1
|
King C. Commentary: Air pollution and neurodevelopmental disorders: a cause for concern in an urbanising world. Glob Public Health 2025; 20:2492234. [PMID: 40249163 DOI: 10.1080/17441692.2025.2492234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The world's population is rapidly urbanising, especially in low- to middle-income countries. However, urban living is associated with an increased risk of neurodevelopmental disorders (NDD) like autism spectrum disorders (ASD) and schizophrenia. Exposure to urban air pollutants like particulate matter has been positively associated with both ASD and schizophrenia diagnosis rates. Mechanistic studies have shown that particulate matter exposure leads to brain inflammation and white matter pathologies consistent with these disorders. Children are especially susceptible to these effects due to their rapidly developing nervous systems. Despite this, few reviews on the subject recommend future steps to mitigate the teratogenic effects of particulate air pollution. This commentary both synthesises evidence and recommends research and policy goals to protect children, both present and future, from the neurodevelopmental consequences of particulate air pollution. These steps include further study of the relationship between air pollution and equitable resource distribution to address the coming global rises in NDD. Furthermore, capacity building in urbanising nations is essential to overcome barriers erected by resource extraction and pollution outsourcing by wealthy nations. With such an integrated approach, progress can be made in protecting the developing nervous systems of children and future generations in both affluent and resource-strained nations.
Collapse
Affiliation(s)
- Cole King
- Yale School of Medicine, Yale University, New Haven, CT, USA
- Master of Public Health Program, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Singh S. A, Chandran L, Vellapandian C. Modifiable risk factors of dementia in the Indian scenario. Future Sci OA 2025; 11:2483132. [PMID: 40126155 PMCID: PMC11938979 DOI: 10.1080/20565623.2025.2483132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Affiliation(s)
- Ankul Singh S.
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India
| | - Lakshmi Chandran
- Department of Pharmacy Practice, SRM College of Pharmacy, SRMIST, Kattankulathur, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, India
| |
Collapse
|
3
|
Chauhan R, Dande S, Hood DB, Chirwa SS, Langston MA, Grady SK, Dojcsak L, Tabatabai M, Wilus D, Valdez RB, Al-Hamdan MZ, Im W, McCallister M, Alcendor DJ, Mouton CP, Ramesh A. Particulate matter 2.5 (PM 2.5) - associated cognitive impairment and morbidity in humans and animal models: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:233-263. [PMID: 39827081 DOI: 10.1080/10937404.2025.2450354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM2.5 -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM2.5 and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM2.5 exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM2.5 also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM2.5 exposure-induced neurological disorders.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Susmitha Dande
- Department of Family and Community Medicine, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Darryl B Hood
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Stephen K Grady
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Levente Dojcsak
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Mohammad Tabatabai
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Derek Wilus
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - R Burciaga Valdez
- Agency for Healthcare Research and Quality, Department of Health and Human Services, Washington, DC, USA
| | - Mohammad Z Al-Hamdan
- National Center for Computational Hydroscience and Engineering (NCCHE) and Department of Civil Engineering and Department of Geology and Geological Engineering, School of Engineering, University of Mississippi, Oxford, MS, USA
| | - Wansoo Im
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Monique McCallister
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN, USA
| | - Donald J Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Charles P Mouton
- Department of Family Medicine, John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
4
|
Zhang L, Yan H, Rahman MS, Mol-van der Veen CHJ, Covarrubias AM, Rafie K, Pendin D, Schmidt M, Dolga AM. Regulation of calcium signaling prevents neuronal death mediated by NIST DEP in xenoferroptotic cell death conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137374. [PMID: 39892142 DOI: 10.1016/j.jhazmat.2025.137374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Increased calcium levels are associated with the ferroptosis pathway in neurodegenerative conditions. Recent evidence showed that exposure to particulate matter (PM) could accelerate the pathology of neurodegenerative diseases. However, the molecular mechanisms of how PM could affect brain cell pathology is not fully understood. We hypothesized that diesel exhaust particles (NIST DEP) could alter the ferroptosis pathway through calcium signaling, and therefore accelerate the cell death pathway. In this study, we used mouse hippocampal neuronal-like HT22 cells to evaluate whether exposure to NIST DEP could accelerate RSL-3-induced ferroptosis by increasing calcium deregulation, mitochondrial dysfunction and reactive oxygen species (ROS). MTT assay results showed that NIST DEP (25, 50, 75, and 100 μg/mL) did not significantly reduce the survival rate of HT22 cells, while NIST DEP significantly increased RSL-3-induced ferroptotic cell death in a concentration-dependent manner. Based on fluorescence image analysis, co-exposure to NIST DEP and RSL-3 disrupted HT22 cell mitochondrial morphology, intracellular and mitochondrial calcium levels. Combined exposure resulted in an increase in ER-mitochondria contact sites measured by proximity ligation assay (PLA) compared to control solvent group. Additionally, lipid peroxidation, mitochondrial ROS and malondialdehyde content, were increased significantly by combined exposure to NIST DEP and RSL-3. Interestingly, the calcium regulators of the mitochondrial calcium uniporter MCUi4 and positive modulation of small conductance calcium-activated potassium channels by CyPPA significantly preserved cellular metabolic activity, restored calcium homeostasis, and alleviated fragmentation of mitochondria. Consequently, targeting calcium signaling may be promising therapeutic option for xenoferroptotic conditions in which PM affect cell survival.
Collapse
Affiliation(s)
- Leshan Zhang
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Mohammad Saidur Rahman
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christina Ht J Mol-van der Veen
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Ana Manzano Covarrubias
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Karim Rafie
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Diana Pendin
- Neuroscience Institute, Padua Section, National Research Council, Padua, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Instiute of Pharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands; Depatment of Pathology and Medical Biology, University Medical Center of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Cativiela-Campos B, Ruiz-Sobremazas D, Rodulfo-Cárdenas R, Barrasa A, Sánchez-Santed F, Colomina MT, Aschner M, López-Granero C. What are the consequences of PM air pollution exposure on elderly behavior? A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126279. [PMID: 40288634 DOI: 10.1016/j.envpol.2025.126279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Environmental pollution poses a significant risk to human health. Particulate matter (PM) found in polluted air is particularly of concern due to its ability to penetrate the blood-brain barrier (BBB) and impact the central nervous system (CNS), affecting sensory, cognitive, and emotional well-being. The aim of this review is to provide a comprehensive overview on the latest evidence regarding the association between PM exposure and behavioral outcomes in adult and older populations. Searches were conducted across PubMed, Web of Science, and Scopus up to August 2023, with articles selected and screened following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 27 articles meeting the criteria were included, and their risk of bias was evaluated using the Newcastle Ottawa Scale. The studies primarily focused on PM2.5 and PM10 in regions such as Europe, the USA, and Asia. While data on the impact of PM exposure on sensory variables were limited, suggesting an adverse effect, overall findings indicated a link between PM exposure and worsened cognitive function, increased risk of dementia, depressive symptoms, and anxiety. Some studies highlighted sex-dependent effects of PM exposure, with women experiencing a higher prevalence of adverse effects. This review underscores the importance of further research to understand the specific cognitive aspects affected by PM exposure, particularly in relation to dementia risk.
Collapse
Affiliation(s)
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Research Center for Social Wellness and Inclusion (CIBIS), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain.
| |
Collapse
|
6
|
Ruiz-Sobremazas D, Coca M, Morales-Navas M, Rodulfo-Cardenas R, Lopez-Granero C, Colomina MT, Perez-Fernandez C, Sanchez-Santed F. The effects of oral gestational particulate matter 10 exposure: Insights into neurodevelopmental milestones, inhibitory control, adult sociability, and object recognition. Neurotoxicology 2025; 108:231-245. [PMID: 40252736 DOI: 10.1016/j.neuro.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Air pollutants have been associated with various neurodevelopmental disorders, with several studies specifically linking Particulate Matter (PM) exposure to attentional and social deficits. This link is even more pronounced when exposure occurs during the prenatal period, as it can disrupt normal brain development. However, while social deficits have been extensively studied during adolescence, their impact on adult social behaviors remains largely unexplored. To investigate these effects, pregnant Wistar rats were exposed throughout gestation (GD1-GD21) to PM10 at a dosage of 200 μg/Kg/day diluted in PBS that was freely drunk. After birth, the pups were evaluated on developmental milestones such as weight progression, ocular opening, and muscular strength. In adulthood, inhibitory control was assessed using the Five Choice Serial Reaction Time Task (5-CSRTT), social behavior using the Three-Chambered Crawley's Test (3-CT), and object recognition using the Novelty Object Recognition test (NOR). The results indicated that prenatal PM10 exposure is associated with higher birth weight and poorer performance in neuromuscular tests. However, no significant differences were observed in inhibitory control (5-CSRTT) or social behavior (3-CT). Interestingly, prenatally exposed rodents showed heightened novelty responses in the NOR test. In conclusion, gestational exposure to PM10 is related to differences in neurodevelopmental milestones, including weight and muscular strength. While it does not impact adult inhibitory control or social behavior, it influences novelty recognition in later life.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain; Department of Psychology and Sociology, University of Zaragoza, Teruel, Aragón 44003, Spain
| | - Mario Coca
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain
| | - Miguel Morales-Navas
- Department of Health Sciences, Universidad de Burgos, Paseo de los Comendadores, Burgos 09001, Spain
| | - Rocío Rodulfo-Cardenas
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Cataluña, Spain
| | - Caridad Lopez-Granero
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Aragón 44003, Spain
| | - Maria-Teresa Colomina
- Universitat Rovira I Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Cataluña, Spain; Universitat Rovira I Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Cataluña, Spain
| | - Cristian Perez-Fernandez
- Department of Health Sciences, Universidad de Burgos, Paseo de los Comendadores, Burgos 09001, Spain
| | - Fernando Sanchez-Santed
- Department of Psychology and Research Center for Well-Being and Social Inclusion (CIBIS), University of Almeria, Almeria 04120, Spain.
| |
Collapse
|
7
|
Ravindranath AG, Muralidhar A, Gambhir NN, Chatterjee J. Investigating the neuroprotective effects of strawberry extract against diesel soot-induced motor dysfunction in Drosophila: an in-vivo and in-silico study. In Silico Pharmacol 2025; 13:58. [PMID: 40255255 PMCID: PMC12003239 DOI: 10.1007/s40203-025-00344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Environmental pollutants including diesel soot, have been known to contribute to neurological disorders. Previous studies highlight the neuroprotective effects of strawberry-derived compounds. This work explores the impacts of diesel soot and strawberry extract in movement-related disorders. In-silico analysis assessed compounds from HPLC/GCMS in the literature of soot and strawberry extract for ADME properties and blood-brain barrier permeability, selecting six compounds and four motor function-related proteins (SOD1, TARDBP, FUS, MAPT) with D. melanogaster orthologs. Homology modeling generated protein structures, molecular docking assessed binding affinities. MLSD examined combined interactions, with RMSD validating accuracy. Docking scores matched neuroprotective controls (quercetin, resveratrol), while differed for negative control (formaldehyde). Phenanthrene and anthocyanin strongly bound to FUS (- 7.60 ± 0.26 kcal/mol, - 7.1 ± 0.26 kcal/mol) and cocoon (- 6.5 ± 0.39 kcal/mol, - 7.23 ± 0.45 kcal/mol). MLSD yielded - 3.00 ± 0.24 kcal/mol and - 3.12 ± 0.11 kcal/mol respectively. In-vivo assays in D. melanogaster exhibited soot impaired movement (p = 0.0006), while strawberry improved it (p = 0.0003) with partial recovery in combined exposure (p = 0.0003). Strawberry enhanced cold stress recovery (p = 0.0048), climbing (p < 0.0001), and vortex recovery (p = 0.0003). One-way ANOVA confirmed significant effects on crawling in males (F (9,20) = 37.67, p < 0.0001, η 2 = 0.53) and female flies (F (9,20) = 70.10, p < 0.0001), with normality confirmed by Shapiro-Wilk test (p > 0.05). Toxicant exposure accelerated mortality, while strawberry improved thermotolerance. Combined exposure provided partial protection with minor sex differences. Findings highlight strawberries' neuroprotective role in counteracting diesel soot toxicity, even under combined exposure. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00344-2.
Collapse
Affiliation(s)
| | - Ananya Muralidhar
- Department of Biotechnology, PES University, Bangalore, 560085 India
| | | | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore, 560085 India
| |
Collapse
|
8
|
Li Y, Liu Z, Zhou T, Zhu X, Wu Q, Zeng Y, Yang J, Meng C, Deng Q. Integrating network toxicology and Mendelian randomization to uncover the role of AHR in linking air pollution to male reproductive health. Reprod Toxicol 2025; 135:108918. [PMID: 40239776 DOI: 10.1016/j.reprotox.2025.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND With the rapid advancement of global industrialization and urbanization, air pollution has emerged as a major public health concern. This study investigates the molecular mechanisms linking air pollutants (APs) to male reproductive health (MRH), providing a scientific foundation for disease prevention and treatment. METHODS APs-disease-related genes were retrieved from multiple network databases, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was constructed to elucidate potential molecular interactions. Differentially expressed genes from two external Gene Expression Omnibus (GEO) sequencing datasets were selected for validation, and intersection analysis was performed to identify key genes. Mendelian randomization (MR)was then applied to assess the causal relationships between key genes and male infertility (MIF), erectile dysfunction (ED), total testosterone levels, and testicular dysfunction. Additionally, molecular docking analysis was conducted to evaluate the binding affinity between key genes and APs. RESULTS This study focused on seven common APs (Benzene, SO₂, NO, CO, NO₂, Toluene, and O₃) and two MRH conditions (ED and MIF). Through intersection analyses and external validation, Aryl Hydrocarbon Receptor (AHR) was identified as a key regulator. MR analysis suggested that AHR may contribute to MIF and ED by suppressing testosterone levels and impairing testicular function. CONCLUSION By integrating network toxicology, MR, and molecular docking analysis, this study highlights the critical role of AHR as a molecular bridge between air pollution and MRH. These findings provide novel molecular insights into the impact of Aps on MRH.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhiyu Liu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Zhou
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xinyao Zhu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qilong Wu
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Zeng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinghong Yang
- Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunyang Meng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Qingfu Deng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
9
|
Cao F, Zhao X, Fu X, Jin Y. Computational insights into exploring the potential effects of environmental contaminants on human health. Sci Rep 2025; 15:11779. [PMID: 40189682 PMCID: PMC11973197 DOI: 10.1038/s41598-025-96193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
With rapid industrialization and urbanization, the increasing prevalence of air and water pollutants poses a significant threat to public health. Traditional research methods, such as epidemiological studies and in vitro/in vivo experiments, provide valuable biological insights but are often costly, time-consuming, and limited in scale. To address this gap, this study develops a machine learning-based approach to predict the carcinogenicity of pollutants. Using the dataset of carcinogenic and non-carcinogenic molecules that we collected, the pretrained KPGT model trained with molecular fingerprints and descriptors achieved an AUC of 0.83, surpassing traditional machine learning models. To validate this model, common pollutants from air and water sources were analyzed. Further clustering classified these pollutants into five distinct groups. Target prediction analysis identified key genes associated with representative pollutant molecules, such as MAPK1, MTOR, and PTPN11. GO and KEGG pathway analyses, along with survival analysis, revealed potential carcinogenic mechanisms and prognostic implications. Our findings contribute to improved pollution risk assessment and evidence-based environmental policy development, ultimately aiding in the mitigation of pollutant-related health risks.
Collapse
Affiliation(s)
- Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyue Zhao
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China
- National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yue Jin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.
- National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
10
|
Zhu J, Wang S, Li P, Li F, Li B, Ma L, Rong S, Liao J. The impact of particulate matter exposure on global and domain-specific cognitive function: evidence from the Chinese Square Dancer Study. BMC Public Health 2025; 25:1289. [PMID: 40188325 PMCID: PMC11971882 DOI: 10.1186/s12889-025-22126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND There is growing evidence that exposure to particulate matter (PM) is associated with impaired cognitive function. However, limited studies have specifically examined the relationship between PM exposure and domain-specific cognitive function. METHODS This study involved 2,668 female participants from the Lifestyle and Healthy Aging of Chinese Square Dancer Study. Global cognitive function was assessed using a composite Z-score derived from four tests: the Auditory Verbal Learning Test (AVLT), Verbal Fluency Test (VFT), Digit Symbol Substitution Test (DSST), and Trail Making Test-B (TMT-B). These tests evaluated specific cognitive subdomains: memory (AVLT), language (VFT), attention (DSST), and executive function (TMT-B). PM concentrations were estimated using a Random Forest (RF) model, which calculated the average concentrations over 1-year and 3-year periods at a high grid resolution of 1 × 1 km. Mixed linear regression was employed to explore the association between PM exposure and cognitive function. RESULTS After adjusting for basic socio-demographic factors, a 10 mg/m3 increase in 3-year exposure to PM10 was significantly associated with a decrease in the DSST score by -0.05 (95% confidence interval [CI]: -0.11, 0) and an increase in the TMT-B score by 0.05 (95% CI: 0.01, 0.1). When further adjusting for gaseous pollutants (SO₂, NO₂, and O₃), even stronger associations were observed between 3-year exposure to either PM2.5 or PM10 and performance in both global cognition and specific cognitive subdomains. Specifically, in the DSST subdomain, a 10 µg/m³ increase in 1-year PM10 exposure was associated with a decrease in the score by -0.10 (95% CI: -0.15, -0.04). Age-stratified analyses further indicated that older participants were consistently more vulnerable to PM exposure. Notably, 3-year exposure to both PM2.5 and PM10 was linked to declines in DSST scores across both middle-aged and older age groups. CONCLUSION Ambient PM exposure was significantly associated with performance in global cognitive function and specific cognitive domains among Chinese females. Female populations over 65 years old were more susceptible to the adverse effects of PM2.5 and PM10. Among the four subdomains, the DSST showed the strongest association with PM exposure, even at earlier ages, suggesting that impaired attention may serve as an early warning sign of cognitive decline. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jingyi Zhu
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuaibo Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Peizheng Li
- Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Fengping Li
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Benchao Li
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lu Ma
- Department of Epidemiology and Health Statistics, School of Health Sciences, Wuhan University, Wuhan, 430071, China
- Global Health Institute, Wuhan University, Wuhan, 430071, China
| | - Shuang Rong
- Department of Clinical Nutrition, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jingling Liao
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
11
|
Hu Y, Chavez T, Eckel SP, Yang T, Chen X, Vigil M, Pavlovic N, Lurmann F, Lerner D, Lurvey N, Grubbs B, Al-Marayati L, Toledo-Corral C, Johnston J, Dunton GF, Farzan SF, Habre R, Breton C, Bastain TM. Joint effects of traffic-related air pollution and hypertensive disorders of pregnancy on maternal postpartum depressive and anxiety symptoms. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:278-287. [PMID: 38822090 PMCID: PMC11607174 DOI: 10.1038/s41370-024-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Ambient air pollution has been linked to postpartum depression. However, few studies have investigated the effects of traffic-related NOx on postpartum depression and whether any pregnancy-related factors might increase susceptibility. OBJECTIVES To evaluate the association between traffic-related NOx and postpartum depressive and anxiety symptoms, and effect modification by pregnancy-related hypertension. METHODS This study included 453 predominantly low-income Hispanic/Latina women in the MADRES cohort. Daily traffic-related NOx concentrations by road class were estimated using the California LINE-source dispersion model (CALINE4) at participants' residential locations and averaged across pregnancy. Postpartum depressive and anxiety symptoms were evaluated by a validated questionnaire (Postpartum Distress Measure, PDM) at 1, 3, 6 and 12 months postpartum. Multivariate linear regressions were performed to estimate the associations at each timepoint. Interaction terms were added to the linear models to assess effect modification by hypertensive disorders of pregnancy (HDPs). Repeated measurement analyses were conducted by using mixed effect models. RESULTS We found prenatal traffic-related NOx was associated with increased PDM scores. Specifically, mothers exposed to an IQR (0.22 ppb) increase in NOx from major roads had 3.78% (95% CI: 0.53-7.14%) and 5.27% (95% CI: 0.33-10.45%) significantly higher 3-month and 12-month PDM scores, respectively. Similarly, in repeated measurement analyses, higher NOx from major roads was associated with 3.06% (95% CI: 0.43-5.76%) significantly higher PDM scores across the first year postpartum. Effect modification by HDPs was observed: higher freeway/highway and total NOx among mothers with HDPs were associated with significantly higher PDM scores at 12 months postpartum compared to those without HDPs. IMPACT This study shows that prenatal traffic-related air pollution was associated with postpartum depressive and anxiety symptoms. The study also found novel evidence of greater susceptibility among women with HDPs, which advances the understanding of the relationships between air pollution, maternal cardiometabolic health during pregnancy and postpartum mental health. Our study has potential implications for clinical intervention to mitigate the effects of traffic-related pollution on postpartum mental health disorders. The findings can also offer valuable insights into urban planning strategies concerning the implementation of emission control measures and the creation of green spaces.
Collapse
Affiliation(s)
- Yuhong Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas Chavez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mario Vigil
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | - Brendan Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University, Northridge, Northridge, CA, USA
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Chen Y, Xu Z, Guo Y, Li S, Wang YA, Gasevic D. Air pollution increases the risk of frailty: China Health and Retirement Longitudinal Study (CHARLS). JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138105. [PMID: 40187242 DOI: 10.1016/j.jhazmat.2025.138105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
The longitudinal association between multiple air pollutants and frailty risk remains unexplored, and it is unclear which factors may modify this relationship. Using data from 10,584 Chinese adults aged 45 years and older in the 2011-2020 waves of the China Health and Retirement Longitudinal Study (CHARLS), we investigated whether exposure to PM1, PM2.5, PM10, O3, and NO2 affects frailty over a median follow-up of seven years. Air pollutant data were obtained from the China High Air Pollutants (CHAP) dataset, and frailty was assessed using a 44-item Frailty Index (FI ≥ 0.25). Time-varying Cox proportional hazards models, adjusted for demographic, socioeconomic, and behavioral factors, indicated that each 10 μg/m³ increase in PM1, PM2.5, PM10, and NO2 corresponded to a 7.8 %, 4.2 %, 3.8 %, and 12.9 % higher risk of frailty, respectively, while O3 showed no significant association. Individuals who were sufficiently active appeared less affected by pollution, whereas those with no formal education were more vulnerable. Implementing future policies and interventions to reduce air pollution can potentially decrease the risk of frailty and promote healthy ageing.
Collapse
Affiliation(s)
- Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Level 1, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Zhihu Xu
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Level 1, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Level 1, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Level 1, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Yuanyuan Anna Wang
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Level 1, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Level 1, 553 St Kilda Road, Melbourne, Victoria 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
13
|
Yang Z, Zhang Y, Ran S, Zhang J, Tian F, Shi H, Wei S, Li X, Li X, Gao Y, Jia G, Lin H, Chen Z, Zhang Z. A Multi-Omics Study of Neurodamage Induced by Growth-Stage Real-Time Air Pollution Exposure in Mice via the Microbiome-Gut-Brain Axis. TOXICS 2025; 13:260. [PMID: 40278577 PMCID: PMC12031392 DOI: 10.3390/toxics13040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Air pollution has been widely recognized as a risk factor for neurological disorders, and the gut microbiome may play a mediating role. However, current evidence remains limited. In this study, a mouse model was employed with continuous exposure to real-time air pollution from conception to late adolescence. Effects of growth-stage air pollution exposure on the gut microbiome, host metabolites, and brain tissue were assessed. Pathological damage in the hippocampus and cortex was observed. Fecal metagenomic sequencing revealed alterations in both compositions and functions of the gut microbiome. Metabolic disturbances in unsaturated fatty acids and glycerophospholipids were identified in the intestine, serum, and brain tissues, with significant changes in metabolites (e.g., gamma-linolenic acid, alpha-linolenic acid, docosahexaenoic acid (DHA), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylserine (PS). Serum levels of the pro-inflammatory mediator leukotriene C4 were also elevated. Correlation analysis identified a group of different gut microbiome species that were associated with host metabolites. Furthermore, mediation analysis showed that intestinal and serum metabolites mediated the associations between the key gut microbiome and brain microbiome. These findings indicate that the metabolic crosstalk in the gut-brain axis mediates the neuronal damage in mice induced by growth-stage air pollution exposure, potentially through pathways involving lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Zijun Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (G.J.)
| | - Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Shengtao Wei
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Xiuxiu Li
- Department of Science and Education, Nanshan Maternity & Child Healthcare Hospital of Shenzhen, Shenzhen 518067, China;
| | - Xinyue Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Yonggui Gao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (G.J.)
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (G.J.)
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Z.Y.); (S.R.); (J.Z.); (F.T.); (H.S.); (S.W.); (X.L.); (Y.G.); (H.L.)
| |
Collapse
|
14
|
Huang X, Steinmetz J, Marsh EK, Aravkin AY, Ashbaugh C, Murray CJL, Yang F, Ji JS, Zheng P, Sorensen RJD, Wozniak S, Hay SI, McLaughlin SA, Garcia V, Brauer M, Burkart K. A systematic review with a Burden of Proof meta-analysis of health effects of long-term ambient fine particulate matter (PM 2.5) exposure on dementia. NATURE AGING 2025:10.1038/s43587-025-00844-y. [PMID: 40119171 DOI: 10.1038/s43587-025-00844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
Previous studies have indicated increased dementia risk associated with fine particulate matter (PM2.5) exposure; however, the findings are inconsistent. In this systematic review, we assessed the association between long-term PM2.5 exposure and dementia outcomes using the Burden of Proof meta-analytic framework, which relaxes log-linear assumptions to better characterize relative risk functions and quantify unexplained between-study heterogeneity (PROSPERO, ID CRD42023421869). Here we report a meta-analysis of 28 longitudinal cohort studies published up to June 2023 that investigated long-term PM2.5 exposure and dementia outcomes. We derived risk-outcome scores (ROSs), highly conservative measures of effect size and evidence strength, mapped onto a 1-5-star rating from 'weak and/or inconsistent evidence' to 'very strong and/or consistent evidence'. We identified a significant nonlinear relationship between PM2.5 exposure and dementia, with a minimum 14% increased risk averaged across PM2.5 levels between 4.5 and 26.9 µg m-3 (the 15th to 85th percentile exposure range across included studies), relative to a reference of 2.0 µg m-3 (n = 49, ROS = 0.13, two stars). We found a significant association of PM2.5 with Alzheimer's disease (n = 12, ROS = 0.32, three stars) but not with vascular dementia. Our findings highlight the potential impact of air pollution on brain aging.
Collapse
Affiliation(s)
- Xinmei Huang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jaimie Steinmetz
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Elizabeth K Marsh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Aleksandr Y Aravkin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Charlie Ashbaugh
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Fanghan Yang
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - John S Ji
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Reed J D Sorensen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Sarah Wozniak
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Susan A McLaughlin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Vanessa Garcia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Michael Brauer
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrin Burkart
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Giammona A, Terribile G, Rainone P, Pellizzer C, Porro D, Cerasa A, Sancini G, Rashid AU, Belloli S, Valtorta S, Lo Dico A, Bertoli G. Effects of particulate air pollution exposure on lung-brain axis and related miRNAs modulation in mouse models. Front Cell Dev Biol 2025; 13:1526424. [PMID: 40248351 PMCID: PMC12003928 DOI: 10.3389/fcell.2025.1526424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025] Open
Abstract
Particulate matter exposure is linked to numerous health issues, including respiratory, cardiovascular, and neurodegenerative diseases. This review focuses on the biological mechanisms through which air pollution influences the lung-brain axis, highlighting the role of miRNAs in regulating gene pathways affected by PM. Some microRNAs (miRNAs) are identified as key modulators of cellular processes, including inflammation, epithelial-to-mesenchymal transition (EMT), and blood-brain barrier integrity. Using mice models to study these effects allows for controlled experimentation on the systemic distribution of PM across biological barriers. Among the imaging technologies, Positron Emission Tomography is the best approach to monitor the distribution and effects of PM in vivo. The research underscores the importance of miRNA profiles as potential markers for the health effects of PM exposure, suggesting that specific miRNAs could serve as early indicators of damage to the lung-brain axis.
Collapse
Affiliation(s)
- Alessandro Giammona
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Paolo Rainone
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Chiara Pellizzer
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Danilo Porro
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Antonio Cerasa
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Earth and Environmental Sciences, POLARIS Research Centre, University of Milano-Bicocca, Milano, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Ameen-Ur Rashid
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
- PhD Program, Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milano, Italy
| | - Sara Belloli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Silvia Valtorta
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
- NeuroMI - Milan Centre for Neuroscience, University of Milano-Bicocca, Milano, Italy
| | - Alessia Lo Dico
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gloria Bertoli
- Istituto di Bioimmagini e Sistemi Biologici Complessi (IBSBC), National Research Council (CNR), Segrate, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
16
|
Fini EH, Pahlavan F, Vega NO, Bibo A, Kaur H, Ghasemi H, Aldagari S, Hung A, Kannan L, Yazdani H, Zhai RG, Link N, Ackerman-Biegasiewicz LKG, Klein-Seetharaman J. Health impacts of asphalt emissions: Examining neurological risks and the need for long-term exposure mitigation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136849. [PMID: 39724706 PMCID: PMC11896751 DOI: 10.1016/j.jhazmat.2024.136849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Asphalt, widely used in infrastructure, emits complex chemical mixtures throughout its service life, posing significant risks to human health and the environment. This expanded understanding extends the concern from a construction-related hazard to a broader public health issue, especially affecting vulnerable populations like children who play on blacktop surfaces. Despite increased awareness, the specific mechanisms behind asphalt emissions, their impact on asphalt deterioration, and their effects on the human nervous system remain poorly understood. Our study addresses these knowledge gaps by examining the long-term health effects of asphalt emissions, focusing on neurological impacts. We investigate how environmental stressors and asphalt's chemical composition influence emission types and severity, using a combination of in vitro experiments, Drosophila melanogaster models, and advanced computational analyses. FTIR analysis reveals that as asphalt ages, emissions evolve from aliphatic to aromatic compounds, increasing toxicity. Our results demonstrate significant neurological damage from asphalt emissions, with effects worsening with age and being more pronounced in females, as shown in the Drosophila model, emphasizing the need for gender-specific health risk research. In vitro studies using 3T3L1 cells show that VOC exposure disrupts lipid droplet formation and metabolism, processes linked to neurodegenerative disorders. To mitigate emissions, our novel approach introduces wood-based biochar as a functional carbon to enhance intermolecular interactions within asphalt. GC-MS analysis indicates that biochar reduces VOC emissions by up to 76 %, while molecular dynamics (MD) simulations highlight biochar's effectiveness in hindering free-radical diffusion. Density functional theory (DFT) calculations confirm biochar's role, with adsorption energies of -20.4 kcal/mol, demonstrating strong and stable interactions that decelerate oxidative aging and mass loss. These findings offer a comprehensive understanding of emission mechanisms and propose a sustainable strategy to enhance asphalt durability while reducing environmental and health risks. This in turn provides evidence-based recommendations for the asphalt industry, emphasizing proactive measures toward long-term exposure mitigation. SYNOPSIS: Asphalt emits chemicals throughout its service life, posing neurological risks, especially to vulnerable groups, and needs emission mitigation.
Collapse
Affiliation(s)
- Elham H Fini
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA.
| | - Farideh Pahlavan
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Natalie Ortiz Vega
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Adriana Bibo
- Department of Neurobiology, University of Utah, Salt Lake, UT, USA
| | - Harpreet Kaur
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Hamid Ghasemi
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Sand Aldagari
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Albert Hung
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Latha Kannan
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA
| | - Hessam Yazdani
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Nichole Link
- Department of Neurobiology, University of Utah, Salt Lake, UT, USA
| | | | - Judith Klein-Seetharaman
- College of Health Solutions and School of Molecular Sciences, Arizona State University, 850 N 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
17
|
Lane M, Oyster E, Luo Y, Wang H. The Effects of Air Pollution on Neurological Diseases: A Narrative Review on Causes and Mechanisms. TOXICS 2025; 13:207. [PMID: 40137534 PMCID: PMC11946816 DOI: 10.3390/toxics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Air pollution has well-documented adverse effects on human health; however, its impact on neurological diseases remains underrecognized. The mechanisms by which various components of air pollutants contribute to neurological disorders are not yet fully understood. This review focuses on key air pollutants, including particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and diesel exhaust particles (DEPs). This paper summarizes key findings on the effects of air pollution on neurological disorders, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). Although the precise biological mechanisms remain to be fully elucidated, evidence suggests that multiple pathways are involved, including blood-brain barrier disruption, oxidative stress, inflammation, and the activation of microglia and astrocytes. This review underscores the role of environmental pollutants as significant risk factors for various neurological diseases and explores their mechanisms of action. By advancing our understanding of these interactions, this work aims to inform new insights for mitigating the adverse effects of air pollution on neurological diseases, ultimately contributing to the establishment of a cleaner and healthier environment for future generations.
Collapse
Affiliation(s)
| | | | - Yali Luo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| | - Hao Wang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| |
Collapse
|
18
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A systematic review of air pollution exposure and brain structure and function during development. ENVIRONMENTAL RESEARCH 2025; 275:121368. [PMID: 40073924 DOI: 10.1016/j.envres.2025.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). METHODS Using PubMed, Web of Science, and Scopus we conducted an updated literature search and systematic review of articles published through January 2025, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews used to inform the World Health Organization Global Air Quality Guidelines. RESULTS We identified 29 relevant papers, and 20 new studies met our inclusion criteria. Including six studies from our 2019 review, the 26 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. CONCLUSION Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review comprised of only cross-sectional studies, the current literature now includes longitudinal studies and more advanced neuroimaging methods. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Brooks J, Everett J, Sadler PJ, Telling N, Collingwood JF. On the origin of metal species in the human brain: a perspective on key physicochemical properties. Metallomics 2025; 17:mfaf004. [PMID: 39924175 PMCID: PMC11890113 DOI: 10.1093/mtomcs/mfaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Normal functioning of the human brain is dependent on adequate regulation of essential metal nutrients. However, it is also highly sensitive to metal-mediated toxicity, linked to various neurodegenerative disorders. Exposure to environmental metal sources (especially to particulate air pollution) can stimulate toxicity and neuropathologic effects, which is particularly evident in populations chronically exposed to high levels of air pollution. Identifying the sources of metal-rich deposits in the human brain is important in not only distinguishing the effects of environmentally acquired metals from endogenous metal dysregulation, but also for tracing pollutant sources which may be subject to exposure control. This perspective reviews evidence for key physicochemical properties (size/morphology, chemical composition, oxidation state, magnetic properties, and isotopic composition) concerning their capacity to distinguish sources of metals in the brain. The scope for combining analytical techniques to study properties in tandem is also discussed.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - James Everett
- School of Engineering, University of Warwick, Coventry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | | |
Collapse
|
20
|
Liao M, Zhang S, Wolf K, Bolte G, Laxy M, Schwettmann L, Peters A, Schneider A, Kraus U. Long-term associations between ambient air pollution and self-perceived health status: Results from the population-based KORA-Fit study. Int J Hyg Environ Health 2025; 264:114513. [PMID: 39719813 DOI: 10.1016/j.ijheh.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/22/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Little is known about the association between air pollution and self-perceived health (including both health-related quality of life [HRQoL] and self-rated health [SRH]). The aim of this study was therefore to explore whether long-term air pollution exposure is associated with worse self-perceived health, as measured by different tools. METHODS We used a land-use regression model to determine the annual average levels of particulate matter with a diameter <10 μm (PM10), coarse particles (PMcoarse), fine particles (PM2.5), fine particle absorbances (PM2.5abs), particle number concentration (PNC), ozone (O3), nitrogen dioxide (NO2), and nitrogen oxide (NOX) for geocoded residential addresses (2014-2015). Questionnaires and face-to-face interviews were used to collect HRQoL (measured using the European Quality of Life 5 Dimensions [EQ-5D] index and the European Quality of Life Visual Analogue Scale [EQ-VAS]) and SRH indicators (measured through two survey questions) (2018-2019) from participants of the Cooperative Health Research in the Region of Augsburg (KORA)-Fit study in Germany. We explored associations via generalized additive models, multinomial logistic regression, and logistic regression. RESULTS We included 2610 participants with a mean age of 64.0 years in this cross-sectional study, of which 1428 (54.7%) were female. Each interquartile range (IQR) increase in O3 was associated with a reduced EQ-5D index value (% change of mean points and 95% confidence interval: -0.91% [-1.76; -0.06]). The average EQ-VAS score declined between -1.57% and -0.96% with each IQR increase in PM10, PMcoarse, PM2.5abs, PNC, NO2, and NOX. These pollutants were associated with increased occurrence of poor SRH, with odds ratios ranging from 1.24 to 2.67. PM2.5abs was linked to a higher likelihood of reporting a worse comparative SRH (2.59 [1.12; 5.99]). Body mass index and self-perceived stress modified these associations. CONCLUSIONS Long-term air pollution exposure was associated with poor self-perceived health, presenting as lower HRQoL and higher odds of poor SRH. Single-item indicators measuring self-perceived health status may work better than multi-dimensional indicators.
Collapse
Affiliation(s)
- Minqi Liao
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Pettenkofer School of Public Health, Munich, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriele Bolte
- Institute of Public Health and Nursing Research, University of Bremen, Department of Social Epidemiology, Bremen, Germany
| | - Michael Laxy
- Public Health and Prevention, School of Medicine and Health, Technical University of Munich, Germany
| | - Lars Schwettmann
- Institute of Economics and Healthcare Management, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Division Health Economics, Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Pettenkofer School of Public Health, Munich, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Ute Kraus
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
21
|
Chong-Neto HJ, Filho NAR. How does air quality affect the health of children and adolescents? J Pediatr (Rio J) 2025; 101 Suppl 1:S77-S83. [PMID: 39719017 PMCID: PMC11962542 DOI: 10.1016/j.jped.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVES To assess how air quality and pollutants affect the health of children and adolescents. SOURCE OF DATA A narrative review of recent literature was conducted using PubMed databases, focusing on studies published between 2015 and 2023. The keywords included "air pollution", "child health", "adolescents", "respiratory diseases" and "cognitive development". The studies were selected based on their relevance to the pediatric community and impacts on air quality, emphasizing original peer-reviewed research and meta-analyses. SYNTHESIS OF DATA Exposure to pollutants in the air during the formative and development years can lead to respiratory disorders, neurodevelopmental impairment, and exacerbated chronic conditions. This review synthesizes current evidence on the relationship between air quality and pediatric health, emphasizing the effects of specific pollutants, mechanisms of harm, and long-term implications. CONCLUSIONS From respiratory disorders to neurodevelopmental problems, air pollution, remains a widespread threat, particularly to vulnerable populations. Immediate actions at the political, community, individual, and industry levels are necessary to mitigate these risks.
Collapse
|
22
|
Norris CL, Sandler DP, Pratt GC, Stenzel MR, Stewart PA, Jackson WB, Christenbury KE, Werder EJ, Groth CP, Banerjee S, Lawrence KG, Engel LS. Fine particulate matter from burning oil and gas and associated neurological symptoms among Deepwater Horizon oil spill cleanup workers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:423-436. [PMID: 39815820 PMCID: PMC11843438 DOI: 10.1039/d4em00469h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Burning and flaring of oil and gas following the 2010 Deepwater Horizon (DWH) oil spill generated high airborne concentrations of fine particulate matter (PM2.5). Neurological effects of PM2.5 have been previously reported, but this relationship has received limited attention in the context of oil spills. We evaluated associations between burning-related PM2.5 and prevalence of self-reported neurological symptoms during, and 1-3 years after, the DWH disaster cleanup. For 9914 DWH disaster responders in the Gulf Long-term Follow-up Study who worked on the water, we examined aggregate outcomes (central nervous system [CNS; dizziness, sweating, palpitations, nausea, or migraine/severe headache] and peripheral nervous system [PNS; tingling/numbness in extremities, blurred vision, or stumbling] symptoms) and individual symptoms (CNS and PNS symptoms, plus insomnia, vomiting, seizures, and fatigue). We estimated PM2.5 concentrations via Gaussian plume dispersion models and linked these to detailed DWH cleanup work histories. We used log-binomial regression to estimate adjusted prevalence ratios (PR) and 95% confidence intervals, accounting for age, race, ethnicity, and sex, and DWH disaster-related co-exposures to benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H). We examined effect measure modification by age, race, smoking, and BTEX-H exposure. During the disaster, 34% of participants experienced at least one symptom (23% CNS, 12% PNS); 1-3 years later, 30% did (19% CNS, 17% PNS). Evidence of associations with PM2.5 was most consistent for CNS symptoms (PR range: 1.17 to 1.51), although we did not observe exposure-response trends. For PNS, PR ranged from 0.96 to 1.84. Associations with PM were more apparent among those with lower BTEX-H exposure and among older workers. We found some evidence of an association between burning-related PM2.5 and prevalence of neurologic symptoms during the DWH disaster response and 1-3 years later. Understanding these relationships can inform responses to future disasters to better protect human health.
Collapse
Affiliation(s)
- Christina L Norris
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Gregory C Pratt
- Division of Environmental Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark R Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | | | | | | | - Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Caroline P Groth
- Department of Epidemiology and Biostatistics, West Virginia University School of Public Health, Morgantown, WV, USA
| | - Sudipto Banerjee
- Department of Biostatistics, University of California, Los Angeles Fielding School of Public Health, Los Angeles, CA, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
23
|
Gallardo LO, Aiger Vallés M, Cativiela-Campos B, Domingo-Valero L, Barrasa Á, Alique M, López-Granero C. Psychological repercussions of PM air pollution in human aging: a comprehensive review of urban and rural environments. Front Pharmacol 2025; 16:1517090. [PMID: 40034819 PMCID: PMC11872935 DOI: 10.3389/fphar.2025.1517090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Air pollution and its effects on population health are currently among the most important public health issues. It is well established that the impact of air pollution on health is exceedingly high, although it ignores its real scope and effects on the aging process because studies on air quality have largely focused on younger age groups. Herein, we emphasize the relevance of air quality to the behavioral aging process, taking into account the place of residence - rural or urban. We raise the following question: Can air quality and residential settings modulate cognitive, emotional and social behaviors during the aging? Some studies have analyzed the role of residential settings and air pollution in the context of a behavioral frame in elderly people. Based on the analyzed literature, this revision concluded that air pollutants affect cognitive function, increasing the risk of dementia as well as depression and anxiety emotional responses. In addition, social networks and inclusion can modulate and mitigate the effects observed during the aging in rural areas that are exposed to less contamination. Although there is no consensus, it seems that some observed behavioral effects are sex-dependent, as women are more vulnerable to air pollution. Additionally, we examined why older adults are vulnerable to the health effects of Particulate Matter (PM) exposure and highlighted the importance of social health in this context. Environmental agents could be the key to understanding the susceptibility and variability observed during aging in behavioral symptoms. Although cognitive decline is related to increased age, it is not a manipulated factor. Efforts should be centered on locating factors implicated in the aging process that could be susceptible to manipulation or variation, such as the choice of the place of residence and the air that we are breathing. Given the significant societal impact of PM, research and policy regulations should be closely aligned and collaborative.
Collapse
Affiliation(s)
- Laura O. Gallardo
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | | | | | | | - Ángel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | |
Collapse
|
24
|
Qin SJ, Zeng QG, Zeng HX, Meng WJ, Wu QZ, Lv Y, Dai J, Dong GH, Zeng XW. Novel perspective on particulate matter and Alzheimer's disease: Insights from adverse outcome pathway framework. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125601. [PMID: 39756567 DOI: 10.1016/j.envpol.2024.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, that accounts for 50-75% of all dementia cases. Evidence demonstrates the link between particulate matter (PM) exposure and AD. However, there are still considerable research gaps. This review aims to clarify the mechanism between PM and AD from different levels (subcellular/cellular/system/population) by using an adverse outcome pathway (AOP) framework. We applied a chemical-phenotype interaction network-based workflow to integrate diverse genes and phenotypes. The interactions among PM, genes, phenotypes, and AD were retrieved from the Comparative Toxicogenomics Database (CTD), DisGeNET, MalaCards, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), which are publicly available databases. The filtered genes and phenotypes were assembled as molecular initiating events (MIEs) and key events (KEs) according to the upstream and downstream relationships, generating a predictive PM-Gene-Phenotype-AD AOP network. According to the Organization for Economic Co-operation and Development handbook (OECD), a verified AOP network was assessed and applied to determine the effects of PM on AD. PM could increase APP and GSK3B, increase apoptosis, impair cognition and memory, and ultimately lead to AD. Overall, chemical-phenotype interactions are expressed in a formal structured notation using controlled terms for chemicals, phenotypes, taxons, and anatomical descriptors. To our knowledge, this is the first AOP framework focusing on the underlying mechanism of exposure to PM on AD. Our network-based approach not only fills mechanism gaps in PM and AD but sheds light on constructing AOP frameworks for new chemicals.
Collapse
Affiliation(s)
- Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lv
- Department of Neurology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jian Dai
- Department of Clinical Psychology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
25
|
Zeng HX, Qin SJ, Wu QZ, Zeng QG, Li JH, Oudin A, Kanninen KM, Yang M, Jalava P, Dong GH, Zeng XW. Circular RNA circ_0061183 regulates microglial polarization induced by airborne ultrafine particles in HMC3 cells via sponging miR-98-5p. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136719. [PMID: 39637799 DOI: 10.1016/j.jhazmat.2024.136719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Airborne ultrafine particulate matter (PM0.1) can enter the brain, induce microglia activation, and promote the development of Alzheimer's disease (AD). Circular RNAs (circRNAs) are also involved in AD pathogenesis. However, the role of AD-related circRNAs in PM0.1-induced microglia activation remains unclear. Therefore, we explore cytotoxicity, microglia activation, and AD-associated circRNA expression in human microglial HMC3 cells treated with PM0.1, and further examined circRNA expression in mice and cognitively impaired individuals. The results revealed that PM0.1 exposure decreased cell viability, increased lactate dehydrogenase activity, caused microglia activation, elevated microglial M1 maker expression, downregulated microglial M2 maker expression, and reduced AD-related circ_0061183 expression in vitro. Functionally, circ_0061183 silencing enhanced microglia activation and microglial M1 polarization, but inhibited microglial M2 polarization. Mechanistically, circ_0061183 can bind to miR-98-5p to co-regulate M2 microglial-related IL10 expression, which may affect transforming growth factor-β signaling to regulate PM0.1-inhibited microglial M2 polarization. Moreover, circ_0061183 downregulation was observed in the brain of PM2.5-exposed mice and AD mice and in the blood of cognitively impaired individuals. Furthermore, circ_0061183 was positively related to mini-mental state examination scores and amyloid-β42 peptide expression in elderly individuals. Overall, the current work offers epigenetic insights into the regulatory mechanisms of circRNAs on microglial activation caused by environmental pollutants.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
26
|
Zhang Y, Bao WW, Ji W, Zhao Y, Jiang N, Chen J, Guo Y, Chen G, Guo Y, Dong G, Chen Y. Ozone concentration, physical activity, and emotional and behavioral problems in children and adolescents. ENVIRONMENTAL RESEARCH 2025; 267:120697. [PMID: 39732417 DOI: 10.1016/j.envres.2024.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND No prior study has examined the mutual association of long-term outdoor ozone (O3) concentration and physical activity (PA) with emotional and behavioral problems (EBPs) in children and adolescents. This study aims to investigate the association between long-term outdoor O3 concentration and the risk of EBPs in children and adolescents and further explore whether increased PA levels modify this association. METHODS Data were obtained from the 2020 wave follow-up examination of an ongoing prospective cohort study (COHERENCE project) in Guangzhou, China. A total of 419,033 children aged 6-17-year-old were included. Annual average outdoor O3 concentrations were obtained from the China High Air Pollutants (CHAP) dataset based on participants' residential addresses. PA levels were identified using the International Physical Activity Questionnaire Short Form (IPAQ). EBPs were assessed by the Chinese Parent-Report Strengths and Difficulties Questionnaire (SDQ-P). RESULTS Each interquartile range (IQR) increase in outdoor O3 concentration was associated with an increased odds ratio (OR) for abnormal emotional problems (OR: 1.024, 95% CI: 1.010-1.038), conduct problems (OR: 1.015, 95% CI: 1.002-1.029), peer relationship problems (OR: 1.029, 95% CI: 1.006-1.052), prosocial behavior (OR: 1.023, 95% CI: 1.012-1.034), total difficulties (OR: 1.024, 95% CI: 1.010-1.038), and internalizing behavior (OR: 1.039, 95% CI: 1.026-1.053), in fully adjusted models. The highest OR for abnormal EBPs was observed in children with low PA levels, in combination with high O3 concentration. CONCLUSION This study identified that long-term outdoor O3 concentration is associated with an increased risk of EBPs in children and adolescents, with higher PA levels attenuating these risks.
Collapse
Affiliation(s)
- Yushan Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Wen Bao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weidong Ji
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Zhao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute for Global Health, ISGlobal, Barcelona, Spain; Pompeu Fabra (UPF), Barcelona, Spain
| | - Nan Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaqi Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinhuan Guo
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yajun Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Jiang L, Shao M, Song C, Zhou L, Nie W, Yu H, Wang S, Liu Y, Yu L. The Role of Epigenetic Mechanisms in the Development of PM 2.5-Induced Cognitive Impairment. TOXICS 2025; 13:119. [PMID: 39997934 PMCID: PMC11861554 DOI: 10.3390/toxics13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
PM2.5 is fine particulate matter with a diameter of less than 2.5 μm. Recent evidence has shown that exposure to PM2.5 markedly elevates the risk of neurodegenerative diseases, neurodevelopmental disorders, and cardiovascular diseases, which may culminate in cognitive impairment. Nevertheless, the precise mechanisms through which PM2.5 affects cognitive function are unclear. Recent studies have demonstrated that PM2.5-induced epigenetic alterations are associated with the development of cognitive impairment. Epigenetic alterations include modifications to DNA methylation, histone modifications, and non-coding RNAs. The underlying mechanisms of epigenetic alterations are related to inflammation, synaptic dysfunction, cardiovascular factors, and alterations in neuronal structure and function. This review reports the latest findings on the relationship between PM2.5-induced epigenetic alterations and the development of cognitive disorders, offering novel insights into the cognitive effects of air pollution.
Collapse
Affiliation(s)
- Lishan Jiang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Mingxia Shao
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Chao Song
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Li Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Wenke Nie
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Hang Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Siqi Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Yongping Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Li Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
28
|
Tavella RA, Penteado JO, Brum RDL, Bonifácio ADS, San Martin MC, Saes-Silva E, Brum AN, Buffarini R, Correia Filho WLF, Adamatti DF, Neves RG, de Freitas ED, Miraglia SGEK, da Silva Júnior FMR. An exploratory study on the association between air pollution and health problems (ICD-10) with an emphasis on respiratory diseases. ATMOSPHERIC POLLUTION RESEARCH 2025; 16:102377. [DOI: 10.1016/j.apr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Cao Y, Yang C, Liu C, Fan Z, Yang S, Song H, Hao R. Advanced electrochemical detection methodologies for assessing neuroactive substance variability induced by environmental pollutants exposure. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2025; 37:103965. [DOI: 10.1016/j.eti.2024.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Viesi E, Perricone U, Aloy P, Giugno R. APBIO: bioactive profiling of air pollutants through inferred bioactivity signatures and prediction of novel target interactions. J Cheminform 2025; 17:13. [PMID: 39891207 PMCID: PMC11786462 DOI: 10.1186/s13321-025-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
More sophisticated representations of compounds attempt to incorporate not only information on the structure and physicochemical properties of molecules, but also knowledge about their biological traits, leading to the so-called bioactivity profile. The bioactive profiling of air pollutants is challenging and crucial, as their biological activity and toxicological effects have not been deeply investigated yet, and further exploration could shed light on the impact of air pollution on complex disorders. Therefore, a biological signature that simultaneously captures the chemistry and the biology of small molecules may be beneficial in predicting the behaviour of such ligands towards a protein target. Moreover, the interactivity between biological entities can be represented through combined feature vectors that can be given as input to a machine learning (ML) model to capture the underlying interaction. To this end, we propose a chemogenomic approach, called Air Pollutant Bioactivity (APBIO), which integrates compound bioactivity signatures and target sequence descriptors to train ML classifiers subsequently used to predict potential compound-target interactions (CTIs). We report the performances of the proposed methodology and, via external validation sets, demonstrate its outperformance compared to existing molecular representations in terms of model generalizability. We have also developed a publicly available Streamlit application for APBIO at ap-bio.streamlit.app, allowing users to predict associations between investigated compounds and protein targets.Scientific contributionWe derived ex novo bioactivity signatures for air pollutant molecules to capture their biological behaviour and associations with protein targets. The proposed chemogenomic methodology enables the prediction of novel CTIs for known or similar compounds and targets through well-established and efficient ML models, deepening our insight into the molecular interactions and mechanisms that may have a deleterious impact on human biological systems.
Collapse
Affiliation(s)
- Eva Viesi
- Department of Computer Science, University of Verona, Verona, Italy.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Ugo Perricone
- Molecular Informatics Unit, Ri.MED Foundation, Palermo, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
31
|
Li P, Zhu X, Liu M, Wang Y, Huang C, Sun J, Tian S, Li Y, Qiao Y, Yang J, Cao S, Cong C, Zhao L, Su J, Tian D. Joint effect of modifiable risk factors on Parkinson's disease: a large-scale longitudinal study. Front Hum Neurosci 2025; 19:1525248. [PMID: 39931046 PMCID: PMC11808133 DOI: 10.3389/fnhum.2025.1525248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Previous researches have often underestimated the diversity and combined effects of risk factors for Parkinson's disease (PD). This study aimed to identify how multiple modifiable risk factors collectively impact PD. Methods The study included 452,492 participants from the UK Biobank, utilizing genetic data and 255 phenotypic variables. A broad exposure association study was conducted across seven domains: socioeconomic status, medical history, psychosocial factors, physical measures, early life, local environment, and lifestyle. Risk scores of each domain for each participant were generated. The joint effects of modifiable and genetic risks assessed using Cox proportional hazards model. Population attributable fraction (PAF) was estimated to quantify contribution ratio of risk factors in different domains to the occurrence of PD. Results Multiple risk factors significantly (p < 1.96 × 10-4) associated with PD was observed. The top 5 factors were hand grip strength (hazard ratio (HR) = 0.98, p = 1.59 × 10-24), long-standing illness (HR = 1.38, p = 3.63 × 10-20), self-reported nervousness (HR = 1.56, p = 5.9 × 10-20), ever suffered from mental health concerns (HR = 1.42, p = 5.48 × 10-18) and chest pain (HR = 1.42, p = 1.43 × 10-18). Individuals with unfavorable medical history, psychosocial factors, physical measures, and lifestyle had an increased risk of PD by 33 to 51% compared to those with favorable factors (p < 0.001). Discussion Results indicated that addressing modifiable risk factors, especially in physical measures and psychological factors, could potentially prevent up to 33.87% of PD cases. In formulating prevention strategies, it is recommended to prioritize domains such as physical measures, psychosocial factors, lifestyle, and medical history.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junting Yang
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Cao
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaohua Cong
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
32
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
33
|
Graziosi A, Corrieri C, Sita G, Ghelli L, Angelini S, di Villa Bianca RD, Mitidieri E, Sorrentino R, Hrelia P, Morroni F. Impact of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) exposure on microRNAs expression and their target genes in differentiated SH-SY5Y cells. Sci Rep 2025; 15:2722. [PMID: 39837947 PMCID: PMC11751492 DOI: 10.1038/s41598-025-86911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Environmental endocrine disruptor chemicals (EDCs) have raised significant concerns due to their potential adverse effects on human health, particularly on the central nervous system (CNS). This study provides a comparative analysis of the effects of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) on neuronal cell proliferation and neurotoxicity. Using differentiated SH-SY5Y human neuronal cells, we evaluated cell viability, microRNA (miRNA) regulation, and RNA expression following exposure to subtoxic concentrations of EE2 and DEP. Our results show that both EDCs downregulated specific miRNAs-miR-18b-5p, miR-200a-3p, and miR-653-5p-affecting key processes such as cell proliferation, survival, and apoptosis. Gene expression analysis revealed the upregulation of EGFR, IGF1R, BTG2, and SH3BP4, implicating these miRNAs in the regulation of the Ras and PI3K/Akt/mTOR pathways. Our findings highlight distinct cellular responses: DEP disrupts PTEN activity, while EE2 enhances phosphorylation within the PI3K/Akt/mTOR pathway, promoting pro-survival and anti-apoptotic signals. This study emphasizes the urgent need for regulatory measures to mitigate the neurotoxic effects of EDCs and offers valuable insights into their molecular impacts on brain health.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Camilla Corrieri
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy.
| | - Luca Ghelli
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Sabrina Angelini
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples - Federico II, via Montesano 49, Naples, 80131, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples - Federico II, via Montesano 49, Naples, 80131, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy
| |
Collapse
|
34
|
Jiang D, Cai X, Fang H, Li Y, Zhang Z, Chen H, Zheng Z, Wang W, Sun Y. Coexposure to ambient air pollution and temperature and its associations with birth outcomes in women undergoing assisted reproductive technology in Fujian, China: A retrospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136539. [PMID: 39561545 DOI: 10.1016/j.jhazmat.2024.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The interactions between pollutants and temperature coexposure, the mixing effects and their potential mechanisms remain uncertain. METHODS This retrospective cohort study included 11,766 women with infertility who received treatment at Fujian Hospital between 2015 and 2024. The daily mean concentrations of the six pollutants and the relative humidity and temperature data were acquired from the Fujian region. Data on genes were obtained from the Comparative Toxicogenomics Database. RESULTS O3 (aOR=0.80, 95 % CI=0.725--0.891) and temperature (aOR=0.936, 95 % CI=0.916--0.957) were negatively correlated with live birth rates. Moreover, PM10 (aOR=1.135, 95 % CI=1.028--1.252) and PM2.5 (aOR=1.146, 95 % CI=1.03--1.274) were positively associated with preterm birth. Among the effects on live births, PM2.5, PM10, NO2, CO, and SO2 had significant synergistic effects with temperature; in addition, O3 had significant antagonistic effects with temperature. A notable trend toward declining live birth rates with elevated concentrations of mixed pollutants was observed. Different infertility patients have different sensitivities to coexposure. Gene enrichment and cell experiments are associated mainly with cellular life activities. CONCLUSIONS Individual effects, interactions, and mixed effects between temperature and air pollutants and birth outcomes persist when air pollutant levels are relatively low. AAP may trigger miscarriage through cytotoxic effects.
Collapse
Affiliation(s)
- Dongdong Jiang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuefen Cai
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Hua Fang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuehong Li
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China.
| |
Collapse
|
35
|
Wang Y, Zhang Z, Hao Z, Eriksson T. Environmental regulation and mental well-being: Evidence from China's air pollution prevention and control action plan. Soc Sci Med 2025; 365:117584. [PMID: 39662361 DOI: 10.1016/j.socscimed.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/06/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
This study investigates how enhanced environmental regulation can improve individuals' mental well-being, focusing on the impact of China's so far most stringent air pollution control policy, the 2013 Air Pollution Prevention and Control Action Plan (APPCAP). Exploiting variations in timing and regions of the implementation of the policy, we find that the APPCAP has significantly improved people's mental well-being. We test several potential socio-economic channels including reduced air pollution, enhanced environmental awareness, improved physical health, and decreased physical activities during periods of heavy pollution, through which environmental regulation may affect mental well-being. Our findings highlight that increased public awareness concerning air pollution plays an important role in the health effects of environmental regulations. The positive effects of environmental regulation on mental well-being are particularly pronounced among individuals aged 45-59 and for those with higher-than-average income or education. We do not find that the positive effects of environmental regulation differ by gender. We further show that the 4-week prevalence of mental/neurological disease dropped significantly, by about 0.38 percentage points, after the implementation of the APPCAP, reaffirming significant mental health benefits from the environmental regulation.
Collapse
Affiliation(s)
- Yuze Wang
- College of Economics and Management, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zidi Zhang
- Department of Earth Science & Engineering, Imperial College London, London, SW7 2AZ, UK; School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| | - Zhuang Hao
- College of Economics and Management, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tor Eriksson
- Department of Economics and Business Economics, Aarhus University, Aarhus, 8000, Denmark.
| |
Collapse
|
36
|
Shen YS. Nature-based solutions to address anxiety disorders: A cross-sectional ecological study of green spatial patterns in Taiwan. Soc Sci Med 2025; 365:117540. [PMID: 39642583 DOI: 10.1016/j.socscimed.2024.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Air pollution and heat increase the prevalence and risk of anxiety disorders, which are particularly severe under the increasing trends of climate change and urbanization. Well-designed green spaces have mediating effects on the threats posed by environmental deterioration and promote public health. However, previous research has overlooked these effects. This cross-sectional ecological study applied partial least squares structural equation modeling to data from Taiwanese cities and towns to infer the vital influences of and complex relationships among green spatial patterns (i.e., the dispersion, patch area, fragmentation, aggregation, and coverage ratio of green spaces), socioeconomic status (i.e., income and population aging), atmospheric environment (i.e., air pollution and high temperature), and anxiety disorders. The results reveal that minimizing the dispersion of green spaces and maximizing their patch area and coverage ratio are associated with reduced prevalence of anxiety disorders. Air pollution and high temperature mediate the influence of green spatial patterns on anxiety disorders. Population aging, air pollution, and high temperature are factors that increase the prevalence rate of anxiety disorders, whereas income level has a negative effect. This study identified the pathways and influences (i.e., indirect, direct, and total impacts) of green spatial pattern characteristics on anxiety disorders. These findings show that the adoption of effective greening policies may promote the development of healthy cities. Moreover, this study provides a useful methodology for clarifying complex pathways and identifying vital factors that can be applied to future research in health science and policy.
Collapse
Affiliation(s)
- Yu-Sheng Shen
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan; Environmental Education and Resources, University of Taipei, Taipei, Taiwan.
| |
Collapse
|
37
|
Intharuksa A, Arunotayanun W, Takuathung MN, Boongla Y, Chaichit S, Khamnuan S, Prasansuklab A. Therapeutic Potential of Herbal Medicines in Combating Particulate Matter (PM)-Induced Health Effects: Insights from Recent Studies. Antioxidants (Basel) 2024; 14:23. [PMID: 39857357 PMCID: PMC11762796 DOI: 10.3390/antiox14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM), particularly fine (PM2.5) and ultrafine (PM0.1) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications. This review comprehensively examines the protective potential of natural products against PM-induced health issues across various physiological systems, including the respiratory, cardiovascular, skin, neurological, gastrointestinal, and ocular systems. It provides valuable insights into the health risks associated with PM exposure and highlights the therapeutic promise of herbal medicines by focusing on the natural products that have demonstrated protective properties in both in vitro and in vivo PM2.5-induced models. Numerous herbal medicines and phytochemicals have shown efficacy in mitigating PM-induced cellular damage through their ability to counteract oxidative stress, suppress pro-inflammatory responses, and enhance cellular defense mechanisms. These combined actions collectively protect tissues from PM-related damage and dysfunction. This review establishes a foundation for future research and the development of effective interventions to combat PM-related health issues. However, further studies, including in vivo and clinical trials, are essential to evaluate the safety, optimal dosages, and long-term effectiveness of herbal treatments for patients under chronic PM exposure.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Faculty of Public Health and Allied Health Science, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Suthiwat Khamnuan
- Faculty of Pharmacy, Western University, Pathum Thani 12150, Thailand;
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
38
|
Luo D, Sun B, Wang W, Zhang A. The Role of the cGAS/STING Pathway in Arsenic-Induced Neurotoxicity: Insights from the Crosstalk Between Astrocytes and Neurons. Biol Trace Elem Res 2024:10.1007/s12011-024-04475-z. [PMID: 39693001 DOI: 10.1007/s12011-024-04475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Arsenic is a detrimental environmental toxicant linked to neurological damage; however, the mechanisms involved remain incompletely understood. Chronic proinflammatory responses are thought to play a central role in arsenic-induced neurotoxicity. Astrocytes, which are the predominant glial cells in the central nervous system (CNS), release significant amounts of proinflammatory cytokines upon overactivation. However, the molecular mechanisms driving this response remain to be elucidated. This study aimed to elucidate the mechanisms underlying arsenic-induced astrocyte activation and the subsequent neuronal damage, both in vivo and in vitro. In a rat model of arsenic exposure, significant neuropathological damage was detected in the CA3 region of the hippocampus. Specifically, markers of astrocyte activation, such as glial fibrillary acidic protein (GFAP) and inducible nitric oxide synthase (iNOS), as well as the inflammatory cytokine interleukin (IL)-1β, were significantly upregulated, and apoptosis was markedly increased, indicating neurotoxic damage. Furthermore, in vitro experiments revealed that arsenic exposure induced substantial upregulation of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), GFAP, iNOS, and IL-1β in astrocytes, accompanied by an increase in IL-1β secretion into the culture supernatant. In addition, co-culturing neurons with conditioned medium from arsenic-exposed astrocytes resulted in significant neuronal apoptosis. Importantly, the cGAS-STING pathway inhibitor H-151 effectively suppressed the arsenic-induced astrocyte activation and IL-1β secretion, while also reducing neuronal apoptosis in the conditioned medium. Collectively, these results indicate that arsenic exposure activates the cGAS-STING signaling pathway in astrocytes, enhancing proinflammatory activation and IL-1β expression, which in turn mediates neuronal apoptosis, representing a critical mechanism underlying arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 561113, China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
39
|
Moro AM, Brucker N, Goethel G, Flesch I, Nascimento S, Charão M, Gauer B, Sauer E, Cestonaro LV, Viçozzi GP, Gioda A, Saint'Pierre TD, Arbo MD, Garcia I, Cattani SA, Petrecelli RR, Martins MO, Garcia SC. The Influence of Blood Titanium Levels on DNA Damage in Brazilian Workers Occupationally Exposed to Different Chemical Agents. Biol Trace Elem Res 2024:10.1007/s12011-024-04472-2. [PMID: 39695012 DOI: 10.1007/s12011-024-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Occupational exposure to pollutants may cause health-damaging effects in humans. Genotoxicity assays can be used to detect the toxic effects of pollutants. In the present study, we evaluated genetic damage in three populations occupationally exposed to benzene, pyrenes, and agrochemicals and assessed the possible influence of titanium (Ti) co-exposure. A total of 275 subjects were enrolled in this study. The occupationally exposed population was composed of 201 male individuals, divided into three different groups: gas station attendants (GSA group) (n = 76), taxi drivers (TD group) (n = 97), farmers (farmers group) (n = 28), and control (n = 74). Biomarkers of exposure and effect were investigated such as AChe, BuChE, t,t-muconic acid (t,t-MA), and 1-hydroxypyrene (1-OHP). Ti levels in blood were higher in all the workers compared with the control group. DNA damage evaluated by comet assay was higher in the taxi drivers and farmers than in the controls, and the frequency of micronucleate buccal cells was higher in the gas station attendants and taxi drivers than in the controls. Correlations were found among occupational exposure time and biomarkers of exposure, genotoxicity biomarkers, and blood Ti levels. Our results demonstrated Ti co-exposure in the gas station attendants, taxi drivers, and farmers, and blood Ti levels were linked with the respective biomarkers of exposure. Additionally, tools through machine learning corroborated these findings, and Ti was the factor that contributed to DNA damage. Thus, the present study indicates the role of Ti in occupational settings and interactions with already known major xenobiotics present in the occupational environment contributing to genotoxicity.
Collapse
Affiliation(s)
- Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Goethel
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Ingrid Flesch
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Mariele Charão
- Graduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Larissa V Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Gabriel Pedroso Viçozzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Tatiana D Saint'Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Marcelo D Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Ingrid Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Shanda A Cattani
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Rodrigo R Petrecelli
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mirkos Ortiz Martins
- Graduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil.
| |
Collapse
|
40
|
Feeney J, Kenny RA. Use of open fires or closed solid fuel appliances for residential heating and cognitive decline in older adults. ENVIRONMENTAL RESEARCH 2024; 263:120069. [PMID: 39341539 DOI: 10.1016/j.envres.2024.120069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES Use of solid fuel appliances is a major contributor to air pollution. Indoor solid fuel burning for cooking and heating in lower-middle income countries is associated with lower cognitive function and faster decline. Less is known, however, about the potential risk to brain health from burning solid fuels in open fires and closed appliances for heating purposes only, particularly in higher income countries. The current study aimed to investigate the association between burning solid fuels for home heating and cognitive decline in older Irish adults, also testing whether results differ by sex/gender. DESIGN AND PARTICIPANTS The sample consisted of 4,537 participants aged 50 and older from The Irish Longitudinal Study on Ageing, a population-based cohort study. Participants were surveyed every two years between 2012 and 2018. Solid fuel use in 2012 (Wave 2) and cognitive function (word recall and verbal fluency) at waves 2, 3, 4 and 5 were analysed. Hierarchical linear mixed effects regression models were used to examine the association between solid fuel use and cognitive decline, controlling for multiple confounders. RESULTS There was a significant main effect of solid fuel use on cognitive function, such that individuals who reported using a solid fuel appliance or open fire as a main source of heating had lower cognitive scores than those who did not report such use at all waves, but there was no difference in the slope of the trajectory over time and no clear sex differences. CONCLUSIONS Older Irish adults who reported burning solid fuels (in an open fire or closed appliance) as a main way source of home heating had lower observed cognitive function across 6 years in TILDA but no evident faster decline than non-users. These findings further expand the evidence base on indoor air pollution and brain health.
Collapse
Affiliation(s)
- Joanne Feeney
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College, Dublin, Ireland.
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College, Dublin, Ireland; Mercer's Institute for Successful Aging, St. James's Hospital, Ireland
| |
Collapse
|
41
|
Vanbrabant K, Rasking L, Vangeneugden M, Bové H, Ameloot M, Vanmierlo T, Schins RPF, Cassee FR, Plusquin M. Impact on murine neurodevelopment of early-life exposure to airborne ultrafine carbon nanoparticles. Part Fibre Toxicol 2024; 21:51. [PMID: 39633442 PMCID: PMC11619103 DOI: 10.1186/s12989-024-00612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The effects of ultrafine particle (UFP) inhalation on neurodevelopment, especially during critical windows of early life, remain largely unexplored. The specific time windows during which exposure to UFP might be the most detrimental remain poorly understood. Here, we studied early-life exposure to clean ultrafine carbonaceous particles (UFPC) and neurodevelopment and central nervous system function in offspring.Pregnant wild-type C57BL/6J mice were either sham-exposed (HEPA-filtered air) or exposed to clean ultrafine carbonaceous particles at a concentration of 438 ± 72 μg/m³ (mean ± SD) and a count median diameter of 49 ± 2 nm (CMD ± GSD) via whole-body exposure for four hours per day. For prenatal exposure, mice were exposed for two consecutive days in two exposure periods, while the postnatal exposure was conducted for four consecutive days in two exposure periods. The mice were divided into four groups: (i) sham, (ii) only prenatal exposure, (iii) only postnatal exposure, and (iv) both prenatal and postnatal exposure. Neurodevelopmental behaviour was assessed throughout the life of the offspring using a functional observation battery.Early-life UFPC-exposed offspring exhibited altered anxiety-related behaviour in the open field test, with exclusively postnatally exposed offspring (567 ± 120 s) spending significantly more time within the border zone of the arena compared to the sham group (402 ± 73 s), corresponding to an increase of approximately 41% (p < 0.05). The behavioural alterations remained unaffected by olfactory function or maternal behaviour. Mice with both prenatal and postnatal exposure did not show this effect. No discernible impact on developmental behavioural reflexes was evident.Early life exposure to UFPC, particularly during the early postnatal period, may lead to developmental neurotoxicity, potentially resulting in complications for the central nervous system later in life. The current data will support future studies investigating the possible effects and characteristics of nanoparticle-based toxicity.
Collapse
Affiliation(s)
- Kenneth Vanbrabant
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Maartje Vangeneugden
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium
| | - Hannelore Bové
- Department of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, European Graduate School of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Flemming R Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium.
| |
Collapse
|
42
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
43
|
Hu Y, Niu Z, Eckel SP, Toledo-Corral C, Yang T, Chen X, Vigil M, Pavlovic N, Lurmann F, Garcia E, Lerner D, Lurvey N, Grubbs B, Al-Marayati L, Johnston J, Dunton GF, Farzan SF, Habre R, Breton C, Bastain TM. Prenatal exposure to ambient air pollution and persistent postpartum depression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176089. [PMID: 39250973 PMCID: PMC11426198 DOI: 10.1016/j.scitotenv.2024.176089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Ambient air pollution during pregnancy has been linked with postpartum depression up to 12 months, but few studies have investigated its impact on persistent depression beyond 12 months postpartum. This study aimed to evaluate prenatal ambient air pollution exposure and the risk of persistent depression over 3 years after childbirth and to identify windows of susceptibility. METHODS This study included 361 predominantly low-income Hispanic/Latina participants with full-term pregnancies in the Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) cohort. We estimated daily residential PM2.5, PM10, NO2, and O3 concentrations throughout 37 gestational weeks using inverse-distance squared spatial interpolation from monitoring data and calculated weekly averaged levels. Depression was assessed by the 20-item Center for Epidemiologic Studies-Depression (CES-D) scale at 12, 24, and 36 months postpartum, with persistent postpartum depression defined as a CES-D score ≥16 at any of these timepoints. We performed robust Poisson log-linear distributed lag models (DLM) via generalized estimating equations (GEE) to estimate the adjusted risk ratio (RR). RESULTS Depression was observed in 17.8 %, 17.5 %, and 13.4 % of participants at 12, 24, and 36 months, respectively. We found one IQR increase (3.9 ppb) in prenatal exposure to NO2 during the identified sensitive window of gestational weeks 13-29 was associated with a cumulative risk ratio of 3.86 (95 % CI: 3.24, 4.59) for persistent depression 1-3 years postpartum. We also found one IQR increase (7.4 μg/m3) in prenatal exposure to PM10 during gestation weeks 12-28 was associated a cumulative risk ratio of 3.88 (95 % CI: 3.04, 4.96) for persistent depression. No clear sensitive windows were identified for PM2.5 or O3. CONCLUSIONS Mid-pregnancy PM10 and NO2 exposures were associated with nearly 4-fold increased risks of persistent depression after pregnancy, which has critical implications for prevention of perinatal mental health outcomes.
Collapse
Affiliation(s)
- Yuhong Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhongzheng Niu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University, Northridge, Northridge, CA, USA
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mario Vigil
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Brendan Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Carrie Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Gerber LS, de Leijer DCA, Rujas Arranz A, Lehmann JMML, Verheul ME, Cassee FR, Westerink RHS. Comparison of the neurotoxic potency of different ultrafine particle fractions from diesel engine exhaust following direct and simulated inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175469. [PMID: 39153615 DOI: 10.1016/j.scitotenv.2024.175469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Exposure to traffic-related air pollution and ultrafine particles (<100 nm; UFP) is linked with neurodegeneration. However, the impact of the aromatic content in fuels and the contribution of different fractions of UFP, i.e., solid UFP vs SVOC UFP, on neuronal function is unknown. We therefore studied effects on neuronal activity and viability in rat primary cortical cells exposed for up to 120 h to copper oxide particles (CuO) or UFP (solid and SVOC) emitted from a heavy-duty diesel engine fueled with petroleum diesel (A20; 20 % aromatics) or Hydrotreated Vegetable Oil-type fuel (A0; 0.1 % aromatics), or solid UFP emitted from a non-road Kubota engine fueled with A20. Moreover, effects of UFP and CuO upon simulated inhalation exposure were studied by exposing an lung model (Calu-3 and THP-1 cells) for 48 h and subsequently exposing the cortical cells to the medium collected from the basal compartment of the lung model. Additionally, cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress were studied in the lung model after 48 h exposure to UFP and CuO. Compared to control, direct exposure to CuO and SVOC UFP decreased neuronal activity, which was partly associated with cytotoxicity. Effects on neuronal activity upon direct exposure to solid UFP were limited. A20-derived UFP (solid and SVOC) were more potent in altering neuronal function and viability than A0 counterparts. Effects on neuronal activity from simulated inhalation exposure were minor compared to direct exposures. In the lung model, CuO and A20-derived UFP increased cytokine release compared to control, whereas CuO and SVOC A20 altered gene expression indicative for oxidative stress. Our data indicate that SVOC UFP exhibit higher (neuro)toxic potency for altering neuronal activity in rat primary cortical cells than the solid fraction. Moreover, our data suggest that reducing the aromatic content in fuel decreases the (neuro)toxic potency of emitted UFP.
Collapse
Affiliation(s)
- Lora-Sophie Gerber
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dirk C A de Leijer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrea Rujas Arranz
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jonas M M L Lehmann
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Meike E Verheul
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Flemming R Cassee
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
45
|
Zhou Y, Li X, Fouxi Zhao, Yao C, Wang Y, Tang E, Wang K, Yu L, Zhou Z, Wei J, Li D, Liu T, Cai T. Rural-urban difference in the association between particulate matters and stroke incidence: The evidence from a multi-city perspective cohort study. ENVIRONMENTAL RESEARCH 2024; 261:119695. [PMID: 39102936 DOI: 10.1016/j.envres.2024.119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Available evidence suggests that air pollutants can cause stroke, but little research has investigated the confounding effects of urban-rural differences. Here, we investigated the urban-rural difference in the correlation between particulate matter (PM2.5 and PM10) exposure and stroke. This cohort study was based on a prospective multi-city community-based cohort (Guizhou Population Health Cohort Study (GPHCS)) in Guizhou Province, China. A total of 7988 eligible individuals (≥18 years) were enrolled with baseline assessments from November 2010 to December 2012, and follow-up was completed by June 2020. Two major particulate matters (PMs, including PM2.5 and PM10) were assessed monthly from 2000 by using satellite-based spatiotemporal models. The risk of stroke was estimated using a Cox proportional hazard regression model. The association between particulate matters' exposure and stroke in different areas (total, urban, and rural) and the potential modification effect of comorbidities (hypertension, diabetes, and dyslipidemia) and age (≤65/>65 years) were examined using stratified analyses. The risk of stroke increased for every 10 μg/m3 increase in mean PMs' concentrations during the previous 1 year at the residential address (HR: 1.26, 95%CI: 1.24, 1.29 (PM2.5); HR: 1.13, 95%CI: 1.11, 1.15 (PM10)). The presence of diabetes and dyslipidemia increased the risk of PM10-induced stroke in whole, urban, and rural areas. Specifically, people living in rural areas were more likely to experience the effects of PMs in causing a stroke. The risk of stroke due to PMs was statistically increased in the young and older populations living in rural areas. In conclusion, long-term exposure to PMs increased the risk of stroke and such association was more pronounced in people living in rural areas with lower income levels. Diabetes and dyslipidemia seemed to strengthen the association between PMs and stroke.
Collapse
Affiliation(s)
- Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xuejiao Li
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Fouxi Zhao
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiying Wang
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kexue Wang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lisha Yu
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, United States
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Liu
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
46
|
Pearson JF, Jacobson CK, Riss CS, Strickland MJ, Lee L, Wan N, Benney TM, Pace NL, Goodrich BK, Gabry JS, Pham JV, Kartchner CK, Wood JS, Andreae MH. Preoperative Exposure to Fine Particulate Matter and Risk of Postoperative Complications: A Single Center Observational Cohort Bayesian Analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.13.24311943. [PMID: 39211893 PMCID: PMC11361263 DOI: 10.1101/2024.08.13.24311943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background While exposure to fine particulate matter air pollution (PM 2.5 ) is known to cause adverse health effects, its impact on postoperative outcomes in US adults remains understudied. Perioperative exposure to PM 2.5 may induce inflammation that interacts insidiously with the surgical stress response, leading to higher postoperative complications. Methods We conducted a single center, retrospective cohort study using data from 49,615 surgical patients living along Utah's Wasatch Front and who underwent elective surgical procedures at a single academic medical center from 2016-2018. Patients' addresses were geocoded and linked to daily Census-tract level PM 2.5 estimates. We hypothesized that elevated PM 2.5 concentrations in the week prior to surgery would be associated with an increase in a bundle of major postoperative complications. A hierarchical Bayesians regression model was fit adjusting for age, sex, season, neighborhood disadvantage, and the Elixhauser index of comorbidities. Results Postoperative complications increased in a dose-dependent manner with higher concentrations of PM 2.5 exposure, with a relative increase of 8% in the odds of complications (OR=1.082) for every 10ug/m 3 increase in the highest single-day 24-hr PM 2.5 exposure during the 7 days prior to surgery. For a 30 fold increase in PM 2.5 (1 ug/m 3 to 30ug/m 3 ) the odds of complication rose to over 27% (95%CI: 4%-55%). The association persisted after controlling for comorbidities and confounders; our inferences were robust to modeling choices and sensitivity analysis. Conclusions In this large Utah cohort, exposure to elevated PM 2.5 concentrations in the week before surgery was associated with a dose-dependent increase in postoperative complications, suggesting a potential impact of air pollution on surgical outcomes. These findings merit replication in larger datasets to identify populations at risk and define the interaction and impact of different pollutants. PM 2.5 exposure is a potential perioperative risk factor and, given the unmitigated air pollution in urban areas, a global health concern.
Collapse
|
47
|
Chen Y, Dong Y, Zhang Y, Xia D, Wang Y, Wang Y, Cai Y, Hu F. Effects of major air pollutants on cognitive function in middle-aged and elderly adults: Panel data evidence from China Health and Retirement Longitudinal Study. J Glob Health 2024; 14:04153. [PMID: 39513279 PMCID: PMC11544526 DOI: 10.7189/jogh.14.04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Background Although numerous studies have discussed about the impact of air pollution on cognitive function, a consensus has yet to be reached, necessitating further exploration of their relationship. The aim of this study is to reveal the effects of major air pollutants on cognitive function in Chinese middle-aged and older adults, while considering the lagged effects of pollution. Methods Panel data were constructed by integrating the air pollutants concentration (particulate matter diameter ≤1 µm (μm) (PM1), PM2.5, PM10, nitrogen dioxide (NO2), and ozone (O3)) among 28 provinces in China and the personal characteristics from China Health and Retirement Longitudinal Study participants during the period of 2011-2015. To explore the effects of single pollutants and their interactions on cognitive function, panel linear regression using ordinary least squares method was employed, and first-order lag effects (two-year interval) of air pollution were introduced into the models. Results Our study revealed that, after adjusting for confounding factors, higher levels of particulate matter (PM1, coefficient (Coef.) = -0.093, P = 0.001; PM2.5, Coef. = -0.051, P = 0.001; PM10, Coef. = -0.030, P = 0.001) and NO2 (Coef. = -0.094, P = 0.006) were associated with lower cognitive function scores among the participants. Moreover, the interaction between the five major pollutants exhibited a negative effect on cognitive function(Coef. = -2.89, P = 0.004). Conclusions PM1, PM2.5, PM10 have detrimental effects on the cognitive function of middle-aged and elderly adults in China, where increasing particle diameter correlates with a less negative impacts, providing theoretical underpinnings for the formulation of environmental protection policies.
Collapse
Affiliation(s)
- Yingjie Chen
- Public Health department, International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yinqiao Dong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yinghuan Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Danni Xia
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuxuan Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ying Wang
- Public Health department, International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yong Cai
- Public Health department, International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Fan Hu
- Public Health department, International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
48
|
da Rosa Moraes NG, Florencio Ramires P, Silva da Cruz L, Oliveira Penteado J, Buffarini R, da Silva Júnior FMR. Ethnic-racial disparities in poisoning cases: analysis of drugs of abuse, medicines and pesticides in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:863-878. [PMID: 39150064 DOI: 10.1080/15287394.2024.2389413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In Brazil, ethnic-racial inequalities exist in all fields, obstructing access to goods, services, and opportunities, including healthcare services. However, there are no apparent studies that assess, at a national level, ethnic-racial disparities in poisoning cases, emphasizing skin color as a determining factor. The study aimed to examine the relationship between race/ethnicity and general poisoning cases, by medications, pesticides, and drug of abuse in Brazilian states. Poisoning cases data were extracted for the years 2017, 2018, and 2019. Notification data for general poisoning cases and toxic agents were collected: medications, pesticides, and drugs of abuse. Data were categorized between whites and non-whites (blacks, browns, and indigenous) and without information on skin color/ethnicity. Rates of poisonings amongst ethnic-racial groups and cases of not declared skin color as well as relative risk (RR) of poisoning among non-whites were calculated. All states in the North, Northeast (states with the worst Human Development Index), Midwest, and 2 states in the Southeast exhibited higher rates of poisoning cases per 100,000 inhabitants among non-whites. The RR values for nonwhite individuals were higher in the North and Northeast regions for all types of poisonings. The type of poisoning cases that presented the highest RR for non-whites over the 3 years was drugs of abuse (2-2.44), when compared to other types of poisonings from pesticides (2-2.33) and medications (1.5-1.91). The spatial distribution of poisoning cases rates and RR of nonwhite population support public policies to reduce socioeconomic and environmental inequalities.
Collapse
Affiliation(s)
| | - Paula Florencio Ramires
- Faculdade de Medicina da Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil
- Faculdade de Nutriç'ão, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Luíza Silva da Cruz
- Faculdade de Medicina da Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil
| | - Júlia Oliveira Penteado
- Faculdade de Medicina da Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil
- Faculdade de Nutriç'ão, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Romina Buffarini
- Faculdade de Medicina da Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Faculdade de Medicina da Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil
- Faculdade de Nutriç'ão, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| |
Collapse
|
49
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 PMCID: PMC12043015 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M. Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
50
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|