significantly increases the risk of SZ symptoms manifesting in late adolescence, a crucial period coinciding with peak myelination and brain maturation. Prenatal undernutrition may disrupt myelin formation, rendering individuals more susceptible to SZ pathology. This review explores the potential relationship between prenatal undernutrition, myelin alterations, and susceptibility to SZ. By delineating the etiopathogenesis, examining genetic and environmental factors associated with SZ, and reviewing the relationship between SZ and myelination disorders, alongside the impact of malnutrition on myelination, we aim to examine how malnutrition might be linked to SZ by altering myelination processes, which contribute to increasing the understanding of SZ etiology and help identify targets for intervention and management.
Collapse
Affiliation(s)
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040. México
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima 28040. México
| |
Collapse
|
30
|
Shanmugam I, Radhakrishnan S, Santosh S, Ramnath A, Anil M, Devarajan Y, Maheswaran S, Narayanan V, Pitchaimani A. Emerging role and translational potential of small extracellular vesicles in neuroscience. Life Sci 2024; 355:122987. [PMID: 39151884 DOI: 10.1016/j.lfs.2024.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Small extracellular vesicles (sEV) are endogenous lipid-bound membrane vesicles secreted by both prokaryotic and eukaryotic cells into the extracellular environment, performs several biological functions such as cell-cell communication, transfer of proteins, mRNA, and ncRNA to target cells in distant sites. Due to their role in molecular pathogenesis and its potential to deliver biological cargo to target cells, it has become a prominent area of interest in recent research in the field of Neuroscience. However, their role in neurological disorders, like neurodegenerative diseases is more complex and still unaddressed. Thus, this review focuses on the role of sEV in neurodegenerative and neurodevelopmental diseases, including their biogenesis, classification, and pathogenesis, with translational advantages and limitations in the area of neurobiology.
Collapse
Affiliation(s)
- Iswarya Shanmugam
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Sivani Radhakrishnan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Shradha Santosh
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Akansha Ramnath
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Meghna Anil
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Yogesh Devarajan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Saravanakumar Maheswaran
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Vaibav Narayanan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Arunkumar Pitchaimani
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
31
|
Zhang T, Liu C, Zhong N, Wang Y, Huang Y, Zhang X. Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways. Int J Mol Sci 2024; 25:10668. [PMID: 39408997 PMCID: PMC11477438 DOI: 10.3390/ijms251910668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, playing a pivotal role in the pathogenesis and prognosis of this disorder. Cognitive impairment in schizophrenia encompasses a wide range of domains, including processing speed, episodic memory, working memory, and executive function. These deficits persist throughout the course of the illness and significantly impact functional outcomes and quality of life. Therefore, it is imperative to identify the biological basis of cognitive deficits in schizophrenia and develop effective treatments. The role of N-methyl-D-aspartate (NMDA) receptors in synaptic transmission and plasticity has long been recognized, making them potential targets for schizophrenia treatment. This review will focus on emerging pharmacology targeting NMDA receptors, offering strategies for the prevention and treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (T.Z.); (C.L.); (N.Z.); (Y.W.); (Y.H.)
| |
Collapse
|
32
|
Gong MD, Long JY, Xu WB, Huang CY, Meng SY, Zhang XT, Liu ZY. Effect of pseudorabies virus infection on NMDA receptor expression in mice and its role in immunosuppression. Vet Microbiol 2024; 297:110216. [PMID: 39151256 DOI: 10.1016/j.vetmic.2024.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Pseudorabies virus (PRV), an α-herpesvirus, induces immunosuppression and can lead to severe neurological diseases. N-methyl-D-aspartate receptor (NMDAR), an important excitatory nerve receptor in the central nervous system, is linked to various nervous system pathologies. The link between NMDAR and PRV-induced neurological diseases has not been studied. In vivo studies revealed that PRV infection triggers a reduction in hippocampal NMDAR expression, mediated by inflammatory processes. Extensive hippocampal neuronal degeneration was found in mice on the 6th day by hematoxylin-eosin staining, which was strongly correlated with increased NMDAR protein expression. In vitro studies utilizing the CCK-8 assay demonstrated that treatment with an NMDAR antagonist significantly heightened the cytotoxic effects of PRV on T lymphocytes. Notably, NMDAR inhibition did not affect the replication ability of PRV. However, it facilitated the accumulation of pro-inflammatory cytokines in PRV-infected T cells and enhanced the transcription of the CD25 gene through the secretion of interleukin-2 (IL-2), consequently exacerbating immunosuppression. In this study, we found that NMDAR has functional activity in T lymphocytes and is crucial for the inflammatory and immune responses triggered by PRV infection. These discoveries highlight the significant role of NMDAR in PRV-induced neurological disease pathogenesis.
Collapse
Affiliation(s)
- Meng-Die Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiang-Yu Long
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiao-Tong Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
33
|
Zhang L, Zhou Y, Xie Y, Ying Y, Li Y, Ye S, Wang Z. Adjunctive clozapine with bright light mitigates cognitive deficits by synaptic plasticity and neurogenesis in sub-chronic MK-801 treated mice. Pharmacol Biochem Behav 2024; 243:173821. [PMID: 39002805 DOI: 10.1016/j.pbb.2024.173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia impacts about 1 % of the global population, with clozapine (CLZ) being a critical treatment for refractory cases despite its limitations in effectiveness and adverse effects. Therefore, the search for more effective treatments remains urgent. Light treatment (LT) recognized for enhancing cognition and mood, presents a promising complementary approach. This study investigated the effects of CLZ and LT on cognitive impairments in a sub-chronic MK-801 induced schizophrenia mouse model. Results showed that both CLZ and CLZ + LT treatment elevate cognitive performance of sub-chronic MK-801 treated mice in serial behavioral tests over two months. Histological analysis revealed increased dendritic spine density and branching, and synaptic repair in the hippocampus with CLZ and CLZ + LT interventions. Furthermore, both treatments increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, likely contributing to cognitive amelioration in MK-801 treated mice. Additionally, BrdU labeling revealed that CLZ + LT further enhances neurogenesis in the dentate gyrus (DG) and lateral ventricle (LV) of sub-chronic MK-801 treated mice. These findings may have implications for the development of noninvasive and adjunctive treatment strategies aimed at alleviating cognitive impairments and improving functional outcomes in individuals with schizophrenia.
Collapse
Affiliation(s)
- Lizhi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yiying Zhou
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yanhong Xie
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yudong Ying
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yan Li
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Sen Ye
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Zhengchun Wang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; The Affiliated People's Hospital of Ningbo University, Ningbo 315100, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China.
| |
Collapse
|
34
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
35
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. iScience 2024; 27:110800. [PMID: 39310747 PMCID: PMC11416532 DOI: 10.1016/j.isci.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement pathway dysregulation in PV cells drives disease pathogenesis, we have developed a transgenic line that permits cell-type specific overexpression of the schizophrenia-associated C4 gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific alterations in anxiety-like behavior and deficits in synaptic connectivity and excitability of PFC PV cells. Using a computational model, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that perturbations of this neuroimmune gene in fast-spiking neurons are especially detrimental to circuits associated with anxiety-like behavior. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics MS Program, Boston University, Boston, MA, USA
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, USA
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Smart SE, Legge SE, Fenner E, Pardiñas AF, Woolway G, Lynham AJ, Escott-Price V, Hall J, Wilkinson L, Holmans P, O’Donovan MC, Owen MJ, Walters JT. SLC39A8.p.(Ala391Thr) is associated with poorer cognitive ability: a cross-sectional study of schizophrenia and the general UK population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.18.24313865. [PMID: 39371177 PMCID: PMC11451698 DOI: 10.1101/2024.09.18.24313865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The missense SNP NC_000004.12:g.102267552C>T (SLC39A8.p.(Ala391Thr), rs13107325) in SLC39A8, which encodes a zinc transporter, has been linked to schizophrenia and is the likely causal variant for one of the genome-wide association loci associated with the disorder. We tested whether the schizophrenia-risk allele at p.(Ala391Thr) was associated with schizophrenia-related phenotypes, including positive, negative, and disorganised symptoms, cognitive ability, educational attainment, and age of psychosis onset, within three schizophrenia cohorts (combined N=1,232) and, with equivalent phenotypes, in a sample of population controls (UK Biobank, N=355,069). We used regression analyses controlling for age, sex, and population stratification. Within the schizophrenia cohorts, after correction for multiple testing, p.(Ala391Thr) was not significantly associated with any schizophrenia-related phenotypes. In the unaffected participants from the UK Biobank, the schizophrenia-risk allele at p.(Ala391Thr) was associated with significantly poorer cognitive ability and fluid intelligence, a lower probability of obtaining GCSEs or a degree-level qualification, and fewer years in education. There was no association between p.(Ala391Thr) and self-reported psychotic experiences in this cohort. The schizophrenia-risk allele was associated with poorer cognitive ability, but not psychotic experiences, in a volunteer sample drawn from of the general population. To determine whether p.(Ala391Thr) is associated with cognitive phenotypes in people with schizophrenia, and to understand the role of p.(Ala391Thr) in the aetiology of cognitive impairment in schizophrenia, larger independent samples are required.
Collapse
Affiliation(s)
- Sophie E Smart
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sophie E. Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Eilidh Fenner
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Antonio F. Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Grace Woolway
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Amy J. Lynham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lawrence Wilkinson
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C. O’Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J. Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T.R. Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
37
|
Paul T, See JW, Vijayakumar V, Njideaka-Kevin T, Loh H, Lee VJQ, Dogrul BN. Neurostructural changes in schizophrenia and treatment-resistance: a narrative review. PSYCHORADIOLOGY 2024; 4:kkae015. [PMID: 39399446 PMCID: PMC11467815 DOI: 10.1093/psyrad/kkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024]
Abstract
Schizophrenia is a complex disorder characterized by multiple neurochemical abnormalities and structural changes in the brain. These abnormalities may begin before recognizable clinical symptoms appear and continue as a dynamic process throughout the illness. Recent advances in imaging techniques have significantly enriched our comprehension of these structural alterations, particularly focusing on gray and white matter irregularities and prefrontal, temporal, and cingulate cortex alterations. Some of the changes suggest treatment resistance to antipsychotic medications, while treatment nonadherence and relapses may further exacerbate structural abnormalities. This narrative review aims to discuss the literature about alterations and deficits within the brain, which could improve the understanding of schizophrenia and how to interpret neurostructural changes.
Collapse
Affiliation(s)
- Tanya Paul
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Jia Whei See
- General Medicine, Universitas Sriwijaya, Palembang City 30114, Indonesia
| | - Vetrivel Vijayakumar
- Department of Psychiatry, United Health Services Hospitals, Johnson City, New York 13790, USA
| | - Temiloluwa Njideaka-Kevin
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Hanyou Loh
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Vivian Jia Qi Lee
- Department of Medicine, Avalon University School of Medicine, World Trade Center, Willemstad, Curaçao
| | - Bekir Nihat Dogrul
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
38
|
Okubo R, Okada M, Motomura E. Dysfunction of the NMDA Receptor in the Pathophysiology of Schizophrenia and/or the Pathomechanisms of Treatment-Resistant Schizophrenia. Biomolecules 2024; 14:1128. [PMID: 39334894 PMCID: PMC11430065 DOI: 10.3390/biom14091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
For several decades, the dopamine hypothesis contributed to the discovery of numerous typical and atypical antipsychotics and was the sole hypothesis for the pathophysiology of schizophrenia. However, neither typical nor atypical antipsychotics, other than clozapine, have been effective in addressing negative symptoms and cognitive impairments, which are indices for the prognostic and disability outcomes of schizophrenia. Following the development of atypical antipsychotics, the therapeutic targets for antipsychotics expanded beyond the blockade of dopamine D2 and serotonin 5-HT2A receptors to explore the partial agonism of the D2 receptor and the modulation of new targets, such as D3, 5-HT1A, 5-HT7, and metabotropic glutamate receptors. Despite these efforts, to date, psychiatry has not successfully developed antipsychotics with antipsychotic properties proven to be superior to those of clozapine. The glutamate hypothesis, another hypothesis regarding the pathophysiology/pathomechanism of schizophrenia, was proposed based on clinical findings that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, such as phencyclidine and ketamine, induce schizophrenia-like psychotic episodes. Large-scale genome-wide association studies (GWASs) revealed that approximately 30% of the risk genes for schizophrenia (the total number was over one hundred) encode proteins associated with glutamatergic transmission. These findings supported the validation of the glutamate hypothesis, which was inspired by the clinical findings regarding NMDAR antagonists. Additionally, these clinical and genetic findings suggest that schizophrenia is possibly a syndrome with complicated pathomechanisms that are affected by multiple biological and genetic vulnerabilities. The glutamate hypothesis has been the most extensively investigated pathophysiology/pathomechanism hypothesis, other than the dopamine hypothesis. Studies have revealed the possibility that functional abnormalities of the NMDAR play important roles in the pathophysiology/pathomechanism of schizophrenia. However, no antipsychotics derived from the glutamatergic hypothesis have yet been approved for the treatment of schizophrenia or treatment-resistant schizophrenia. Considering the increasing evidence supporting the potential pro-cognitive effects of glutamatergic agents and the lack of sufficient medications to treat the cognitive impairments associated with schizophrenia, these previous setbacks cannot preclude research into potential novel glutamate modulators. Given this background, to emphasize the importance of the dysfunction of the NMDAR in the pathomechanism and/or pathophysiology of schizophrenia, this review introduces the increasing findings on the functional abnormalities in glutamatergic transmission associated with the NMDAR.
Collapse
Affiliation(s)
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (R.O.); (E.M.)
| | | |
Collapse
|
39
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
40
|
Shang Q, Zhang L, Xiao B, Yang J, Sun J, Gao X, Huang Y, Wang Z. Juvenile bright light exposure ameliorates adult behavioral abnormalities by enhancing neurogenesis in a N-methyl-D-aspartate receptor dysfunction mouse model relevant for cognitive impairment in schizophrenia. Behav Brain Res 2024; 472:115157. [PMID: 39047873 DOI: 10.1016/j.bbr.2024.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Exposure to light has been demonstrated to stimulate brain regions associated with cognition; however, investigations into its cognitive-enhancing effects have primarily focused on wild-type rodents. This study seeks to elucidate how bright light exposure mitigates cognitive deficits associated with schizophrenia by examining its impact on hippocampal neurogenesis and its potential to alleviate sub-chronic MK-801-induced cognitive impairments in mice. Following three weeks of juvenile bright light exposure (5-8 weeks old), significant increases in proliferating neurons (BrdU+) and immature neurons (DCX+ cells) were observed in the dentate gyrus (DG) and lateral ventricle of MK-801-treated mice. Long-term bright light treatment further promoted the differentiation of BrdU+ cells into immature neurons (BrdU+ DCX+ cells), mature neurons (BrdU+ NeuN+ cells), or astrocytes (BrdU+ GFAP+ cells) in the hippocampal DG. This augmented neurogenesis correlated with the attenuation of sub-chronic MK- 801-induced cognitive deficits, as evidenced by enhancements in Y-maze, novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) test performances. These findings suggest a promising noninvasive clinical approach for alleviating cognitive impairments associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qing Shang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Lizhi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Biao Xiao
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Jianhong Yang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Jie Sun
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Xiang Gao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yi Huang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zhengchun Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
41
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
42
|
Márquez LA, López Rubalcava C, Galván EJ. Postnatal hypofunction of N-methyl-D-aspartate receptors alters perforant path synaptic plasticity and filtering and impairs dentate gyrus-mediated spatial discrimination. Br J Pharmacol 2024; 181:2701-2724. [PMID: 38631821 DOI: 10.1111/bph.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.
Collapse
Affiliation(s)
- Luis A Márquez
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | | | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
- Centro de Investigaciones sobre el Envejecimiento, CIE-Cinvestav, Ciudad de México, Mexico
| |
Collapse
|
43
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Sormunen E, Tolvanen A, Salokangas RKR, Koutsouleris N, Tuominen L, Hietala J. Longitudinal study on hippocampal subfields and glucose metabolism in early psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:66. [PMID: 39085221 PMCID: PMC11291638 DOI: 10.1038/s41537-024-00475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Collapse
Grants
- Turun Yliopistollisen Keskussairaalan Koulutus- ja Tutkimussäätiö (TYKS-säätiö)
- Alfred Kordelinin Säätiö (Alfred Kordelin Foundation)
- Finnish Cultural Foundation | Varsinais-Suomen Rahasto (Varsinais-Suomi Regional Fund)
- Suomalainen Lääkäriseura Duodecim (Finnish Medical Society Duodecim)
- Turun Yliopisto (University of Turku)
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Armio received personal funding from Doctoral Programme in Clinical Research at the University of Turku, grants from State Research Funding, Turunmaa Duodecim Society, Finnish Psychiatry Research Foundation, Finnish University Society of Turku (Valto Takala Foundation), Tyks-foundation, The Finnish Medical Foundation (Maija and Matti Vaskio fund), University of Turku, The Alfred Kordelin Foundation, Finnish Cultural Foundation (Terttu Enckell fund and Ritva Helminen fund) and The Alfred Kordelin foundation. Further, Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, 20520, Turku, Finland.
- Department of Psychiatry, University of Turku, 20700, Turku, Finland.
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | - Maija Walta
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Elina Sormunen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Arvi Tolvanen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | | | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, D-80336, Munich, Germany
| | - Lauri Tuominen
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
44
|
Li D, Pan Q, Xiao Y, Hu K. Advances in the study of phencyclidine-induced schizophrenia-like animal models and the underlying neural mechanisms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:65. [PMID: 39039065 PMCID: PMC11263595 DOI: 10.1038/s41537-024-00485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.
Collapse
Affiliation(s)
- Dabing Li
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China.
| | - Qiangwen Pan
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Yewei Xiao
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Kehui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing, 629000, China.
| |
Collapse
|
45
|
Garofalo M, De Simone G, Motta Z, Nuzzo T, De Grandis E, Bruno C, Boeri S, Riccio MP, Pastore L, Bravaccio C, Iasevoli F, Salvatore F, Pollegioni L, Errico F, de Bartolomeis A, Usiello A. Decreased free D-aspartate levels in the blood serum of patients with schizophrenia. Front Psychiatry 2024; 15:1408175. [PMID: 39050919 PMCID: PMC11266155 DOI: 10.3389/fpsyt.2024.1408175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Schizophrenia (SCZ) and autism spectrum disorder (ASD) are neurodevelopmental diseases characterized by different psychopathological manifestations and divergent clinical trajectories. Various alterations at glutamatergic synapses have been reported in both disorders, including abnormal NMDA and metabotropic receptor signaling. Methods We conducted a bicentric study to assess the blood serum levels of NMDA receptors-related glutamatergic amino acids and their precursors, including L-glutamate, L-glutamine, D-aspartate, L-aspartate, L-asparagine, D-serine, L-serine and glycine, in ASD, SCZ patients and their respective control subjects. Specifically, the SCZ patients were subdivided into treatment-resistant and non-treatment-resistant SCZ patients, based on their responsivity to conventional antipsychotics. Results D-serine and D-aspartate serum reductions were found in SCZ patients compared to controls. Conversely, no significant differences between cases and controls were found in amino acid concentrations in the two ASD cohorts analyzed. Discussion This result further encourages future research to evaluate the predictive role of selected D-amino acids as peripheral markers for SCZ pathophysiology and diagnosis.
Collapse
Affiliation(s)
- Martina Garofalo
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Zoraide Motta
- ”The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Tommaso Nuzzo
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Elisa De Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
- Center of Translational and Experimental Myology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Boeri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
| | - Maria Pia Riccio
- Department of Maternal and Child Health, Unità Operativa semplice di Dipartimento (UOSD) of Child and Adolescent Psychiatry, Azienda Ospedaliera Universitaria (AOU) Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Carmela Bravaccio
- Department of Medical and Translational Sciences, Child Neuropsychiatry, Federico II University, Napoli, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Francesco Salvatore
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e loro Modelli Animali (Federico II, Naples; Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), Naples, Italy
| | - Loredano Pollegioni
- ”The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
46
|
Uzun Uysal E, Tomruk NB, Çakır Şen C, Yıldızhan E. D-serine and D-amino acid oxidase levels in patients with schizophrenia spectrum disorders in the first episode and 6-month follow-up. J Psychiatr Res 2024; 175:123-130. [PMID: 38728915 DOI: 10.1016/j.jpsychires.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND D-serine and the D-amino acid oxidase (DAO) enzyme, which breaks down d-amino acids, may be involved in the pathophysiology of schizophrenia by affecting the N-methyl-D-aspartate (NMDA) receptor. The exact role of D-serine and DAO, as well as the consequences of increased DAO activity in patients with schizophrenia, remain unclear. We aimed to investigate D-serine and DAO levels in patients with first-episode schizophrenia spectrum disorders before treatment and after six months of treatment. METHOD Comparisons for the serum levels of D-serine and DAO were made between 81 healthy controls and 89 patients with first-episode schizophrenia spectrum disorders without a history of treatment. Further comparisons were made after 6 months for changes in these levels in the 41 patients in follow-up. The Positive and Negative Syndrome Scale (PANNS), Calgary Scale for Depression in Schizophrenia (CDSS), Montreal Cognitive Assessment Scale (MoCA), Global Assessment Scale (GAS), and Clinical Global Impression Scale (CGI) were used to evaluate the symptom severity and functionality. Secondary results included comparisons related to antipsychotic equivalent doses. RESULTS Before treatment, patients had significantly lower levels of D-serine, DAO, and D-serine/DAO ratio compared to healthy individuals (p < 0.001; p < 0.001; p = 0.004). DAO and D-serine levels of the patients were higher after six months of treatment (p = 0.025; p = 0.001). There was correlation of DAO levels with antipsychotic dosage and with PANSS negative and total subscale scores (rho = 0.421, p = 0.01; rho = 0.280, p = 0.008; rho = 0.371, p = 0.000). No correlation was found between serum D-serine level, DAO level, and the D-serine/DAO ratio with cognitive function. CONCLUSIONS The results suggest that D-serine and DAO may play a role that is sensitive to treatment effects in schizophrenia spectrum disorders. To gain a more comprehensive understanding of the impact antipsychotic drugs have on NMDA receptor dysfunction, there is a requirement for studies that directly evaluates the activity of the DAO enzyme.
Collapse
Affiliation(s)
- Eda Uzun Uysal
- Arnavutkoy State Hospital, Department of Psychiatry, Istanbul, Turkey.
| | - Nesrin Buket Tomruk
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Cansu Çakır Şen
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Eren Yıldızhan
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
47
|
Black T, Jenkins BW, Laprairie RB, Howland JG. Therapeutic potential of gamma entrainment using sensory stimulation for cognitive symptoms associated with schizophrenia. Neurosci Biobehav Rev 2024; 161:105681. [PMID: 38641090 DOI: 10.1016/j.neubiorev.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with significant morbidity. Treatment options that address the spectrum of symptoms are limited, highlighting the need for innovative therapeutic approaches. Gamma Entrainment Using Sensory Stimulation (GENUS) is an emerging treatment for neuropsychiatric disorders that uses sensory stimulation to entrain impaired oscillatory network activity and restore brain function. Aberrant oscillatory activity often underlies the symptoms experienced by patients with schizophrenia. We propose that GENUS has therapeutic potential for schizophrenia. This paper reviews the current status of schizophrenia treatment and explores the use of sensory stimulation as an adjunctive treatment, specifically through gamma entrainment. Impaired gamma frequency entrainment is observed in patients, particularly in response to auditory and visual stimuli. Thus, sensory stimulation, such as music listening, may have therapeutic potential for individuals with schizophrenia. GENUS holds novel therapeutic potential to improve the lives of individuals with schizophrenia, but further research is required to determine the efficacy of GENUS, optimize its delivery and therapeutic window, and develop strategies for its implementation in specific patient populations.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Guan S, Li Y, Xin Y, Wang D, Lu P, Han F, Xu H. Deciphering the dual role of N-methyl-D-Aspartate receptor in postoperative cognitive dysfunction: A comprehensive review. Eur J Pharmacol 2024; 971:176520. [PMID: 38527701 DOI: 10.1016/j.ejphar.2024.176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.
Collapse
Affiliation(s)
- Shaodi Guan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danning Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Lu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanglong Han
- Department of Anesthesiology, Xiangyang Maternal and Child Health Hospital, Xiangyang, 441003, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
49
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
50
|
Li H, Huang Y, Liang L, Li H, Li S, Feng Y, Feng S, Wu K, Wu F. The relationship between the gut microbiota and oxidative stress in the cognitive function of schizophrenia: A pilot study in China. Schizophr Res 2024; 267:444-450. [PMID: 38643725 DOI: 10.1016/j.schres.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024]
Abstract
Cognitive impairment is a core symptom of schizophrenia. The gut microbiota (GM) and oxidative stress may play important roles in the pathophysiological mechanisms of cognitive impairment. This study aimed to explore the relationship between GM and oxidative stress in the cognitive function of schizophrenia. GM obtained by 16S RNA sequencing and serum superoxide dismutase (SOD) levels from schizophrenia patients (N = 68) and healthy controls (HCs, N = 72) were analyzed. All psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). Cognitive function was assessed using the MATRICS Consensus Cognitive Battery (MCCB). Correlation analysis was used to explore the relationship between GM, SOD, and cognitive function. Machine learning models were used to identify potential biomarkers. Compared to HCs, the relative abundances of Collinsella, undefined Ruminococcus, Lactobacillus, Eubacterium, Mogibacterium, Desulfovibrio, Bulleidia, Succinivibrio, Corynebacterium, and Atopobium were higher in patients with schizophrenia, but Faecalibacterium, Anaerostipes, Turicibacter, and Ruminococcus were lower. In patients with schizophrenia, the positive factor, general factor, and total score of MCCB positively correlated with Lactobacillus, Collinsella, and Lactobacillus, respectively; SOD negatively correlated with Eubacterium, Collinsella, Lactobacillus, Corynebacterium, Bulleidia, Mogibacterium, and Succinivibrio, but positively correlated with Faecalibacterium, Ruminococcus, and MCCB verbal learning index scores; Faecalibacterium and Turicibacter were positively correlated with MCCB visual learning index scores and speed of processing index scores, respectively. Our findings revealed a correlation between SOD and GM and confirmed that cognitive dysfunction in patients with schizophrenia involves abnormal SOD levels and GM changes.
Collapse
Affiliation(s)
- Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Hanqiu Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shijia Li
- Swammerdam Institute for Life Sciences (SILS)-University of Amsterdam, Amsterdam, the Netherlands
| | - Yangdong Feng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixuan Feng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|