1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Liu HN, Nakamura M, Kawashima H. New Role of the Serotonin as a Biomarker of Gut-Brain Interaction. Life (Basel) 2024; 14:1280. [PMID: 39459580 PMCID: PMC11509611 DOI: 10.3390/life14101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonin (5-hydroxytryptamine: 5-HT), a neurotransmitter that regulates mood in the brain and signaling in the gut, has receptors throughout the body that serve various functions, especially in the gut and brain. Selective serotonin reuptake inhibitors (SSRIs) are used to treat depression, but their efficacy is uncertain. Depression is often associated with early gastrointestinal symptoms. Gut disorders such as functional dyspepsia (FD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are linked to elevated serotonin levels. In this review, we would like to discuss the approach of using serotonin as a biomarker for gut-brain, and body-wide organ communication may lead to the development of preventive and innovative treatments for gut-brain disorders, offering improved visibility and therapeutic monitoring. It could also be used to gauge stress intensity for self-care and mental health improvement.
Collapse
Affiliation(s)
- Hong Nian Liu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.N.)
| | | | | |
Collapse
|
3
|
Zou Z, Fan W, Liu H, Liu Q, He H, Huang F. The roles of 5-HT in orofacial pain. Oral Dis 2024; 30:3838-3849. [PMID: 38622872 DOI: 10.1111/odi.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/10/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES Acute and chronic orofacial pain are very common and remain a vexing health problem that has a negative effect on the quality of life. Serotonin (5-HydroxyTryptamine, 5-HT) is a kind of monoamine neurotransmitter that is involved in many physiological and pathological processes. However, its role in orofacial pain remains inconclusive. Therefore, this review aims to summarize the recent advances in understanding the effect exerted by 5-HT on the modulation of orofacial pain. SUBJECTS AND METHODS An extensive search was conducted on PubMed and Web of Science for pertinent studies focusing on the effects of 5-HT on the modulation of orofacial pain. RESULTS In this review, we concisely review how 5-HT mediates orofacial pain, how 5-HT is regulated and how we can translate these findings into clinical applications for the prevention and/or treatment of orofacial pain. CONCLUSIONS 5-HT plays a key role in the modulation of orofacial pain, implying that 5-HT modulators may serve as effective treatment for orofacial pain. However, further research on the precise mechanisms underlying the modulation of orofacial pain is still warranted.
Collapse
Affiliation(s)
- Zhishan Zou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haotian Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Knez E, Kadac-Czapska K, Grembecka M. The importance of food quality, gut motility, and microbiome in SIBO development and treatment. Nutrition 2024; 124:112464. [PMID: 38657418 DOI: 10.1016/j.nut.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
The prevalence of small intestinal bacterial overgrowth (SIBO) is rising worldwide, particularly in nations with high rates of urbanization. Irritable bowel syndrome, inflammatory bowel illnesses, and nonspecific dysmotility are strongly linked to SIBO. Moreover, repeated antibiotic therapy promotes microorganisms' overgrowth through the development of antibiotic resistance. The primary cause of excessive fermentation in the small intestine is a malfunctioning gastrointestinal motor complex, which results in the gut's longer retention of food residues. There are anatomical and physiological factors affecting the functioning of the myoelectric motor complex. Except for them, diet conditions the activity of gastrointestinal transit. Indisputably, the Western type of nutrition is unfavorable. Some food components have greater importance in the functioning of the gastrointestinal motor complex than others. Tryptophan, an essential amino acid and precursor of the serotonin hormone, accelerates intestinal transit, and gastric emptying, similarly to fiber and polyphenols. Additionally, the effect of food on the microbiome is important, and diet should prevent bacterial overgrowth and exhibit antimicrobial effects against pathogens. Therefore, knowledge about proper nutrition is essential to prevent the development and recurrence of SIBO. Since the scientific world was unsure whether there was a long-term or potential solution for SIBO until quite recently, research on a number of the topics included in the article should be performed. The article aimed to summarize current knowledge about proper nutrition after SIBO eradication and the prevention of recurrent bacterial overgrowth. Moreover, a connection was found between diet, gut dysmotility, and SIBO.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
5
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
6
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Grigoletto J, Miraglia F, Benvenuti L, Pellegrini C, Soldi S, Galletti S, Cattaneo A, Pich EM, Grimaldi M, Colla E, Vesci L. Velusetrag rescues GI dysfunction, gut inflammation and dysbiosis in a mouse model of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:140. [PMID: 37783672 PMCID: PMC10545757 DOI: 10.1038/s41531-023-00582-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
In patients with Parkinson's disease (PD), constipation is common, and it appears in a prodromal stage before the hallmark motor symptoms. The present study aimed to investigate whether Velusetrag, a selective 5‑HT4 receptor agonist, may be a suitable candidate to improve intestinal motility in a mouse model of PD. Five months old PrP human A53T alpha-synuclein transgenic (Tg) mice, which display severe constipation along with decreased colonic cholinergic transmission already at 3 months, were treated daily with the drug for 4 weeks. Velusetrag treatment reduced constipation by significantly stimulating both the longitudinal and circular-driven contractions and improved inflammation by reducing the level of serum and colonic IL1β and TNF-α and by decreasing the number of GFAP-positive glia cells in the colon of treated mice. No significant downregulation of the 5-HT4 receptor was observed but instead Velusetrag seemed to improve axonal degeneration in Tgs as shown by an increase in NF-H and VAChT staining. Ultimately, Velusetrag restored a well-balanced intestinal microbial composition comparable to non-Tg mice. Based on these promising data, we are confident that Velusetrag is potentially eligible for clinical studies to treat constipation in PD patients.
Collapse
Affiliation(s)
- Jessica Grigoletto
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Fabiana Miraglia
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Sara Soldi
- AAT Advanced Analytical Technologies Srl, via P. Majavacca 12 - 29017, Fiorenzuola d'Arda (PC), Italy
| | - Serena Galletti
- AAT Advanced Analytical Technologies Srl, via P. Majavacca 12 - 29017, Fiorenzuola d'Arda (PC), Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
- Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Viale Regina Elena 295, Rome, 00161, Italy
| | - Emilio Merlo Pich
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, 00071, Pomezia (Rome), Italy
| | - Maria Grimaldi
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, 00071, Pomezia (Rome), Italy
| | - Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Open University, Via Val Cannuta 247, 00166, Rome, Italy.
| | - Loredana Vesci
- Corporate R&D, Alfasigma S.p.A., Via Pontina km 30.400, 00071, Pomezia (Rome), Italy.
| |
Collapse
|
9
|
Tough IR, Lund ML, Patel BA, Schwartz TW, Cox HM. Paracrine relationship between incretin hormones and endogenous 5-hydroxytryptamine in the small and large intestine. Neurogastroenterol Motil 2023; 35:e14589. [PMID: 37010838 PMCID: PMC10909488 DOI: 10.1111/nmo.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Enterochromaffin (EC) cell-derived 5-hydroxytryptamine (5-HT) is a mediator of toxin-induced reflexes, initiating emesis via vagal and central 5-HT3 receptors. The amine is also involved in gastrointestinal (GI) reflexes that are prosecretory and promotile, and recently 5-HT's roles in chemosensation in the distal bowel have been described. We set out to establish the efficacy of 5-HT signaling, local 5-HT levels and pharmacology in discrete regions of the mouse small and large intestine. We also investigated the inter-relationships between incretin hormones, glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) and endogenous 5-HT in mucosal and motility assays. METHODS Adult mouse GI mucosae were mounted in Ussing chambers and area-specific studies were performed to establish the 5-HT3 and 5-HT4 pharmacology, the sidedness of responses, and the inter-relationships between incretins and endogenous 5-HT. Natural fecal pellet transit in vitro and full-length GI transit in vivo were also measured. KEY RESULTS We observed the greatest level of tonic and exogenous 5-HT-induced ion transport and highest levels of 5-HT in ascending colon mucosa. Here both 5-HT3 and 5-HT4 receptors were involved but elsewhere in the GI tract epithelial basolateral 5-HT4 receptors mediate 5-HT's prosecretory effect. Exendin-4 and GIP induced 5-HT release in the ascending colon, while L cell-derived PYY also contributed to GIP mucosal effects in the descending colon. Both peptides slowed colonic transit. CONCLUSIONS & INFERENCES We provide functional evidence for paracrine interplay between 5-HT, GLP-1 and GIP, particularly in the colonic mucosal region. Basolateral epithelial 5-HT4 receptors mediated both 5-HT and incretin mucosal responses in healthy colon.
Collapse
Affiliation(s)
- Iain R. Tough
- Wolfson Centre for Age‐Related Diseases, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonHodgkin Building, Guy's CampusLondonSE1 1ULUK
| | - Mari L. Lund
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and EnteroendocrinologyUniversity of CopenhagenCopenhagenDK‐2200Denmark
- Present address:
Chr. Hansen A/S, Human Health ResearchHoersholmDK‐2970Denmark
| | - Bhavik A. Patel
- Centre for Stress and Age‐Related Diseases, School of Applied SciencesUniversity of BrightonBrightonUK
| | - Thue W. Schwartz
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and EnteroendocrinologyUniversity of CopenhagenCopenhagenDK‐2200Denmark
| | - Helen M. Cox
- Wolfson Centre for Age‐Related Diseases, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonHodgkin Building, Guy's CampusLondonSE1 1ULUK
| |
Collapse
|
10
|
Chen C, Chen K, Huang Z, Huang X, Wang Z, He F, Qin M, Long C, Tang B, Mo X, Liu J, Tang W. Identification of intestinal microbiome associated with lymph-vascular invasion in colorectal cancer patients and predictive label construction. Front Cell Infect Microbiol 2023; 13:1098310. [PMID: 37249979 PMCID: PMC10215531 DOI: 10.3389/fcimb.2023.1098310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE To identify differences between the composition, abundance, and biological function of the intestinal microbiome of patients with and without lymph-vascular invasion (LVI) colorectal cancer (CRC) and to construct predictive labels to support accurate assessment of LVI in CRC. METHOD 134 CRC patients were included, which were divided into two groups according to the presence or absence of LVI, and their intestinal microbiomes were sequenced by 16SrRNA and analyzed for differences. The transcriptome sequencing data of 9 CRC patients were transformed into immune cells abundance matrix by CIBERSORT algorithm, and the correlation among LVI-associated differential intestinal microbiomes, immune cells, immune-related genes and LVI-associated differential GO items and KEGG pathways were analyzed. A random forest (RF) and eXtreme Gradient Boosting (XGB) model were constructed to predict the LVI of CRC patients based on the differential microbiome. RESULT There was no significant difference in α-diversity and β-diversity of intestinal microbiome between CRC patients with and without LVI (P > 0.05). Linear discriminant analysis Effect Size (LEfSe) analysis showed 34 intestinal microbiomes enriched in CRC patients of the LVI group and 5 intestinal microbiomes were significantly enriched in CRC patients of the non-lymph-vascular invasion (NLVI) group. The RF and XGB prediction models constructed with the top 15% of the LVI-associated differential intestinal microbiomes ranked by feature significance had good efficacy. CONCLUSIONS There are 39 intestinal flora with significantly different species abundance between the LVI and NLVI groups. g:Alistipes.s:Alistipes_indistinctus is closely associated with colorectal cancer vascular invasion. LVI-associated differential intestinal flora may be involved in regulating the infiltration of immune cells in CRC and influencing the expression of immune-related genes. LVI-associated differential intestinal flora may influence the process of vascular invasion in CRC through a number of potential biological functions. RF prediction models and XGB prediction models constructed based on microbial markers of gut flora can be used to predict CRC-LVI conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
11
|
Haduch A, Bromek E, Kuban W, Daniel WA. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023; 13:metabo13050629. [PMID: 37233670 DOI: 10.3390/metabo13050629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Tryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated 5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes, producing biologically active metabolites which exert positive or negative actions on living organisms. Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular homeostasis and xenobiotic metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
12
|
Wang Z, Wu L, Dong P, Wang Q, Sun X, Liu L, Guo Y, Sun Y, Shu T. Meta-Analysis of the Association Between 5-Hydroxytryptamine Transporter Gene-Linked Polymorphic Region and Functional Dyspepsia and its Subtypes. Genet Test Mol Biomarkers 2023; 27:100-108. [PMID: 36989523 DOI: 10.1089/gtmb.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Background: Association studies of variations in the 5-hydroxytryptamine (5-HT, serotonin) transporter gene-linked polymorphic region (5-HTTLPR) and functional dyspepsia (FD) have yielded contradictory results. Hence, we performed a meta-analysis to clarify inconsistencies between the 5-HTTLPR polymorphism with FD and it subtypes. Methods: We performed a literature search in PubMed, Embase, Web of Science, Cochrane Library, and CNKI, including articles published until March 2022. We calculated and pooled odds ratios (ORs) with their 95% confidence intervals (CIs) in Stata 15.0. Data extraction was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Cochrane Handbook for Systematic Reviews of Interventions. Results: The meta-analysis included six studies, comprising 488 cases and 1513 healthy controls. We did not observe a significant association between the 5-HTTLPR polymorphism and FD in the overall population. In subgroup analyses, the 5-HTTLPR polymorphism was significantly associated with FD-subtype epigastric pain syndrome (EPS) (SS vs. LL+LS, OR = 0.620, 95% CI: 0.414-0.930; SS vs. LS, OR = 0.640, 95% CI: 0.417-0.980; S vs. L, OR = 0.655, 95% CI: 0.471-0.911). However, no association was observed with the other subtype, postprandial distress syndrome (PDS). Conclusion: While the 5-HTTLPR polymorphism had no relationship with FD overall, splitting the disease into its subtypes revealed a clear association with EPS.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Medicine, Southwest Jiaotong University, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
| | - Liping Wu
- School of Medicine, Southwest Jiaotong University, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
- Department of Gastroenterology, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
| | - Peiwen Dong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
| | - Qiong Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
| | - Xiaobin Sun
- School of Medicine, Southwest Jiaotong University, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
- Department of Gastroenterology, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
| | - Lei Liu
- Medical Research Center, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, the Second Chengdu Affiliated Hospital of Chongqing Medical University, Chengdu, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, the Second Chengdu Affiliated Hospital of Chongqing Medical University, Chengdu, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, the Second Chengdu Affiliated Hospital of Chongqing Medical University, Chengdu, Sichuan, China
| | - Tao Shu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Jiaotong University, the Third People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
13
|
Everett BA, Tran P, Prindle A. Toward manipulating serotonin signaling via the microbiota-gut-brain axis. Curr Opin Biotechnol 2022; 78:102826. [PMID: 36332346 DOI: 10.1016/j.copbio.2022.102826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
It is now well established in humans that there is a bidirectional pathway of communication between the central and enteric nervous systems in which members of the microbiome participate. This microbiota-gut-brain axis (MGBA) is crucial for normal development and physiology, and its dysregulation has been implicated in a range of neurological and intestinal disorders. Investigations into the mechanistic underpinnings of the MGBA have identified serotonin as a molecule of particular interest. In this review, we highlight recent advances toward understanding the role of endogenous serotonin in microbial communities, how microbial communities bidirectionally interact with host serotonin, and potential future engineering opportunities to leverage these novel mechanisms for biomedical applications.
Collapse
Affiliation(s)
- Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
14
|
Xiao Z, Xu J, Tan J, Zhang S, Wang N, Wang R, Yang P, Bai T, Song J, Shi Z, Lyu W, Zhang L, Hou X. Zhizhu Kuanzhong, a traditional Chinese medicine, alleviates gastric hypersensitivity and motor dysfunction on a rat model of functional dyspepsia. Front Pharmacol 2022; 13:1026660. [PMID: 36467071 PMCID: PMC9712737 DOI: 10.3389/fphar.2022.1026660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
Ethnopharmacological relevance: Zhizhu Kuanzhong (ZZKZ) is a traditional Chinese medicine modified from classic formula Zhizhu decoction in "Synopsis of Golden Chamber" (Han Dynasty in the 3rd century) and the Zhizhu pill in "Differentiation on Endogenous" in Jin Dynasty (1,115-1,234). ZZKZ contains four botanical drugs, including Citrus × Aurantium L [Rutaceae; Aurantii Fructus Immaturus], Atractylodes Macrocephala Koidz. [Compositae; Rhizoma Atractylodis Macrocephalae], Bupleurum Chinense DC [Apiaceae; Radix Bupleuri Chinensis], and Crataegus Pinnatifida Bunge [Rosaceae; Fructus Crataegi Pinnatifidae], which have been widely used in clinical therapy for functional dyspepsia (FD). Aim of the study: This study aimed to evaluate the pharmacological effects and mechanisms of action of ZZKZ on gastric hypersensitivity and motor dysfunction in a rat model of FD. Materials and methods: FD was induced in Sprague-Dawley rats by neonatal gastric irritation with 0.1% iodoacetamide. The FD rats were treated with ZZKZ (0.5 g/kg, 1.0 g/kg, or 1.5 g/kg respectively) by gavage for 7 days, while domperidone (3 mg/kg) acted as treatment control. Body weight gain, food intake, gastric emptying, and intestinal propulsion were also measured. Ex vivo gastric smooth muscle activity recordings and greater splanchnic afferent (GSN) firing recordings were employed to evaluate gastric motility and sensation. Particularly, the role of 5-HT in the action of ZZKZ in improving gastric dysmotility and hypersensitivity was explored. Results: ZZKZ promoted weight gain, food intake, gastric emptying, and intestinal propulsion in FD rats. ZZKZ promoted spontaneous and ACh-induced contractions of gastric smooth muscle strips in FD rats, alleviated spontaneous activity, and chemical (acid perfusion) and mechanical (intragastric distension) stimulated GSN firing in FD rats. ZZKZ ameliorated gastric smooth muscle contraction and GSN firing induced by 5-HT in FD rats. ZZKZ stimulated the release of serum 5-HT, with reduced 5-HT3 receptor and increased 5-HT4 receptor mRNA expression in the guts of FD rats. Conclusion: This study demonstrated that ZZKZ improves FD-related gastric hypersensitivity and motor dysfunction and should be an effective compound for relieving FD symptoms. The gastric 5-HT system with lower 5-HT3 activity and increased 5-HT4 distribution is involved in the mechanisms of ZZKZ underlying the treatment of FD.
Collapse
Affiliation(s)
- Zhuanglong Xiao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Chinese Medicine, Hubei College of Chinese Medicine, Jingzhou, China
| | - Jun Tan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengyan Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Wang
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Ruiyun Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohong Shi
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Wenliang Lyu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wallen ZD, Demirkan A, Twa G, Cohen G, Dean MN, Standaert DG, Sampson TR, Payami H. Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun 2022; 13:6958. [PMID: 36376318 PMCID: PMC9663292 DOI: 10.1038/s41467-022-34667-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) may start in the gut and spread to the brain. To investigate the role of gut microbiome, we conducted a large-scale study, at high taxonomic resolution, using uniform standardized methods from start to end. We enrolled 490 PD and 234 control individuals, conducted deep shotgun sequencing of fecal DNA, followed by metagenome-wide association studies requiring significance by two methods (ANCOM-BC and MaAsLin2) to declare disease association, network analysis to identify polymicrobial clusters, and functional profiling. Here we show that over 30% of species, genes and pathways tested have altered abundances in PD, depicting a widespread dysbiosis. PD-associated species form polymicrobial clusters that grow or shrink together, and some compete. PD microbiome is disease permissive, evidenced by overabundance of pathogens and immunogenic components, dysregulated neuroactive signaling, preponderance of molecules that induce alpha-synuclein pathology, and over-production of toxicants; with the reduction in anti-inflammatory and neuroprotective factors limiting the capacity to recover. We validate, in human PD, findings that were observed in experimental models; reconcile and resolve human PD microbiome literature; and provide a broad foundation with a wealth of concrete testable hypotheses to discern the role of the gut microbiome in PD.
Collapse
Affiliation(s)
- Zachary D. Wallen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Ayse Demirkan
- grid.5475.30000 0004 0407 4824Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey GU2 7XH UK
| | - Guy Twa
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Gwendolyn Cohen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Marissa N. Dean
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - David G. Standaert
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Timothy R. Sampson
- grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA ,grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Haydeh Payami
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| |
Collapse
|
16
|
Tegaserod: What's Old Is New Again. Clin Gastroenterol Hepatol 2022; 20:2175-2184.e19. [PMID: 35123085 DOI: 10.1016/j.cgh.2022.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome with constipation (IBS-C) and chronic idiopathic constipation (CIC) are common gastrointestinal disorders imposing considerable impact on the quality of life and well-being of affected individuals. A paucity of evidence-based treatment options exist for CIC and IBS-C sufferers. Tegaserod, a 5-HT4 agonist, has a substantial body of preclinical and clinical study evidence to support its beneficial role in modulating sensorimotor function of the luminal gastrointestinal tract. Tegaserod was first approved for use by the U.S. Food and Drug Administration for the management of IBS-C and CIC in 2002 and 2004, respectively. Tegaserod enjoyed a successful uptake in the management of these disorders during its first several years of availability in the United States, but was later withdrawn from the market in 2007 over concerns related to adverse cardiovascular events. Since then, additional safety data has been generated, and following a resubmission and review by the Food and Drug Administration, in April 2019, tegaserod was once again approved for use in IBS-C under a more restricted labeling, confining use to women under 65 years of age without heart disease or additional cardiovascular risk factors. This review summarizes the regulatory journey of tegaserod and details the existing pharmacokinetic, physiologic, clinical, and safety data of tegaserod generated over the last 2 decades. The discussion also examines the future of tegaserod in the treatment of these constipation disorders, as well as its potential role in other related disorders of brain-gut interaction.
Collapse
|
17
|
Poon SSB, Hung LY, Wu Q, Parathan P, Yalcinkaya N, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system. J Physiol 2022; 600:4303-4323. [PMID: 36082768 PMCID: PMC9826436 DOI: 10.1113/jp282939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/12/2023] Open
Abstract
Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.
Collapse
Affiliation(s)
- Sabrina S. B. Poon
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Lin Y. Hung
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Qinglong Wu
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Pavitha Parathan
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Nazli Yalcinkaya
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Anthony Haag
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Ruth Ann Luna
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Joel C. Bornstein
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Tor C. Savidge
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Jaime P. P. Foong
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
18
|
Xu J, Lan Y, Wang X, Shang K, Liu X, Wang J, Li J, Yue B, Shao M, Fan Z. Multi-omics analysis reveals the host-microbe interactions in aged rhesus macaques. Front Microbiol 2022; 13:993879. [PMID: 36238598 PMCID: PMC9551614 DOI: 10.3389/fmicb.2022.993879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is a complex multifactorial process that greatly affects animal health. Multi-omics analysis is widely applied in evolutionary biology and biomedical research. However, whether multi-omics can provide sufficient information to reveal comprehensive changes in aged non-human primates remains unclear. Here, we explored changes in host-microbe interactions with aging in Chinese rhesus macaques (Macaca mulatta lasiota, CRs) using multi-omics analysis. Results showed marked changes in the oral and gut microbiomes between young and aged CRs, including significantly reduced probiotic abundance and increased pathogenic bacterial abundance in aged CRs. Notably, the abundance of Lactobacillus, which can metabolize tryptophan to produce aryl hydrocarbon receptor (AhR) ligands, was decreased in aged CRs. Consistently, metabolomics detected a decrease in the plasma levels of AhR ligands. In addition, free fatty acid, acyl carnitine, heparin, 2-(4-hydroxyphenyl) propionic acid, and docosahexaenoic acid ethyl ester levels were increased in aged CRs, which may contribute to abnormal fatty acid metabolism and cardiovascular disease. Transcriptome analysis identified changes in the expression of genes associated with tryptophan metabolism and inflammation. In conclusion, many potential links among different omics were found, suggesting that aged CRs face multiple metabolic problems, immunological disorders, and oral and gut diseases. We determined that tryptophan metabolism is critical for the physiological health of aged CRs. Our findings demonstrate the value of multi-omics analyses in revealing host-microbe interactions in non-human primates and suggest that similar approaches could be applied in evolutionary and ecological research of other species.
Collapse
Affiliation(s)
- Jue Xu
- West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinqi Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ke Shang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Jiang M, Tian L, Su M, Cao X, Jiang Q, Huo X, Yu C. Real-time monitoring of 5-HT release from cells based on MXene hybrid single-walled carbon nanotubes modified electrode. Anal Bioanal Chem 2022; 414:7967-7976. [PMID: 36129526 DOI: 10.1007/s00216-022-04337-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) is an essential inhibitory neurotransmitter in vivo that is critical for interneuronal communication of the nervous system. Herein, we constructed an electrochemical cell-sensing platform for 5-HT detection based on MXene/single-walled carbon nanotubes (SWCNTs) nanocomposite. The one-dimensional SWCNTs with good electrical conductivity are uniformly dispersed on the surface and intermediate layers of the two-dimensional MXene to form a tightly heterogeneous heterostructure. The synthesized MXene-SWCNTs could improve the stacking problem of MXene nanosheets and expose more active sites, effectively promoting the conductive properties and electrochemical activity of the composite. The fabricated MXene-SWCNTs/GCE possessed outstanding detection capability for 5-HT with a wide linear range of 4 nM-103.2 μM and a low detection limit of 1.5 nM. Moreover, the sensor was further applied for the real-time monitoring trace amount of 5-HT releasing from different cell lines, which confirmed its promising applications in 5-HT related physiological and pathological fields. MXene-SWCNTs/GCE was developed and applied for the real-time monitoring of trace amounts of 5-HT secreted from living cells.
Collapse
Affiliation(s)
- Mengyuan Jiang
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Liang Tian
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Mengjie Su
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Xiaoqing Cao
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Qiyu Jiang
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Xiaolei Huo
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China.
| |
Collapse
|
20
|
Lactobacillus rhamnosus GG normalizes gut dysmotility induced by environmental pollutants via affecting serotonin level in zebrafish larvae. World J Microbiol Biotechnol 2022; 38:222. [PMID: 36100774 DOI: 10.1007/s11274-022-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
Intestinal peristalsis is essential for gastrointestinal function, which could maintain the appropriate progression and digestion of food and reduce bacterial aggregation through mixing function. Even though certain ingredients of foodstuff are known to increase or decrease intestinal peristalsis, the role of environmental pollutants on intestinal peristalsis is relatively unknown. Therefore, the effects of four typical environmental pollutants (oxytetracycline, arsenic, polychlorinated biphenyls and chlorpyrifos) on intestinal peristalsis in the zebrafish model and then tested the recovery effect of the constipation-resistant probiotic. The results showed that 4-day environmental pollutants exposures on the zebrafish embryos at 1 day post fertilization clearly decreased the intestinal peristalsis through decreasing the serotonin (5-HT) production and down-regulating the expression of key genes involved in 5-HT synthesis. Pollutants-evoked change of gut motility could be normalized in the presence of Lactobacillus rhamnosus GG (LGG) via increasing 5-HT secretion. Exogenous 5-hydroxytryptophan (100 µg/L) could also rescue the dysfunction of gut motility in pollutants-treated zebrfish. The data identified that LGG normalized disorder of intestinal peristalsis induced by environmental pollutants through increasing 5-HT level. The stimulant effect of LGG on peristalsis may be associated with 5-HT system, which could provide references for the application of probiotics in regulation of gut dysmotility.
Collapse
|
21
|
Zheng Z, Tang J, Hu Y, Zhang W. Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front Med (Lausanne) 2022; 9:961703. [PMID: 35935766 PMCID: PMC9354785 DOI: 10.3389/fmed.2022.961703] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The gastrointestinal (GI) tract harbors trillions of commensal microbes, called the gut microbiota, which plays a significant role in the regulation of GI physiology, particularly GI motility. The GI tract expresses an array of receptors, such as toll-like receptors (TLRs), G-protein coupled receptors, aryl hydrocarbon receptor (AhR), and ligand-gated ion channels, that sense different gut microbiota-derived bioactive substances. Specifically, microbial cell wall components and metabolites, including lipopeptides, peptidoglycan, lipopolysaccharides (LPS), bile acids (BAs), short-chain fatty acids (SCFAs), and tryptophan metabolites, mediate the effect of gut microbiota on GI motility through their close interactions with the enteroendocrine system, enteric nervous system, intestinal smooth muscle, and immune system. In turn, GI motility affects the colonization within the gut microbiota. However, the mechanisms by which gut microbiota interacts with GI motility remain to be elucidated. Deciphering the underlying mechanisms is greatly important for the prevention or treatment of GI dysmotility, which is a complication associated with many GI diseases, such as irritable bowel syndrome (IBS) and constipation. In this perspective, we overview the current knowledge on the role of gut microbiota and its metabolites in the regulation of GI motility, highlighting the potential mechanisms, in an attempt to provide valuable clues for the development of gut microbiota-dependent therapy to improve GI motility.
Collapse
|
22
|
Wong OWH, Lam AMW, Or BPN, Mo FYM, Shea CKS, Lai KYC, Ma SL, Hung SF, Chan S, Kwong TNY, Wong S, Leung PWL. Disentangling the relationship of gut microbiota, functional gastrointestinal disorders and autism: a case-control study on prepubertal Chinese boys. Sci Rep 2022; 12:10659. [PMID: 35739175 PMCID: PMC9225987 DOI: 10.1038/s41598-022-14785-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence of an altered gut microbiome in autism spectrum disorder (ASD) suggests a pathomechanism through the gut-brain axis despite the inconsistent microbiome profile reported across studies. One of the knowledge gaps in the existing ASD microbiota studies is the lack of systematic exploration of the role of comorbid functional gastrointestinal disorder (FGID) in the association of ASD and altered gut microbiome. Consequently, 92 ASD and 112 age-matched typically developing (TD) boys were profiled on general psychopathology, FGID status by Rome IV classification, and gut microbiota using 16S ribosomal RNA amplicon sequencing at the V4 hypervariable region. Compared to TD, a significant decrease in the within-sample abundance of taxa was observed in ASD, regardless of FGID status. The microbiota of ASD FGID+ and ASD FGID- clustered apart from the TD groups. The microbiota of ASD FGID+ also showed qualitative differences from that of ASD FGID- and had the highest-level Firmicutes: Bacteroidetes ratio, which was paralleled by elevated levels of anxiety and overall psychopathology. The altered gastrointestinal microbiota composition in ASD appeared to be independent of comorbid FGID. Further studies should address how FGID may mediate neuropsychiatric symptoms in ASD through inflammation along the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Angela M W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Brian P N Or
- Department of Psychiatry, Tai Po Hospital, Hong Kong, China
| | - Flora Y M Mo
- Department of Psychiatry, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China
| | - Caroline K S Shea
- Department of Psychiatry, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China
| | - Kelly Y C Lai
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ling Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Se Fong Hung
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas N Y Kwong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick W L Leung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Chen XM, Wang X, Chen MM. Pharbitis nil extract ameliorates functional constipation and intestinal microflora disorder induced by loperamide in rats. Shijie Huaren Xiaohua Zazhi 2022; 30:223-229. [DOI: 10.11569/wcjd.v30.i5.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Semen pharbitidis can be used for the treatment of constipation; however, the specific pharmacological effect and mechanism of its main pharmacological active ingredient pharbitis nil extract (PN) on functional constipation (FC) are still not clear.
AIM To investigate the regulatory effect of PN on constipation symptoms, intestinal motility, colonic myoelectric activity, colonic tissue morphology, intestinal microflora and neurotransmitters in FC rats.
METHODS A rat model of FC was established by intragastric administ-ration of loperamide (Lop) and then treated with PN. The number of fecal pellets within 6 h, fecal water content, intestinal transit rate, and colonic myoelectric activity were observed and recorded. The alteration of intestinal flora was measured by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Hematoxylin-eosin (H&E) staining was used to detect the morphological changes of colon tissues. The expression levels of vasoactive intestinal peptide (VIP), substance P (SP), and 5-hydroxytryptamine (5-HT) were determined by enzyme linked immunosorbent assay (ELISA).
RESULTS PN could significantly increase the fecal pellet count and water content within 6 h, accelerate the intestinal ink propelling rate, and decrease the frequency and amplitude variation of colon myoelectric activity in FC rats. H&E staining showed that PN improved the colon histological changes induced by Lop. PCR-DGGE demonstrated that PN rectified the abundance of Bacteroidetes and Verrucomicrobia and increased the abundance of Lactobacillaceae and Bifidobacteriaceae in FC rats. ELISA showed that PN significantly increased the SP and 5-HT expression and decreased the expression of VIP in colon tissues of FC rats.
CONCLUSION PN alleviates FC caused by Lop and improves intestinal microflora and intestinal nervous system.
Collapse
Affiliation(s)
- Xiao-Min Chen
- Department of Pharmacy, Luqiao Hospital, Taizhou Grace Medical Center (Group), Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, Zhejiang Province, China
| | - Xu Wang
- Department of Pharmacy, Luqiao Hospital, Taizhou Grace Medical Center (Group), Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, Zhejiang Province, China
| | - Miao-Miao Chen
- Department of Pharmacy, Luqiao Hospital, Taizhou Grace Medical Center (Group), Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, Zhejiang Province, China
| |
Collapse
|
24
|
Chiocchetti R, Galiazzo G, Giancola F, Tagliavia C, Bernardini C, Forni M, Pietra M. Localization of the Serotonin Transporter in the Dog Intestine and Comparison to the Rat and Human Intestines. Front Vet Sci 2022; 8:802479. [PMID: 35071391 PMCID: PMC8766808 DOI: 10.3389/fvets.2021.802479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. The serotonin transporter (SERT), responsible for serotonin reuptake and signaling termination, plays a prominent role in gastrointestinal physiology, representing a promising therapeutic target in digestive disorders. Serotonin transporter expression has been poorly investigated in veterinary medicine, under both healthy and pathological conditions, including canine chronic enteropathy, in which the serotonin metabolism seems to be altered. The aim of the present study was to determine the distribution of SERT immunoreactivity (SERT-IR) in the dog intestine and to compare the findings with those obtained in the rat and human intestines. Serotonin transporter-IR was observed in canine enterocytes, enteric neurons, lamina propria cells and the tunica muscularis. Data obtained in dogs were consistent with those obtained in rats and humans. Since the majority of the serotonin produced by the body is synthesized in the gastrointestinal tract, SERT-expressing cells may exert a role in the mechanism of serotonin reuptake.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
25
|
Waclawiková B, Codutti A, Alim K, El Aidy S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 2022; 14:1997296. [PMID: 34978524 PMCID: PMC8741295 DOI: 10.1080/19490976.2021.1997296] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The human gastrointestinal tract is home to trillions of microbes. Gut microbial communities have a significant regulatory role in the intestinal physiology, such as gut motility. Microbial effect on gut motility is often evoked by bioactive molecules from various sources, including microbial break down of carbohydrates, fibers or proteins. In turn, gut motility regulates the colonization within the microbial ecosystem. However, the underlying mechanisms of such regulation remain obscure. Deciphering the inter-regulatory mechanisms of the microbiota and bowel function is crucial for the prevention and treatment of gut dysmotility, a comorbidity associated with many diseases. In this review, we present an overview of the current knowledge on the impact of gut microbiota and its products on bowel motility. We discuss the currently available techniques employed to assess the changes in the intestinal motility. Further, we highlight the open challenges, and incorporate biophysical elements of microbes-motility interplay, in an attempt to lay the foundation for describing long-term impacts of microbial metabolite-induced changes in gut motility.
Collapse
Affiliation(s)
- Barbora Waclawiková
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Agnese Codutti
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Physics Department and Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany
| | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Spencer NJ, Costa M. Rhythmicity in the Enteric Nervous System of Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:295-306. [PMID: 36587167 DOI: 10.1007/978-3-031-05843-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
27
|
Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J 2021; 35:e21888. [PMID: 34473368 PMCID: PMC9292703 DOI: 10.1096/fj.202100702r] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Endogenous tryptophan metabolism pathways lead to the production of serotonin (5‐hydroxytryptamine; 5‐HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%–2%) are sequestered for 5‐HT production. Though often associated with the functioning of the central nervous system, significant production of 5‐HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5‐HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5‐HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5‐HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5‐HT and kynurenine pathways.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci 2021; 22:ijms22157931. [PMID: 34360695 PMCID: PMC8347425 DOI: 10.3390/ijms22157931] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Qingjuan Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6273-8589
| |
Collapse
|
29
|
Wei L, Singh R, Ha SE, Martin AM, Jones LA, Jin B, Jorgensen BG, Zogg H, Chervo T, Gottfried-Blackmore A, Nguyen L, Habtezion A, Spencer NJ, Keating DJ, Sanders KM, Ro S. Serotonin Deficiency Is Associated With Delayed Gastric Emptying. Gastroenterology 2021; 160:2451-2466.e19. [PMID: 33662386 PMCID: PMC8532026 DOI: 10.1053/j.gastro.2021.02.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans. METHODS We developed an inducible, EC cell-specific Tph1CreERT2/+ mouse, which was used to generate a reporter mouse line, Tph1-tdTom, and an EC cell-depleted line, Tph1-DTA. We examined EC cell distribution, morphology, and subpopulations in reporter mice. GI motility was measured in vivo and ex vivo in EC cell-depleted mice. Additionally, we evaluated 5-HT content in biopsy and plasma specimens from patients with idiopathic gastroparesis (IG). RESULTS Tph1-tdTom mice showed EC cells that were heterogeneously distributed throughout the GI tract with the greatest abundance in the antrum and proximal colon. Two subpopulations of EC cells were identified in the gut: self-renewal cells located at the base of the crypt and mature cells observed in the villi. Tph1-DTA mice displayed delayed gastric emptying, total GI transit, and colonic transit. These gut motility alterations were reversed by exogenous provision of 5-HT. Patients with IG had a significant reduction of antral EC cell numbers and 5-HT content, which negatively correlated with gastric emptying rate. CONCLUSIONS The Tph1CreERT2/+ mouse provides a powerful tool to study the functional roles of EC cells in the GI tract. Our findings suggest a new pathophysiologic mechanism of 5-HT deficiency in IG.
Collapse
Affiliation(s)
- Lai Wei
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Rajan Singh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Se Eun Ha
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Byungchang Jin
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Brian G Jorgensen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Hannah Zogg
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Tyler Chervo
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Andres Gottfried-Blackmore
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Linda Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada.
| |
Collapse
|
30
|
Bischoff SC, Kaden-Volynets V, Filipe Rosa L, Guseva D, Seethaler B. Regulation of the gut barrier by carbohydrates from diet - Underlying mechanisms and possible clinical implications. Int J Med Microbiol 2021; 311:151499. [PMID: 33864957 DOI: 10.1016/j.ijmm.2021.151499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
The gut barrier has been recognized as being of relevance in the pathogenesis of multiple different diseases ranging from inflammatory bowel disease, irritable bowel syndrome, inflammatory joint disease, fatty liver disease, and cardiometabolic disorders. The regulation of the gut barrier is, however, poorly understood. Especially, the role of food components such as sugars and complex carbohydrates has been discussed controversially in this respect. More recently, the intestinal microbiota has been proposed as an important regulator of the gut barrier. Whether the microbiota affects the barrier by its own, or whether food components such as carbohydrates mediate their effects through alterations of the microbiota composition or its metabolites, is still not clear. In this review, we will summarize the current knowledge on this topic derived from both animal and human studies and discuss data for possible clinical impact.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Valentina Kaden-Volynets
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany; Acousia Therapeutics GmbH & Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Louisa Filipe Rosa
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Daria Guseva
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Benjamin Seethaler
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
31
|
Dalziel JE, Spencer NJ, Young W. Microbial signalling in colonic motility. Int J Biochem Cell Biol 2021; 134:105963. [PMID: 33636395 DOI: 10.1016/j.biocel.2021.105963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Sensory nerve endings within the wall of the gastrointestinal (GI) tract may respond to bacterial signalling, providing the basis for key biological processes that underlie intestinal motility and microbial homeostasis. Enteric neurons and smooth muscle cells are well known to express an array of receptors, including G-protein coupled receptors and ligand-gated ion channels, that can sense chemical ligands and other bacterially-derived substances. These include short chain fatty acids, secondary bile acids and lipopolysaccharide. For neural detection of microbial activators to occur, luminal substances must first interact with enterocytes for direct signalling or cross paracellularly. Recent studies indicate that bacterial-derived microvesicles can cross the gut epithelial barrier and affect motility. This suggests a possible intercellular communication pathway between the GI tract and the ENS. We explore the idea that bacterial microvesicles can behave as a delivery package for communication between microbe and host.
Collapse
Affiliation(s)
- Julie E Dalziel
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.
| | - Nick J Spencer
- Discipline of Physiology, College of Medicine and Public Health, Flinders University, School of Medicine, Adelaide, SA, Australia
| | - Wayne Young
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
32
|
Li X, Zhang ZH, Zabed HM, Yun J, Zhang G, Qi X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol Nutr Food Res 2021; 65:e2000461. [PMID: 33216452 DOI: 10.1002/mnfr.202000461] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/14/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is complex, chronic, and relapsing gastrointestinal inflammatory disorders, which includes mainly two conditions, namely ulcerative colitis (UC) and Crohn's disease (CD). Development of IBD in any individual is closely related to his/her autoimmune regulation, gene-microbiota interactions, and dietary factors. Dietary tryptophan (Trp) is an essential amino acid for intestinal mucosal cells, and it is associated with the intestinal inflammation, epithelial barrier, and energy homeostasis of the host. According to recent studies, Trp and its three major metabolic pathways, namely kynurenine (KYN) pathway, indole pathway, and 5-hydroxytryptamine (5-HT) pathway, have vital roles in the regulation of intestinal inflammation by acting directly or indirectly on the pro/anti-inflammatory cytokines, functions of various immune cells, as well as the intestinal microbial composition and homeostasis. In this review, recent advances in Trp- and its metabolites-associated intestinal inflammation are summarized. It further discusses the complex mechanisms and interrelationships of the three major metabolic pathways of Trp in regulating inflammation, which could elucidate the value of dietary Trp to be used as a nutrient for IBD patients.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
33
|
Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, Ro S. Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. J Neurogastroenterol Motil 2021; 27:19-34. [PMID: 33166939 PMCID: PMC7786094 DOI: 10.5056/jnm20149] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Of all microorganisms in the human body, the largest and most complex population resides in the gastrointestinal (GI) tract. The gut microbiota continuously adapts to the host environment and serves multiple critical functions for their hosts, including regulating host immunity, procuring energy from food, and preventing the colonization of pathogens. Mounting evidence has suggested gut microbial imbalance (dysbiosis) as a core pathophysiology in the development of GI motility and metabolic disorders, such as irritable bowel syndrome and diabetes. Current research has focused on discovering associations between these disorders and gut microbial dysbiosis; however, whether these associations are a consequence or cause is still mostly unexplored. State-of-the-art studies have investigated how gut microbes communicate with our body systems through microbiota-derived metabolites and how they are able to modulate host physiology. There is now mounting evidence that alterations in the composition of small intestinal microbes have an association with GI dysmotility and metabolic disorders. Although treatment options for gut microbial dysbiosis are currently limited, antibiotics, fecal microbiota transplantation, probiotics, and dietary interventions are currently the best options. However, treatment with broad-spectrum antibiotics has been viewed with skepticism due to the risk of developing antibiotic resistant bacteria. Studies are warranted to elucidate the cellular and molecular pathways underlying gut microbiota-host crosstalk and for the development of a powerful platform for future therapeutic approaches. Here, we review recent literature on gut microbial alterations and/or interactions involved in the pathophysiology of GI dysmotility and metabolic disorders.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Hannah Zogg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Singh Rajender
- Department of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
34
|
Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels. PLoS Biol 2021; 19:e3001070. [PMID: 33481771 PMCID: PMC7857600 DOI: 10.1371/journal.pbio.3001070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial conversion of dietary or drug substrates into small bioactive molecules represents a regulatory mechanism by which the gut microbiota alters intestinal physiology. Here, we show that a wide variety of gut bacteria can metabolize the dietary supplement and antidepressant 5-hydroxytryptophan (5-HTP) to 5-hydroxyindole (5-HI) via the tryptophanase (TnaA) enzyme. Oral administration of 5-HTP results in detection of 5-HI in fecal samples of healthy volunteers with interindividual variation. The production of 5-HI is inhibited upon pH reduction in in vitro studies. When administered orally in rats, 5-HI significantly accelerates the total gut transit time (TGTT). Deciphering the underlying mechanisms of action reveals that 5-HI accelerates gut contractility via activation of L-type calcium channels located on the colonic smooth muscle cells. Moreover, 5-HI stimulation of a cell line model of intestinal enterochromaffin cells results in significant increase in serotonin production. Together, our findings support a role for bacterial metabolism in altering gut motility and lay the foundation for microbiota-targeted interventions.
Collapse
|
35
|
Pang Q, Jin H, Wang Y, Dai M, Liu S, Tan Y, Liu H, Lu Z. Depletion of serotonin relieves concanavalin A-induced liver fibrosis in mice by inhibiting inflammation, oxidative stress, and TGF-β1/Smads signaling pathway. Toxicol Lett 2021; 340:123-132. [PMID: 33429011 DOI: 10.1016/j.toxlet.2021.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Serotonin exerts important functions in several liver pathophysiological processes. In this study, we investigated the role of serotonin in concanavalin A (Con A)-induced liver fibrosis (LF) in mice and the underlying mechanisms. To establish the mouse model of LF, mice of wild-type (WT) and tryptophan hydroxylase 1 (Tph1) knockout (serotonin depletion) received Con A for 8 successive weeks. Degree of fibrosis was assessed by Sirius red staining, as well as the measurements of alpha smooth muscle actin (α- SMA), hydroxyproline (Hyp) and type I collagen in liver tissues. To elucidate the potential mechanisms, we assessed the effect of serotonin depletion on inflammatory, oxidative stress as well as TGF-β1/Smads signaling pathway. We found that serotonin depletion significantly inhibited collagen deposition as evaluated by less collagenous fiber in Sirus Red staining and reduced contents of Hyp and type I collagen. In addition, the absence of serotonin significantly inhibited the release of several inflammatory cytokines, including interleukin-6 (IL-6), interferon-gamma (IFN-γ), tumor necrosis-alpha (TNF-α), and transforming growth factor β1 (TGF-β1). Oxidative stress was also largely mitigated in LF mice with serotonin deficiency as manifested by the decreases of oxidative stress markers (malonaldehyde (MDA) and myeloperoxidase (MPO)), as well as the increases of antioxidant stress indicators (glutathione (GSH), and GSH-px, catalase (CAT), superoxide dismutase (SOD)) in liver tissues. Moreover, the lack of serotonin may provide an antifibrotic role by inhibiting the intrahepatic expressions of TGF-β1, phosphorylated-smad2 (p-smad2), and phosphorylated-smad3 (p-smad3). These results indicated that, serotonin depletion attenuates Con A-induced LF through the regulation of inflammatory response, oxidative stress injury, and TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- Qing Pang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi Province, China
| | - Hao Jin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Yong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Mengnan Dai
- Clinical Medical College of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Shuangchi Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| | - Huichun Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| | - Zheng Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| |
Collapse
|
36
|
Parsons SP, Huizinga JD. Nitric Oxide Is Essential for Generating the Minute Rhythm Contraction Pattern in the Small Intestine, Likely via ICC-DMP. Front Neurosci 2021; 14:592664. [PMID: 33488345 PMCID: PMC7817771 DOI: 10.3389/fnins.2020.592664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nitrergic nerves have been proposed to play a critical role in the orchestration of peristaltic activities throughout the gastrointestinal tract. In the present study, we investigated the role of nitric oxide, using spatiotemporal mapping, in peristaltic activity of the whole ex vivo mouse intestine. We identified a propulsive motor pattern in the form of propagating myogenic contractions, that are clustered by the enteric nervous system into a minute rhythm that is dependent on nitric oxide. The cluster formation was abolished by TTX, lidocaine and nitric oxide synthesis inhibition, whereas the myogenic contractions, occurring at the ICC-MP initiated slow wave frequency, remained undisturbed. Cluster formation, inhibited by block of nitric oxide synthesis, was fully restored in a highly regular rhythmic fashion by a constant level of nitric oxide generated by sodium nitroprusside; but the action of sodium nitroprusside was inhibited by lidocaine indicating that it was relying on neural activity, but not rhythmic nitrergic nerve activity. Hence, distention-induced activity of cholinergic nerves and/or a co-factor within nitrergic nerves such as ATP is also a requirement for the minute rhythm. Cluster formation was dependent on distention but was not evoked by a distention reflex. Block of gap junction conductance by carbenoxolone, dose dependently inhibited, and eventually abolished clusters and contraction waves, likely associated, not with inhibition of nitrergic innervation, but by abolishing ICC network synchronization. An intriguing feature of the clusters was the presence of bands of rhythmic inhibitions at 4-8 cycles/min; these inhibitory patches occurred in the presence of tetrodotoxin or lidocaine and hence were not dependent on nitrergic nerves. We propose that the minute rhythm is generated by nitric oxide-induced rhythmic depolarization of the musculature via ICC-DMP.
Collapse
Affiliation(s)
- Sean P. Parsons
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D. Huizinga
- Department of Medicine and School of Biomedical Engineering, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Spencer NJ, Costa M, Hibberd TJ, Wood JD. Advances in colonic motor complexes in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G12-G29. [PMID: 33085903 DOI: 10.1152/ajpgi.00317.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary functions of the gastrointestinal (GI) tract are to absorb nutrients, water, and electrolytes that are essential for life. This is accompanied by the capability of the GI tract to mix ingested content to maximize absorption and effectively excrete waste material. There have been major advances in understanding intrinsic neural mechanisms involved in GI motility. This review highlights major advances over the past few decades in our understanding of colonic motor complexes (CMCs), the major intrinsic neural patterns that control GI motility. CMCs are generated by rhythmic coordinated firing of large populations of myenteric neurons. Initially, it was thought that serotonin release from the mucosa was required for CMC generation. However, careful experiments have now shown that neither the mucosa nor endogenous serotonin are required, although, evidence suggests enteroendocrine (EC) cells modulate CMCs. The frequency and extent of propagation of CMCs are highly dependent on mechanical stimuli (circumferential stretch). In summary, the isolated mouse colon emerges as a good model to investigate intrinsic mechanisms underlying colonic motility and provides an excellent preparation to explore potential therapeutic agents on colonic motility, in a highly controlled in vitro environment. In addition, during CMCs, the mouse colon facilitates investigations into the emergence of dynamic assemblies of extensive neural networks, applicable to the nervous system of different organisms.
Collapse
Affiliation(s)
- N J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - M Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - T J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - J D Wood
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
38
|
Receptors for pro-resolving mediators as a therapeutic tool for smooth muscle remodeling-associated disorders. Pharmacol Res 2020; 164:105340. [PMID: 33276103 DOI: 10.1016/j.phrs.2020.105340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Respiratory airway, blood vessel and intestinal wall remodeling, in which smooth muscle remodeling plays a major role, is a key pathological event underlying the development of several associated diseases, including asthma, cardiovascular disorders (e.g., atherosclerosis, hypertension, and aneurism formation), and inflammatory bowel disease. However, the mechanisms underlying these remodeling processes remain poorly understood. We hypothesize that the creation of chronic inflammation-mediated networks that support and exacerbate the airway, as well as vascular and intestinal wall remodeling, is a crucial pathogenic mechanism governing the development of the associated diseases. The failed inflammation resolution might be one of the causal pathogenic mechanisms. Hence, it is reasonable to assume that applying specialized, pro-resolving mediators (SPMs), acting via cognate G-protein coupled receptors (GPCRs), could potentially be an effective pathway for treating these disorders. However, several obstacles, such as poor understanding of the SPM/receptor signaling pathways, SMP rapid inactivation as well as their complex and costly synthesis, limit their translational potential. In this connection, stable, small-molecule SPM mimetics and receptor agonists have emerged as new, potentially suitable drugs. It has been recently shown in preclinical studies that they can effectively attenuate the manifestations of asthma, atherosclerosis and Crohn's disease. Remarkably, some biased SPM receptor agonists, which cause a signaling response in the desired inflammation pro-resolving direction, revealed similar beneficial effects. These encouraging observations suggest that SPM mimetics and receptor agonists can be applied as a novel approach for the treatment of various chronic inflammation conditions, including airway, vascular and intestinal wall remodeling-associated disorders.
Collapse
|
39
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
40
|
The ever-changing roles of serotonin. Int J Biochem Cell Biol 2020; 125:105776. [PMID: 32479926 DOI: 10.1016/j.biocel.2020.105776] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Serotonin (5-HT) has traditional roles as a key neurotransmitter in the central nervous system and as a regulatory hormone controlling a broad range of physiological functions. Perhaps the most classically-defined functions of 5-HT are centrally in the control of mood, sleep and anxiety and peripherally in the modulation of gastrointestinal motility. A more recently appreciated role for 5-HT has emerged, however, as an important metabolic hormone contributing to glucose homeostasis and adiposity, with a causal relationship existing between circulating 5-HT levels and metabolic diseases. Almost all peripheral 5-HT is derived from specialised enteroendocrine cells, called enterochromaffin (EC) cells, located throughout the length of the lining of the gastrointestinal tract. EC cells are important luminal sensory cells that can detect and respond to an array of ingested nutrients, as well as luminal gut microbiota and their associated metabolites. Intriguingly, the interaction between gut microbiota and EC cells is dynamic in nature and has strong implications for host physiology. In this review, we discuss the traditional and modern functions of 5-HT and highlight an emerging pathway by which gut microbiota influences host health. Serotonin, also known as 5-hydroxytryptamine (5-HT), is an important neurotransmitter, growth factor and hormone that mediates a range of physiological functions. In mammals, serotonin is synthesized from the essential amino acid tryptophan by the rate-limiting enzyme tryptophan hydroxylase (TPH), for which there are two isoforms expressed in distinct cell types throughout the body. Tph1 is mainly expressed by specialized gut endocrine cells known as enterochromaffin (EC) cells and by other non-neuronal cell types such as adipocytes (Walther et al., 2003). Tph2 is primarily expressed in neurons of the raphe nuclei of the brain stem and a subset of neurons in the enteric nervous system (ENS) (Yabut et al., 2019). As 5-HT cannot readily cross the blood-brain barrier, the central and peripheral pools of 5-HT are anatomically separated and as such, act in their own distinct manners (Martin et al., 2017c). In this review we discuss the peripheral roles of serotonin, with particular focus on the interaction of gut-derived serotonin with the gut microbiota, and address emerging evidence linking this relationship with host homeostasis.
Collapse
|
41
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
42
|
Walsh J, Olavarria-Ramirez L, Lach G, Boehme M, Dinan TG, Cryan JF, Griffin BT, Hyland NP, Clarke G. Impact of host and environmental factors on β-glucuronidase enzymatic activity: implications for gastrointestinal serotonin. Am J Physiol Gastrointest Liver Physiol 2020; 318:G816-G826. [PMID: 32146834 DOI: 10.1152/ajpgi.00026.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract houses a reservoir of bacterial-derived enzymes that can directly catalyze the metabolism of drugs, dietary elements and endogenous molecules. Both host and environmental factors may influence this enzymatic activity, with the potential to dictate the availability of the biologically-active form of endogenous molecules in the gut and influence inter-individual variation in drug metabolism. We aimed to investigate the influence of the microbiota, and the modulation of its composition, on fecal enzymatic activity. Intrinsic factors related to the host, including age, sex and genetic background, were also explored. Fecalase, a cell-free extract of feces, was prepared and used in a colorimetric-based assay to quantify enzymatic activity. To demonstrate the functional effects of fecal enzymatic activity, we examined β-glucuronidase-mediated cleavage of serotonin β-d-glucuronide (5-HT-GLU) and the resultant production of free 5-HT by HPLC. As expected, β-glucuronidase and β-glucosidase activity were absent in germ-free mice. Enzymatic activity was significantly influenced by mouse strain and animal species. Sex and age significantly altered metabolic activity with implications for free 5-HT. β-Glucuronidase and β-glucosidase activity remained at reduced levels for nearly two weeks after cessation of antibiotic administration. This effect on fecalase corresponded to significantly lower 5-HT levels as compared with incubation with pre-antibiotic fecalase from the same mice. Dietary targeting of the microbiota using prebiotics did not alter β-glucuronidase or β-glucosidase activity. Our data demonstrate that multiple factors influence the activity of bacterial-derived enzymes which may have potential clinical implications for drug metabolism and the deconjugation of host-produced glucuronides in the gut.NEW & NOTEWORTHY This article explores a comprehensive range of host and environmental factors that introduce variability in the expression of bacterial-derived metabolic enzymes. Our results demonstrate that altered β-glucuronidase activity has implications for the bioavailability of luminal serotonin. The experimental approach employed, fecalase, provides a mechanistic basis and translational platform to further delineate the functional outputs of altered metabolic activity, and the associated physiological effects of microbiota-targeted interventions on host response to drugs and host-produced glucuronides.
Collapse
Affiliation(s)
- Jacinta Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Loreto Olavarria-Ramirez
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Gilliard Lach
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
43
|
The Role of Serotonin in Concanavalin A-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [PMID: 31998441 DOI: 10.1155/2020/7504521.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serotonin is involved in the pathological processes of several liver diseases via the regulation of inflammatory response and oxidative stress. We aimed to investigate the role of serotonin in Concanavalin A- (Con A-) induced acute liver injury (ALI). ALI was induced in C57B/6 wild-type (WT) mice and tryptophan hydroxylase 1 (TPH1) knockout mice through tail vein injection of Con A (15 mg/kg body weight). Another group of TPH1 knockout ALI mice was supplied with 5-hydroxytryptophan (5-HTP) in advance to recover serotonin. The blood and liver tissues of mice were collected in all groups. Markedly increased serum levels of serotonin were identified after the injection of Con A. Increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and stronger hepatic tissue pathology were detected, suggesting that serotonin could mediate Con A-induced liver damage. Serotonin significantly facilitated the release of serum and intrahepatic inflammatory cytokines, including interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17A (IL-17A), interferon-gamma (IFN-γ), and tumor necrosis-alpha (TNF-α), after the administration of Con A. In addition, serotonin significantly increased the intrahepatic levels of oxidative stress markers malonaldehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) and decreased antioxidant stress indicator glutathione (GSH) in Con A-treated mice. Additionally, serotonin promoted hepatocyte apoptosis and autophagy based on B-cell lymphoma-2 (Bcl-2), Bcl-2-asociated X protein (Bax), and Beclin-1 levels and TUNEL staining. More importantly, serotonin activated nuclear factor kappa B (NF-κB) and upregulated the hepatic expressions of high mobility group protein B1 (HMGB1), toll-like receptor-4 (TLR4), and downstream molecules in Con A-mediated liver injury. Serotonin 2A receptor was upregulated in liver tissue after Con A injection, and serotonin 2A receptor antagonist Ketanserin protected against Con A-induced hepatitis. These results indicated that serotonin has the potential to aggravate Con A-induced ALI via the promotion of inflammatory response, oxidative stress injury, and hepatocyte apoptosis and the activation of hepatic HMGB1-TLR signaling pathway and serotonin 2A receptor.
Collapse
|
44
|
Liu YL, Chen Y, Fan WT, Cao P, Yan J, Zhao XZ, Dong WG, Huang WH. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020; 59:4075-4081. [PMID: 31829491 DOI: 10.1002/anie.201913953] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/04/2019] [Indexed: 12/17/2022]
Abstract
The role of endogenous serotonin (5-HT) in gastrointestinal motility is still highly controversial. Although electrochemical techniques allow for direct and real-time recording of biomolecules, the dynamic monitoring of 5-HT release from elastic and tubular intestine during motor reflexes remains a great challenge because of the specific peristalsis patterns and inevitable passivation of the sensing interface. A stretchable sensor with antifouling and decontamination properties was assembled from gold nanotubes, titanium dioxide nanoparticles, and carbon nanotubes. The sandwich-like structure endowed the sensor with satisfying mechanical stability and electrochemical performance, high resistance against physical adsorption, and superior efficiency in the photodegradation of biofouling molecules. Insertion of the sensor into the lumen of rat ileum (the last section of the small intestine) successfully mimics intestinal peristalsis, and simultaneous real-time monitoring of distension-evoked 5-HT release was possible for the first time. Our results unambiguously reveal that mechanical distension of the intestine induces endogenous 5-HT overflow, and 5-HT level is closely associated with the physiological or pathological states of the intestine.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Chen
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Pan Cao
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wei-Guo Dong
- Key Laboratory of Hubei Province for Digestive System Disease, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
45
|
Liu Y, Chen Y, Fan W, Cao P, Yan J, Zhao X, Dong W, Huang W. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yan‐Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan Chen
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Wen‐Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Pan Cao
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Jing Yan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xing‐Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Wei‐Guo Dong
- Key Laboratory of Hubei Province for Digestive System Disease Department of Gastroenterology Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Wei‐Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
46
|
The Role of Serotonin in Concanavalin A-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7504521. [PMID: 31998441 PMCID: PMC6969644 DOI: 10.1155/2020/7504521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Serotonin is involved in the pathological processes of several liver diseases via the regulation of inflammatory response and oxidative stress. We aimed to investigate the role of serotonin in Concanavalin A- (Con A-) induced acute liver injury (ALI). ALI was induced in C57B/6 wild-type (WT) mice and tryptophan hydroxylase 1 (TPH1) knockout mice through tail vein injection of Con A (15 mg/kg body weight). Another group of TPH1 knockout ALI mice was supplied with 5-hydroxytryptophan (5-HTP) in advance to recover serotonin. The blood and liver tissues of mice were collected in all groups. Markedly increased serum levels of serotonin were identified after the injection of Con A. Increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and stronger hepatic tissue pathology were detected, suggesting that serotonin could mediate Con A-induced liver damage. Serotonin significantly facilitated the release of serum and intrahepatic inflammatory cytokines, including interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17A (IL-17A), interferon-gamma (IFN-γ), and tumor necrosis-alpha (TNF-α), after the administration of Con A. In addition, serotonin significantly increased the intrahepatic levels of oxidative stress markers malonaldehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) and decreased antioxidant stress indicator glutathione (GSH) in Con A-treated mice. Additionally, serotonin promoted hepatocyte apoptosis and autophagy based on B-cell lymphoma-2 (Bcl-2), Bcl-2-asociated X protein (Bax), and Beclin-1 levels and TUNEL staining. More importantly, serotonin activated nuclear factor kappa B (NF-κB) and upregulated the hepatic expressions of high mobility group protein B1 (HMGB1), toll-like receptor-4 (TLR4), and downstream molecules in Con A-mediated liver injury. Serotonin 2A receptor was upregulated in liver tissue after Con A injection, and serotonin 2A receptor antagonist Ketanserin protected against Con A-induced hepatitis. These results indicated that serotonin has the potential to aggravate Con A-induced ALI via the promotion of inflammatory response, oxidative stress injury, and hepatocyte apoptosis and the activation of hepatic HMGB1-TLR signaling pathway and serotonin 2A receptor.
Collapse
|
47
|
Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden Berghe P. Development of the intrinsic innervation of the small bowel mucosa and villi. Am J Physiol Gastrointest Liver Physiol 2020; 318:G53-G65. [PMID: 31682159 DOI: 10.1152/ajpgi.00264.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Anatomy and Neuroscience, the University of Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Pathology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Katrien Lowette
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Jan Tack
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| |
Collapse
|
48
|
Nolden A, Joseph PV, Kober KM, Cooper BA, Paul SM, Hammer MJ, Dunn LB, Conley YP, Levine JD, Miaskowski C. Co-occurring Gastrointestinal Symptoms Are Associated With Taste Changes in Oncology Patients Receiving Chemotherapy. J Pain Symptom Manage 2019; 58:756-765. [PMID: 31349034 PMCID: PMC6823134 DOI: 10.1016/j.jpainsymman.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
CONTEXT Over 80% of patients with cancer report taste changes. Despite the high prevalence of this symptom and its negative effects on health, few studies have assessed its association with other gastrointestinal (GI) symptoms. OBJECTIVES Determine the occurrence, frequency, severity, and distress of patient-reported "change in the way food tastes" (CFT) and identify phenotypic and GI symptoms characteristics associated with its occurrence. METHODS Patients receiving chemotherapy for breast, GI, gynecological, or lung cancer completed demographic and symptom questionnaires prior to their second or third cycle of chemotherapy. CFT was assessed using the Memorial Symptom Assessment Scale. Differences in demographic, clinical, and GI symptom characteristics were evaluated using parametric and nonparametric tests. RESULTS Of the 1329 patients, 49.4% reported experiencing CFT in the week prior to their second or third cycle of chemotherapy. In the univariate analysis, patients who reported CFT had fewer years of education; were more likely to be black or Hispanic, mixed race, or other; and had a lower annual household income. A higher percentage of patients with CFT reported the occurrence of 13 GI symptoms (e.g., constipation, diarrhea, abdominal cramps, feeling bloated). In a multivariable logistic regression analysis, compared with patients with breast cancer, patients with lung cancer (odds ratio = 0.55; P = 0.004) had a decrease in the odds of being in the CFT group. Patients who received a neurokinin-1 receptor antagonist and two other antiemetics were at an increased odds of being in the CFT group (odds ratio = 2.51; P = 0.001). Eight of the 13 GI symptoms evaluated were associated with an increased odds of being in the CFT group. CONCLUSIONS This study provides new evidence on the frequency, severity, and distress of CFT in oncology patients undergoing chemotherapy. These findings suggest that CFT is an important problem that warrants ongoing assessments and nutritional interventions.
Collapse
Affiliation(s)
- Alissa Nolden
- Food Science Department, College of Natural Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Paule V Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Bruce A Cooper
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Steven M Paul
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA
| | - Marilyn J Hammer
- Department of Nursing, Mount Sinai Medical Center, New York, New York, USA
| | - Laura B Dunn
- School of Medicine, Stanford University, Stanford, California, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, California, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
49
|
Billing LJ, Larraufie P, Lewis J, Leiter A, Li J, Lam B, Yeo GS, Goldspink DA, Kay RG, Gribble FM, Reimann F. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice - Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol Metab 2019; 29:158-169. [PMID: 31668387 PMCID: PMC6812004 DOI: 10.1016/j.molmet.2019.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Enteroendocrine cells (EECs) of the large intestine, found scattered in the epithelial layer, are known to express different hormones, with at least partial co-expression of different hormones in the same cell. Here we aimed to categorize colonic EECs and to identify possible targets for selective recruitment of hormones. Methods Single cell RNA-sequencing of sorted enteroendocrine cells, using NeuroD1-Cre x Rosa26-EYFP mice, was used to cluster EECs from the colon and rectum according to their transcriptome. G-protein coupled receptors differentially expressed across clusters were identified, and, as a proof of principle, agonists of Agtr1a and Avpr1b were tested as candidate EEC secretagogues in vitro and in vivo. Results EECs from the large intestine separated into 7 clear clusters, 4 expressing higher levels of Tph1 (enzyme required for serotonin (5-HT) synthesis; enterochromaffin cells), 2 enriched for Gcg (encoding glucagon-like peptide-1, GLP-1, L-cells), and the 7th expressing somatostatin (D-cells). Restricted analysis of L-cells identified 4 L-cell sub-clusters, exhibiting differential expression of Gcg, Pyy (Peptide YY), Nts (neurotensin), Insl5 (insulin-like peptide 5), Cck (cholecystokinin), and Sct (secretin). Expression profiles of L- and enterochromaffin cells revealed the clustering to represent gradients along the crypt-surface (cell maturation) and proximal-distal gut axes. Distal colonic/rectal L-cells differentially expressed Agtr1a and the ligand angiotensin II was shown to selectively increase GLP-1 and PYY release in vitro and GLP-1 in vivo. Conclusion EECs in the large intestine exhibit differential expression gradients along the crypt-surface and proximal-distal axes. Distal L-cells can be differentially stimulated by targeting receptors such as Agtr1a. Large intestinal enteroendocrine cells group into subclusters by single cell RNAseq. Enteroendocrine-cell subclusters differ along crypt-surface and longitudinal axes. L-cells differ longitudinally by production of NTS (proximal colon) or INSL5 (rectum). INSL5-positive cells express distinct GPCRs enabling cluster-specific stimulation. Targeted stimulation of INSL5-producing L-cells elevates plasma GLP-1 and PYY in vivo.
Collapse
Affiliation(s)
- Lawrence J Billing
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Pierre Larraufie
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Jo Lewis
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Brian Lam
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Giles Sh Yeo
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Deborah A Goldspink
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Richard G Kay
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M Gribble
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| | - Frank Reimann
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
50
|
Martin AM, Sun EW, Rogers GB, Keating DJ. The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front Physiol 2019; 10:428. [PMID: 31057420 PMCID: PMC6477058 DOI: 10.3389/fphys.2019.00428] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The microbial community of the gut conveys significant benefits to host physiology. A clear relationship has now been established between gut bacteria and host metabolism in which microbial-mediated gut hormone release plays an important role. Within the gut lumen, bacteria produce a number of metabolites and contain structural components that act as signaling molecules to a number of cell types within the mucosa. Enteroendocrine cells within the mucosal lining of the gut synthesize and secrete a number of hormones including CCK, PYY, GLP-1, GIP, and 5-HT, which have regulatory roles in key metabolic processes such as insulin sensitivity, glucose tolerance, fat storage, and appetite. Release of these hormones can be influenced by the presence of bacteria and their metabolites within the gut and as such, microbial-mediated gut hormone release is an important component of microbial regulation of host metabolism. Dietary or pharmacological interventions which alter the gut microbiome therefore pose as potential therapeutics for the treatment of human metabolic disorders. This review aims to describe the complex interaction between intestinal microbiota and their metabolites and gut enteroendocrine cells, and highlight how the gut microbiome can influence host metabolism through the regulation of gut hormone release.
Collapse
Affiliation(s)
- Alyce M Martin
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Emily W Sun
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Geraint B Rogers
- Microbiome Research Laboratory, Flinders University, Adelaide, SA, Australia.,Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|