1
|
Björk A, Wahadat MJ, Sánchez-Blázquez M, Braams M, Rip J, van Tilburg SJ, van Helden-Meeuwsen CG, Kamphuis S, van den Bosch TPP, Brkic Z, Versnel MA. Amlexanox inhibits production of type I interferon and suppresses B cell differentiation in vitro: a possible therapeutic option for systemic lupus erythematosus and other systemic inflammatory diseases. RMD Open 2025; 11:e005351. [PMID: 40341181 PMCID: PMC12060889 DOI: 10.1136/rmdopen-2024-005351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
OBJECTIVES Activation of the type I interferon (IFN) pathway and autoreactive B cells are key immunopathogenic features of systemic lupus erythematosus (SLE), primary Sjögren's disease (pSjD) and systemic sclerosis (SSc). TANK-binding kinase 1 (TBK1) is a mediator of type I IFN and essential during B cell development in mice. We investigated the properties of the TBK1 inhibitor amlexanox in systemic autoimmune diseases. METHODS The effects of amlexanox on peripheral blood mononuclear cells (PBMCs) stimulated with Imiquimod, CpG-A, Poly:IC, G3-YsD and 3p-hpRNA were assessed. B cells from healthy controls and patients with SLE, pSjD and SSc were cultured with CD40L, IL-21, IFN, B cell activating factor (BAFF) and amlexanox. Differentiation into CD38highCD27highCD138+/- cells, proliferation, and IgM and IgG production were measured. RESULTS Amlexanox inhibited production of type I IFN induced through endosomal and cytosolic routes in PBMCs. Likewise, supernatants from amlexanox-treated cells did not induce expression of BAFF and MX1. Amlexanox inhibited spontaneous MX1 expression in PBMCs from SLE, pSjD and SSc patients. Immunohistochemical staining confirmed expression of the TBK1 protein in pSjD salivary glands. Using a B cell differentiation assay, addition of amlexanox decreased B cell proliferation and differentiation into CD27highCD38highCD138+/- plasmablasts and plasma cells. Correspondingly, production of IgM and IgG was suppressed. The observations were corroborated in B cells from patients with SLE, pSjD and SSc. CONCLUSIONS Our findings demonstrate inhibitory effects of amlexanox on type I IFN production and B cell differentiation in primary human cells. Inhibition of TBK1 could potentially be a therapeutic option for the treatment of type I IFN-driven systemic inflammatory diseases.
Collapse
MESH Headings
- Humans
- Interferon Type I/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/cytology
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Cell Differentiation/drug effects
- Aminopyridines/pharmacology
- Female
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Adult
- Middle Aged
- Male
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/immunology
- Scleroderma, Systemic/metabolism
- Cells, Cultured
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
Collapse
Affiliation(s)
- Albin Björk
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Mohamed Javad Wahadat
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatric Rheumatology, Sophia Children's Hospital, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maria Sánchez-Blázquez
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Merijn Braams
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jasper Rip
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- MS Center ErasMS, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sander J van Tilburg
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Sylvia Kamphuis
- Department of Pediatric Rheumatology, Sophia Children's Hospital, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zana Brkic
- Department of Internal Medicine, Division of Clinical Immunology and Allergology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Sun W, Xie Y, Xia Q, Wang Y, Qi X, Huang N. Structure-Based Optimization of TBK1 Inhibitors. ACS Med Chem Lett 2025; 16:611-616. [PMID: 40236559 PMCID: PMC11995213 DOI: 10.1021/acsmedchemlett.4c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
TBK1 is a crucial kinase involved in immunity, inflammation, and autophagy with dysregulation linked to various diseases, making it a potential therapeutic target. In this study, we applied a structure-based lead optimization approach to design potent and selective TBK1 inhibitors. A focused virtual library containing over 5,000 compounds was constructed, sampled, and refined within the kinase binding site, followed by a 10 ns molecular dynamics simulation for each modeled binding complex. Based on MM/PBSA binding free energies and structural clustering, we selected 14 structurally diverse compounds for chemical synthesis and biological assays. This strategy yielded a potent TBK1 inhibitor (IC50 = 775 pM) from an initial hit of 19.57 μM. This inhibitor features a novel scaffold and exhibits excellent enzymatic inhibition. Furthermore, it enhances immune-mediated cytotoxicity without exhibiting cytotoxicity when used as a single agent. These findings provide a foundation for the development of targeted therapies for the treatment of TBK1-associated diseases.
Collapse
Affiliation(s)
- Wenxuan Sun
- Tsinghua
Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- National
Institute of Biological Sciences, Beijing 102206, China
| | - Yuting Xie
- National
Institute of Biological Sciences, Beijing 102206, China
| | - Qiancheng Xia
- Tsinghua
Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- National
Institute of Biological Sciences, Beijing 102206, China
| | - Yuanxun Wang
- National
Institute of Biological Sciences, Beijing 102206, China
| | - Xiangbing Qi
- Tsinghua
Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- National
Institute of Biological Sciences, Beijing 102206, China
| | - Niu Huang
- Tsinghua
Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
- National
Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
3
|
Fischer FA, Demarco B, Min FCH, Yeap HW, De Nardo D, Chen KW, Bezbradica JS. TBK1 and IKKε prevent premature cell death by limiting the activity of both RIPK1 and NLRP3 death pathways. SCIENCE ADVANCES 2025; 11:eadq1047. [PMID: 40053580 PMCID: PMC11887814 DOI: 10.1126/sciadv.adq1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The loss of TBK1, or both TBK1 and the related kinase IKKε, results in uncontrolled cell death-driven inflammation. Here, we show that the pathway leading to cell death depends on the nature of the activating signal. Previous models suggest that in steady state, TBK1/IKKε-deficient cells die slowly and spontaneously predominantly by uncontrolled tumor necrosis factor-RIPK1-driven death. However, upon infection of cells that express the NLRP3 inflammasome, (e.g., macrophages), with pathogens that activate this pathway (e.g., Listeria monocytogenes), TBK1/IKKε-deficient cells die rapidly, prematurely, and exclusively by enhanced NLRP3-driven pyroptosis. Even infection with the RIPK1-activating pathogen, Yersinia pseudotuberculosis, results in enhanced RIPK1-caspase-8 activation and enhanced secondary NLRP3 activation. Mechanistically, TBK1/IKKε control endosomal traffic, and their loss disrupts endosomal homeostasis, thereby signaling cell stress. This results in premature NLRP3 activation even upon sensing "signal 2" alone, without the obligatory "signal 1." Collectively, TBK1/IKKε emerge as a central brake in limiting death-induced inflammation by both RIPK1 and NLRP3 death-inducing pathways.
Collapse
Affiliation(s)
- Fabian A. Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felicia Chan Hui Min
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kaiwen W. Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
4
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Li J, Zeng S, Zhang E, Chen L, Jiang J, Li J. Spatial metabolomics to discover hypertrophic scar relevant metabolic alterations and potential therapeutic strategies: A preliminary study. Bioorg Chem 2024; 153:107873. [PMID: 39383811 DOI: 10.1016/j.bioorg.2024.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Spatially mapping the metabolic remodeling of hypertrophic scar and surrounding normal skin tissues has the potential to enhance our comprehension of scar formation and aid in the advancement of therapeutic interventions. In this study, we employed matrix-assisted laser desorption/ionization (MALDI), a mass spectrometry imaging technique, to visualize the hierarchical distribution of metabolites within sections of hypertrophic scar and surrounding normal skin tissues. A comprehensive analysis identified a total of 1631 metabolites in these tissues. The top four classes that were identified included benzene and substituted derivatives, heterocyclic compounds, amino acids and its metabolites, and glycerophospholipids. In hypertrophic scar tissues, 22 metabolites were upregulated and 66 metabolites were downregulated. MetaboAnalyst pathway analysis indicated that glycerophospholipid metabolism was primarily associated with these altered 88 metabolites. Subsequently, six metabolites were selected, their spatial characteristics were analyzed, and they were individually added to the cell culture medium of primary hypertrophic scar fibroblasts. The preliminary findings of this study demonstrate that specific concentrations of 1-pyrrolidinecarboxamide, 2-benzylideneheptanal, glycerol trioleate, Lyso-PAF C-16, and moxonidine effectively inhibited the expressions of COL1A1, COL1A2, COL3A1, and ACTA2. These bioactive metabolites exhibit mild and non-toxic properties, along with favorable pharmacokinetics and pharmacodynamics, making them promising candidates for drug development. Consequently, this research offers novel therapeutic insights for hypertrophic scar treatment.
Collapse
Affiliation(s)
- Jingyun Li
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Siqi Zeng
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Enyuan Zhang
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Ling Chen
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jingbin Jiang
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Jun Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China.
| |
Collapse
|
6
|
Liu H, Sheng Q, Dan J, Xie X. Crosstalk and Prospects of TBK1 in Inflammation. Immunol Invest 2024; 53:1205-1233. [PMID: 39194013 DOI: 10.1080/08820139.2024.2392587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND TANK-binding kinase 1 (TBK1) is a pivotal mediator of innate immunity, activated by receptors such as mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes (STING), and TIR-domain-containing adaptor inducing interferon-β (TRIF). It modulates immune responses by exerting influence on the type I interferons (IFN-Is) signaling and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, Over the past few years, TBK1 multifaceted role in both immune and inflammatory responses is increasingly recognized. METHODS AND RESULTS This review aims to scrutinize how TBK1 operates within the NF-κB pathway and the interferon regulatory transcription factor 3 (IRF3)-dependent IFN-I pathways, highlighting the kinases and other molecules involved in these processes. This analysis reveals the distinctive characteristics of TBK1's involvement in these pathways. Furthermore, it has been observed that the role of TBK1 in exerting anti-inflammatory or pro-inflammatory effects is contingent upon varying pathological conditions, indicating a multifaceted role in immune regulation. DISCUSSION TBK1's evolving role in various diseases and the potential of TBK1 inhibitors as therapeutic agents are explored. Targeting TBK1 may provide new strategies for treating inflammatory disorders and autoimmune diseases associated with IFN-Is, warranting further investigation.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Qihuan Sheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Kim HG, Kim JH, Yu T, Cho JY. Functional Involvement of TANK-Binding Kinase 1 in the MyD88-Dependent NF- κB Pathway Through Syk. Mediators Inflamm 2024; 2024:8634515. [PMID: 39493293 PMCID: PMC11531359 DOI: 10.1155/2024/8634515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Inflammation is a vital immune defense mechanism regulated by Toll-like receptors (TLRs) and the nuclear factor-kappa B (NF-κB) pathway. TANK-binding kinase 1 (TBK1) is central to immunity and inflammation and influences antiviral responses and cellular processes. However, the precise role of TBK1 in modulating the NF-κB pathway through interactions with other proteins, such as spleen tyrosine kinase (Syk), remains poorly understood. As dysregulation of TBK1 and NF-κB can lead to a variety of diseases, they are important therapeutic targets. In this work, inflammatory processes involving the TBK1-Syk-NF-κB pathway were elucidated using lipopolysaccharide (LPS)-induced macrophages; human embryonic kidney 293 (HEK293) cells overexpressing MyD88, TBK1, and Syk proteins and their mutants; and real-time polymerase chain reaction (PCR), immunoblotting analyses, and kinase assays. TBK1 was activated in LPS-, poly I:C-, and Pam3CSK-stimulated macrophages. Transcript levels of TNF, NOS2, and IL1B were increased in cells overexpressing TBK1 but not in cells overexpressing TBK1 K38A. The transcription of TNF, NOS2, and IL1B and NF-κB luciferase activity were inhibited by silencing TBK1 in LPS-stimulated RAW264.7 cells and MyD88-transfected HEK293 cells. Syk was the key mediator of the TBK1-dependent NF-κB pathway and bound directly to the coiled coil domain of TBK1, which was necessary to activate Syk and the Syk-p85 pathway. This research advances the understanding of the role of TBK1 in NF-κB signaling, emphasizing Syk as a key mediator. The interaction between TBK1 and Syk has potential for precise immune modulation that can be applied to treat immune-related disorders.
Collapse
Affiliation(s)
- Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Ivanov J, Tenchov R, Ralhan K, Iyer KA, Agarwal S, Zhou QA. In Silico Insights: QSAR Modeling of TBK1 Kinase Inhibitors for Enhanced Drug Discovery. J Chem Inf Model 2024; 64:7488-7502. [PMID: 39289178 PMCID: PMC11480986 DOI: 10.1021/acs.jcim.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
TBK1, or TANK-binding kinase 1, is an enzyme that functions as a serine/threonine protein kinase. It plays a crucial role in various cellular processes, including the innate immune response to viruses, cell proliferation, apoptosis, autophagy, and antitumor immunity. Dysregulation of TBK1 activity can lead to autoimmune diseases, neurodegenerative disorders, and cancer. Due to its central role in these critical pathways, TBK1 is a significant focus of research for therapeutic drug development. In this paper, we explore data from the CAS Content Collection regarding TBK1 and its implication in a large assortment of diseases and disorders. With the demand for developing efficient TBK1 inhibitors being outlined, we focus on utilizing a machine learning approach for developing predictive models for TBK1 inhibition, derived from the fragment-functional analysis descriptors. Using the extensive CAS Content Collection, we assembled a training set of TBK1 inhibitors with experimentally measured IC50 values. We explored several machine learning techniques combined with various molecular descriptors to derive and select the best TBK1 inhibitor QSAR models. Certain significant structural alerts that potentially contribute to inhibition of TBK1 are outlined and discussed. The merit of the article stems from identifying the most adequate TBK1 QSAR models and subsequent successful development of advanced positive training data to facilitate and enhance drug discovery for an important therapeutic target such as TBK1 inhibitors, based on an extensive, wide-ranging set of scientific information provided by the CAS Content Collection.
Collapse
Affiliation(s)
- Julian
M. Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | | | | |
Collapse
|
10
|
Valeri E, Breggion S, Barzaghi F, Abou Alezz M, Crivicich G, Pagani I, Forneris F, Sartirana C, Costantini M, Costi S, Marino A, Chiarotto E, Colavito D, Cimaz R, Merelli I, Vicenzi E, Aiuti A, Kajaste-Rudnitski A. A novel STING variant triggers endothelial toxicity and SAVI disease. J Exp Med 2024; 221:e20232167. [PMID: 38953896 PMCID: PMC11217899 DOI: 10.1084/jem.20232167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.
Collapse
Affiliation(s)
- Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Breggion
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Crivicich
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Sartirana
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Costantini
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Costi
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | - Achille Marino
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | | | | | - Rolando Cimaz
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Wang B, Zhang F, Wu X, Ji M. TBK1 is paradoxical in tumor development: a focus on the pathway mediating IFN-I expression. Front Immunol 2024; 15:1433321. [PMID: 39161768 PMCID: PMC11330819 DOI: 10.3389/fimmu.2024.1433321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
TANK-binding kinase 1 (TBK1) is a member of the IKK family and plays a crucial role in the activation of non-canonical NF-κB signaling and type I interferon responses. The aberrant activation of TBK1 contributes to the proliferation and survival of various types of tumor cells, particularly in specific mutational or tumorous contexts. Inhibitors targeting TBK1 are under development and application in both in vivo and in vitro settings, yet their clinical efficacy remains limited. Numerous literatures have shown that TBK1 can exhibit both tumor promoting and tumor inhibiting effects. TBK1 acts as a pivotal node within the innate immune pathway, mediating anti-tumor immunity through the activation of innate immune responses. Facilitating interferon-I (IFN-I) production represents a critical mechanism through which TBK1 bridges these processes. IFN has been shown to exert both beneficial and detrimental effects on tumor progression. Hence, the paradoxical role of TBK1 in tumor development may necessitate acknowledgment in light of its downstream IFN-I signaling cascade. In this paper, we review the signaling pathways mediated by TBK1 in various tumor contexts and summarize the dual roles of TBK1 and the TBK1-IFN pathways in both promoting and inhibiting tumor progression. Additionally, we highlight the significance of the TBK1-IFN pathway in clinical therapy, particularly in the context of immune response. We anticipate further advancements in the development of TBK1 inhibitors as part of novel cancer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
12
|
Li D, Shan S, Mao X, Zhao Y, Chen B, Xiong Q, Pan D, Huang S. CS12192, a novel JAK3/JAK1/TBK1 inhibitor, attenuates autoimmune dermatoses in murine models. Immunopharmacol Immunotoxicol 2024:1-9. [PMID: 38918174 DOI: 10.1080/08923973.2024.2373223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Autoimmune dermatosis (AID) occurs when the body's immune system attacks skin or tissue, leading to various types of skin disorders or injuries. Recent studies show that Janus kinases (JAKs) play critical roles in autoimmune diseases including AID by regulating multiple cytokine signaling pathways. CS12192, a novel JAK3/JAK1/TBK1 inhibitor, has been reported to exert ameliorative effects in rheumatoid arthritis. However, the efficacy of CS12192 on AID is undetermined. This study aims to investigate the therapeutic efficacy of CS12192 on psoriasis (PSO), systemic lupus erythematosus (SLE) and atopic dermatitis (AD) in mouse models. METHODS Interleukin-23 (IL-23)-induced PSO model, spontaneous SLE model of MRL/MpJ-Faslpr/J (MRL/lpr) mice, and oxazolone (OXA) and dinitrochlorobenzene (DNCB)-induced murine AD models were used for the evaluation of curative effects of CS12192, respectively. The skin lesion, biochemical parameters, ear thickness, ear weight and histopathology were assessed accordingly. RESULTS In PSO model, mice treated with CS12192 show reduced ear thickness and ear weight as compared with vehicle. In SLE model, CS12192 ameliorates cutaneous parameters such as lymphadenectasis and skin lesion but not systematic parameters such as proteinuria concentration and score, serum dsDNA and BUN concentration. In AD models, CS12192 dose-dependently improves ear swelling and reduces histological scores, exerting equivalent efficacy with baricitinib, a marketed JAK1/JAK2 inhibitor. CONCLUSION Our findings suggest that the novel JAK3/JAK1/TBK1 inhibitor CS12192 is potentially to alleviate autoimmune dermatosis.
Collapse
Affiliation(s)
- Dan Li
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Song Shan
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, Guangdong, China
| | - Xuhua Mao
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Yiru Zhao
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Beizhong Chen
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Qiuyun Xiong
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, Guangdong, China
| | - Shengjian Huang
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
14
|
Duan QQ, Wang H, Su WM, Gu XJ, Shen XF, Jiang Z, Ren YL, Cao B, Li GB, Wang Y, Chen YP. TBK1, a prioritized drug repurposing target for amyotrophic lateral sclerosis: evidence from druggable genome Mendelian randomization and pharmacological verification in vitro. BMC Med 2024; 22:96. [PMID: 38443977 PMCID: PMC10916235 DOI: 10.1186/s12916-024-03314-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND There is a lack of effective therapeutic strategies for amyotrophic lateral sclerosis (ALS); therefore, drug repurposing might provide a rapid approach to meet the urgent need for treatment. METHODS To identify therapeutic targets associated with ALS, we conducted Mendelian randomization (MR) analysis and colocalization analysis using cis-eQTL of druggable gene and ALS GWAS data collections to determine annotated druggable gene targets that exhibited significant associations with ALS. By subsequent repurposing drug discovery coupled with inclusion criteria selection, we identified several drug candidates corresponding to their druggable gene targets that have been genetically validated. The pharmacological assays were then conducted to further assess the efficacy of genetics-supported repurposed drugs for potential ALS therapy in various cellular models. RESULTS Through MR analysis, we identified potential ALS druggable genes in the blood, including TBK1 [OR 1.30, 95%CI (1.19, 1.42)], TNFSF12 [OR 1.36, 95%CI (1.19, 1.56)], GPX3 [OR 1.28, 95%CI (1.15, 1.43)], TNFSF13 [OR 0.45, 95%CI (0.32, 0.64)], and CD68 [OR 0.38, 95%CI (0.24, 0.58)]. Additionally, we identified potential ALS druggable genes in the brain, including RESP18 [OR 1.11, 95%CI (1.07, 1.16)], GPX3 [OR 0.57, 95%CI (0.48, 0.68)], GDF9 [OR 0.77, 95%CI (0.67, 0.88)], and PTPRN [OR 0.17, 95%CI (0.08, 0.34)]. Among them, TBK1, TNFSF12, RESP18, and GPX3 were confirmed in further colocalization analysis. We identified five drugs with repurposing opportunities targeting TBK1, TNFSF12, and GPX3, namely fostamatinib (R788), amlexanox (AMX), BIIB-023, RG-7212, and glutathione as potential repurposing drugs. R788 and AMX were prioritized due to their genetic supports, safety profiles, and cost-effectiveness evaluation. Further pharmacological analysis revealed that R788 and AMX mitigated neuroinflammation in ALS cell models characterized by overly active cGAS/STING signaling that was induced by MSA-2 or ALS-related toxic proteins (TDP-43 and SOD1), through the inhibition of TBK1 phosphorylation. CONCLUSIONS Our MR analyses provided genetic evidence supporting TBK1, TNFSF12, RESP18, and GPX3 as druggable genes for ALS treatment. Among the drug candidates targeting the above genes with repurposing opportunities, FDA-approved drug-R788 and AMX served as effective TBK1 inhibitors. The subsequent pharmacological studies validated the potential of R788 and AMX for treating specific ALS subtypes through the inhibition of TBK1 phosphorylation.
Collapse
Affiliation(s)
- Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Sichuan, Chengdu,, 610041, China
- Rare Disease Center, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Han Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Sichuan, Chengdu,, 610041, China
- Rare Disease Center, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Xiao-Fei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Sichuan, Chengdu,, 610041, China
- Rare Disease Center, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Yan-Ling Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Sichuan, Chengdu,, 610041, China
- Rare Disease Center, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, 610041, China.
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Sichuan, Chengdu,, 610041, China.
- Rare Disease Center, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
15
|
Yang X, Liu Z. Role of TBK1 Inhibition in Targeted Therapy of Cancer. Mini Rev Med Chem 2024; 24:1031-1045. [PMID: 38314681 DOI: 10.2174/0113895575271977231115062803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 02/06/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a serine/threonine protein that plays a crucial role in various biological processes like immunity, autophagy, cell survival, and proliferation. The level and kinase activity of the TBK1 protein is regulated through post-translational modifications (PTMs). TBK1 mainly mediates the activation of IRF3/7 and NF-κB signaling pathways while also participating in the regulation of cellular activities such as autophagy, mitochondrial metabolism, and cell proliferation. TBK1 regulates immune, metabolic, inflammatory, and tumor occurrence and development within the body through these cellular activities. TBK1 kinase has emerged as a promising therapeutic target for tumor immunity. However, its molecular mechanism of action remains largely unknown. The identification of selective TBK1 small molecule inhibitors can serve as valuable tools for investigating the biological function of TBK1 protein and also as potential drug candidates for tumor immunotherapy. The current research progress indicates that some TBK1 inhibitors (compounds 15,16 and 21) exhibit certain antitumor effects in vitro culture systems. Here, we summarize the mechanism of action of TBK1 in tumors in recent years and the progress of small molecule inhibitors of TBK1.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
16
|
Zeng Y, Ng JPL, Wang L, Xu X, Law BYK, Chen G, Lo HH, Yang L, Yang J, Zhang L, Qu L, Yun X, Zhong J, Chen R, Zhang D, Wang Y, Luo W, Qiu C, Huang B, Liu W, Liu L, Wong VKW. Mutant p53 R211* ameliorates inflammatory arthritis in AIA rats via inhibition of TBK1-IRF3 innate immune response. Inflamm Res 2023; 72:2199-2219. [PMID: 37935918 PMCID: PMC10656327 DOI: 10.1007/s00011-023-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammation disease characterized by imbalance of immune homeostasis. p53 mutants are commonly described as the guardian of cancer cells by conferring them drug-resistance and immune evasion. Importantly, p53 mutations have also been identified in RA patients, and this prompts the investigation of its role in RA pathogenesis. METHODS The cytotoxicity of disease-modifying anti-rheumatic drugs (DMARDs) against p53 wild-type (WT)/mutant-transfected RA fibroblast-like synoviocytes (RAFLSs) was evaluated by MTT assay. Adeno-associated virus (AAV) was employed to establish p53 WT/R211* adjuvant-induced arthritis (AIA) rat model. The arthritic condition of rats was assessed by various parameters such as micro-CT analysis. Knee joint samples were isolated for total RNA sequencing analysis. The expressions of cytokines and immune-related genes were examined by qPCR, ELISA assay and immunofluorescence. The mechanistic pathway was determined by immunoprecipitation and Western blotting in vitro and in vivo. RESULTS Among p53 mutants, p53R213* exhibited remarkable DMARD-resistance in RAFLSs. However, AAV-induced p53R211* overexpression ameliorated inflammatory arthritis in AIA rats without Methotrexate (MTX)-resistance, and our results discovered the immunomodulatory effect of p53R211* via suppression of T-cell activation and T helper 17 cell (Th17) infiltration in rat joint, and finally downregulated expressions of pro-inflammatory cytokines. Total RNA sequencing analysis identified the correlation of p53R211* with immune-related pathways. Further mechanistic studies revealed that p53R213*/R211* instead of wild-type p53 interacted with TANK-binding kinase 1 (TBK1) and suppressed the innate immune TBK1-Interferon regulatory factor 3 (IRF3)-Stimulator of interferon genes (STING) cascade. CONCLUSIONS This study unravels the role of p53R213* mutant in RA pathogenesis, and identifies TBK1 as a potential anti-inflammatory target.
Collapse
Affiliation(s)
- Yaling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Linna Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiongfei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Guobing Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jiujie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Dingqi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Weidan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Congling Qiu
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Baixiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
17
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
18
|
Wu L, Zhou L, An J, Shao X, Zhang H, Wang C, Zhao G, Chen S, Cui X, Zhang X, Yang F, Li X, Zhang X. Comprehensive profiling of extracellular vesicles in uveitis and scleritis enables biomarker discovery and mechanism exploration. J Transl Med 2023; 21:388. [PMID: 37322475 PMCID: PMC10273650 DOI: 10.1186/s12967-023-04228-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Uveitis and posterior scleritis are sight-threatening diseases with undefined pathogenesis and accurate diagnosis remains challenging. METHODS Two plasma-derived extracellular vesicle (EV) subpopulations, small and large EVs, obtained from patients with ankylosing spondylitis-related uveitis, Behcet's disease uveitis, Vogt-Koyanagi-Harada syndrome, and posterior scleritis were subjected to proteomics analysis alongside plasma using SWATH-MS. A comprehensive bioinformatics analysis was performed on the proteomic profiles of sEVs, lEVs, and plasma. Candidate biomarkers were validated in a new cohort using ELISA. Pearson correlation analysis was performed to analyze the relationship between clinical parameters and proteomic data. Connectivity map database was used to predict therapeutic agents. RESULTS In total, 3,668 proteins were identified and over 3000 proteins were quantified from 278 samples. When comparing diseased group to healthy control, the proteomic profiles of the two EV subgroups were more correlated with disease than plasma. Comprehensive bioinformatics analysis highlighted potential pathogenic mechanisms for these diseases. Potential biomarker panels for four diseases were identified and validated. We found a negative correlation between plasma endothelin-converting enzyme 1 level and mean retinal thickness. Potential therapeutic drugs were proposed, and their targets were identified. CONCLUSIONS This study provides a proteomic landscape of plasma and EVs involved in ankylosing spondylitis-related uveitis, Behcet's disease uveitis, Vogt-Koyanagi-Harada syndrome, and posterior scleritis, offers insights into disease pathogenesis, identifies valuable biomarker candidates, and proposes promising therapeutic agents.
Collapse
Affiliation(s)
- Lingzi Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Lei Zhou
- Department of Applied Biology and Chemical Technology, School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Chunxi Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | | | - Shuang Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xuexue Cui
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xinyi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Fuhua Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
19
|
Padalino G, Coghlan A, Pagliuca G, Forde-Thomas JE, Berriman M, Hoffmann KF. Using ChEMBL to Complement Schistosome Drug Discovery. Pharmaceutics 2023; 15:1359. [PMID: 37242601 PMCID: PMC10220823 DOI: 10.3390/pharmaceutics15051359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Schistosomiasis is one of the most important neglected tropical diseases. Until an effective vaccine is registered for use, the cornerstone of schistosomiasis control remains chemotherapy with praziquantel. The sustainability of this strategy is at substantial risk due to the possibility of praziquantel insensitive/resistant schistosomes developing. Considerable time and effort could be saved in the schistosome drug discovery pipeline if available functional genomics, bioinformatics, cheminformatics and phenotypic resources are systematically leveraged. Our approach, described here, outlines how schistosome-specific resources/methodologies, coupled to the open-access drug discovery database ChEMBL, can be cooperatively used to accelerate early-stage, schistosome drug discovery efforts. Our process identified seven compounds (fimepinostat, trichostatin A, NVP-BEP800, luminespib, epoxomicin, CGP60474 and staurosporine) with ex vivo anti-schistosomula potencies in the sub-micromolar range. Three of those compounds (epoxomicin, CGP60474 and staurosporine) also demonstrated potent and fast-acting ex vivo effects on adult schistosomes and completely inhibited egg production. ChEMBL toxicity data were also leveraged to provide further support for progressing CGP60474 (as well as luminespib and TAE684) as a novel anti-schistosomal compound. As very few compounds are currently at the advanced stages of the anti-schistosomal pipeline, our approaches highlight a strategy by which new chemical matter can be identified and quickly progressed through preclinical development.
Collapse
Affiliation(s)
- Gilda Padalino
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | | | | | - Matthew Berriman
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK;
| | - Karl F. Hoffmann
- The Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth SY23 3DA, UK;
| |
Collapse
|
20
|
Sun Y, Revach OY, Anderson S, Kessler EA, Wolfe CH, Jenney A, Mills CE, Robitschek EJ, Davis TGR, Kim S, Fu A, Ma X, Gwee J, Tiwari P, Du PP, Sindurakar P, Tian J, Mehta A, Schneider AM, Yizhak K, Sade-Feldman M, LaSalle T, Sharova T, Xie H, Liu S, Michaud WA, Saad-Beretta R, Yates KB, Iracheta-Vellve A, Spetz JKE, Qin X, Sarosiek KA, Zhang G, Kim JW, Su MY, Cicerchia AM, Rasmussen MQ, Klempner SJ, Juric D, Pai SI, Miller DM, Giobbie-Hurder A, Chen JH, Pelka K, Frederick DT, Stinson S, Ivanova E, Aref AR, Paweletz CP, Barbie DA, Sen DR, Fisher DE, Corcoran RB, Hacohen N, Sorger PK, Flaherty KT, Boland GM, Manguso RT, Jenkins RW. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 2023; 615:158-167. [PMID: 36634707 PMCID: PMC10171827 DOI: 10.1038/s41586-023-05704-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Sun
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Or-Yam Revach
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth Anderson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Clara H Wolfe
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne Jenney
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | | | | | - Sarah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amina Fu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiang Ma
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Gwee
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Payal Tiwari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter P Du
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Princy Sindurakar
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Tian
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexis M Schneider
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Institute of Technology, Technion, Haifa, Israel
| | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas LaSalle
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tatyana Sharova
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuming Liu
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - William A Michaud
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rodrigo Saad-Beretta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen B Yates
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Johan K E Spetz
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
| | - Xingping Qin
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
| | - Kristopher A Sarosiek
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
- Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Preston Robert Tisch Brain Tumor Center, Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jong Wook Kim
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Center for Novel Therapeutics, UC San Diego, La Jolla, CA, USA
- Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Mack Y Su
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Angelina M Cicerchia
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Q Rasmussen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel J Klempner
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara I Pai
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - David M Miller
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan H Chen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Karin Pelka
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennie T Frederick
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Elena Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir R Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Xsphera Biosciences, Boston, MA, USA
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Debattama R Sen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Robert T Manguso
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Russell W Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Pang L, Dunterman M, Xuan W, Gonzalez A, Lin Y, Hsu WH, Khan F, Hagan RS, Muller WA, Heimberger AB, Chen P. Circadian regulator CLOCK promotes tumor angiogenesis in glioblastoma. Cell Rep 2023; 42:112127. [PMID: 36795563 PMCID: PMC10423747 DOI: 10.1016/j.celrep.2023.112127] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors in the adult central nervous system. We previously revealed that circadian regulation of glioma stem cells (GSCs) affects GBM hallmarks of immunosuppression and GSC maintenance in a paracrine and autocrine manner. Here, we expand the mechanism involved in angiogenesis, another critical GBM hallmark, as a potential basis underlying CLOCK's pro-tumor effect in GBM. Mechanistically, CLOCK-directed olfactomedin like 3 (OLFML3) expression results in hypoxia-inducible factor 1-alpha (HIF1α)-mediated transcriptional upregulation of periostin (POSTN). As a result, secreted POSTN promotes tumor angiogenesis via activation of the TANK-binding kinase 1 (TBK1) signaling in endothelial cells. In GBM mouse and patient-derived xenograft models, blockade of the CLOCK-directed POSTN-TBK1 axis inhibits tumor progression and angiogenesis. Thus, the CLOCK-POSTN-TBK1 circuit coordinates a key tumor-endothelial cell interaction and represents an actionable therapeutic target for GBM.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wenjing Xuan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Annette Gonzalez
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Hao Hsu
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Fang Z, Hu Y, Dai J, He L, He J, Xu B, Han X, Zhong F, Lan H, Wang Q. CS12192, a Novel JAK3/JAK1/TBK1 Inhibitor, Synergistically Enhances the Anti-Inflammation Effect of Methotrexate in a Rat Model of Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms232113394. [PMID: 36362183 PMCID: PMC9658750 DOI: 10.3390/ijms232113394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common disease worldwide and is treated commonly with methotrexate (MTX). CS12192 is a novel JAK3 inhibitor discovered by Chipscreen Biosciences for the treatment of autoimmune diseases. In the present study, we examined the therapeutic effect of CS12192 against RA and explored if the combinational therapy of CS12192 and MTX produced a synergistic effect against RA in rat collagen-induced arthritis (CIA). Arthritis was induced in male Sprague-Dawley rats by two intradermal injections of bovine type II collagen (CII) and treated with MTX, CS12192, or the combination of CS12192 and MTX daily for two weeks. Effects of different treatments on arthritis score, X-ray score, pathology, and expression of inflammatory cytokines and biomarkers were examined. We found that treatment with either CS12192 or MTX produced a comparable therapeutic effect on CIA including: (1) significantly lowering the arthritis score, X-ray score, serum levels of rheumatic factor (RF), C-reactive protein (CRP), and anti-nuclear antibodies (ANA); (2) largely alleviating histopathological damage, reducing infiltration of Th17 cells while promoting Treg cells; (3) inhibiting the expression of inflammatory cytokines and chemokines such as IL-1β, TNF-α, IL-6, CCL2, and CXCL1. All these inhibitory effects were further improved by the combinational therapy with MTX and CS12192. Of importance, the combinational treatment also resulted in a marked switching of the Th17 to Treg and the M1 to M2 immune responses in synovial tissues of CIA. Thus, when compared to the monotherapy, the combination treatment with CS12192 and MTX produces a better therapeutic effect against CIA with a greater suppressive effect on T cells and macrophage-mediated joint inflammation.
Collapse
Affiliation(s)
- Zhengyu Fang
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yiping Hu
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiajing Dai
- Clinical Research Institute, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Lianhua He
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Juan He
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Bihua Xu
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xinle Han
- Clinical Research Institute, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Fubo Zhong
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Clinical Research Institute, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Huiyao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (H.L.); (Q.W.)
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Correspondence: (H.L.); (Q.W.)
| |
Collapse
|
23
|
Wan R, Fänder J, Zakaraia I, Lee-Kirsch MA, Wolf C, Lucas N, Olfe LI, Hendrich C, Jonigk D, Holzinger D, Steindor M, Schmidt G, Davenport C, Klemann C, Schwerk N, Griese M, Schlegelberger B, Stehling F, Happle C, Auber B, Steinemann D, Wetzke M, von Hardenberg S. Phenotypic spectrum in recessive STING-associated vasculopathy with onset in infancy: Four novel cases and analysis of previously reported cases. Front Immunol 2022; 13:1029423. [PMID: 36275728 PMCID: PMC9583393 DOI: 10.3389/fimmu.2022.1029423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function variants in the stimulator of interferon response cGAMP interactor 1 (STING1) gene cause STING-Associated Vasculopathy with onset in Infancy (SAVI). Previously, only heterozygous and mostly de novo STING1 variants have been reported to cause SAVI. Interestingly, one variant that only leads to SAVI when homozygous, namely c.841C>T p.(Arg281Trp), has recently been described. However, there are no entries in public databases regarding an autosomal recessive pattern of inheritance. Here, we report four additional unrelated SAVI patients carrying c.841C>T in homozygous state. All patients had interstitial lung disease and displayed typical interferon activation patterns. Only one child displayed cutaneous vasculitis, while three other patients presented with a relatively mild SAVI phenotype. Steroid and baricitinib treatment had a mitigating effect on the disease phenotype in two cases, but failed to halt disease progression. Heterozygous c.841C>T carriers in our analysis were healthy and showed normal interferon activation. Literature review identified eight additional cases with autosomal recessive SAVI caused by c.841C>T homozygosity. In summary, we present four novel and eight historic cases of autosomal recessive SAVI. We provide comprehensive clinical data and show treatment regimens and clinical responses. To date, SAVI has been listed as an exclusively autosomal dominant inherited trait in relevant databases. With this report, we aim to raise awareness for autosomal recessive inheritance in this rare, severe disease which may aid in early diagnosis and development of optimized treatment strategies.
Collapse
Affiliation(s)
- Rensheng Wan
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Johannes Fänder
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ia Zakaraia
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Wolf
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, University Hospital and Medical Faculty Carl Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Isabel Olfe
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Corinna Hendrich
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hanover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease, Hannover, Germany
| | - Dirk Holzinger
- Department of Pediatric Haemato-Oncology, University of Duisburg-Essen, Essen, Germany
- Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthias Griese
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, German Center for Lung Research, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| | - Sandra von Hardenberg
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- *Correspondence: Martin Wetzke, ; Sandra von Hardenberg,
| |
Collapse
|
24
|
Verzella D, Cornice J, Arboretto P, Vecchiotti D, Di Vito Nolfi M, Capece D, Zazzeroni F, Franzoso G. The NF-κB Pharmacopeia: Novel Strategies to Subdue an Intractable Target. Biomedicines 2022; 10:2233. [PMID: 36140335 PMCID: PMC9496094 DOI: 10.3390/biomedicines10092233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022] Open
Abstract
NF-κB transcription factors are major drivers of tumor initiation and progression. NF-κB signaling is constitutively activated by genetic alterations or environmental signals in many human cancers, where it contributes to almost all hallmarks of malignancy, including sustained proliferation, cell death resistance, tumor-promoting inflammation, metabolic reprogramming, tissue invasion, angiogenesis, and metastasis. As such, the NF-κB pathway is an attractive therapeutic target in a broad range of human cancers, as well as in numerous non-malignant diseases. Currently, however, there is no clinically useful NF-κB inhibitor to treat oncological patients, owing to the preclusive, on-target toxicities of systemic NF-κB blockade. In this review, we discuss the principal and most promising strategies being developed to circumvent the inherent limitations of conventional IκB kinase (IKK)/NF-κB-targeting drugs, focusing on new molecules that target upstream regulators or downstream effectors of oncogenic NF-κB signaling, as well as agents targeting individual NF-κB subunits.
Collapse
Affiliation(s)
- Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| |
Collapse
|
25
|
Skopelja-Gardner S, An J, Elkon KB. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol 2022; 18:558-572. [PMID: 35732833 PMCID: PMC9214686 DOI: 10.1038/s41581-022-00589-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Cells are equipped with numerous sensors that recognize nucleic acids, which probably evolved for defence against viruses. Once triggered, these sensors stimulate the production of type I interferons and other cytokines that activate immune cells and promote an antiviral state. The evolutionary conserved enzyme cyclic GMP-AMP synthase (cGAS) is one of the most recently identified DNA sensors. Upon ligand engagement, cGAS dimerizes and synthesizes the dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP), which binds to the endoplasmic reticulum protein stimulator of interferon genes (STING) with high affinity, thereby unleashing an inflammatory response. cGAS-binding DNA is not restricted by sequence and must only be >45 nucleotides in length; therefore, cGAS can also be stimulated by self genomic or mitochondrial DNA. This broad specificity probably explains why the cGAS-STING pathway has been implicated in a number of autoinflammatory, autoimmune and neurodegenerative diseases; this pathway might also be activated during acute and chronic kidney injury. Therapeutic manipulation of the cGAS-STING pathway, using synthetic cyclic dinucleotides or inhibitors of cGAMP metabolism, promises to enhance immune responses in cancer or viral infections. By contrast, inhibitors of cGAS or STING might be useful in diseases in which this pro-inflammatory pathway is chronically activated.
Collapse
Affiliation(s)
| | - Jie An
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Keith B Elkon
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
27
|
Abstract
OBJECTIVE Interleukin-38 (IL-38), a new type of cytokine, is involved in processes such as tissue repair, inflammatory response, and immune response. However, its function in pneumonia caused by Pseudomonas aeruginosa (P. aeruginosa) is still unclear. METHODS In this study, we detected circulating IL-38 and cytokines such as IL-1β, IL-6, IL-17A, TNF-α, IL-8, and IL-10 in adults affected by early stage pneumonia caused by P. aeruginosa. Collected clinical data of these patients, such as the APACHE II score, levels of PCT, and oxygenation index when they entering the ICU. Using P. aeruginosa-induced pneumonia WT murine model to evaluate the effect of IL-38 on Treg differentiation, cell apoptosis, survival, tissue damage, inflammation, and bacterial removal. RESULTS In clinical research, although IL-38 is significantly increased during the early stages of clinical P. aeruginosa pneumonia, the concentration of IL-38 in the serum of patients who died with P. aeruginosa pneumonia was relatively lower than that of surviving patients. It reveals IL-38 may insufficiently secreted in patients who died with P. aeruginosa pneumonia. Besides, the serum IL-38 level of patients with P. aeruginosa pneumonia on the day of admission to the ICU showed significantly positive correlations with IL-10 and the PaO2/FiO2 ratio but negative correlations with IL-1β, IL-6, IL-8, IL-17, TNF-α, APACHE II score, and PCT In summary, IL-38 might be a molecule for adjuvant therapy in P. aeruginosa pneumonia. In experimental animal models, first recombinant IL-38 improved survival, whereas anti-IL-38 antibody reduced survival in the experimental pneumonia murine model. Secondly, IL-38 exposure reduced the inflammatory response, as suggested by the lung injury, and reduced cytokine levels (IL-1β, IL-6, IL- 17A, TNF-α, and IL-8, but not IL-10). It also increased bacterial clearance and reduced cell apoptosis in the lungs. Furthermore, IL-38 was shown to reduce TBK1 expression in vitro when naive CD4+ T lymphocytes were differentiated to Tregs and played a protective role in P. aeruginosa pneumonia. CONCLUSIONS To summarize, the above findings provide additional insights into the mechanism of IL-38 in the treatment of P. aeruginosa pneumonia.
Collapse
|
28
|
Morell M, Varela N, Castillejo-López C, Coppard C, Luque MJ, Wu YY, Martín-Morales N, Pérez-Cózar F, Gómez-Hernández G, Kumar R, O'Valle F, Alarcón-Riquelme ME, Marañón C. SIDT1 plays a key role in type I IFN responses to nucleic acids in plasmacytoid dendritic cells and mediates the pathogenesis of an imiquimod-induced psoriasis model. EBioMedicine 2022; 76:103808. [PMID: 35065421 PMCID: PMC8784643 DOI: 10.1016/j.ebiom.2021.103808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background Type I IFN (IFN-I) is a family of cytokines involved in the pathogenesis of autoimmune and autoinflammatory diseases such as psoriasis. SIDT1 is an ER-resident protein expressed in the lymphoid lineage, and involved in anti-viral IFN-I responses in vivo, through an unclear mechanism. Herein we have dissected the role of SIDT1 in the natural IFN-producing cells, the plasmacytoid dendritic cells (pDC). Methods The function of SIDT1 in pDC was determined by silencing its expression in human primary pDC and GEN2.2 cell line. SIDT1 role in vivo was assessed using the imiquimod-induced psoriasis model in the SIDT1-deficient mice (sidt1−/−). Findings Silencing of SIDT1 in GEN2.2 led to a blockade of the IFN-I response after stimulation of TLR7 and TLR9, without affecting the pro-inflammatory responses or upregulation of maturation markers. We found that SIDT1 migrates from the ER to the endosomal and lysosomal compartments together with TLR9 after CpG stimulation, participating in the access of the TLR9-CpG complex to lysosome-related vesicles, and therefore mediating the activation of TBK1 and the nuclear migration of IRF7, but not of NF-κB. sidt1−/− mice showed a significant decrease in severity parameters of the imiquimod-induced acute psoriasis-like model, associated with a decrease in the production of IFN-I and IFN-dependent chemokines. Interpretation Our findings indicate that SIDT1 is at the cross-road between the IFN-I and the proinflammatory pathways and constitutes a promising drug target for psoriasis and other diseases mediated by IFN-I responses. Funding This work was supported by the Consejería de Salud y Familias de la Junta de Andalucía (PIER_S1149 and C2_S0050) and Instituto de Salud Carlos III (PI18/00082 and PI21/01151), partly supported by European FEDER funds, and prior funding to MEAR from the Alliance for Lupus Research and the Swedish Research Council.
Collapse
Affiliation(s)
- María Morell
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Nieves Varela
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Casimiro Castillejo-López
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Céline Coppard
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - María José Luque
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Ying-Yu Wu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, University of Granada, Spain; Department of Oral Surgery, School of Dentistry, University of Granada, Spain
| | - Francisco Pérez-Cózar
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Gonzalo Gómez-Hernández
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain
| | - Ramesh Kumar
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Francisco O'Valle
- Department of Pathology, School of Medicine, University of Granada, Spain; Ibs.GRANADA and IBIMER Institutes, Spain
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Concepción Marañón
- GENYO, Centre for Genomics and Oncological Research. Pfizer, University of Granada, Andalusian Regional Government, Avda Ilustración 114, PTS Granada 18016, Spain.
| |
Collapse
|
29
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
30
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
31
|
Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 2021; 183:2364-2375. [PMID: 34111484 DOI: 10.1016/j.ijbiomac.2021.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
TANK-binding kinase 1 (TBK1) regulates various biological processes including, NF-κB signaling, immune response, autophagy, cell division, Ras-mediated oncogenesis, and AKT pro-survival signaling. Enhanced TBK1 activity is associated with autoimmune diseases and cancer, suggesting its role in therapeutic targeting of interferonopathies. In addition, dysregulation of TBK1 activity promotes several inflammatory disorders and oncogenesis. Structural and biochemical study reports provide the molecular process of TBK1 activation and recap the substrate selection about TBK1. This review summarizes recent findings on the molecular mechanisms by which TBK1 is involved in cancer signaling. The IKK-ε and TBK1 are together associated with inflammatory diseases by inducing type I IFNs. Furthermore, TBK1 signaling regulates radiation-induced epithelial-mesenchymal transition by controlling phosphorylation of GSK-3β and expression of Zinc finger E-box-binding homeobox 1, suggesting, TBK1 could be targeted for radiotherapy-induced metastasis therapy. Despite a considerable increase in the list of TBK1 inhibitors, only a few has potential to control cancer. Among them, a compound BX795 is considered a potent and selective inhibitor of TBK1. We discussed the therapeutic potential of small-molecule inhibitors of TBK1, particularly those with high selectivity, which will enable further exploration in the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
32
|
Herhaus L. TBK1 (TANK-binding kinase 1)-mediated regulation of autophagy in health and disease. Matrix Biol 2021; 100-101:84-98. [DOI: 10.1016/j.matbio.2021.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
|
33
|
Xiang S, Song S, Tang H, Smaill JB, Wang A, Xie H, Lu X. TANK-binding kinase 1 (TBK1): An emerging therapeutic target for drug discovery. Drug Discov Today 2021; 26:2445-2455. [PMID: 34051368 DOI: 10.1016/j.drudis.2021.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Dysregulation of TANK-binding kinase 1 (TBK1) homeostasis leads to the occurrence and progression of many diseases, such as inflammation, autoimmune diseases, metabolic diseases, and cancer. Therefore, there is a need to develop TBK1 inhibitors as therapeutic agents. In this review, we highlight the diverse biological functions of TBK1 and summarize the promising small-molecule inhibitors of TBK1 that have the potential to be developed as therapeutic candidates.
Collapse
Affiliation(s)
- Shuang Xiang
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shukai Song
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Aiqun Wang
- Department of Anesthesiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou 510220, China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Xiaoyun Lu
- Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
34
|
Thomson DW, Bergamini G. Recent progress in small molecule TBK1 inhibitors: a patent review (2015- 2020). Expert Opin Ther Pat 2021; 31:785-794. [PMID: 33724136 DOI: 10.1080/13543776.2021.1904893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: TANK-binding kinase 1 (TBK1) is a key mediator of innate immunity processes and studies have reported on its role in inflammatory and autoimmune diseases. Moreover, several studies have also described the important role of TBK1 in cancer and metabolic disorders. Therefore, there is increasing interest in this noncanonical IKK serine/threonine kinase family member as a drug target in both the scientific community and the pharmaceutical industry as indicated by the growing number of patents reporting on these efforts.Areas covered: This review covers the patent literature from 2015 to 2020 issued by the World, US and European patent offices on novel TBK1 small molecule inhibitors as well as patents claiming new applications of TBK1 inhibitors.Expert opinion: The high complexity TBK1 biology greatly increases the challenge of pursuing it as a drug target. The recent discovery of several small molecule inhibitors, particularly those with high selectivity, will enable further exploration of TBK1s biological role and its validation as a drug target.
Collapse
Affiliation(s)
- Douglas W Thomson
- Functional Genomics, Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| | - Giovanna Bergamini
- Functional Genomics, Cellzome GmbH, GlaxoSmithKline, Heidelberg, Germany
| |
Collapse
|
35
|
Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54:437-453. [PMID: 33691134 PMCID: PMC8026106 DOI: 10.1016/j.immuni.2021.01.018] [Citation(s) in RCA: 474] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Autophagy is a quality-control, metabolic, and innate immunity process. Normative autophagy affects many cell types, including hematopoietic as well as non-hematopoietic, and promotes health in model organisms and humans. When autophagy is perturbed, this has repercussions on diseases with inflammatory components, including infections, autoimmunity and cancer, metabolic disorders, neurodegeneration, and cardiovascular and liver diseases. As a cytoplasmic degradative pathway, autophagy protects from exogenous hazards, including infection, and from endogenous sources of inflammation, including molecular aggregates and damaged organelles. The focus of this review is on the role of autophagy in inflammation, including type I interferon responses and inflammasome outputs, from molecules to immune cells. A special emphasis is given to the intersections of autophagy with innate immunity, immunometabolism, and functions of organelles such as mitochondria and lysosomes that act as innate immunity and immunometabolic signaling platforms.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
36
|
Abreha MH, Ojelade S, Dammer EB, McEachin ZT, Duong DM, Gearing M, Bassell GJ, Lah JJ, Levey AI, Shulman JM, Seyfried NT. TBK1 interacts with tau and enhances neurodegeneration in tauopathy. J Biol Chem 2021; 296:100760. [PMID: 33965374 PMCID: PMC8191334 DOI: 10.1016/j.jbc.2021.100760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
One of the defining pathological features of Alzheimer's disease (AD) is the deposition of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau in the brain. Aberrant activation of kinases in AD has been suggested to enhance phosphorylation and toxicity of tau, making the responsible tau kinases attractive therapeutic targets. The full complement of tau-interacting kinases in AD brain and their activity in disease remains incompletely defined. Here, immunoaffinity enrichment coupled with mass spectrometry (MS) identified TANK-binding kinase 1 (TBK1) as a tau-interacting partner in human AD cortical brain tissues. We validated this interaction in human AD, familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) caused by mutations in MAPT (R406W & P301L) and corticobasal degeneration (CBD) postmortem brain tissues as well as human cell lines. Further, we document increased TBK1 activation in both AD and FTDP-17 and map TBK1 phosphorylation sites on tau based on in vitro kinase assays coupled to MS. Lastly, in a Drosophila tauopathy model, activating expression of a conserved TBK1 ortholog triggers tau hyperphosphorylation and enhanced neurodegeneration, whereas knockdown had the reciprocal effect, suppressing tau toxicity. Collectively, our findings suggest that increased TBK1 activation may promote tau hyperphosphorylation and neuronal loss in AD and related tauopathies.
Collapse
Affiliation(s)
- Measho H Abreha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shamsideen Ojelade
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zachary T McEachin
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marla Gearing
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gary J Bassell
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James J Lah
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allan I Levey
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
37
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
38
|
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020; 24:1065-1078. [PMID: 32962465 PMCID: PMC7644630 DOI: 10.1080/14728222.2020.1826929] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Or-yam Revach
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuming Liu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Lin S, Zhao XL, Wang Z. TANK-binding kinase 1 mediates osteoclast differentiation by regulating NF-κB, MAPK and Akt signaling pathways. Immunol Cell Biol 2020; 99:223-233. [PMID: 32896936 DOI: 10.1111/imcb.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/02/2019] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
TANK-binding kinase 1 (TBK1) belongs to the noncanonical IκB kinase (IKK) family. The ubiquitously expressed protein is well known to play a pivotal role in innate immune response and inflammation. Although excessive inflammatory activities have been shown to affect osteoclast (OC) differentiation and function, direct relevance of TBK1 in bone turnover is not known. In this work, we specifically altered the TBK1 protein level by knocking down or overexpressing it without affecting its homologous protein IKKε expression, and demonstrated the effect of TBK1 on OC differentiation in bone marrow macrophages (BMMs) and RAW264.7 cells upon induction by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). TBK1 knockdown was found to markedly inhibit the OC differentiation and function, while TBK1 overexpression enhanced OC formation. Downregulation of TBK1 greatly suppressed RANKL-induced gene expression of Mmp9, Atp6v0d2, Acp5, Ctsk andNfatc1 involved in the regulation of OC formation and function in both BMM and RAW264.7 cells. Mechanistic studies indicated that TBK1 affected the NF-κB signaling pathway as well as mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) activation during OC differentiation. Moreover, the protein level of TNF receptor-associated factor 6 (TRAF6) was increased, and the interaction of TRAF6 with TBK1 was potentiated, by RANKL. Collectively, we provide direct evidence showing that TBK1 effectively mediates OC differentiation and function by regulating NF-κB, MAPKs and Akt signals. A TBK1-targeted therapeutic strategy may be useful for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Shuai Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Wang N, Li Y, Wang X, Ma Z, Wang Y, Zhang C, Yuan Y, Zhao M. Inhibition of TBK1 by amlexanox attenuates paraquat-induced acute lung injury. Toxicology 2020; 443:152555. [DOI: 10.1016/j.tox.2020.152555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
|
41
|
Ullah MA, Johora FT, Sarkar B, Araf Y, Rahman MH. Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study. J Recept Signal Transduct Res 2020; 40:324-338. [PMID: 32223496 DOI: 10.1080/10799893.2020.1742741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Toll-like receptor 4 (TLR4) pathway is one of the major pathways that mediate the inflammation in human body. There are different anti-inflammatory drugs available in the market which specifically act on different signaling proteins of TLR4 pathway but they do have few side effects and other limitations for intended use in human body. In this study, Curcumin and its different analogs have been analyzed as the inhibitors of signaling proteins, i.e. Cycloxygenase-2 (COX-2), inhibitor of kappaβ kinase (IKK) and TANK binding kinase-1 (TBK-1) of TLR4 pathway using different computational tools. Initially, three compounds were selected for respective target based on free binding energy among which different compounds were reported to have better binding affinity than commercially available drug (control). Upon continuous computational exploration with induced fit docking (IFD), 6-Gingerol, Yakuchinone A and Yakuchinone B were identified as the best inhibitors of COX-2, IKK, and TBK-1 respectively. Then their drug-like potentialities were analyzed in different experiments where they were also predicted to perform well. Hopefully, this study will uphold the efforts of researchers to identify anti-inflammatory drugs from natural sources.
Collapse
Affiliation(s)
- Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Fatema Tuz Johora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, Faculty of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
42
|
Ramadass V, Vaiyapuri T, Tergaonkar V. Small Molecule NF-κB Pathway Inhibitors in Clinic. Int J Mol Sci 2020; 21:E5164. [PMID: 32708302 PMCID: PMC7404026 DOI: 10.3390/ijms21145164] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling is implicated in all major human chronic diseases, with its role in transcription of hundreds of gene well established in the literature. This has propelled research into targeting the NF-κB pathways for modulating expression of those genes and the diseases mediated by them. In-spite of the critical, but often promiscuous role played by this pathway and the inhibition causing adverse drug reaction, currently many biologics, macromolecules, and small molecules that modulate this pathway are in the market or in clinical trials. Furthermore, many marketed drugs that were later found to also have NF-κB targeting activity were repurposed for new therapeutic interventions. Despite the rising importance of biologics in drug discovery, small molecules got around 76% of US-FDA (Food and Drug Administration-US) approval in the last decade. This encouraged us to review information regarding clinically relevant small molecule inhibitors of the NF-κB pathway from cell surface receptor stimulation to nuclear signaling. We have also highlighted the underexplored targets in this pathway that have potential to succeed in clinic.
Collapse
Affiliation(s)
| | | | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Singapore 138673, Singapore;
- Department of Pathology, NUS, Singapore 117597, Singapore
| |
Collapse
|
43
|
Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D'Silva DB, Moghaddas F, Tailler M, Lawlor KE, Zhan Y, Burns CJ, Wicks IP, Miner JJ, Kile BT, Masters SL, De Nardo D. TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Rep 2020; 31:107492. [PMID: 32268090 DOI: 10.1016/j.celrep.2020.03.056] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.
Collapse
Affiliation(s)
- Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tahnee L Saunders
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amber M Smith
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dale J Calleja
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian B D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Tailler
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Jonathan J Miner
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Health and Medical Sciences Faculty Office, University of Adelaide, Adelaide, SA 5005, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
44
|
Marineau A, Khan KA, Servant MJ. Roles of GSK-3 and β-Catenin in Antiviral Innate Immune Sensing of Nucleic Acids. Cells 2020; 9:cells9040897. [PMID: 32272583 PMCID: PMC7226782 DOI: 10.3390/cells9040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid activation of the type I interferon (IFN) antiviral innate immune response relies on ubiquitously expressed RNA and DNA sensors. Once engaged, these nucleotide-sensing receptors use distinct signaling modules for the rapid and robust activation of mitogen-activated protein kinases (MAPKs), the IκB kinase (IKK) complex, and the IKK-related kinases IKKε and TANK-binding kinase 1 (TBK1), leading to the subsequent activation of the activator protein 1 (AP1), nuclear factor-kappa B (NF-κB), and IFN regulatory factor 3 (IRF3) transcription factors, respectively. They, in turn, induce immunomodulatory genes, allowing for a rapid antiviral cellular response. Unlike the MAPKs, the IKK complex and the IKK-related kinases, ubiquitously expressed glycogen synthase kinase 3 (GSK-3) α and β isoforms are active in unstimulated resting cells and are involved in the constitutive turnover of β-catenin, a transcriptional coactivator involved in cell proliferation, differentiation, and lineage commitment. Interestingly, studies have demonstrated the regulatory roles of both GSK-3 and β-catenin in type I IFN antiviral innate immune response, particularly affecting the activation of IRF3. In this review, we summarize current knowledge on the mechanisms by which GSK-3 and β-catenin control the antiviral innate immune response to RNA and DNA virus infections.
Collapse
Affiliation(s)
- Alexandre Marineau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
| | - Kashif Aziz Khan
- Department of Biology, York University, Toronto, ON M3J1P3, Canada;
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
- Réseau Québécois de Recherche sur les Médicaments (RQRM), Montréal, QC H3T1C5, Canada
- Correspondence: ; Tel.: +1-514-343-7966
| |
Collapse
|
45
|
Fu Y, Fang Y, Lin Z, Yang L, Zheng L, Hu H, Yu T, Huang B, Chen S, Wang H, Xu S, Bao W, Chen Q, Sun L. Inhibition of cGAS-Mediated Interferon Response Facilitates Transgene Expression. iScience 2020; 23:101026. [PMID: 32283527 PMCID: PMC7155207 DOI: 10.1016/j.isci.2020.101026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy.
Collapse
Affiliation(s)
- Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Yijun Fang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Zhang Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Lei Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Liqun Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Hao Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Tingting Yu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Baoting Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Suxing Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Wei Bao
- Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Lijun Sun
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| |
Collapse
|
46
|
Li J, An S, Du Z. Familial Interstitial Lung Disease Caused by Mutation of the STING1 Gene. Front Pediatr 2020; 8:543. [PMID: 33014937 PMCID: PMC7505928 DOI: 10.3389/fped.2020.00543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Mutations that affect the STING1 (TMEM173) gene cause a rare autoinflammatory syndrome, which is known as STING-associated vasculopathy with onset in infancy (SAVI) and which was initially described in 2014 (1). Thus far, only four reports have been conducted regarding families affected with SAVI in the literature. In this article, the clinical, laboratory, and genetic characteristics of two generations (three cases) of SAVI are described. Unlike previously reported cases that were caused by STING1 mutation, the initial and major clinical manifestations of the mentioned cases are largely identified in the lungs with interstitial lung disease (ILD), and the evidence of typical extrapulmonary symptoms of early-onset systemic inflammation (e.g., cutaneous vasculopathy) were minimal except for the proband, who was diagnosed with arthritis 8 years after onset. In addition, a younger sibling showed no symptoms. Such reports are rarely related to mutations in STING1. The proband was examined with bronchoscopy and alveolar lavage to determine the cause. This study emphasizes that, in the clinical assessment of interstitial pneumonia in children, the possibility of STING1 mutation should be considered, especially in patients with arthritis in addition.
Collapse
Affiliation(s)
- Jinying Li
- Department of Pediatrics, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Department of Respiratory, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Shuhua An
- Department of Respiratory, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Zhongdong Du
- Department of Pediatrics, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. MEDCHEMCOMM 2019; 10:1999-2023. [PMID: 32206239 PMCID: PMC7069516 DOI: 10.1039/c8md00555a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
The cyclic dinucleotide-cGAS-STING axis plays important roles in host immunity. Activation of this signaling pathway, via cytosolic sensing of bacterial-derived c-di-GMP/c-di-AMP or host-derived cGAMP, leads to the production of inflammatory interferons and cytokines that help resolve infection. Small molecule activators of the cGAS-STING axis have the potential to augment immune response against various pathogens or cancer. The aberrant activation of this pathway, due to gain-of-function mutations in any of the proteins that are part of the signaling axis, could lead to various autoimmune diseases. Inhibiting various nodes of the cGAS-STING axis could provide relief to patients with autoimmune diseases. Many excellent reviews on the cGAS-STING axis have been published recently, and these have mainly focused on the molecular details of the cGAS-STING pathway. This review however focuses on small molecules that can be used to modulate various aspects of the cGAS-STING pathway, as well as other parallel inflammatory pathways.
Collapse
Affiliation(s)
- Herman O Sintim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Institute for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Purdue Institute of Inflammation and Infectious Diseases , Purdue University , West Lafayette , IN 47907 , USA
| | - Clinton G Mikek
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Modi Wang
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Moloud A Sooreshjani
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| |
Collapse
|
48
|
Zentsova I, Parackova Z, Kayserova J, Palova-Jelinkova L, Vrabcova P, Volfova N, Sumnik Z, Pruhova S, Petruzelkova L, Sediva A. Monocytes contribute to DNA sensing through the TBK1 signaling pathway in type 1 diabetes patients. J Autoimmun 2019; 105:102294. [DOI: 10.1016/j.jaut.2019.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
49
|
Shan S, Zhou Y, Yu J, Yang Q, Pan D, Wang Y, Li L, Zhu J, Zhang Y, Huang S, Li Z, Ning Z, Xin L, Lu X. Therapeutic treatment of a novel selective JAK3/JAK1/TBK1 inhibitor, CS12192, in rat and mouse models of rheumatoid arthritis. Int Immunopharmacol 2019; 77:105914. [DOI: 10.1016/j.intimp.2019.105914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
50
|
Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20:657-674. [PMID: 31358977 DOI: 10.1038/s41576-019-0151-1] [Citation(s) in RCA: 948] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
The detection of pathogens through nucleic acid sensors is a defining principle of innate immunity. RNA-sensing and DNA-sensing receptors sample subcellular compartments for foreign nucleic acids and, upon recognition, trigger immune signalling pathways for host defence. Over the past decade, our understanding of how the recognition of nucleic acids is coupled to immune gene expression has advanced considerably, particularly for the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signalling effector stimulator of interferon genes (STING), as well as the molecular components and regulation of this pathway. Moreover, the ability of self-DNA to engage cGAS has emerged as an important mechanism fuelling the development of inflammation and implicating the cGAS-STING pathway in human inflammatory diseases and cancer. This detailed mechanistic and biological understanding is paving the way for the development and clinical application of pharmacological agonists and antagonists in the treatment of chronic inflammation and cancer.
Collapse
Affiliation(s)
- Mona Motwani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Scott Pesiridis
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|