1
|
Jiang N, Guo W, Wang SY, Liu XX, Yin YQ, Xiong KX, Li XY, Liu C, Nan KH, Chen JF, Wang JJ. Hydrophobic vehicles for hydrophilic drugs: Sustained intravitreal caffeine delivery with oleogels. J Control Release 2025; 380:490-502. [PMID: 39909284 DOI: 10.1016/j.jconrel.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/12/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Caffeine is the most widely consumed bioactive ingredient in the world, which has been found to show great therapeutic potential in several posterior eye diseases. While intravitreal injection represents the ideal administration route for these disorders, it remains challenging to achieve sustained release of caffeine in the vitreous. Herein, we address this issue by loading crystalline caffeine within oleogels (Ca@oleogels), oily delivery vehicles which provide a hydrophobic environment that is opposite to the hydrophilic nature of their cargos. Mathematical modeling of the in vitro release profiles indicated the diffusion process of the drug from Ca@oleogels was playing a dominating role in caffeine release. Furthermore, sustained intravitreal delivery was evidenced by higher drug levels from 12 h until the end of the pharmacokinetic study (240 h) and a 3.2-fold reduction in Cmax in Ca@oleogel dosed rabbits compared to their caffeine dosed counterparts. Superior therapeutic effects were obtained with Ca@oleogels in a laser-induced mouse choroidal neovascularization model. Advantages of Ca@oleogels as caffeine delivery vehicles included excellent biocompatibility, low cost and simplicity of manufacturing as well, which indicated they can be administrated safely and were readily amenable to scale-up production cost-effectively. Moreover, sustained release of another hydrophilic model drug (congo red) was also demonstrated with the same formulation design. Therefore, this strategy serves as a general solution to sustained intravitreal delivery of hydrophilic small molecule drugs.
Collapse
Affiliation(s)
- Nan Jiang
- The Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Si-Yu Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Xin Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu-Qing Yin
- The Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ke-Xin Xiong
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xiang-Yu Li
- The Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Cheng Liu
- The Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Kai-Hui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Jing-Jie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Zheng R, Zhang S, Chen S, Zha W, Li X, Li Q, He J, He S, Feng M, Shen Y. Sunlight-mediated environmental risks of tinidazole in seawater: A neglected ocular toxicity of photolysis mixtures. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137217. [PMID: 39823881 DOI: 10.1016/j.jhazmat.2025.137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.e., metronidazole, ornidazole, dimetridazole, and secnidazole) were quantified for multiple photoreactive species. The photolysis products of these nitroimidazoles were identified under solar irradiation, from which the reaction pathways were tentatively proposed. Furthermore, the photo-induced toxicity evolution mechanisms of TNZ were investigated by comparing phenotypic, transcriptomic, and metabolomic changes in marine medaka embryos (Oryzias melastigma) after exposure to TNZ and its photo-irradiated mixtures. Our results indicated that the photo-irradiated TNZ enhanced visual toxicity to marine medaka embryos compared to the parent compound. The photolysis mixtures induced embryonic ocular malformation and significantly affected the expression of the associated genes with the initiation/termination of the phototransduction cascade, leading to metabolite changes related to visual impairment. This work reported the first comprehensive assessment of the photolysis-mediated environmental fate and secondary risks of TNZ in seawater. The findings highlighted the necessity of including complex photolysis mixtures under solar irradiation in future chemical risk assessments of marine environments.
Collapse
Affiliation(s)
- Ruping Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengyue Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenqi Zha
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiuru Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinlin He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Irkec M, Konstas AG, Holló G, Dikmetaş Ö, Algedik Tokyürek MÖ, Bozkurt B. Investigational drugs for glaucoma: novel mechanistic approaches of preclinical agents. Expert Opin Investig Drugs 2025; 34:231-243. [PMID: 40000961 DOI: 10.1080/13543784.2025.2472409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/23/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Glaucoma is a neurodegenerative disease that causes irreversible blindness worldwide. It results from retinal ganglion cell (RGC) loss and progressive optic nerve damage, mainly associated with elevated intraocular pressure (IOP). Current treatments focus on reducing IOP but do not directly delve into the underlying pathophysiological mechanisms of neurodegeneration. A mechanistic approach enables researchers to identify drugs that target these fundamental mechanisms rather than solely addressing symptoms such as elevated IOP. AREAS COVERED This review explores mechanistic approaches to emerging preclinical agents, including those targeting trabecular meshwork function, neuroprotection, RGC survival, and ocular blood flow. We also review promising nutrients, gene therapies, and biologics currently under investigation, particularly agents that modulate oxidative stress and neuroinflammatory pathways. EXPERT OPINION Recently, investigational drugs that protect the RGC and the optic nerve from further damage have become critical in treating glaucoma. For example, CNTF was shown to promote the survival and growth of photoreceptors and RGC in cell culture and animal models. Moreover, optimizing drug delivery is paramount to achieving tailored management and patient adherence. Meticulous clinical trials will pave the way for the potential reevaluation of glaucoma management, offering new hope for patients with this complex disease.
Collapse
Affiliation(s)
- Murat Irkec
- Department of Ophthalmology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Anastasios G Konstas
- 1st University Department of Ophthalmology, AHEPA University Hospital, Thessaloniki, Greece
| | - Gábor Holló
- Eye Center, Prima Medica Health Centers, Budapest, Hungary
- Tutkimusz Ltd, Solymar, Hungary
| | - Özlem Dikmetaş
- Department of Ophthalmology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Banu Bozkurt
- Department of Ophthalmology, Selçuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
4
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
5
|
Stekic A, Dragic M, Stanojevic J, Zaric Kontic M, Stevanovic I, Zeljkovic Jovanovic M, Mihajlovic K, Nedeljkovic N. Impaired olfactory performance and anxiety-like behavior in a rat model of multiple sclerosis are associated with enhanced adenosine signaling in the olfactory bulb via A 1R, A 2BR, and A 3R. Front Cell Neurosci 2024; 18:1407975. [PMID: 39139401 PMCID: PMC11320153 DOI: 10.3389/fncel.2024.1407975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
The present study shows that animals with experimental autoimmune encephalomyelitis (EAE) exhibit olfactory dysfunction and impaired general cognitive abilities, as well as anxiety-like behavior. Olfactory dysfunction occurs on average at 2 dpi, well before the onset of the first motor signs of EAE (8-10 dpi). After the initial olfactory dysfunction, the EAE animals show a fluctuation in olfactory performance that resembles the relapsing-remitting course of human MS. The study also shows severe neuroinflammation in the olfactory bulb (OB), with numerous infiltrated CD4+ T cells and peripheral macrophages in the superficial OB layers, marked microgliosis, and massive induction of TNF-α, IL-1β, and IL-6. Reduced tyrosine hydroxylase activity in the glomerular layer, pronounced granule cell atrophy, and reduced numbers of type B neuroblasts in the rostral migratory stream also indicate altered plasticity of the neuronal network in the OB. Considering the exceptionally high purinome expression in the OB, the possible involvement of purinergic signaling was also investigated. The study shows that macrophages infiltrating the OB overexpress A3R, while highly reactive microglia overexpress the adenosine-producing enzyme eN/CD73 as well as A2BR, A3R, and P2X4R. Given the simultaneous induction of complement component C3, the results suggest that the microglial cells develop a functional phenotype of phagocytizing microglia. The study also demonstrates transcriptional and translational upregulation of A1R in mitral and tufted cells, which likely influence resting network activity in OB and likely contribute to olfactory dysfunction in EAE. Overall, our study shows that olfactory dysfunction and altered social and cognitive behavior in EAE are associated with increased adenosine signaling via A1R, A2BR, and A3R.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Vinca Institute of Nuclear Sciences, Institute of National Significance, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Mérida S, Návea A, Desco C, Celda B, Pardo-Tendero M, Morales-Tatay JM, Bosch-Morell F. Glutathione and a Pool of Metabolites Partly Related to Oxidative Stress Are Associated with Low and High Myopia in an Altered Bioenergetic Environment. Antioxidants (Basel) 2024; 13:539. [PMID: 38790644 PMCID: PMC11117864 DOI: 10.3390/antiox13050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.
Collapse
Affiliation(s)
- Salvador Mérida
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| | - Amparo Návea
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
| | - Carmen Desco
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
- FOM, Fundación de Oftalmología Médica de la Comunidad Valenciana, 46015 Valencia, Spain
| | - Bernardo Celda
- Physical Chemistry Department, University of Valencia, 46100 Valencia, Spain;
| | - Mercedes Pardo-Tendero
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Manuel Morales-Tatay
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Francisco Bosch-Morell
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| |
Collapse
|
7
|
Wang Y, Sun X, Xie Y, Du A, Chen M, Lai S, Wei X, Ji L, Wang C. Panax notoginseng saponins alleviate diabetic retinopathy by inhibiting retinal inflammation: Association with the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117135. [PMID: 37689326 DOI: 10.1016/j.jep.2023.117135] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a neurovascular disease that causes blindness in adults and is the most serious and common complication of diabetes mellitus. Retinal inflammation is an early stage of DR, and it is believed to play a crucial role in the development of DR. Panax notoginseng saponins (PNS) are the major active constituent in the main root of P. notoginseng, and they exhibit various biological activities, including anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory functions. However, the protective effects and underlying mechanisms of PNS against DR remain unclear. AIM OF THE STUDY This study aimed to investigate the alleviation effects of PNS on DR and the mechanisms involved. Furthermore, it intended to explore the major components that exert efficacy in vivo. MATERIALS AND METHODS Streptozotocin (STZ) was administered intraperitoneally to Sprague Dawley rats, and PNS was administered orally for 1 month after 2 months of STZ injection. The morphological structure of the retina and retinal acellular capillaries were assessed via hematoxylin and eosin (H&E) staining assay. The disruption of the blood-retinal barrier (BRB) was detected through Evans blue dye leakage assay, and retinal leukocyte adhesion was achieved via fluorescein isothiocyanate-coupled concanavalin A lectin labeling assay. Immunofluorescence staining and Western blot assays were conducted to detect the expression of tight junction proteins, adhesion molecules, and the ionized calcium-binding adapter molecule-1 (Iba-1) in the retina. Enzyme-linked immunosorbent assay was performed to detect the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in serum. In addition, the protein expression levels of nuclear factor (NF)-κB p65, phosphorylated IκB kinase (p-IKK), phosphorylated NF-κB inhibitor (p-IκB), and phosphorylated NF-κB p65 (p-p65) were measured using Western blot assay. The ocular tissue distribution of PNS in normal and diabetic rats was determined through ultra-performance liquid chromatography-tandem mass spectrometry. The in vitro anti-inflammatory effects of PNS, notoginsenoside (NGR1), ginsenoside Rg1, Re, Rb1, and Rd (GRg1, GRe, GRb1, and GRd) were evaluated on human Müller (MIO-M1) cells. RESULTS PNS increased the reduction in retinal inner nuclear layer thickness, reduced the increase in retinal acellular capillaries, and attenuated elevated BRB disruption by upregulating the decrease in protein expression of claudin-1 and occludin. Furthermore, PNS significantly abrogated microglial cell activation and reversed the increase in leukocyte adhesion by downregulating the increase in the protein expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Moreover, PNS reduced the elevated levels of TNF-α, IL-6, and IL-1β in serum and inhibited the increased protein expression of p-IKK, p-IκB, and p-p65, and the nuclear translocation of p65. The tissue distribution results revealed that NGR1, GRg1, GRe, GRb1, and GRd were detected in the ocular tissue, while GRg1 and GRb1 were found at the highest levels compared with the other components. The cellular results showed that PNS, NGR1, GRg1, GRe, GRb1, and GRd suppressed the development of cellular inflammatory responses by inhibiting the activation of the NF-κB signaling pathway in MIO-M1 cells and that their anti-inflammatory effects were comparable. CONCLUSION PNS suppressed retinal inflammation by inhibiting the activation of the NF-κB signaling pathway, alleviating DR. GRg1 and GRb1 may be the primary components that exert anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Yaru Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Sun
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yumin Xie
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ming Chen
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Shusheng Lai
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Xiaohui Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Molcak H, Jiang K, Campbell CJ, Matsubara JA. Purinergic signaling via P2X receptors and mechanisms of unregulated ATP release in the outer retina and age-related macular degeneration. Front Neurosci 2023; 17:1216489. [PMID: 37496736 PMCID: PMC10366617 DOI: 10.3389/fnins.2023.1216489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic and progressive inflammatory disease of the retina characterized by photoceptor loss and significant central visual impairment due to either choroidal neovascularization or geographic atrophy. The pathophysiology of AMD is complex and multifactorial, driven by a combination of modifiable and non-modifiable risk factors, molecular mechanisms, and cellular processes that contribute to overall disease onset, severity, and progression. Unfortunately, due to the structural, cellular, and pathophysiologic complexity, therapeutic discovery is challenging. While purinergic signaling has been investigated for its role in the development and treatment of ocular pathologies including AMD, the potential crosstalk between known contributors to AMD, such as the complement cascade and inflammasome activation, and other biological systems, such as purinergic signaling, have not been fully characterized. In this review, we explore the interactions between purinergic signaling, ATP release, and known contributors to AMD pathogenesis including complement dysregulation and inflammasome activation. We begin by identifying what is known about purinergic receptors in cell populations of the outer retina and potential sources of extracellular ATP required to trigger purinergic receptor activation. Next, we examine evidence in the literature that the purinergic system accelerates AMD pathogenesis leading to apoptotic and pyroptotic cell death in retinal cells. To fully understand the potential role that purinergic signaling plays in AMD, more research is needed surrounding the expression, distribution, functions, and interactions of purinergic receptors within cells of the outer retina as well as potential crosstalk with other systems. By determining how these processes are affected in the context of purinergic signaling, it will improve our understanding of the mechanisms that drive AMD pathogenesis which is critical in developing treatment strategies that prevent or slow progression of the disease.
Collapse
Affiliation(s)
- Haydn Molcak
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | - Kailun Jiang
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | | | - Joanne A. Matsubara
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| |
Collapse
|
9
|
Shan S, Liu F, Ford E, Caldwell RB, Narayanan SP, Somanath PR. Triciribine attenuates pathological neovascularization and vascular permeability in a mouse model of proliferative retinopathy. Biomed Pharmacother 2023; 162:114714. [PMID: 37080089 DOI: 10.1016/j.biopha.2023.114714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Proliferative retinopathies are the leading cause of irreversible blindness in all ages, and there is a critical need to identify novel therapies. We investigated the impact of triciribine (TCBN), a tricyclic nucleoside analog and a weak Akt inhibitor, on retinal neurovascular injury, vascular permeability, and inflammation in oxygen-induced retinopathy (OIR). Post-natal day 7 (P7) mouse pups were subjected to OIR, and treated (i.p.) with TCBN or vehicle from P14-P16 and compared with age-matched, normoxic, vehicle or TCBN-treated controls. P17 retinas were processed for flat mounts, immunostaining, Western blotting, and qRT-PCR studies. Fluorescein angiography, electroretinography, and spectral domain optical coherence tomography were performed on days P21, P26, and P30, respectively. TCBN treatment significantly reduced pathological neovascularization, vaso-obliteration, and inflammation marked by reduced TNFα, IL6, MCP-1, Iba1, and F4/80 (macrophage/microglia markers) expression compared to the vehicle-treated OIR mouse retinas. Pathological expression of VEGF (vascular endothelial growth factor), and claudin-5 compromised the blood-retinal barrier integrity in the OIR retinas correlating with increased vascular permeability and neovascular tuft formation, which were blunted by TCBN treatment. Of note, there were no changes in the retinal architecture or retinal cell function in response to TCBN in the normoxia or OIR mice. We conclude that TCBN protects against pathological neovascularization, restores blood-retinal barrier homeostasis, and reduces retinal inflammation without adversely affecting the retinal structure and neuronal function in a mouse model of OIR. Our data suggest that TCBN may provide a novel therapeutic option for proliferative retinopathy.
Collapse
Affiliation(s)
- Shengshuai Shan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA; Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA; Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
| | - Edith Ford
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA; Vascular Biology Center, Augusta University, Augusta, GA, 30912, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA.
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30912, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Erofeeva N, Meshalkina D, Firsov M. Multiple Roles of cAMP in Vertebrate Retina. Cells 2023; 12:cells12081157. [PMID: 37190066 DOI: 10.3390/cells12081157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
cAMP is a key regulatory molecule that controls many important processes in the retina, including phototransduction, cell development and death, growth of neural processes, intercellular contacts, retinomotor effects, and so forth. The total content of cAMP changes in the retina in a circadian manner following the natural light cycle, but it also shows local and even divergent changes in faster time scales in response to local and transient changes in the light environment. Changes in cAMP might also manifest or cause various pathological processes in virtually all cellular components of the retina. Here we review the current state of knowledge and understanding of the regulatory mechanisms by which cAMP influences the physiological processes that occur in various retinal cells.
Collapse
Affiliation(s)
- Natalia Erofeeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Darya Meshalkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Michael Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
11
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
12
|
Zhang Z, Wang X, Zhang X, Wu J, Chen J, Li W. Integrated LC-MS and network pharmacology methods to screen quantitative indicators in the Hippocampus histrix Kaup and method transfer. J Pharm Biomed Anal 2023; 228:115294. [PMID: 36827860 DOI: 10.1016/j.jpba.2023.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Hippocampus histrix Kaup is a popular marine medicine with high medicinal and healthcare values. In this study, liquid chromatography-mass spectrometry (LC-MS) analysis combined with network pharmacological method was used to screen for suitable quantitative indicators for the quality control of H. histrix Kaup. Firstly, an LC-MS analytical method for the simultaneous determination of 12 nucleosides in extracts of H. histrix Kaup was established. And then, a network pharmacological method incorporated target prediction, protein-protein interaction network, components-targets network, and targets-pathways network was performed to screen for quantitative indicators. Finally, the developed LC-MS method was transferred to liquid chromatographs to improve the generalizability of the method. All 12 nucleotides were authenticated in extracts of H. histrix Kaup by comparing with the standards. The optimal chromatographic separation conditions are as follows: the chromatographic separation was achieved on an Acquire BEH-C18 column (2.1 mm * 100 mm, 1.7 µm) and gradient elution was performed using methanol solution and buffer (0.30% formic acid and 10 mmol/L ammonium acetate) as mobile phase at a flow rate of 0.15 mL/min and an acquisition wavelength of 260 nm. Network pharmacology results showed that adenosine, and uridine show excellent pharmacological activity. Integration the content, correlation, chromatographic separation, and pharmacological activity of each compound in H. histrix Kaup, uridine and adenosine were tentatively determined as quantitative indicators for quality control in H. histrix Kaup. The established LC-MS method was successfully transferred to liquid chromatographs, and the method is stable and reliable for the quality control of H. histrix Kaup. This developed integrated strategy was successfully used to screen quantitative indicators in the H. histrix Kaup.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyang Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaheng Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhui Chen
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Qingdao Key Lab on Analytical Technology Development and Standardization of Chinese Medicines, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
13
|
Hu S, Li Y, Zhang Y, Shi R, Tang P, Zhang D, Kuang X, Chen J, Qu J, Gao Y. The adenosine A 2A receptor antagonist KW6002 distinctly regulates retinal ganglion cell morphology during postnatal development and neonatal inflammation. Front Pharmacol 2022; 13:1082997. [PMID: 36588710 PMCID: PMC9800499 DOI: 10.3389/fphar.2022.1082997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) appear early in the retina during postnatal development, but the roles of the A2ARs in the morphogenesis of distinct types of retinal ganglion cells (RGCs) during postnatal development and neonatal inflammatory response remain undetermined. As the RGCs are rather heterogeneous in morphology and functions in the retina, here we resorted to the Thy1-YFPH transgenic mice and three-dimensional (3D) neuron reconstruction to investigate how A2ARs regulate the morphogenesis of three morphologically distinct types of RGCs (namely Type I, II, III) during postnatal development and neonatal inflammation. We found that the A2AR antagonist KW6002 did not change the proportion of the three RGC types during retinal development, but exerted a bidirectional effect on dendritic complexity of Type I and III RGCs and cell type-specifically altered their morphologies with decreased dendrite density of Type I, decreased the dendritic field area of Type II and III, increased dendrite density of Type III RGCs. Moreover, under neonatal inflammation condition, KW6002 specifically increased the proportion of Type I RGCs with enhanced the dendrite surface area and volume and the proportion of Type II RGCs with enlarged the soma area and perimeter. Thus, A2ARs exert distinct control of RGC morphologies to cell type-specifically fine-tune the RGC dendrites during normal development but to mainly suppress RGC soma and dendrite volume under neonatal inflammation.
Collapse
Affiliation(s)
- Shisi Hu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Yaoyao Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanjie Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ruyi Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ping Tang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Di Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiuli Kuang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,*Correspondence: Ying Gao, ; Jia Qu,
| | - Ying Gao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,*Correspondence: Ying Gao, ; Jia Qu,
| |
Collapse
|
14
|
Geraniin ameliorates streptozotocin-induced diabetic retinopathy in rats via modulating retinal inflammation and oxidative stress. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Zhang S, Li B, Tang L, Tong M, Jiang N, Gu X, Zhang Y, Ge Y, Liu XL, Chen JF. Disruption of CD73-Derived and Equilibrative Nucleoside Transporter 1-Mediated Adenosine Signaling Exacerbates Oxygen-Induced Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1633-1646. [PMID: 36029802 DOI: 10.1016/j.ajpath.2022.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/10/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Retinopathy of prematurity (ROP) is characterized by pathologic angiogenesis in retina, and remains a leading cause of blindness in children. Although enhanced extracellular adenosine is markedly increased in response to retinal hypoxia, adenosine acting at the A1 and A2A receptors has the opposite effect on pathologic angiogenesis. Herein, the oxygen-induced retinopathy (OIR) model of ROP was used to demonstrate that pharmacologic and genetic inactivation of CD73 (the key 5'-ectonucleotidase for extracellular generation of adenosine) did not affect normal retinal vasculature development but exacerbated intravitreal neovascularization at postnatal day (P) 17 and delayed revascularization at P21 of OIR. This exacerbated damage to retinal vessels by CD73 inactivation was associated with increased cellular apoptosis and microglial activation but decreased astrocyte function at P17 of OIR. Furthermore, pharmacologic blockade of equilibrative nucleoside transporter 1/2 (ENT1/2; bidirectional transport for controlling the balance of intracellular and extracellular adenosine) by 6-nitrobenzylthioinosine aggravated pathologic angiogenesis at P17 of OIR. Pharmacologic blockade of ENT1/2 and genetic inactivation of CD73 also aggravated avascular areas at the hyperoxia phase (P12) of OIR. Thus, disruption of CD73-derived extracellular adenosine or ENT1/2-mediated transport of adenosine flux across membrane aggravated the damage to retinal vessels. These findings support the role of adenosine as an endogenous protective regulator that limits oxygen-induced retinopathy. Thus, enhancing extracellular adenosine signaling represents a novel neuroprotection strategy for ROP by targeting CD73 and ENT1/2 activities.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bo Li
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lingyun Tang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Mengyun Tong
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuejiao Gu
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Ge
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ling Liu
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiang-Fan Chen
- The Oujiang Laboratory, State Key Laboratory of Optometry, Ophthalmology and Vision Science, The Affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
16
|
Zhang T, Yu-Jing L, Ma T. The immunomodulatory function of adenosine in sepsis. Front Immunol 2022; 13:936547. [PMID: 35958599 PMCID: PMC9357910 DOI: 10.3389/fimmu.2022.936547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Sepsis is an unsolved clinical condition with a substantial mortality rate in the hospital. Despite decades of research, no effective treatments for sepsis exists. The role of adenosine in the pathogenesis of sepsis is discussed in this paper. Adenosine is an essential endogenous molecule that activates the A1, A2a, A2b, and A3 adenosine receptors to regulate tissue function. These receptors are found on a wide range of immune cells and bind adenosine, which helps to control the immune response to inflammation. The adenosine receptors have many regulatory activities that determine the onset and progression of the disease, which have been discovered via the use of animal models. A greater understanding of the role of adenosine in modulating the immune system has sparked hope that an adenosine receptor-targeted treatment may be used one day to treat sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
17
|
Schubert C, Schulz K, Träger S, Plath AL, Omriouate A, Rosenkranz SC, Morellini F, Friese MA, Hirnet D. Neuronal Adenosine A1 Receptor is Critical for Olfactory Function but Unable to Attenuate Olfactory Dysfunction in Neuroinflammation. Front Cell Neurosci 2022; 16:912030. [PMID: 35846561 PMCID: PMC9279574 DOI: 10.3389/fncel.2022.912030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Adenine nucleotides, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), as well as the nucleoside adenosine are important modulators of neuronal function by engaging P1 and P2 purinergic receptors. In mitral cells, signaling of the G protein-coupled P1 receptor adenosine 1 receptor (A1R) affects the olfactory sensory pathway by regulating high voltage-activated calcium channels and two-pore domain potassium (K2P) channels. The inflammation of the central nervous system (CNS) impairs the olfactory function and gives rise to large amounts of extracellular ATP and adenosine, which act as pro-inflammatory and anti-inflammatory mediators, respectively. However, it is unclear whether neuronal A1R in the olfactory bulb modulates the sensory function and how this is impacted by inflammation. Here, we show that signaling via neuronal A1R is important for the physiological olfactory function, while it cannot counteract inflammation-induced hyperexcitability and olfactory deficit. Using neuron-specific A1R-deficient mice in patch-clamp recordings, we found that adenosine modulates spontaneous dendro-dendritic signaling in mitral and granule cells via A1R. Furthermore, neuronal A1R deficiency resulted in olfactory dysfunction in two separate olfactory tests. In mice with experimental autoimmune encephalomyelitis (EAE), we detected immune cell infiltration and microglia activation in the olfactory bulb as well as hyperexcitability of mitral cells and olfactory dysfunction. However, neuron-specific A1R activity was unable to attenuate glutamate excitotoxicity in the primary olfactory bulb neurons in vitro or EAE-induced olfactory dysfunction and disease severity in vivo. Together, we demonstrate that A1R modulates the dendro-dendritic inhibition (DDI) at the site of mitral and granule cells and impacts the processing of the olfactory sensory information, while A1R activity was unable to counteract inflammation-induced hyperexcitability.
Collapse
Affiliation(s)
- Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Simone Träger
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Lena Plath
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Asina Omriouate
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C. Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Manuel A. Friese,
| | - Daniela Hirnet
- Division of Neurophysiology, Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
- Daniela Hirnet,
| |
Collapse
|
18
|
Ruiss M, Findl O, Kronschläger M. The human lens: An antioxidant-dependent tissue revealed by the role of caffeine. Ageing Res Rev 2022; 79:101664. [PMID: 35690384 DOI: 10.1016/j.arr.2022.101664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/01/2022]
Abstract
Cataract is the leading cause of blindness worldwide and surgery is the only option to treat the disease. Although the surgery is considered to be relatively safe, complications may occur in a subset of patients and access to ophthalmic care may be limited. Due to a growing and ageing population, an increase in cataract prevalence is expected and its management will become a socioeconomic challenge. Hence, there is a need for an alternative to cataract surgery. It is well known that oxidative stress is one of the main pathological processes leading to the generation of the disease. Antioxidant supplementation may, therefore, be a strategy to delay or to prevent the progression of cataract. Caffeine is a widely consumed high-potency antioxidant and may be of interest for the prevention of the disease. This review aims to give an overview of the anatomy and function of the lens, its antioxidant and reactive oxygen species (ROS) composition, and the role of oxidative stress in cataractogenesis. Also, the pharmacokinetics and -dynamics of caffeine will be described and the literature will be reviewed to give an overview of its anti-cataract potential and its possible role in the prevention of the disease.
Collapse
Affiliation(s)
- Manuel Ruiss
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Oliver Findl
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Martin Kronschläger
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| |
Collapse
|
19
|
Chen Y, Coorey NJ, Zhang M, Zeng S, Madigan MC, Zhang X, Gillies MC, Zhu L, Zhang T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants (Basel) 2022; 11:antiox11050942. [PMID: 35624805 PMCID: PMC9137684 DOI: 10.3390/antiox11050942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
The human retina, which is part of the central nervous system, has exceptionally high energy demands that requires an efficient metabolism of glucose, lipids, and amino acids. Dysregulation of retinal metabolism disrupts local energy supply and redox balance, contributing to the pathogenesis of diverse retinal diseases, including age-related macular degeneration, diabetic retinopathy, inherited retinal degenerations, and Macular Telangiectasia. A better understanding of the contribution of dysregulated metabolism to retinal diseases may provide better therapeutic targets than we currently have.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | | | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (M.Z.); (T.Z.)
| | - Shaoxue Zeng
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Michele C. Madigan
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China;
- Beijing Retinal and Choroidal Vascular Study Group, Beijing 100073, China
| | - Mark C. Gillies
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- Correspondence: (M.Z.); (T.Z.)
| |
Collapse
|
20
|
Yang Y, Story ME, Hao X, Sumpter TL, Mathers AR. P2X7 Receptor Expression and Signaling on Dendritic Cells and CD4 + T Cells is Not Required but Can Enhance Th17 Differentiation. Front Cell Dev Biol 2022; 10:687659. [PMID: 35350380 PMCID: PMC8957928 DOI: 10.3389/fcell.2022.687659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The purinergic receptor P2X7 (P2X7R) is important in inflammasome activation and generally considered to favor proinflammatory immune responses. However, there is still a limited understanding of the role of P2X7R signaling in Th cell differentiation, particularly, Th17 differentiation. Herein, the impact of P2X7R signaling on primary Th17 and Th1 cell responses was examined when P2X7R was expressed specifically on dendritic cells (DCs) and CD4+ T cells. Surprisingly, global genetic ablation and pharmacological inhibition of the P2X7R did not affect the generation of Th17 and Th1 development in response to immunization with Complete Freund's Adjuvant and the model antigens, keyhole limpet hemocyanin or OVA. However, in-depth in vitro and in vivo investigations revealed differences in the balance of Th1/Th17 differentiation when P2X7R blockade was restricted to either DCs or CD4+ T cells. In this regard, in vitro DCs treated with a P2X7R agonist released more IL-6 and IL-1β and induced a more robust Th17 response in mixed leukocyte reactions when compared to controls. To test the hypothesis that P2X7R signaling specifically in DCs enhances Th17 responses in vivo, DC-specific P2X7R deficient chimeras were immunized with CFA and OVA. In this model, the P2X7R expression on DCs decreased the Th1 response without impacting Th17 responses. Following an assessment of CD4+ T cell P2X7R signaling, it was determined that in vitro P2X7R sufficient T cells develop an increased Th17 and suppressed Th1 differentiation profile. In vivo, P2X7R expression on CD4+ T cells had no effect on Th17 differentiation but likewise significantly suppressed the Th1 response, thereby skewing the immune balance. Interestingly, it appears that WT OT-II Th1 cells are more sensitive to P2X7R-induced cell death as evidence by a decrease in cell number and an increase in T cell death. Overall, these studies indicate that in vitro P2X7R signaling does enhances Th17 responses, which suggests that compensatory Th17 differentiation mechanisms are utilized in vivo in the absence of P2X7R signaling.
Collapse
Affiliation(s)
- Yin Yang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Meaghan E. Story
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Losenkova K, Takeda A, Ragauskas S, Cerrada-Gimenez M, Vähätupa M, Kaja S, Paul ML, Schmies CC, Rolshoven G, Müller CE, Sandholm J, Jalkanen S, Kalesnykas G, Yegutkin GG. CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cell Mol Life Sci 2022; 79:152. [PMID: 35212809 PMCID: PMC8881442 DOI: 10.1007/s00018-022-04187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/03/2023]
Abstract
ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5′-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local “purinergic junctions” with CD39low/CD73− neuronal cell bodies and CD39high/CD73− retinal blood vessels. The relevance of the CD73–adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.
Collapse
Affiliation(s)
- Karolina Losenkova
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | | | | | - Simon Kaja
- Experimentica Ltd., Kuopio, Finland.,Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Marius L Paul
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.,Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Georg Rolshoven
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
22
|
Martínez-Alberquilla I, Gasull X, Pérez-Luna P, Seco-Mera R, Ruiz-Alcocer J, Crooke A. Neutrophils and neutrophil extracellular trap components: Emerging biomarkers and therapeutic targets for age-related eye diseases. Ageing Res Rev 2022; 74:101553. [PMID: 34971794 DOI: 10.1016/j.arr.2021.101553] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Age-related eye diseases, including dry eye, glaucoma, age-related macular degeneration, and diabetic retinopathy, represent a major global health issue based on their increasing prevalence and disabling action. Unraveling the molecular mechanisms underlying these diseases will provide novel opportunities to reduce the burden of age-related eye diseases and improve eye health, contributing to sustainable development goals achievement. The impairment of neutrophil extracellular traps formation/degradation processes seems to be one of these mechanisms. These traps formed by a meshwork of DNA and neutrophil cytosolic granule proteins may exacerbate the inflammatory response promoting chronic inflammation, a pivotal cause of age-related diseases. In this review, we describe current findings that suggest the role of neutrophils and their traps in the pathogenesis of the above-mentioned age-related eye diseases. Furthermore, we discuss why these cells and their constituents could be biomarkers and therapeutic targets for dry eye, glaucoma, age-related macular degeneration, and diabetic retinopathy. We also examine the therapeutic potential of some neutrophil function modulators and provide several recommendations for future research in age-related eye diseases.
Collapse
Affiliation(s)
- Irene Martínez-Alberquilla
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Pérez-Luna
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Seco-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Ruiz-Alcocer
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
23
|
Lowering the Intraocular Pressure in Rats and Rabbits by Cordyceps cicadae Extract and Its Active Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030707. [PMID: 35163975 PMCID: PMC8837943 DOI: 10.3390/molecules27030707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023]
Abstract
Cordyceps cicadae (CC), an entomogenous fungus that has been reported to have therapeutic glaucoma, is a major cause of blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) death, mostly due to elevated intraocular pressure (IOP). Here, an ethanolic extract of C. cicadae mycelium (CCME), a traditional medicinal mushroom, was studied for its potential in lowering IOP in rat and rabbit models. Data showed that CCME could significantly (60.5%) reduce the IOP induced by microbead occlusion after 56 days of oral administration. The apoptosis of retinal ganglion cells (RGCs) in rats decreased by 77.2%. CCME was also shown to lower the IOP of normal and dextrose-infusion-induced rabbits within 60 min after oral feeding. There were dose effects, and the effect was repeatable. The active ingredient, N6-(2-hydroxyethyl)-adenosine (HEA), was also shown to alleviate 29.6% IOP at 0.2 mg/kg body weight in this rabbit model. CCME was confirmed with only minor inhibition in the phosphorylated myosin light chain 2 (pMLC2) pathway.
Collapse
|
24
|
Xiong X, Chen X, Ma H, Zheng Z, Yang Y, Chen Z, Zhou Z, Pu J, Chen Q, Zheng M. Metabolite Changes in the Aqueous Humor of Patients With Retinal Vein Occlusion Macular Edema: A Metabolomics Analysis. Front Cell Dev Biol 2022; 9:762500. [PMID: 34993196 PMCID: PMC8724431 DOI: 10.3389/fcell.2021.762500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Macular edema (ME) is the main cause of visual impairment in patients with retinal vein occlusion (RVO). The degree of ME affects the prognosis of RVO patients, while it lacks objective laboratory biomarkers. We aimed to compare aqueous humor samples from 28 patients with retinal vein occlusion macular edema (RVO-ME) to 27 age- and sex-matched controls by ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry, so as to identify the key biomarkers and to increase the understanding of the mechanism of RVO-ME at the molecular level. Through univariate and multivariate statistical analyses, we identified 60 metabolites between RVO-ME patients and controls and 40 differential metabolites in mild RVO-ME [300 μm ≤ central retinal thickness (CRT) < 400 μm] patients compared with severe RVO-ME (CRT ≥ 400 μm). Pathway enrichment analysis showed that valine, leucine, and isoleucine biosynthesis; ascorbate and aldarate metabolism; and pantothenate and coenzyme A biosynthesis were significantly altered in RVO-ME in comparison with controls. Compared with mild RVO-ME, degradation and biosynthesis of valine, leucine, and isoleucine; histidine metabolism; beta-alanine metabolism; and pantothenate and coenzyme A biosynthesis were significantly changed in severe RVO-ME. Furthermore, the receiver operating characteristic (ROC) curve analysis revealed that adenosine, threonic acid, pyruvic acid, and pyro-L-glutaminyl-l-glutamine could differentiate RVO-ME from controls with an area under the curve (AUC) of >0.813. Urocanic acid, diethanolamine, 8-butanoylneosolaniol, niacinamide, paraldehyde, phytosphingosine, 4-aminobutyraldehyde, dihydrolipoate, and 1-(beta-D-ribofuranosyl)-1,4-dihydronicotinamide had an AUC of >0.848 for distinguishing mild RVO-ME from severe RVO-ME. Our study expanded the understanding of metabolomic changes in RVO-ME, which could help us to have a good understanding of the pathogenesis of RVO-ME.
Collapse
Affiliation(s)
- Xiaojing Xiong
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Chen
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huafeng Ma
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Zheng
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yazhu Yang
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Chen
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zixi Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxin Pu
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingwei Chen
- Department of general practice, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minming Zheng
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Sorenson CM, Song YS, Zaitoun IS, Wang S, Hanna BA, Darjatmoko SR, Gurel Z, Fisk DL, McDowell CM, McAdams RM, Sheibani N. Caffeine Inhibits Choroidal Neovascularization Through Mitigation of Inflammatory and Angiogenesis Activities. Front Cell Dev Biol 2021; 9:737426. [PMID: 34722519 PMCID: PMC8551619 DOI: 10.3389/fcell.2021.737426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Adenosine receptors (AR) are widely expressed in a variety of tissues including the retina and brain. They are involved in adenosine-mediated immune responses underlying the onset and progression of neurodegenerative diseases. The expression of AR has been previously demonstrated in some retinal cells including endothelial cells and retinal pigment epithelial cells, but their expression in the choroid and choroidal cells remains unknown. Caffeine is a widely consumed AR antagonist that can influence inflammation and vascular cell function. It has established roles in the treatment of neonatal sleep apnea, acute migraine, and post lumbar puncture headache as well as the neurodegenerative diseases such as Parkinson and Alzheimer. More recently, AR antagonism with caffeine has been shown to protect preterm infants from ischemic retinopathy and retinal neovascularization. However, whether caffeine impacts the development and progression of ocular age-related diseases including neovascular age-related macular degermation remains unknown. Here, we examined the expression of AR in retinal and choroidal tissues and cells. We showed that antagonism of AR with caffeine or istradefylline decreased sprouting of thoracic aorta and choroid/retinal pigment epithelium explants in ex vivo cultures, consistent with caffeine's ability to inhibit endothelial cell migration in culture. In vivo studies also demonstrated the efficacy of caffeine in inhibition of choroidal neovascularization and mononuclear phagocyte recruitment to the laser lesion sites. Istradefylline, a specific AR 2A antagonist, also decreased choroidal neovascularization. Collectively, our studies demonstrate an important role for expression of AR in the choroid whose antagonism mitigate choroidal inflammatory and angiogenesis activities.
Collapse
Affiliation(s)
- Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ismail S Zaitoun
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Barbara A Hanna
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Soesiawati R Darjatmoko
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Debra L Fisk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Colleen M McDowell
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
26
|
Lin Y, Wang H, Xu J, Huang Y, Gong W, Wang Q, Huang Z, Xie S, Lin J. High spatio-temporal resolution measurement of A 1 R and A 2A R interactions combined with Iem-spFRET and E-FRET methods. JOURNAL OF BIOPHOTONICS 2021; 14:e202100172. [PMID: 34328277 DOI: 10.1002/jbio.202100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
A1 R-A2A R heterodimers regulate striatal glutamatergic neurotransmission. However, few researches about kinetics have been reported. Here, we combined Iem-spFRET and E-FRET to investigate the kinetics of A1 R and A2A R interaction. Iem-spFRET obtains the energy transfer efficiency of the whole cell. E-FRET gets energy transfer efficiency with high spatial resolution, whereas, it was prone to biases because background was easily selected due to manual operation. To study the interaction with high spatio-temporal resolution, Iem-spFRET was used to correct the deviation of E-FRET. In this paper, A1 R and A2A R interaction was monitored, and the changes of FRET efficiency of the whole or/and partial cell membrane were described. The results showed that activation of A1 R or A2A R leads to rapid aggregation, inhibition of A1 R or A2A R leads to slow segregation, and the interaction is reversible. These results demonstrated that combination of Iem-spFRET and E-FRET could measure A1 R and A2A R interaction with high spatio-temporal resolution.
Collapse
Affiliation(s)
- Yating Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Haoyu Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianshu Xu
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yiming Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wei Gong
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Qiwen Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Zufang Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shusen Xie
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Juqiang Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| |
Collapse
|
27
|
Saini A, Patel R, Gaba S, Singh G, Gupta GD, Monga V. Adenosine receptor antagonists: Recent advances and therapeutic perspective. Eur J Med Chem 2021; 227:113907. [PMID: 34695776 DOI: 10.1016/j.ejmech.2021.113907] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Adenosine is an endogenous purine-based nucleoside expressed nearly in all body tissues. It regulates various body functions by activating four G-protein coupled receptors, A1, A2A, A2B, and A3. These receptors are widely acknowledged as drug targets for treating different neurological, metabolic, and inflammatory diseases. Although numerous adenosine receptor inhibitors have been developed worldwide, achieving target selectivity is still a big hurdle in drug development. However, the identification of specific radioligands-based affinity assay, fluorescent ligands, and MS-based ligand assay have contributed to the development of selective and potent adenosine ligands. In recent years various small heterocyclic-based molecules have shown some promising results. Istradefylline has been approved for treating Parkinson's in Japan, while preladenant, tozadenant, CVT-6883, MRS-1523, and many more are under different phases of clinical development. The present review is focused on the quest to develop potent and selective adenosine inhibitors from 2013 to early 2021 by various research groups. The review also highlights their biological activity, selectivity, structure-activity relationship, molecular docking, and mechanistic studies. A special emphsesis on drug designing strategies has been also given the manuscript. The comprehensive compilation of research work carried out in the field will provide inevitable scope for designing and developing novel adenosine inhibitors with improved selectivity and efficacy.
Collapse
Affiliation(s)
- Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rajiv Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|
28
|
He H, Wang Y, Zhou Z, Guo Y, Yan X, Lei Y, Shen X, Liu W, Luo L. Boronate affinity directing adenosine imprinted nanomagnetic polyhedral oligomeric silsesquioxanes for selective extraction of nucleosides in urine sample. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
|
30
|
Behl T, Kumar K, Singh S, Sehgal A, Sachdeva M, Bhatia S, Al-Harrasi A, Buhas C, Teodora Judea-Pusta C, Negrut N, Alexandru Munteanu M, Brisc C, Bungau S. Unveiling the role of polyphenols in diabetic retinopathy. J Funct Foods 2021. [DOI: https://doi.org/10.1016/j.jff.2021.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Storgaard L, Tran TL, Freiberg JC, Hauser AS, Kolko M. Glaucoma Clinical Research: Trends in Treatment Strategies and Drug Development. Front Med (Lausanne) 2021; 8:733080. [PMID: 34589504 PMCID: PMC8473801 DOI: 10.3389/fmed.2021.733080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023] Open
Abstract
Purpose: To investigate the trends and progresses in glaucoma research by searching two major clinical trial registries; clinicaltrials.gov, and Australianclinicaltrials.gov.au. Methods: All clinical trials with glaucoma covered by Clinicaltrials.gov, and Australianclinicaltrials.gov.au starting the study before 1 January 2021 were included. Trials evaluating glaucoma treatment were separated from non-treatment trials and divided into three major categories: "laser treatment," "surgical treatment," and "medical treatment." In the category of "medical treatment," new compounds and their individual targets were identified and subcategorized according to treatment strategy; intraocular pressure (IOP)-lowering, neuroprotective or vascular. The phase transition success rates were calculated. Results: One-thousand five hundred and thirty-seven trials were identified. Sixty-three percent (n = 971) evaluated glaucoma treatment, of which medical treatment accounted for the largest proportion (53%). The majority of medical trials evaluated IOP-lowering compounds, while trials with neuroprotective or vascular compounds accounted for only 5 and 3%, respectively. Eighty-eight new compounds were identified. Phase I, II, and III transition success rates were 63, 26, and 47%, respectively. Conclusion: The number of clinical trials in glaucoma research has increased significantly over the last 30 years. Among the most recently evaluated compounds, all three main treatment strategies were represented, but clinical trials in neuroprotection and vascular modalities are still sparse. In addition to traditional medicines, dietary supplements and growth factors are assessed for a potential anti-glaucomatous effect. Phase II and III success rates were below previously reported success rates for all diseases and ophthalmology in general. A stricter phenotyping of patients can improve the success rates in glaucoma and ophthalmological research and gain a better understanding of responders and non-responders.
Collapse
Affiliation(s)
- Line Storgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Thuy Linh Tran
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | | | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
32
|
Agarwal P, Agarwal R. Tackling retinal ganglion cell apoptosis in glaucoma: role of adenosine receptors. Expert Opin Ther Targets 2021; 25:585-596. [PMID: 34402357 DOI: 10.1080/14728222.2021.1969362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The role of adenosine receptors as therapeutic targets for neuroprotection is now widely recognized. Their role, however, in protection against retinal ganglion cell (RGC) apoptosis in glaucoma needs further investigation. Hence, in this review, we look into the possibility of adenosine receptors as potential therapeutic targets by exploring their role in modulating various pathophysiological mechanisms underlying glaucomatous RGC loss. AREAS COVERED This review presents a summary of the adenosine receptor distribution in retina and the cellular functions mediated by them. The major pathophysiological mechanisms such as excitotoxicity, vascular dysregulation, loss of neurotrophic signaling, and inflammatory responses involved in glaucomatous RGC loss are discussed. The literature showing the role of adenosine receptors in modulating these pathophysiological mechanisms is discussed. The literature search was conducted using Pubmed search engine using key words such as 'RGC apoptosis,' 'adenosine,' adenosine receptors' 'retina' 'excitotoxicity,' 'neurotrophins,' 'ischemia', and 'cytokines' individually and in various combinations. EXPERT OPINION Use of adenosine receptor agonists and antagonists, for preservation of the RGCs in glaucomatous eyes independent of the level of intraocular pressure seems a very useful strategy. Future application of this strategy would require appropriate designing of drug formulation for tissue and disease-specific receptor targeting. Furthermore, the modulation of physiological functions and potential adverse effects need further investigations.
Collapse
Affiliation(s)
- Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021; 282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Adenosine, an endogenous purine nucleoside, is a well-known actor of the immune system and the inflammatory response both in physiologic and pathologic conditions. By acting upon particular, G-protein coupled adenosine receptors, i.e., A1, A2- a & b, and A3 receptors mediate a variety of intracellular and immunomodulatory actions. Several studies have elucidated Adenosine's effect and its up-and downstream molecules and enzymes on the anti-tumor response against several types of cancers. We have also targeted a couple of molecules to manipulate this pathway and get the immune system's desired response in our previous experiences. Besides, the outgrowth of the studies on ocular Adenosine in recent years has significantly enhanced the knowledge about Adenosine and its role in ocular immunology and the inflammatory response of the eye. Glaucoma is the second leading cause of blindness globally, and the recent application of Adenosine and its derivatives has shown the critical role of the adenosine pathway in its pathophysiology. However, despite a very promising background, the phase III clinical trial of Trabodenoson failed to achieve the non-inferiority goals of the study. In this review, we discuss different aspects of the abovementioned pathway in ophthalmology and ocular immunology; following a brief evaluation of the current immunotherapeutic strategies, we try to elucidate the links between cancer immunotherapy and glaucoma in order to introduce novel therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Shahin Hallaj
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA
| | | | - Amin Arasteh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel Lee
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Ye SS, Tang Y, Song JT. ATP and Adenosine in the Retina and Retinal Diseases. Front Pharmacol 2021; 12:654445. [PMID: 34211393 PMCID: PMC8239296 DOI: 10.3389/fphar.2021.654445] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular ATP and its ultimate degradation product adenosine are potent extracellular signaling molecules that elicit a variety of pathophysiological pathways in retina through the activation of P2 and P1 purinoceptors, respectively. Excessive build-up of extracellular ATP accelerates pathologic responses in retinal diseases, whereas accumulation of adenosine protects retinal cells against degeneration or inflammation. This mini-review focuses on the roles of ATP and adenosine in three types of blinding diseases including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). Several agonists and antagonists of ATP receptors and adenosine receptors (ARs) have been developed for the potential treatment of glaucoma, DR and AMD: antagonists of P2X7 receptor (P2X7R) (BBG, MRS2540) prevent ATP-induced neuronal apoptosis in glaucoma, DR, and AMD; A1 receptor (A1R) agonists (INO-8875) lower intraocular pressure in glaucoma; A2A receptor (A2AR) agonists (CGS21680) or antagonists (SCH58261, ZM241385) reduce neuroinflammation in glaucoma, DR, and AMD; A3 receptor (A3R) agonists (2-Cl-lB-MECA, MRS3558) protect retinal ganglion cells (RGCs) from apoptosis in glaucoma.
Collapse
Affiliation(s)
- Shan-Shan Ye
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Harsing LG, Szénási G, Zelles T, Köles L. Purinergic-Glycinergic Interaction in Neurodegenerative and Neuroinflammatory Disorders of the Retina. Int J Mol Sci 2021; 22:ijms22126209. [PMID: 34201404 PMCID: PMC8228622 DOI: 10.3390/ijms22126209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative–neuroinflammatory disorders of the retina seriously hamper human vision. In searching for key factors that contribute to the development of these pathologies, we considered potential interactions among purinergic neuromodulation, glycinergic neurotransmission, and microglia activity in the retina. Energy deprivation at cellular levels is mainly due to impaired blood circulation leading to increased release of ATP and adenosine as well as glutamate and glycine. Interactions between these modulators and neurotransmitters are manifold. First, P2Y purinoceptor agonists facilitate reuptake of glycine by glycine transporter 1, while its inhibitors reduce reverse-mode operation; these events may lower extracellular glycine levels. The consequential changes in extracellular glycine concentration can lead to parallel changes in the activity of NR1/NR2B type NMDA receptors of which glycine is a mandatory agonist, and thereby may reduce neurodegenerative events in the retina. Second, P2Y purinoceptor agonists and glycine transporter 1 inhibitors may indirectly inhibit microglia activity by decreasing neuronal or glial glycine release in energy-compromised retina. These inhibitions may have a role in microglia activation, which is present during development and progression of neurodegenerative disorders such as glaucomatous and diabetic retinopathies and age-related macular degeneration or loss of retinal neurons caused by thromboembolic events. We have hypothesized that glycine transporter 1 inhibitors and P2Y purinoceptor agonists may have therapeutic importance in neurodegenerative–neuroinflammatory disorders of the retina by decreasing NR1/NR2B NMDA receptor activity and production and release of a series of proinflammatory cytokines from microglial cells.
Collapse
Affiliation(s)
- Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Correspondence: ; Tel.: +36-1-210-4416
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, H-1089 Budapest, Hungary;
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
36
|
Portugal CC, da Encarnação TG, Sagrillo MA, Pereira MR, Relvas JB, Socodato R, Paes-de-Carvalho R. Activation of adenosine A3 receptors regulates vitamin C transport and redox balance in neurons. Free Radic Biol Med 2021; 163:43-55. [PMID: 33307167 DOI: 10.1016/j.freeradbiomed.2020.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
Adenosine is an important neuromodulator in the CNS, regulating neuronal survival and synaptic transmission. The antioxidant ascorbate (the reduced form of vitamin C) is concentrated in CNS neurons through a sodium-dependent transporter named SVCT2 and participates in several CNS processes, for instance, the regulation of glutamate receptors functioning and the synthesis of neuromodulators. Here we studied the interplay between the adenosinergic system and ascorbate transport in neurons. We found that selective activation of A3, but not of A1 or A2a, adenosine receptors modulated ascorbate transport, decreasing intracellular ascorbate content. Förster resonance energy transfer (FRET) analyses showed that A3 receptors associate with the ascorbate transporter SVCT2, suggesting tight signaling compartmentalization between A3 receptors and SVCT2. The activation of A3 receptors increased ascorbate release in an SVCT2-dependent manner, which largely altered the neuronal redox status without interfering with cell death, glycolytic metabolism, and bioenergetics. Overall, by regulating vitamin C transport, the adenosinergic system (via activation of A3 receptors) can regulate ascorbate bioavailability and control the redox balance in neurons.
Collapse
Affiliation(s)
- Camila C Portugal
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | | | - Mayara A Sagrillo
- Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - Mariana R Pereira
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil; Department of Neurobiology, Biology Institute, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
37
|
Spinozzi E, Baldassarri C, Acquaticci L, Del Bello F, Grifantini M, Cappellacci L, Riccardo P. Adenosine receptors as promising targets for the management of ocular diseases. Med Chem Res 2021; 30:353-370. [PMID: 33519168 PMCID: PMC7829661 DOI: 10.1007/s00044-021-02704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
The ocular drug discovery arena has undergone a significant improvement in the last few years culminating in the FDA approvals of 8 new drugs. However, despite a large number of drugs, generics, and combination products available, it remains an urgent need to find breakthrough strategies and therapies for tackling ocular diseases. Targeting the adenosinergic system may represent an innovative strategy for discovering new ocular therapeutics. This review focused on the recent advance in the field and described the numerous nucleoside and non-nucleoside modulators of the four adenosine receptors (ARs) used as potential tools or clinical drug candidates.
Collapse
Affiliation(s)
- Eleonora Spinozzi
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Cecilia Baldassarri
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Laura Acquaticci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Petrelli Riccardo
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
38
|
Qian Z, Wu Z, Li C, Yao C, Tan G, Li W, Guo DA. Rapid Determination of 3 Components With Different Polarities in Medicinal Mushrooms by Multistep Matrix Solid-Phase Dispersion and High-Performance Liquid Chromatography Analysis. Nat Prod Commun 2021. [DOI: 10.1177/1934578x20987784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a multistep matrix solid-phase dispersion (MSPD) combining with a high-performance liquid chromatography method was developed for assaying 3 components of different polarities (mannitol, adenosine, and ergosterol) from mushroom samples. MSPD extraction was carried out using 1 g octadecyl-bonded silica as the sorbent material, 9% methanol, 20% methanol, and 100% methanol as eluting solvents for the elution of mannitol, adenosine, and ergosterol, respectively. Mannitol was separated on an NH2P-50 4E column and detected using an evaporative light scattering detector. Adenosine and ergosterol were separated on a Poroshell 120 SB-C18 column and measured at 260 nm and 283 nm, respectively. The developed method showed good linearity ( R ≥ 0.9986) within the test range. The relative SD (RSD) of precisions were less than 1.4%, and the recoveries were 95.6%-97.0% (RSD ≤3.0%). Compared with the reported methods, the developed procedure could rapidly prepare components with different polarities (mannitol, adenosine, and ergosterol) from medical mushroom samples with less organic solvent and sample. The method is rapid and eco-friendly, which is helpful to improve the quality evaluation of medicinal mushrooms.
Collapse
Affiliation(s)
- Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd, Guangdong, P. R. China
- Department of Rehabilitation, Xiangnan University, Hunan, P. R. China
| | - Zi Wu
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd, Guangdong, P. R. China
| | - Chunhong Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd, Guangdong, P. R. China
| | - ChangLiang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Guoying Tan
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd, Guangdong, P. R. China
| | - Wenjia Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd, Guangdong, P. R. China
| | - De-an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
39
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
40
|
Zhang D, Wang Y, Lin H, Sun Y, Wang M, Jia Y, Yu X, Jiang H, Xu W, Sun JP, Xu Z. Function and therapeutic potential of G protein-coupled receptors in epididymis. Br J Pharmacol 2020; 177:5489-5508. [PMID: 32901914 DOI: 10.1111/bph.15252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Infertility rates for both females and males have increased continuously in recent years. Currently, effective treatments for male infertility with defined mechanisms or targets are still lacking. G protein-coupled receptors (GPCRs) are the largest class of drug targets, but their functions and the implications for the therapeutic development for male infertility largely remain elusive. Nevertheless, recent studies have shown that several members of the GPCR superfamily play crucial roles in the maintenance of ion-water homeostasis of the epididymis, development of the efferent ductules, formation of the blood-epididymal barrier and maturation of sperm. Knowledge of the functions, genetic variations and working mechanisms of such GPCRs, along with the drugs and ligands relevant to their specific functions, provide future directions and a great arsenal for new developments in the treatment of male infertility.
Collapse
Affiliation(s)
- Daolai Zhang
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yujing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Mingwei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yingli Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jin-Peng Sun
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
41
|
The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020; 12:nu12103169. [PMID: 33081260 PMCID: PMC7603001 DOI: 10.3390/nu12103169] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR), one of the most common complications of diabetes, is the leading cause of legal blindness among adults of working age in developed countries. After 20 years of diabetes, almost all patients suffering from type I diabetes mellitus and about 60% of type II diabetics have DR. Several studies have tried to identify drugs and therapies to treat DR though little attention has been given to flavonoids, one type of polyphenols, which can be found in high levels mainly in fruits and vegetables, but also in other foods such as grains, cocoa, green tea or even in red wine. Flavonoids have anti-inflammatory, antioxidant and antiviral effects. Since it is known that diabetes induces oxidative stress and inflammation in the retina leading to neuronal death in the early stages of the disease, the use of these compounds can prove to be beneficial in the prevention or treatment of DR. In this review, we summarize the molecular and cellular effects of flavonoids in the diabetic retina.
Collapse
|