1
|
Tang J, Gao Y, Fu Y, Han Z, Xu P, Li X, Wang S, Wang X. Astragaloside IV mitigates influenza-induced inflammatory responses by suppressing the Wnt/β-catenin signalling pathway in alveolar macrophages. Vet Res 2025; 56:95. [PMID: 40307893 PMCID: PMC12042467 DOI: 10.1186/s13567-025-01529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Respiratory viruses, including the influenza virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose significant health threats. As tissue-resident macrophages, alveolar macrophages (AM) are crucial for defending against respiratory viral infection by producing cytokines, engulfing virus-infected cells, and promoting wound healing. However, excessive inflammatory responses can lead to tissue injury. Growing evidence indicates that astragaloside IV (AST IV) regulates innate immune responses. Specifically, AST IV balances the inflammatory response to mitigate tissue damage and promote tissue repair. However, whether AST IV directly targets AM to alleviate lung damage induced by respiratory viral infection remains unclear. Our results demonstrate that AST IV treatment significantly reduces morbidity and mortality in mice during IAV infection. AST IV markedly decreases proinflammatory cytokine levels, mitigates lung injury and promotes lung recovery through enhancing the repair capacity mediated by alveolar type II cells. Mechanistically, AST IV suppresses the Wnt/β-catenin signalling pathway, which is critical for driving inflammatory responses in AM while maintaining mitochondrial fitness. Thus, our findings suggest that AST IV effectively targets AM to alleviate inflammation and lung damage caused by respiratory viral infections, highlighting its potential as a therapeutic agent for managing viral pneumonia.
Collapse
Affiliation(s)
- Jianli Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China.
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA.
| | - Yu Gao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, China
| | - Yuchen Fu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China
| | - Zhaoqing Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China
| | - Ping Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China
| | - Xin Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China
| | - Shuaiyong Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China.
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China.
| |
Collapse
|
2
|
Gao G, Zhang X, Wang Z, Xu J, Wang J, Liu T, Xie Z. Multiscale insights into cornuside's effects on NAFLD: A cross-disciplinary integrating bioinformatics, computational chemistry, and machine learning. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156809. [PMID: 40344848 DOI: 10.1016/j.phymed.2025.156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a complex metabolic disorder involving intertwined signaling pathways, posing challenges for targeted therapeutic interventions. Cornus Fructus (CF), a traditional medicinal herb, holds potential for NAFLD treatment, with cornuside (COR) identified as its primary active component. METHODS This study employed a cross-disciplinary approach, integrating bioinformatics, computational chemistry, and machine learning to uncover COR's therapeutic mechanisms with precision and depth. RESULTS Using bioinformatics-driven analysis, 27 core targets were identified, revealing that COR modulated critical metabolic and inflammatory pathways. COR mitigated insulin resistance by regulating the AKT/GSK3β axis, enhanced cholesterol metabolism through LXR signaling, promoted fatty acid oxidation via PPARα activation, and suppressed inflammation by inhibiting NF-κB signaling. These results highlighted COR's ability to orchestrate multi-pathway regulation essential for restoring metabolic homeostasis in NAFLD. Molecular docking and molecular dynamics (MD) simulations provided atomistic insights, demonstrating COR's stable and high-affinity interactions with key targets. Additionally, machine learning algorithms enhanced target identification and pathway prediction, improving the precision and efficiency of the discovery process. CONCLUSION This study offered multi-scale mechanistic insights into COR's therapeutic effects on NAFLD, bridging experimental pharmacology and computational methods. The integration of bioinformatics, molecular simulation, and machine learning established a comprehensive framework for drug discovery, positioning COR as a promising candidate for NAFLD therapy and guiding future development of precision interventions.
Collapse
Affiliation(s)
- Gai Gao
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenzhen Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Zhang S, Li S, Cui L, Xie S, Wang Y. Astragaloside IV Attenuates Angiotensin II-Induced Inflammatory Responses in Endothelial Cells: Involvement of Mitochondria. J Inflamm Res 2025; 18:3951-3967. [PMID: 40125084 PMCID: PMC11927501 DOI: 10.2147/jir.s504427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Background Angiotensin II (Ang II)-triggered endothelial inflammation is a critical mechanism contributing to Ang II-related cardiovascular diseases. The inflammation is highly correlated with mitochondrial function. Although astragaloside IV (AS-IV), a primary bioactive ingredient extracted from the traditional Chinese medicine Astragalus membranaceus Bunge that can effectively treat numerous cardiovascular diseases, posses the actions of antiinflammation and antioxidation in vivo, limited data are made available on the impacts of AS-IV on mitochondrial function in endothelial inflammation triggered by Ang II. This study was performed to evaluate the in vitro actions of AS-IV on Ang II-triggered inflammatory responses in endothelial cells, and to further clarify the potential role of mitochondria in the actions. Methods Human umbilical vein endothelial cells (HUVECs) were preincubated with AS-IV and then exposed to Ang II for 12 h. Results The exposure of HUVECs to Ang II triggered cytokine and chemokine production, the upregulation of adhesive molecules, monocyte attachment, and nuclear factor-kappa B activation. Additionally, our results showed that the inflammatory responses triggered by Ang II were associated with the impairment of mitochondrial function, as evidenced by the reductions of mitochondrial membrane potential, ATP synthesis, and mitochondrial complexes I and III activities. Moreover, the concentrations of malondialdehyde, cellular reactive oxygen species, and mitochondrial superoxide enhanced after HUVECs challenged with Ang II, which were concurrent with the decreases in total superoxide dismutase (SOD) and its isoenzyme activities such as Mn-SOD. These Ang II-induced alterations were reversed by preincubation with AS-IV. Conclusion Our data indicate that AS-IV attenuates Ang II-triggered endothelial inflammation possibly via ameliorating mitochondrial function.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Shiyang Xie
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| |
Collapse
|
4
|
Xu W, Li X, Zhang Q, Jiang P, Zhang Y, Luo Y, Guan W, Li M, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. New triterpenoid saponins isolated from the leaves of Astragalus membranaceus (Fisch.) Bge. and their neuroprotective effects. Bioorg Chem 2025; 156:108149. [PMID: 39826500 DOI: 10.1016/j.bioorg.2025.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Fifteen new triterpenoid saponins designated as huangqiyesaponin A-O (1-15), in addition to eleven previously identified compounds (16-26), were extracted from the leaves of Astragalus membranaceus (Fisch.) Bge. utilizing a 70% ethanol solution. The structural characterization of the isolated compounds was achieved through the application of 1D and 2D NMR spectroscopy, in combination with single crystal X-ray diffraction analysis. Additionally, d-galactose-stimulated HT22 mouse hippocampal neuronal cells were utilized to assess the potential neuroprotective effects of all isolated compounds. The findings indicated that compounds 5, 11, and 13-15 exhibited significant neuroprotective effects. To elucidate the signaling pathway associated with the neuroprotective effects of compounds 13 and 15, the protein expression levels of PINK1, parkin, P62, and LC3-II were evaluated through WB analysis. The results of the study indicated that the compounds 13 and 15 enhanced the proportion of LC3-II to LC3-I as well as the protein expressions of PINK1 and parkin while concurrently reducing the expression of P62 protein, suggesting that these compounds exert neuroprotective effects by promoting mitochondrial autophagy.
Collapse
Affiliation(s)
- Wenxiang Xu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Xinyuan Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Qian Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Yiqiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Yumeng Luo
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Qingshan Chen
- Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China; College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China; College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin 150040, China.
| |
Collapse
|
5
|
Teh YM, Mualif SA, Mohd Noh NI, Lim SK. The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence. Int J Mol Sci 2024; 26:3. [PMID: 39795863 PMCID: PMC11719669 DOI: 10.3390/ijms26010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by irreversible progressive worsening of kidney function leading to kidney failure. CKD is viewed as a clinical model of premature aging and to date, there is no treatment to reverse kidney damage. The well-established treatment for CKD aims to control factors that may aggravate kidney progression and to provide kidney protection effects to delay the progression of kidney disease. As an alternative, Traditional Chinese Medicine (TCM) has been shown to have fewer adverse effects for CKD patients. However, there is a lack of clinical and molecular studies investigating the mechanisms by which natural products used in TCM can improve CKD. In recent years, autophagy and cellular senescence have been identified as key contributors to aging and age-related diseases. Exploring the potential of natural products in TCM to target these processes in CKD patients could slow disease progression. A better understanding of the characteristics of these natural products and their effects on autophagy and cellular senescence through clinical studies, coupled with the use of these products as complementary therapy alongside mainstream treatment, may maximize therapeutic benefits and minimize adverse effects for CKD patients. While promising, there is currently a lack of thorough research on the potential synergistic effects of these natural products. This review examines the use of natural products in TCM as an alternative treatment for CKD and discusses their active ingredients in terms of renoprotection, autophagy, and cellular senescence.
Collapse
Affiliation(s)
- Yoong Mond Teh
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Siti Aisyah Mualif
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaysia (UM), Kuala Lumpur 59100, Malaysia
| |
Collapse
|
6
|
Lu KC, Wu SC, Lu TC, Tzeng IS, Kuo CE, Hung YC, Wu SY, Chen TC, Tsai MK, Chuang CK, Hu WL. Therapeutic effects of Huangqi formula (Eefooton) in chronic kidney disease: clinical research and narrative literature review. Aging (Albany NY) 2024; 16:13627-13647. [PMID: 39652245 PMCID: PMC11723655 DOI: 10.18632/aging.206170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/19/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE The study aimed to assess the clinical effects of employing the Huangqi formula (Eefooton; EFT) for chronic kidney disease (CKD) treatment. A narrative literature review was undertaken to elucidate the specific ingredients of EFT and their potential impact on renal health. METHODS A retrospective observational study investigated EFT treatment in outpatients with stable CKD (stages 3B to 5) from March 2019 to March 2021. Patients received 20 mL of EFT thrice daily for 6 months, along with standard treatment. Control groups were matched to the EFT cohort. Regular assessments of renal, liver functions, and lipid profiles were conducted. RESULTS Serum creatinine (Cr) and eGFR levels consistently improved in stage 3B CKD patients at each follow-up visit. At 6 months, improvement in Cr and eGFR was observed for stage 4 and 5 CKD. Stage 3B CKD patients exhibited notable reductions in systolic blood pressure after 3 and 6 months of EFT treatment. Remarkably, a substantial decrease in HbA1C was noted in stage 4 CKD individuals after three months of therapy. Additionally, stage 4 CKD patients saw a significant reduction in LDL levels after both 3 and 6 months of EFT treatment. A literature review on EFT ingredients indicated that the positive effects of EFT might be associated with its anti-inflammatory, antioxidant, and anti-fibrotic properties. CONCLUSIONS This research demonstrated that incorporating EFT alongside standard treatment enhanced renal function in individuals with CKD. EFT is proposed as a feasible complementary treatment for CKD patients, emphasizing the importance of early intervention.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 24352, Taiwan
| | - San-Chiang Wu
- Wu San-Chiang Medical Clinic, Lingya District, Kaohsiung City 802014, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Lingya District, Kaohsiung City 80284, Taiwan
| | - Tsuo-Cheng Lu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
| | - I-Shang Tzeng
- Department of Statistics, School of Business, National Taipei University, New Taipei, Taiwan
| | - Chun-En Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Dashu District, Kaohsiung 840, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, National Yang Ming Chiao Tung University, Beitou District, Taipei 112304, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Beitou District, Taipei 112304, Taiwan
- Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Datong District, Taipei 103212, Taiwan
| | - Szu-Ying Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Dashu District, Kaohsiung 840, Taiwan
| | - Te-Chuan Chen
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Niaosong District, Kaohsiung 833, Taiwan
| | - Ming-Kai Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Lingya District, Kaohsiung City 80284, Taiwan
| | - Chih-Kuang Chuang
- Division of Nephrology, Chong Guang Hospital, Miaoli, Taiwan, Toufen City, Miaoli County 351, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niaosong District, Kaohsiung 833, Taiwan
- Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan, Shihcyuan, Sanmin District, Kaohsiung 807, Taiwan
- Fooyin University College of Nursing, Kaohsiung, Taiwan, Ta-liao District, Kaohsiung 831, Taiwan
| |
Collapse
|
7
|
Shen S, Zhong H, Zhou X, Li G, Zhang C, Zhu Y, Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. PHARMACEUTICAL BIOLOGY 2024; 62:222-232. [PMID: 38357845 PMCID: PMC10877659 DOI: 10.1080/13880209.2024.2314705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) is a prominent complication arising from diabetic microangiopathy, and its prevalence and renal impact have placed it as the primary cause of end-stage renal disease. Traditional Chinese Medicine (TCM) has the distinct advantage of multifaceted and multilevel therapeutic attributes that show efficacy in improving clinical symptoms, reducing proteinuria, protecting renal function, and slowing DKD progression. Over recent decades, extensive research has explored the mechanisms of TCM for preventing and managing DKD, with substantial studies that endorse the therapeutic benefits of TCM compounds and single agents in the medical intervention of DKD. OBJECTIVE This review lays the foundation for future evidence-based research efforts and provide a reference point for DKD investigation. METHODS The relevant literature published in Chinese and English up to 30 June 2023, was sourced from PubMed, Cochrane Library, VIP Database for Chinese Technical Periodicals (VIP), Wanfang Data, CNKI, and China Biology Medicine disc (CBM). The process involved examining and summarizing research on TCM laboratory tests and clinical randomized controlled trials for DKD treatment. RESULTS AND CONCLUSIONS The TCM intervention has shown the potential to inhibit the expression of inflammatory cytokines and various growth factors, lower blood glucose levels, and significantly affect insulin resistance, lipid metabolism, and improved renal function. Furthermore, the efficacy of TCM can be optimized by tailoring personalized treatment regimens based on the unique profiles of individual patients. We anticipate further rigorous and comprehensive clinical and foundational investigations into the mechanisms underlying the role of TCM in treating DKD.
Collapse
Affiliation(s)
- Shiyi Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Huiyun Zhong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| | - Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, China
| |
Collapse
|
8
|
Li J, Shu L, Jiang Q, Feng B, Bi Z, Zhu G, Zhang Y, Li X, Wu J. Oridonin ameliorates renal fibrosis in diabetic nephropathy by inhibiting the Wnt/β-catenin signaling pathway. Ren Fail 2024; 46:2347462. [PMID: 38832497 PMCID: PMC11151809 DOI: 10.1080/0886022x.2024.2347462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/β-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of β-catenin arrested cell migration and reduced the expression levels of Wnt/β-catenin signaling-related molecules (Wnt4, p-GSK3β and β-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of β-catenin. Furthermore, the combination of Ori treatment and β-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/β-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Jushuang Li
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Lan Shu
- Network & Informatization Office, Huazhong University of Science and Technology Hospital, Wuhan, P.R. China
| | - Qianqian Jiang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Baohong Feng
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Zhimin Bi
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Geli Zhu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Yanxia Zhang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Xiangyou Li
- Department of Nephrology, Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, P.R. China
| | - Jun Wu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| |
Collapse
|
9
|
Liu J, Ren J, Zhou L, Tan K, Du D, Xu L, Cao W, Zhang Y. Proteomic and lipidomic analysis of the mechanism underlying astragaloside IV in mitigating ferroptosis through hypoxia-inducible factor 1α/heme oxygenase 1 pathway in renal tubular epithelial cells in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118517. [PMID: 38972525 DOI: 10.1016/j.jep.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The limitations of modern medicine in mitigating the pathological process of diabetic kidney disease (DKD) necessitate novel, precise, and effective prevention and treatment methods. Huangqi, the root of Astragalus membranaceus Fisch. ex Bunge has been used in traditional Chinese medicine for various kidney ailments. Astragaloside IV (AS-IV), the primary pharmacologically active compound in A. membranaceus, is involved in lipid metabolism regulation; however, its potential in ameliorating renal damage in DKD remains unexplored. AIM OF THE STUDY To elucidate the specific mechanism by which AS-IV moderates DKD progression. MATERIALS AND METHODS A murine model of DKD and high glucose-induced HK-2 cells were treated with AS-IV. Furthermore, multiomics analysis, molecular docking, and molecular dynamics simulations were performed to elucidate the mechanism of action of AS-IV in DKD, which was validated using molecular biological methods. RESULTS AS-IV regulated glucose and lipid metabolism in DKD, thereby mitigating lipid deposition in the kidneys. Proteomic analysis identified 12 proteins associated with lipid metabolism regulated by AS-IV in the DKD renal tissue. Additionally, lipid metabolomic analysis revealed that AS-IV upregulated and downregulated 4 beneficial and 79 harmful lipid metabolites, respectively. Multiomics analysis further indicated a positive correlation between the top-ranked differential protein heme oxygenase (HMOX)1 and the levels of various harmful lipid metabolites and a negative correlation with the levels of beneficial lipid metabolites. Furthermore, enrichment of both ferroptosis and hypoxia-inducible factor (HIF)-1 signaling pathways during the AS-IV treatment of DKD was observed using proteomic analysis. Validation results showed that AS-IV effectively reduced ferroptosis in DKD-affected renal tubular epithelial cells by inhibiting HIF-1α/HMOX1 pathway activity, upregulating glutathione peroxidase-4 and ferritin heavy chain-1 expression, and downregulating acyl-CoA synthetase long-chain family member-4 and transferrin receptor-1 expression. Our findings demonstrate the potential of AS-IV in mitigating DKD pathology by downregulating the HIF-1α/HMOX1 signaling pathway, thereby averting ferroptosis in renal tubular epithelial cells. CONCLUSIONS AS-IV is a promising treatment strategy for DKD via the inhibition of ferroptosis in renal tubular epithelial cells. The findings of this study may help facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jun Liu
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Jing Ren
- College of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, No. 82, University Town Middle Road, Shapingba District, Chongqing, 401331, PR China.
| | - Linlan Zhou
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Kaiyue Tan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China.
| | - Donglin Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China.
| | - Lei Xu
- Laboratory Animal Center, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China.
| | - Wenfu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1., Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, PR China; College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China.
| | - Yudi Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, PR China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, PR China; College of Combination of Chinese and Western Medicine, Chongqing College of Traditional Chinese Medicine, No. 61, Puguobao Road, Bicheng Street, Bishan District, Chongqing, 402760, PR China.
| |
Collapse
|
10
|
Li Y, Wang J. Possible mechanism for the protective effect of active ingredients of astragalus membranaceus on diabetes nephropathy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1276-1284. [PMID: 38856077 DOI: 10.1080/10286020.2024.2364350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Astragali Radix (AR), a common traditional Chinese medicinal herb, exhibits protective effects on diabetic nephropathy (DN) in extensive researches. Aticles focusing on AR in PubMed were collected and reviewed in order to summarize the latest pharmacological effects on DN. The action mechanisms for protectiving effects of AR were associated with regulation of anti-fibrosis, anti-inflammation, anti-oxidative stress, anti-podocyte apoptosis, restoration of mitochondrial function, restoration of endothelial function in diabetes nephropathy experimental models. Consequently, AR hold promise as potential novel therapeutics for the treatment of DN.
Collapse
Affiliation(s)
- Yu Li
- Department of Nephropathy, Luohu Hospital of Traditional Chinese Medicine, Shenzhen518001, China
| | - Jing Wang
- Department of Nephropathy, Luohu Hospital of Traditional Chinese Medicine, Shenzhen518001, China
| |
Collapse
|
11
|
Wang J, Wang L, Feng X, Xu Y, Zhou L, Wang C, Wang M. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155991. [PMID: 39217653 DOI: 10.1016/j.phymed.2024.155991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Renal tubular injury induced by free fatty acid bound to albumin is the key pathological basis for the progression of diabetic kidney disease. However, effective interventions are limited. Astragaloside IV, as a major bioactive component purified from Astragalus membranaceus (Fisch.) Bunge, possesses pharmacological properties of lowering blood glucose and proteinuria, and renal tubular protection in diabetic kidney disease. Further work is needed to understand the underlying molecular mechanisms. PURPOSE This study was designed to investigate the mechanism of renal tubular protection by astragaloside IV in diabetic kidney disease. METHODS Rats receiving high-fat diet combined with streptozotocin (30 mg/kg, i.p.) were gavaged with astragaloside IV (10 mg/kg/d or 20 mg/kg/d) or empagliflozin (1.72 mg/kg/d) for 8 weeks. In vitro, the NRK-52E cells were treated with free fatty acid-deleted BSA or palmitic acid-bound BSA in the presence or absence of astragaloside IV (5 μM, 10 μM, 20 μM) or 5 μM of mcc950. The effects of astragaloside IV on mitochondrial function, NLRP3/ASC/IL-18/IL-1β inflammatory cascade, and renal tubular injury were detected by pathological staining, immunoblotting, MitoSOX Red staining. Next, to investigate the mechanism of renal tubular protection by astragaloside IV, we transfected Fatp2 siRNA into BSA-PA-treated NRK-52E cells and injected lipofermata (a FATP2 inhibitor) intraperitoneally into free fatty acid-bound BSA overloaded rats with concomitant astragaloside IV treatment. RESULTS Treatment with astragaloside IV for 8 weeks dose-dependently attenuated the blood glucose, ratio of urinary albumin to creatinine, disorder of lipid metabolism, and pathological injury in diabetic kidney disease rats. In addition, astragaloside IV dose-dependently attenuated mitochondrial-derived reactive oxygen species and subsequent inhibiting NLRP3-mediated inflammatory cascade in diabetic kidney disease rats and palmitic acid-bound BSA-treated NRK-52E cells, thereby exerting renal tubular protection. More importantly, the effects of astragaloside IV on restoration of mitochondrial function, inhibition of inflammatory response and amelioration of renal tubular injury in vivo and in vitro were further enhanced when used in combination with Fatp2 siRNA or lipofermata. CONCLUSION Astragaloside IV exerts antioxidant and anti-inflammatory effects in diabetic kidney disease by inhibiting FATP2-mediated fatty acid transport, thereby attenuating renal tubular injury.
Collapse
Affiliation(s)
- Jing Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Zhang S, Li S, Xie S, Cui L, Gao Y, Wang Y. The Role of Ca 2+/PI3K/Akt/eNOS/NO Pathway in Astragaloside IV-Induced Inhibition of Endothelial Inflammation Triggered by Angiotensin II. Mediators Inflamm 2024; 2024:3193950. [PMID: 39512364 PMCID: PMC11540887 DOI: 10.1155/2024/3193950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Inflammation induced by angiotensin II (Ang II) is a key event in the progression of numerous cardiovascular diseases. Astragaloside IV (AS-IV), a glycoside extracted from Astragalus membranaceus Bunge, has been shown to inhibit Ang II-induced inflammatory responses in vivo. However, the mechanisms underlying the beneficial effects are still unclear. This study investigated whether AS-IV attenuates endothelial inflammation induced by Ang II via the activation of endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. Human umbilical vein endothelial cells (HUVECs) were cultured in the presence of AS-IV with or without the specific inhibitor of NOS or Ca2+- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent cascade prior to Ang II exposure. Incubation of HUVECs with AS-IV enhanced NO production and eNOSser1177 phosphorylation. These responses were abrogated by the inhibition of NOS or Ca2+- and PI3K/Akt-dependent pathway. In addition, preincubation of HUVECs with AS-IV inhibited Ang II-induced cytokine and chemokine production, adhesion molecule expression, monocyte adhesion, and nuclear factor kappa B (NF-κB) activation as evidenced by the attenuation of inhibitor of kappa B alpha phosphorylation and subsequent NF-κB DNA binding. These effects of AS-IV were abolished by the suppression of NOS or Ca2+- and PI3K/Akt-dependent cascade. Our findings indicate that AS-IV attenuates inflammatory responses triggered by Ang II possibly via the activation of Ca2+/PI3K/Akt/eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shiyang Xie
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Yuan Gao
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
13
|
Shan XM, Chen CW, Zou DW, Gao YB, Ba YY, He JX, Zhu ZY, Liang JJ. Suppression of ferroptosis through the SLC7A11/glutathione/glutathione peroxidase 4 axis contributes to the therapeutic action of the Tangshenning formula on diabetic renal tubular injury. Chin Med 2024; 19:151. [PMID: 39472936 PMCID: PMC11523893 DOI: 10.1186/s13020-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Tangshenning (TSN) is a safe and effective formula to treat diabetic nephropathy (DN), and clinical studies have demonstrated that its therapeutic effects are related to oxidative stress improvements in patients. Herein, this study aims to explore the potential mechanism of how TSN alleviates diabetic renal tubular injury. METHODS The ultrahigh pressure liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS) was used to identify the chemical composition and serum components of TSN. KK-Ay mice served to investigate the protective effects and regulatory mechanisms of TSN on tubular damage in DN. Furthermore, inhibitors and inducers of ferroptosis were employed in high glucose-cultured tubular epithelial cells (TECs) to verify the potential mechanisms of TSN. The expressions of proteins related to renal tubular injury, ferroptosis and solute carrier family 7, member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis were analyzed by western blot and immunofluorescence. Mitochondrial ultrastructure was observed in kidney tissues and TECs by a transmission electron microscope. Pathological changes in the renal tissues were observed by HE, PAS, and Prussian blue staining. Ferroptosis-related reactive oxygen species (ROS), malondialdehyde (MDA), ferrous ion, the intake of cystine, GSH, and oxidized glutathione (GSSG) were evaluated and contrasted in vivo or in vitro. RESULTS 51 compounds of TSN powder and 11 components in TSN-containing serum were identified by UPLC-QTOF/MS method. Administration of TSN ameliorated the elevated levels of proteinuria, serum creatinine, blood urea nitrogen, abnormal expression of renal tubular injury markers, and pathological damage to the renal tubules in DN mice model. Intriguingly, a strong inhibition of ferroptosis after TSN treatment occurred in both DN mice model and high glucose-cultured TECs. Notably, induction of ferroptosis by erastin attenuated the protective effect of TSN in high glucose-cultured TECs, while the ferroptosis inhibition by ferrostatin-1 treatment protected renal tubular, which was similar to TSN, suggesting the contribution of TSN-mediated by the inhibition of ferroptosis in DN progression. Mechanistically, TSN upregulated the SLC7A11/GSH/GPX4 axis to inhibit ferroptosis. CONCLUSION TSN may delay the DN progression and attenuate the renal tubular injury by inhibiting the ferroptosis regulated by the SLC7A11/GSH/GPX4 axis.
Collapse
Affiliation(s)
- Xiao-Meng Shan
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Chun-Wei Chen
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Da-Wei Zou
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China.
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China.
| | - Yan-Bin Gao
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Yin-Ying Ba
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Jia-Xin He
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Zhi-Yao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Jia-Jun Liang
- School of Traditional Chinese Medicine, Capital Medical University, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
- Beijing Key Lab of TCM Collateral Disease Theory Research, #10, Youanmenwai, Xitoutiao, Fengtai District, Beijing, 100069, People's Republic of China
| |
Collapse
|
14
|
Su J, Chen W, Zhang H, Li H, Pan B, Ma Z, Wang Y, Cui H, Lv S. Crocin Inhibited Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells to Treat Diabetic Nephropathy Through Improving AMPK/mTOR-Mediated Autophagy. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241286968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Objectives Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus, is a leading cause of end-stage renal disease. Crocin (CRO), an active ingredient extracted from Crocus sativus and Gardenia jasminoides, has multiple bioactivities such as anti-oxidative, anti-inflammatory, anti-tumor, and anti-depressive activities. However, the potential effects and mechanisms of CRO in the treatment of DN are still unclear. Methods In this study, we aimed to assess the efficacy of CRO in treating DN using in vivo and in vitro experiments, and intensively investigate the potential therapeutic mechanisms of CRO against DN based on the inhibition of epithelial-mesenchymal transition (EMT) by inducing adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)-mediated autophagy. Results The results showed that CRO had a therapeutic effect and anti-EMT effect in kidney of DN mice. CRO also moderated AMPK/mTOR pathway and improved autophagy in kidney of DN mice. In high glucose (HG)-induced tubular epithelial cell EMT model, CRO inhibited EMT, moderated AMPK/mTOR pathway and improved autophagy. AMPK inhibitor abolished the above effects of CRO on tubular epithelial cells. Conclusion CRO exhibited considerably therapeutic and anti-EMT effects on DN both in vivo and in vitro, these may be associated with restoring autophagy through regulating AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jinhao Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Wei Chen
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Hui Zhang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Hanzhou Li
- College of Integrated Traditional Chinese Medicine and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baochao Pan
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Ziang Ma
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Kunming, China
| | - Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| |
Collapse
|
15
|
Xue HZ, Chen Y, Wang SD, Yang YM, Cai LQ, Zhao JX, Huang WJ, Xiao YH. Radix Astragali and Its Representative Extracts for Diabetic Nephropathy: Efficacy and Molecular Mechanism. J Diabetes Res 2024; 2024:5216113. [PMID: 39308629 PMCID: PMC11416176 DOI: 10.1155/2024/5216113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus (DM). Radix Astragali (RA), a frequently used Chinese herbal medicine in the Leguminosae family, Astragalus genus, with its extracts, has been proven to be effective in DN treatment both in clinical practice and experimental studies. RA and its extracts can reduce proteinuria and improve renal function. They can improve histopathology changes including thickening of the glomerular basement membrane, mesangial cell proliferation, and injury of endothelial cells, podocytes, and renal tubule cells. The mechanisms mainly benefited from antioxidative stress which involves Nrf2/ARE signaling and the PPARγ-Klotho-FoxO1 axis; antiendoplasmic reticulum stress which involves PERK-ATF4-CHOP, PERK/eIF2α, and IRE1/XBP1 pathways; regulating autophagy which involves SIRT1/NF-κB signaling and AMPK signaling; anti-inflammation which involves IL33/ST2 and NF-κB signaling; and antifibrosis which involves TGF-β1/Smads, MAPK (ERK), p38/MAPK, JNK/MAPK, Wnt/β-catenin, and PI3K/AKT/mTOR signaling pathways. This review focuses on the clinical efficacy and the pharmacological mechanism of RA and its representative extracts on DN, and we further document the traditional uses of RA and probe into the TCM theoretical basis for its application in DN.
Collapse
Affiliation(s)
- Hui-zhong Xue
- The First Clinical Medical SchoolBeijing University of Chinese Medicine, Beijing, China 100700
| | - Yu Chen
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and BeijingDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Shi-dong Wang
- Section II of Endocrinology & Nephropathy DepartmentDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Yi-meng Yang
- The First Clinical Medical SchoolBeijing University of Chinese Medicine, Beijing, China 100700
| | - Lu-qi Cai
- The First Clinical Medical SchoolBeijing University of Chinese Medicine, Beijing, China 100700
| | - Jin-xi Zhao
- Section II of Endocrinology & Nephropathy DepartmentDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Wei-jun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and BeijingDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| | - Yong-hua Xiao
- Section II of Endocrinology & Nephropathy DepartmentDongzhimen HospitalBeijing University of Chinese Medicine, Beijing, China 100700
| |
Collapse
|
16
|
Tian J, Lu Y, Zhao QL, Pu QY, Jiang S, Tang YP. DHA-enriched phosphatidylserine alleviates bisphenol A-induced liver injury through regulating glycerophospholipid metabolism and the SIRT1-AMPK pathway. Heliyon 2024; 10:e34835. [PMID: 39148994 PMCID: PMC11325772 DOI: 10.1016/j.heliyon.2024.e34835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
To investigate the alleviating effect and mechanism of the docosahexaenoic acid-enriched phosphatidylserine (DHA-PS) on bisphenol A (BPA)-induced liver injury in mice, the murine liver injury model was established by gavage of BPA (5 mg/kg) or co-administration of BPA and DHA-PS (50 mg/kg or 100 mg/kg) for 6 weeks. The results showed that after administration of 100 mg/kg DHA-PS, the liver index, serum levels of AST, ALT, TC, TG, NEFA, and LDL-C in mice were significantly decreased, while HDL-C was significantly increased. The LPS, IL-6, IL-1β, TNF-α, and MDA levels in liver tissues were effectively down-regulated, and IL-10, SOD, GSH-Px, and CAT levels were effectively up-regulated. The H&E and Oil Red O staining results showed that liver damage was notably repaired and lipid deposition was notably reduced after DHA-PS administration. Furthermore, metabolomics and immunohistochemical studies revealed that DHA-PS mainly regulates glycerophospholipid metabolism and the SIRT1-AMPK pathway to improve metabolic disorders of the liver caused by BPA. Therefore, DHA-PS could potentially alleviate BPA-induced murine liver injury through suppressing inflammation and oxidative stress, and modulating lipid metabolism disorders.
Collapse
Affiliation(s)
- Jing Tian
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yun Lu
- Medical Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Qiao-Ling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316000, China
| | - Qiu-Yan Pu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, China
| | - Yun-Ping Tang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
17
|
Chan KW, Kwong ASK, Tsui PN, Chan GCW, Choi WF, Yiu WH, Cheung SCY, Wong MMY, Zhang ZJ, Tan KCB, Lao L, Lai KN, Tang SCW. Add-on astragalus in type 2 diabetes and chronic kidney disease: A multi-center, assessor-blind, randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155457. [PMID: 38810556 DOI: 10.1016/j.phymed.2024.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Diabetes leads to chronic kidney disease (CKD) and kidney failure, requiring dialysis or transplantation. Astragalus, a common herbal medicine and US pharmacopeia-registered food ingredient, is shown kidney protective by retrospective and preclinical data but with limited long-term prospective clinical evidence. This trial aimed to assess the effectiveness of astragalus on kidney function decline in macroalbuminuric diabetic CKD patients. METHODS This randomized, assessor-blind, standard care-controlled, multi-center clinical trial randomly assigned 118 patients with estimated glomerular filtration rate (eGFR) of 30-90 ml/min/1.73m2 and urinary albumin-to-creatinine ratio (UACR) of 300-5000 mg/g from 7 public outpatient clinics and the community in Hong Kong between July 2018 and April 2022 to add-on oral astragalus granules (15 gs of raw herbs daily equivalent) or to continue standard care alone as control for 48 weeks. Primary outcomes were the slope of change of eGFR (used for sample size calculation) and UACR of the intention-to-treat population. Secondary outcomes included endpoint blood pressures, biochemistry, biomarkers, concomitant drug change and adverse events. (ClinicalTrials.gov: NCT03535935) RESULTS: During the 48-week period, the estimated difference in the slope of eGFR decline was 4.6 ml/min/1.73m2 per year (95 %CI: 1.5 to 7.6, p = 0.003) slower with astragalus. For UACR, the estimated inter-group proportional difference in the slope of change was insignificant (1.14, 95 %CI: 0.85 to 1.52, p = 0.392). 117 adverse events from 31 astragalus-treated patients and 41 standard care-controlled patients were documented. The 48-week endpoint systolic blood pressure was 7.9 mmHg lower (95 %CI: -12.9 to -2.8, p = 0.003) in the astragalus-treated patients. 113 (96 %) and 107 (91 %) patients had post-randomization and endpoint primary outcome measures, respectively. CONCLUSION In patients with type 2 diabetes, stage 2 to 3 CKD and macroalbuminuria, add-on astragalus for 48 weeks further stabilized kidney function on top of standard care.
Collapse
Affiliation(s)
- Kam Wa Chan
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Alfred Siu Kei Kwong
- Department of Family Medicine and Primary Healthcare, Hospital Authority Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Pun Nang Tsui
- Department of Family Medicine and Primary Healthcare, Hospital Authority Hong Kong East Cluster, Hong Kong Special Administrative Region, China
| | - Gary Chi Wang Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Wing Fai Choi
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon Chi Yuen Cheung
- Division of Nephrology, Department of Medicine, Queen Elizabeth Hospital, Hong Kong Special Administrative Region, China
| | - Michelle Man Ying Wong
- Department of Family Medicine and Primary Healthcare, Hospital Authority Hong Kong East Cluster, Hong Kong Special Administrative Region, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kathryn Choon Beng Tan
- Division of Endocrinology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Virginia University of Integrative Medicine, VA, USA
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sydney Chi Wai Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
18
|
Guo J, Zhang Y, Zhou R, Hao Y, Wu X, Li G, Du Q. Deciphering the molecular mechanism of Bu Yang Huan Wu Decoction in interference with diabetic pulmonary fibrosis via regulating oxidative stress and lipid metabolism disorder. J Pharm Biomed Anal 2024; 243:116061. [PMID: 38430615 DOI: 10.1016/j.jpba.2024.116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Diabetes mellitus type 2 and pulmonary fibrosis have been found to be closely related in clinical practice. Diabetic pulmonary fibrosis (DPF) is a complication of diabetes mellitus, but its treatment has yet to be thoroughly investigated. Bu Yang Huan Wu Decoction (BYHWD) is a well-known traditional Chinese prescription that has shown great efficacy in treating pulmonary fibrosis with hypoglycemic and hypolipidemic effects. METHODS The active ingredients of BYHWD and the corresponding targets were retrieved from the Traditional Chinese Medicine Systematic Pharmacology Database (TCMSP) and SymMap2. Disease-related targets were obtained from the GeneCard, OMIM and CTD databases. GO enrichment and KEGG pathway enrichment were carried out using the DAVID database. AutoDock Vina software was employed to perform molecular docking. Molecular dynamics simulations of proteinligand complexes were conducted by Gromacs. Animal experiments were further performed to validate the effects of BYHWD on the selected core targets, markers of oxidative stress, serum lipids, blood glucose and pulmonary fibrosis. RESULTS A total of 84 active ingredients and 830 target genes were screened in BYHWD, among which 56 target genes intersected with DPF-related targets. Network pharmacological analysis revealed that the active ingredients can regulate target genes such as IL-6, TNF-α, VEGFA and CASP3, mainly through AGE-RAGE signaling pathway, HIF-1 signaling pathway and TNF signaling pathway. Molecular docking and molecular dynamics simulations suggested that IL6-astragaloside IV, IL6-baicalein, TNFα-astragaloside IV, and TNFα-baicalein docking complexes could bind stably. Animal experiments showed that BYHWD could reduce the expression of core targets such as VEGFA, CASP3, IL-6 and TNF-α. In addition, BYHWD could reduce blood glucose, lipid, and MDA levels in DPF while increasing the activities of SOD, CAT and GSH-Px. BYHWD attenuated the expression of HYP and collagen I, mitigating pathological damage and collagen deposition within lung tissue. CONCLUSIONS BYHWD modulates lipid metabolism disorders and oxidative stress by targeting the core targets of IL6, TNF-α, VEGFA and CASP3 through the AGE-RAGE signaling pathway, making it a potential therapy for DPF.
Collapse
Affiliation(s)
- Junfeng Guo
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yuwei Zhang
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Rui Zhou
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yanwei Hao
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xuanyu Wu
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Ganggang Li
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610072, China.
| |
Collapse
|
19
|
Yang QQ, Zhang HY, Duan XH, Li MH, Sun J, Tian LX, Dong JC, Kong LW. Astragaloside IV targeting autophagy of T cells improves inflammation of asthma. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:699-713. [PMID: 38213072 DOI: 10.1080/10286020.2023.2294069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024]
Abstract
Astragaloside IV (AST) has been confirmed to have antiasthmatic effects. However, the underline mechanism is unclear. The study aimed to explore the treatment mechanism of AST based on autophagy of memory T cells. AST treatment significantly decreased the number of T effector cells in asthma mice blood and the nude mice that received AST-treated TCMs had relieved inflammation compared with the untreated group; meanwhile, we found that AST significantly decreased the autophagy level and inhibited OX40/OX40L signal pathway of lymphocytes. The results highlighted that AST regulated autophagy to inhibit differentiation of effector T-cell phenotype.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 200040, China
| | - Hong-Ying Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xiao-Hong Duan
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 201508, China
| | - Mi-Hui Li
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jing Sun
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Li-Xia Tian
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 201508, China
| | - Jing-Cheng Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 201508, China
| | - Ling-Wen Kong
- Institute of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 201508, China
| |
Collapse
|
20
|
Ma W, Long J, Dong L, Zhang J, Wang A, Zhang Y, Yan D. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117752. [PMID: 38216099 DOI: 10.1016/j.jep.2024.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoke formulation (XKF) has been utilized in clinical practice for decades in China as a treatment option for mild to moderate type 2 diabetes. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of XKF. AIM OF THE STUDY Aim of to investigate the distribution and metabolism of XKF in normal and insulin resistant (IR) mice were different, and elucidate its key pharmacodynamic material basis and mechanism of action. MATERIALS AND METHODS Ultra performance liquid chromatography/time of flight mass spectrometry technology was employed to investigate the differences in XKF absorption, distribution, and metabolism between normal and IR mice across blood, liver, feces, and urine samples. Further, network pharmacology was used to predict target proteins and their associated signaling pathways. Then, molecular docking was utilized to validate the activity of key pharmacodynamic components and targets. Finally, IR HepG2 cells were used to detect the glucose consumption under the action of key pharmacodynamic material basis. In addition, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and phospho-protein kinase B (p-AKT) was determined using western blotting. RESULTS The study demonstrates significant distinctions in plasma and liver number and abundance of alkaloids, organic acids, flavonoids, iridoids and saponins between normal and IR mice when XKF was administered. Further analysis has shown that the representative components of XKF, including berberine, chlorogenic acid, calycosin, swertiamarin and astragaloside IV have significantly different metabolic pathways in plasma and liver. Prototypes and metabolites of these components were rarely detected in the urine and feces of mice. According to the network pharmacological analysis, these differential components are predicted to improve IR by targeting key factors such as SRC, JUN, HRAS, NOS3, FGF2, etc. Additionally, the signaling pathways involved in this process include PI3K-AKT pathway, GnRH signaling pathway, and T cell receptor signaling pathway. In addition, in vitro experiments indicate that berberine and its metabolites (berberine and demethyleneberine), chlorogenic acid and its metabolites (3-O-ferulic quinic acid and 5-O-ferulic quinic acid), calycosin and swertiamarin could improve IR in IR-HepG2 cells by elevating the expression of PI3K and AKT, leading to an increase in glucose consumption. CONCLUSION The key pharmacodynamic material basis of XKF, such as berberine and its metabolites (berberrubine and demethyleneberberine), chlorogenic acid and its metabolites (3-O-feruloylquinic acid and 5-O-feruloylquinic acid), calycosin and swertiamarin influence the glucose metabolism disorder of IR-HepG2 cells by regulating the PI3K/AKT signalling pathway, leading to an improvement in IR.
Collapse
Affiliation(s)
- Wenjuan Ma
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Linjie Dong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jian Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
21
|
Gao WY, Tian MY, Li ML, Gao SR, Wei XL, Gao C, Zhou YY, Li T, Wang HJ, Bian BL, Si N, Zhao W, Zhao HY. Study on the potential mechanism of Qingxin Lianzi Yin Decoction on renoprotection in db/db mice via network pharmacology and metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155222. [PMID: 38382279 DOI: 10.1016/j.phymed.2023.155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) was one of the most popular and most significant microvascular complications of diabetes mellitus. Qingxin Lianzi Yin Decoction (QXLZY) was a traditional Chinese classical formula, suitable for chronic urinary system diseases. QXLZY had good clinical efficacy in early DN, but the underlying molecular mechanism remained unrevealed. PURPOSE This study aimed to establish the content determination method of QXLZY index components and explore the mechanism of QXLZY on DN by network pharmacology and metabolomics studies. METHODS Firstly, the content determination methods of QXLZY were established with calycosin-7-O-β-d-glucoside, acteoside, baicalin and glycyrrhizic acid as index components. Secondly, pharmacological experiments of QXLZY were evaluated using db/db mice. UHPLC-LTQ-Orbitrap MS was used to carry out untargeted urine metabolomics, serum metabolomics, and kidney metabolomics studies. Thirdly, employing network pharmacology, key components and targets were analyzed. Finally, targeted metabolomics studies were performed on the endogenous constituents in biological samples for validation based on untargeted metabolomics results. RESULTS A method for the simultaneous determination of multiple index components in QXLZY was established, which passed the comprehensive methodological verification. It was simple, feasible, and scientific. The QXLZY treatment alleviated kidney injury of db/db mice, included the degree of histopathological damage and the level of urinary microalbumin/creatinine ratio. Untargeted metabolomics studies had identified metabolic dysfunction in pathways associated with amino acid metabolism in db/db mice. Treatment with QXLZY could reverse metabolite abnormalities and influence the pathways related to energy metabolism and amino acid metabolism. It had been found that pathways with a high degree were involved in signal transduction, prominently on amino acids metabolism and lipid metabolism, analyzed by network pharmacology. Disorders of amino acid metabolism did occur in db/db mice. QXLZY could revert the levels of metabolites, such as quinolinic acid, arginine, and asparagine. CONCLUSION This study was the first time to demonstrate that QXLZY alleviated diabetes-induced pathological changes in the kidneys of db/db mice by correcting disturbances in amino acid metabolism. This work could provide a new experimental basis and theoretical guidance for the rational application of QXLZY on DN, exploring the new pharmacological effect of traditional Chinese medicine, and promoting in-depth research and development.
Collapse
Affiliation(s)
- Wen-Ya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Meng-Yao Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ming-Li Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuang-Rong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Lu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Yan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hong-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bao-Lin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhao
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
22
|
Zheng R, Xu Q, Wang Y, Zhong Y, Zhu R. Cordyceps cicadae polysaccharides attenuate diabetic nephropathy via the miR-30a-3p/TRIM16 axis. J Diabetes Investig 2024; 15:300-314. [PMID: 38149724 PMCID: PMC10906025 DOI: 10.1111/jdi.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE The molecular mechanism of the protective effect of Cordyceps cicadae polysaccharides (CCPs) on renal tubulointerstitial fibrosis in diabetic nephropathy (DN) is still unclear. This study aims to further understand the molecular mechanisms behind the therapeutic benefits of CCP on diabetic nephropathy. METHODS Mice were randomly assigned into six groups (n = 8). Cordyceps cicadae polysaccharide dissolved in 5% dimethyl sulfoxide was administered by gavage for 12 consecutive weeks. The CCP doses were divided into low, medium, and high, 75, 150, and 300 mg/kg/day, respectively. The efficacy of CCP was determined by assessing the renal function and histological alterations in diabetic db/db mice. The degree of glomerular mesangial dilatation and sclerosis was evaluated using semiquantitative markers. Cell viability, apoptosis, epithelial-mesenchymal transition (EMT), inflammation, oxidative stress, and mitochondrial reactive oxygen species (ROS) in high glucose (HG)-cultured MPC5 podocytes were determined. The interaction of miR-30a-3p and tripartite motif-containing protein 16 (TRIM16) was examined by luciferase reporter assay. Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence were used to analyze gene and protein expressions. RESULTS The in vivo findings illustrated that CCP may protect mice with type 2 diabetes from inflammation and oxidative damage (P < 0.05). Furthermore, CCP has a therapeutic value in protecting renal function and morphology in diabetic nephropathy by reversing podocyte EMT. The in vitro results indicated that CCP dose-dependently inhibited HG-induced apoptosis, EMT, inflammation, oxidative stress, and mitochondrial ROS levels in MPC5 podocytes (P < 0.05). Luciferase reporter assay confirmed the interaction between miR-30a-3p and TRIM16 in MPC5 podocytes cultured in high glucose (P < 0.05). CONCLUSION The protective effect of CCP on HG-induced MPC5 can be achieved by miR-30a-3p/TRIM16 axis.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Xu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiwen Wang
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yifei Zhong
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Rong Zhu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
23
|
Xu J, Zhang Z, Ren D, Liu L, Xing H, Wang D, Wu Y, Zhang Y, Chen Q, Wang T. Astragaloside Ⅳ negatively regulates Gpr97-TPL2 signaling to protect against hyperhomocysteine-exacerbated sepsis associated acute kidney injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155346. [PMID: 38237511 DOI: 10.1016/j.phymed.2024.155346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Hyperhomocysteine (HHcy) plays an important role in promoting inflammation and cell death of tubular epithelial cells. However, the role of HHcy and Astragaloside IV (AS-IV) in sepsis associated acute kidney injury (S-AKI) remain unclear. PURPOSE A significant aspect of this study aimed to elucidate the effect of AS-Ⅳ treatment on HHcy-exacerbated S-AKI and reveal its potential mechanism. METHODS Male C57BL/6 J mice fed with specific diet containing 2% methionine were established as in vivo models, and AS-Ⅳ was orally administrated continuously for 3 weeks, and then LPS (10 mg·kg-1 bodyweight) was given by a single intraperitoneal injection. The renal morphological changes were evaluated by HE and PAS staining. RNA-sequencing analysis was applied to select key signaling. The NRK-52E cells exposed to Hcy or combined with LPS were used as in vitro models. The mRNA and protein expression levels of Gpr97-TPL2 signaling were examined by qRT-PCR and western blotting assays. RESULTS In vivo, HHcy mice developed more severe renal injury and prevalent tubular inflammation after LPS injection. In vitro, the levels of NGAL, Gpr97 and TPL2 were significantly increased in NRK-52E cells induced by Hcy (1.6 mM) or in combination with LPS. Notably, the effects of Hcy on TPL2 signaling was abolished by transfecting TPL2 siRNA or treating TPL2 inhibitor, without alterations in Gpr97. However, the enhancement of Gpr97-TPL2 signaling induced by Hcy was counteracted by Gpr97 siRNA. Subsequently, our findings demonstrated that AS-Ⅳ treatment can improve renal function in HHcy-exacerbated S-AKI mice. Mechanistically, AS-Ⅳ alleviated renal tubular damage characterized by abnormal increases in KIM-1, NGAL, TPL2, Gpr97, Sema3A and TNF-α, and decreases in survivin in vivo and in vitro mainly through suppressing the activation of Gpr97-TPL2 signaling. CONCLUSION The present study suggested that HHcy-exacerbated S-AKI was mediated mechanically by activation of Gpr97-TPL2 signaling for the first time. Furthermore, our research also illustrated that AS-Ⅳ protected against HHcy-exacerbated S-AKI by attenuating renal tubular epithelial cells damage through negatively regulating Gpr97-TPL2 signaling, proposing a natural product treatment strategy for HHcy-exacerbated S-AKI.
Collapse
Affiliation(s)
- Jingge Xu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyu Zhang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongwen Ren
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Luokun Liu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haitao Xing
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Dan Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Zhang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Tao Wang
- State Key Laboratory of Component Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
24
|
Yang X, Xue C, Chen K, Gao D, Wang H, Tang C. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine. Front Pharmacol 2024; 14:1339744. [PMID: 38273819 PMCID: PMC10808572 DOI: 10.3389/fphar.2023.1339744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Diabetes mellitus has become a major public health issue globally, putting an enormous burden on global health systems and people. Among all diseased groups, a considerable part of patients are elderly, while their clinical features, pathogenic processes, and medication regimens are different from patients of other ages. Despite the availability of multiple therapies and techniques, there are still numerous elderly diabetes patients suffering from poor blood glucose control, severe complications, and drug adverse effects, which negatively affect the quality of life in their golden years. Traditional Chinese Medicine (TCM) has been widely used in the treatment of diabetes for several decades, and its relevant clinical practice has confirmed that it has a satisfactory effect on alleviating clinical symptoms and mitigating the progression of complications. Chinese herbal medicine and its active components were used widely with obvious clinical advantages by multiple targets and signaling pathways. However, due to the particular features of elderly diabetes, few studies were conducted to explore Traditional Chinese Medicine intervention on elderly diabetic patients. This study reviews the research on clinical features, pathogenic processes, treatment principles, and TCM treatments, hoping to provide fresh perspectives on the prevention and management strategies for elderly diabetes.
Collapse
Affiliation(s)
- Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chongxiang Xue
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyang Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Jiang X, He Y, Zhao Y, Pan Z, Wang Y. Danggui Buxue Decoction exerts its therapeutic effect on rheumatoid arthritis through the inhibition of Wnt/β-catenin signaling pathway. J Orthop Surg Res 2023; 18:944. [PMID: 38066567 PMCID: PMC10709948 DOI: 10.1186/s13018-023-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Danggui Buxue Decoction (DBD) is a traditional Chinese medicine prescription, which has the functions of benefiting Qi, generating blood and regulating the immune system. At present, various clinical reports suggest that DBD has some efficacy in Rheumatoid arthritis (RA), but its mechanism of action is still unclear. Thus, the present study explored mechanism of this preparation on RA. METHODS The effect of DBD was evaluated by tumor necrosis factor (TNF)-α-induced Human fibroblast-like synoviocyte of rheumatoid arthritis (HFLS-RA) cell model and collagen-induced arthritis (CIA) rat model, respectively. Inflammatory factors including TNF-ɑ, IL-1β, IL-6 and IL-10 in the culture supernatants or rat serum were measured using ELISA. The related indexes including fur luster, mental state and activity of rat and the symptoms including swelling and deformation of toes and ankles were also measured. RESULTS In vitro results showed that DBD cannot only inhibit the proliferation of HFLS-RA cells but also reduce the levels of pro-inflammatory factors while increasing the level of anti-inflammatory factors. Similar results were obtained from in vivo experiments. Rats receiving DBD showed a decrease in the severity of rheumatoid arthritis in rat models. Moreover, the protein levels of c-myc and β-catenin decreased significantly, while the protein level of SFRP4 increased, which indicated that DBD might inhibit the inflammatory reaction by regulating Wnt/β-catenin signaling pathway, thus alleviating the symptoms of RA. CONCLUSION Our findings not only provide insights for understanding the molecular mechanism of DBD in treating RA, but also provide the theoretical basis for further clinical prevention and treatment.
Collapse
Affiliation(s)
- Xin Jiang
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ying Zhao
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
26
|
Shan H, Lin Y, Yin F, Pan C, Hou J, Wu T, Xia W, Zuo R, Cao B, Jiang C, Zhou Z, Yu X. Effects of astragaloside IV on glucocorticoid-induced avascular necrosis of the femoral head via regulating Akt-related pathways. Cell Prolif 2023; 56:e13485. [PMID: 37186483 PMCID: PMC10623974 DOI: 10.1111/cpr.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
We investigated the role of astragaloside IV (AS-IV) in preventing glucocorticoid-induced avascular necrosis of the femoral head (ANFH) and the underlying molecular mechanisms. Network pharmacology was used to predict the molecular targets of AS-IV. Molecular dynamic simulations were performed to explore the binding mechanism and interaction mode between AS-IV and Akt. Rat models of glucocorticoid-induced ANFH with AS-IV intervention were established, and osteogenesis, angiogenesis, apoptosis and oxidative stress were evaluated before and after blocking the PI3K/Akt pathway with LY294002. The effects of glucocorticoid and AS-IV on bone marrow mesenchymal stem cells and human umbilical vein endothelial cells incubated with and without LY294002 were determined. Downregulated p-Akt expression could be detected in the femoral heads of glucocorticoid-induced ANFH patients and rats. AS-IV increased trabecular bone integrity and vessel density of the femoral head in the model rats. AS-IV increased Akt phosphorylation and upregulated osteogenesis-, angiogenesis-, apoptosis- and oxidative stress-related proteins and mRNA and downregulated Bax, cleaved caspase-3 and cytochrome c levels. AS-IV promoted human umbilical vein endothelial cell migration, proliferation and tube formation ability; bone marrow mesenchymal stem cell proliferation; and osteogenic differentiation under glucocorticoid influence. AS-IV inhibited apoptosis. LY294002 inhibited these effects. AS-IV prevented glucocorticoid-induced ANFH by promoting osteogenesis and angiogenesis via the Akt/Runx2 and Akt/HIF-1α/VEGF pathways, respectively, and suppressing apoptosis and oxidative stress via the Akt/Bad/Bcl-2 and Akt/Nrf2/HO-1 pathways, respectively.
Collapse
Affiliation(s)
- Haojie Shan
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiwei Lin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fuli Yin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenhao Pan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jianzhong Hou
- Department of General Surgery, Shanghai Fengxian Central HospitalShanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghaiChina
| | - Tianyi Wu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenyang Xia
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rongtai Zuo
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bojun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaolai Jiang
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zubin Zhou
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaowei Yu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
27
|
Qin S, Chen J, Zhong K, Li D, Peng C. Could Cyclosiversioside F Serve as a Dietary Supplement to Prevent Obesity and Relevant Disorders? Int J Mol Sci 2023; 24:13762. [PMID: 37762063 PMCID: PMC10531328 DOI: 10.3390/ijms241813762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is the basis of numerous metabolic diseases and has become a major public health issue due to its rapidly increasing prevalence. Nevertheless, current obesity therapeutic strategies are not sufficiently effective, so there is an urgent need to develop novel anti-obesity agents. Naturally occurring saponins with outstanding bio-activities have been considered promising drug leads and templates for human diseases. Cyclosiversioside F (CSF) is a paramount multi-functional saponin separated from the roots of the food-medicinal herb Astragali Radix, which possesses a broad spectrum of bioactivities, including lowering blood lipid and glucose, alleviating insulin resistance, relieving adipocytes inflammation, and anti-apoptosis. Recently, the therapeutic potential of CSF in obesity and relevant disorders has been gradually explored and has become a hot research topic. This review highlights the role of CSF in treating obesity and obesity-induced complications, such as diabetes mellitus, diabetic nephropathy, cardiovascular and cerebrovascular diseases, and non-alcoholic fatty liver disease. Remarkably, the underlying molecular mechanisms associated with CSF in disease therapy have been partially elucidated, especially PI3K/Akt, NF-κB, MAPK, apoptotic pathway, TGF-β, NLRP3, Nrf-2, and AMPK, with the aim of promoting the development of CSF as a functional food and providing references for its clinical application in obesity-related disorders therapy.
Collapse
Affiliation(s)
| | | | | | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
28
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
29
|
Wang YN, Miao H, Hua MR, Yang JZ, Pei M, Yu HX, Wei LJ, Zou L, Zhang YM, Cao G, Zhao YY. Moshen granule ameliorates membranous nephropathy by blocking intrarenal renin-angiotensin system signalling via the Wnt1/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154763. [PMID: 37001295 DOI: 10.1016/j.phymed.2023.154763] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Membranous nephropathy (MN) is one of the cardinal causes of nephrotic syndrome in adults, but an adequate treatment regimen is lacking. PURPOSE We assessed the effect of Moshen granule (MSG) on patients with MN and cationic bovine serum albumin (CBSA)-induced rats. We further identified the bioactive components of MSG and revealed the underlying molecular mechanism of its renoprotective effects. METHODS We determined the effect of MSG on patients with MN and CBSA-induced rats and its components on podocyte injury in zymosan-activated serum (ZAS)-elicited podocytes and revealed their regulatory mechanism on the Wnt/β-catenin/renin-angiotensin system (RAS) signalling axis. RESULTS MSG treatment improved renal function and reduced proteinuria in MN patients and significantly reduced proteinuria and preserved the protein expression of podocin, nephrin, podocalyxin and synaptopodin in CBSA-induced MN rats. Mechanistically, MSG treatment significantly inhibited the protein expression of angiotensinogen, angiotensin converting enzyme and angiotensin II type 1 receptor, which was accompanied by inhibition of the protein expression of Wnt1 and β-catenin and its downstream gene products, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in CBSA-induced MN rats. We further identified 81 compounds, including astragaloside IV (AGS), calycosin, barleriside A and geniposidic acid, that preserve the podocyte-specific protein expression in ZAS-induced podocytes. Among these four compounds, AGS exhibited the strongest inhibitory effects on podocyte protein expression. AGS treatment significantly inhibited the protein expression of RAS components and Wnt1 and β-catenin and its downstream gene products in ZAS-induced podocytes. In contrast, the inhibitory effect of AGS on podocyte-specific proteins, β-catenin downstream gene products and RAS components was partially abolished in ZAS-induced podocytes treated with ICG-001 and β-catenin siRNA. CONCLUSION This study first demonstrates that AGS mitigates podocyte injury by inhibiting the activation of RAS signalling via the Wnt1/β-catenin pathway by both pharmacological and genetic methods. Therefore, AGS might be considered a new β-catenin inhibitor that inhibits the Wnt1/β-catenin pathway to retard MN in patients.
Collapse
Affiliation(s)
- Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Meng-Ru Hua
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, No. 71 Dongpeng avenue, Guangzhou, Guangdong 510530, China
| | - Ming Pei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88 Changling Road, Tianjin 300073, China
| | - Hang-Xing Yu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88 Changling Road, Tianjin 300073, China
| | - Li-Juan Wei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 88 Changling Road, Tianjin 300073, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Ya-Mei Zhang
- Key disciplines of clinical pharmacy, Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82 The Second Section of North 2nd Ring Road, Chengdu, Sichuan 610081, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Key disciplines of clinical pharmacy, Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82 The Second Section of North 2nd Ring Road, Chengdu, Sichuan 610081, China.
| |
Collapse
|
30
|
Gao Y, Su X, Xue T, Zhang N. The beneficial effects of astragaloside IV on ameliorating diabetic kidney disease. Biomed Pharmacother 2023; 163:114598. [PMID: 37150034 DOI: 10.1016/j.biopha.2023.114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the major cause of chronic kidney disease or end-stage renal disease. There is still a need for innovative treatment strategies for preventing, arresting, treating, and reversing DKD, and a plethora of scientific evidence has revealed that Chinese herbal monomers can attenuate DKD in multiple ways. Astragaloside IV (AS-IV) is one of the active ingredients of Astragalus membranaceus and was selected as a chemical marker in the Chinese Pharmacopeia for quality control purposes. An increasing amount of studies indicate that AS-IV is a promising novel drug for the treatment of DKD. AS-IV has been shown to improve DKD by combating oxidative stress, attenuating endoplasmic reticulum stress, regulating calcium homeostasis, alleviating inflammation, improving vascular function, improving epithelial to mesenchymal transition and so on. This review briefly summarizes the pathogenesis of DKD, systematically reviews the mechanisms by which AS-IV improves DKD, and aims to facilitate related pharmacological research and development to promote the utilization of Chinese herbal monomers in DKD.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xin Su
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Taiqi Xue
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
31
|
Sun Y, Ma Y, Sun F, Feng W, Ye H, Tian T, Lei M. Astragaloside IV attenuates lipopolysaccharide induced liver injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. Heliyon 2023; 9:e15436. [PMID: 37113780 PMCID: PMC10126932 DOI: 10.1016/j.heliyon.2023.e15436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Aims and objectives Sepsis-associated liver injury is a common public health problem in intensive care units. Astragaloside IV (AS-IV) is an active component extracted from the Chinese herb Astragalus membranaceus, and has been shown to have anti-oxidation, anti-inflammation, and anti-apoptosis properties. The research aimed to investigate the protective effect of AS-IV in lipopolysaccharide (LPS)-induced liver injury. Methods Male C57BL/6 wild-type mice (6-8 week-old) were intraperitoneally injected with 10 mg/kg LPS for 24 h and AS-IV (80 mg/kg) 2 h before the LPS injection. Biochemical and histopathological analyses were carried out to assess liver injury. The RT-qPCR analyzed the mRNA expression of IL-1β, TNF-α, and IL-6. The mRNA and protein expression of SIRT1, nuclear Nrf2, Nrf2, and HO-1 were measured by Western blotting. Results Serum alanine/aspartate aminotransferases (ALT/AST) analysis, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were showed that AS-IV protected against LPS-induced hepatotoxicity. The protection afforded by AS-IV was confirmed by pathological examination of the liver. Pro-inflammatory cytokines, including interleukin- 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6), were observed to be reversed by AS-IV after exposure to LPS. Western blot analysis demonstrated that AS-IV enhanced the expression levels of Sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Conclusions AS-IV protects against LPS-induced Liver Injury and Inflammation by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation.
Collapse
|
32
|
Tan X, Wen Y, Han Z, Su X, Peng J, Chen F, Wang Y, Wang T, Wang C, Ma K. Cinnamaldehyde Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Modulating TLR4/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. Chem Biodivers 2023; 20:e202200089. [PMID: 36653304 DOI: 10.1002/cbdv.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory gastrointestinal disease mainly associated with immune dysfunction and microbiota disturbance. Cinnamaldehyde (CIN) is an active ingredient of Cinnamomum cassia with immunomodulatory and anti-inflammatory properties. However, the therapeutic effect and detailed mechanism of CIN on UC remains unclear, and warrant further dissection. In this study, network pharmacology and molecular docking analyses were introduced to predict the potential targets and mechanism of CIN against UC. The therapeutic effect and the predicted targets of CIN on UC were further validated by in vivo and in vitro experiments. Seven intersection targets shared by CIN and UC were obtained, and four hub targets, i. e., toll-like receptor 4 (TLR4), transcription factor p65 (NF-κB), NF-kappa-B inhibitor alpha (IκBα), prostaglandin G/H synthase 2 (COX2) were acquired, which were mainly involved in NF-κB, tumor necrosis factor (TNF), Toll-like receptor and NOD-like receptor signaling pathways. CIN alleviated the symptoms of dextran sulfate sodium (DSS)-induced colitis by decreasing the disease active index (DAI), restoring colon length, and relieving colonic pathology. CIN attenuated systemic inflammation by reducing serum myeloperoxidase (MPO), TNF-α, interleukin-6 (IL-6), and interleukin-1β (IL-1β), down-regulating TLR4, phosphorylated-NF-κB (p-NF-κB), phosphorylated-IκBα (p-IκBα), and COX2 expression in colonic tissues, and decreasing NOD-like receptor protein 3 (NLRP3), Caspase-1, and IL-1β protein expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. These results indicate that CIN alleviates DSS-induced colitis inflammation by modulating TLR4/NF-κB signaling pathway and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiaofen Tan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Yifan Wen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Zhijun Han
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Xuyang Su
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Jing Peng
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
| | - Feng Chen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China
| | - Yadong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China
| | - Tianming Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Changzhong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, P. R. China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China
| |
Collapse
|
33
|
QiHuangYiShen Granules Modulate the Expression of LncRNA MALAT1 and Attenuate Epithelial-Mesenchymal Transition in Kidney of Diabetic Nephropathy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3357281. [PMID: 36760471 PMCID: PMC9904933 DOI: 10.1155/2023/3357281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Background QiHuangYiShen granules (QHYS), a traditional Chinese herbal medicine formula, have been used in clinical practice for treating diabetic kidney disease for several years by our team. The efficacy of reducing proteinuria and delaying the decline of renal function of QHYS has been proved by our previous studies. However, the exact mechanism by which QHYS exerts its renoprotection remains largely unknown. Emerging evidence suggests that lncRNA MALAT1 is abnormally expressed in diabetic nephropathy (DN) and can attenuate renal fibrosis by modulating podocyte epithelial-mesenchymal transition (EMT). Objective In the present study, we aimed to explore whether QHYS could modulate lncRNA MALAT1 expression and attenuate the podocyte EMT as well as the potential mechanism related to the Wnt/β-catenin signal pathway. Methods SD rats were fed with the high-fat-high-sucrose diet for 8 weeks and thereafter administered with 30 mg/kg streptozotocin intraperitoneally to replicate the DN model. Quality control of QHYS was performed using high-performance liquid chromatography. QHYS were orally administered at 1.25, 2.5, and 5 g/kg doses, respectively, to the DN model rats for 12 weeks. Body weight, glycated haemoglobin, blood urea nitrogen, serum creatinine, 24-h proteinuria, and kidney index were measured. The morphologic pathology of the kidney was evaluated by Hematoxylin-eosin and Masson's trichrome staining. The expression level of lncRNA MALAT1 was determined by quantitative real-time polymerase chain reaction. In addition, the expression levels of podocyte EMT protein markers and Wnt/β-catenin pathway proteins in renal tissues were evaluated by Western blotting and immunohistochemistry. Results The results showed that QHYS significantly reduced 24-h proteinuria, blood urea nitrogen, kidney index, and ameliorated glomerular hypertrophy and collagen fiber deposition in the kidney of DN rats. Importantly, QHYS significantly downregulated the expression level of lncRNA MALAT1, upregulated the expression of nephrin, the podocyte marker protein, downregulated the expression of desmin and FSP-1, and mesenchymal cell markers. Furthermore, QHYS significantly downregulated the expression levels of Wnt1, β-catenin, and active β-catenin. Conclusion Conclusively, our study revealed that QHYS significantly reduced proteinuria, alleviated renal fibrosis, and attenuated the podocyte EMT in DN rats, which may be associated with the downregulation of lncRNA MALAT1 expression and inhibition of the Wnt/β-catenin pathway.
Collapse
|
34
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2023; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
35
|
Song M, Huai B, Shi Z, Li W, Xi Y, Liu Z, Zhang J, Zhou J, Qiao Y, Liu D. The efficacy and safety of Chinese herbal medicine in the treatment of painful diabetic neuropathy: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1072991. [PMID: 36950007 PMCID: PMC10025494 DOI: 10.3389/fphar.2023.1072991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Objective: The objective of this systematic review and meta-analysis is to assess the effectiveness and security of Chinese herbal medicine (CHM) in the therapy of painful diabetic neuropathy (PDN). Methods: We searched databases for randomized controlled trials (RCTs) of CHM in the treatment of PDN. Outcome indicators included nerve conduction velocity, clinical efficiency, pain score, TCM syndrome score, and adverse events. Stata 16.0 was used to carry out the Meta-analysis. Results: A total of 21 RCTs with 1,737 participants were included. This meta-analysis found that using CHM as adjuvant treatment or as monotherapy for PDN can improve SCV of median nerve [mean difference (MD) = 3.56, 95% Confidence interval (CI) (2.19, 4.92) ], MCV of median nerve [ MD = 3.82, 95% CI (2.51, 5.12) ], SCV of common peroneal nerve [ MD = 4.16, 95% CI (1.62, 6.70) ], MCV of common peroneal nerve [ MD = 4.37, 95% CI (1.82, 6.93) ], SCV of gastrocnemius nerve [ MD = 4.95, 95% CI (3.52, 6.37) ], SCV of tibial nerve [ MD = 3.17, 95% CI (-2.64, 8.99) ], MCV of tibial nerve [MD = 6.30, 95%CI (5.00, 7.60)] and clinical effective rate [ odds ratio (OR) = 4.00, 95% CI (2.89, 5.52) ] and reduce pain score [standardized mean difference (SMD) = -2.23, 95% CI (-3.04, -1.41) ], TCM syndrome score [ MD = -4.70, 95% CI (-6.61, -2.80) ]. In addition, compared to the control group, adverse events of Chinese medicine intervention occurred less. Conclusion: CHM as adjuvant therapy or single treatment has a good curative effect and is safe for patients with PDN, which is worthy of clinical promotion and use, however; higher quality clinical studies are still needed to prove. Systematic Review Registration: https://www.crd.york.ac.uk/, identifier CRD42022327967.
Collapse
Affiliation(s)
- Min Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Baogeng Huai
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenpeng Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenyi Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yutan Xi
- Department of Oncology, Henan Provincial University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhenguo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jihang Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junyu Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Deshan Liu,
| |
Collapse
|
36
|
Gui T, Chen Q, Li J, Lu K, Li C, Xu B, Chen Y, Men J, Kullak-Ublick GA, Wang W, Gai Z. Astragaloside IV alleviates 1-deoxysphinganine-induced mitochondrial dysfunction during the progression of chronic kidney disease through p62-Nrf2 antioxidant pathway. Front Pharmacol 2023; 14:1092475. [PMID: 37033627 PMCID: PMC10079923 DOI: 10.3389/fphar.2023.1092475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Chronic kidney disease (CKD) can lead to significant elevation of 1-deoxysphingolipids (1-deoxySL). The increase of 1-deoxySL in turn can result in mitochondrial damage and oxidative stress, which can cause further progression of CKD. Methods: This study assessed the therapeutic effect of Astragaloside IV (AST) against 1-deoxySL-induced cytotoxicity in vitro and in rats with CKD. HK-2 cells were exposed to 1-deoxysphinganine (doxSA) or doxSA + AST. doxSA-induced mitochondrial dysfunction and oxidative stress were evaluated by immunostaining, real-time PCR, oxidative stress sensor, and transmission electron microscopy. The potential effects of AST on kidney damage were evaluated in a rat 5/6 nephrectomy (5/6 Nx) model of CKD. Results: The findings of in vitro experiments showed that doxSA induced mitochondrial damage, oxidative stress, and apoptosis. AST markedly reduced the level of mitochondrial reactive oxygen species, lowered apoptosis, and improved mitochondrial function. In addition, exposure to AST significantly induced the phosphorylation of p62 and the nuclear translocation of Nrf2 as well as its downstream anti-oxidant genes. p62 knock-down fully abolished Nrf2 nuclear translocation in cells after AST treatment. However, p62 knock-down did not affect TBHQ-induced Nrf2 nuclear translocation, indicating that AST can ameliorate doxSA-induced oxidative stress through modulation of p62 phosphorylation and Nrf2 nuclear translocation. Conclusion: The findings indicate that AST can activate Nrf2 antioxidant pathway in a p62 dependent manner. The anti-oxidative stress effect and the further mitochondrial protective effect of AST represent a promising therapeutic strategy for the progression of CKD.
Collapse
Affiliation(s)
- Ting Gui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingfa Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan, China
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People’s Hospital, Liaocheng, China
| | - Jiangsong Li
- Department of Urology, Liaocheng People’s Hospital, Liaocheng, China
| | - Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwen Men
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO and Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| | - Weihua Wang
- The Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| | - Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| |
Collapse
|
37
|
Su Y, Yin X, Huang X, Guo Q, Ma M, Guo L. Astragaloside IV ameliorates sepsis-induced myocardial dysfunction by regulating NOX4/JNK/BAX pathway. Life Sci 2022; 310:121123. [DOI: 10.1016/j.lfs.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
38
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Yu X, Xiao Q, Yu X, Cheng Y, Lin H, Xiang Z. A network pharmacology-based study on the mechanism of astragaloside IV alleviating renal fibrosis through the AKT1/GSK-3β pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115535. [PMID: 35840059 DOI: 10.1016/j.jep.2022.115535] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL REVELVANCE Astragaloside IV, a glycoside derived from Astragalus membranaceus, has anti-renal fibrosis effects. However, its mechanism of action has not yet been fully elucidated. AIM OF THE STUDY The purpose of this study was to investigate the anti-fibrotic effect of AS-IV and to clarify its underlying mechanism. MATERIALS AND METHODS The network pharmacology method, molecular docking and surface plasmon resonance (SPR) was used to identify potential targets and pathways of AS-IV. A unilateral ischemia-reperfusion injury (UIRI) animal model, as well as TGF-β1-induced rat renal tubular epithelial cells (NRK-52E) and renal fibroblasts (NRK-49F) were used to investigate and validate the anti-fibrotic activity and pharmacological mechanism of AS-IV. Network pharmacology was performed to construct a drug-target-pathway network. The anti-fibrosis effect of AS-IV was determined using hematoxylin-eosin (H&E) and MASSON staining, as well as immunostaining methods. qRT-PCR and western blotting were used to elucidate and validate the mechanism of AS-IV. RESULTS Network pharmacology revealed that the PI3K/AKT pathway is an important pathway in AS-IV. AS-IV inhibited the expression of α-SMA, collagen I, and fibronectin in NRK-52E, NRK-49F, and UIRI rats, and reduced serum creatinine and blood urea nitrogen levels in UIRI rats. AS-IV inhibited AKT phosphorylation, blocked GSK-3β phosphorylation, and restored GSK-3β activity, which contributed to the degradation of β-catenin, thereby preventing epithelial-mesenchymal transition (EMT). CONCLUSION Astragaloside IV alleviated renal fibrosis through the AKT1/GSK-3β pathway. In addition, our findings indicate that the network pharmacology method is a powerful tool for exploring the pharmacological mechanisms of drugs.
Collapse
Affiliation(s)
- Xinwei Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiming Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xixi Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Cheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Medical School, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|
40
|
Luo ZH, Zeng J, Yu HY, Huang HY, Bao XF, Qin SY, Chen GD, Zhou ZQ, Zhi H, Yao XS, Gao H. Astramalabaricosides A-T, Highly Oxygenated Malabaricane Triterpenoids with Migratory Inhibitory Activity from Astragalus membranaceus var. mongholicus. JOURNAL OF NATURAL PRODUCTS 2022; 85:2312-2331. [PMID: 36137221 DOI: 10.1021/acs.jnatprod.2c00494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Twenty new malabaricane triterpenoids, astramalabaricosides A-T (1-20), were isolated from the roots of Astragalus membranaceus var. mongholicus (Astragali Radix). Their structures were determined by spectroscopic analysis, and the use of the circular dichroism exciton chirality method, quantum chemical calculations, and chemical methods. Malabaricane triterpenoids, an unusual group with the 6-6-5-tricyclic core, are distributed in plants (e.g., Simaroubaceae, Polypodiaceae, and Fabaceae), a marine sponge, and fungi, and their number obtained to date is limited. Compounds 1-20 were characterized as glycosides with a highly oxygenated side chain, and 13-20 were the first cyclic carbonate derivatives among the malabaricane triterpenoids. The stereocluster formed from the continuous hydroxylated chiral carbons in each highly oxygenated side chain and the 6-6-5-tricyclic core system were entirely segregated, and the independent identification of their stereoconfigurations required considerable effort. The migratory inhibitory and antiproliferative activities of 1-20 were evaluated by wound-healing and cell-viability assays, respectively. Most compounds showed significant migratory inhibitory activity, and a preliminary structure-activity relationship was developed. Malabaricane triterpenoids are being reported in the genus Astragalus for the first time.
Collapse
Affiliation(s)
- Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Jin Zeng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hui-Yun Huang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Feng Bao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Sheng-Ying Qin
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, P. R. China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
41
|
Zhang Y, Yuan Y, Zhang J, Zhao Y, Zhang Y, Fu J. Astragaloside IV supplementation attenuates cognitive impairment by inhibiting neuroinflammation and oxidative stress in type 2 diabetic mice. Front Aging Neurosci 2022; 14:1004557. [PMID: 36247985 PMCID: PMC9557080 DOI: 10.3389/fnagi.2022.1004557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Although diabetic cognitive impairment is one of the most common complications of type 2 diabetes mellitus (T2DM), optimized therapeutic strategies are not available yet. Astragalosides IV (AS-IV) is a traditional Chinese medicine possessing diverse pharmacological properties including anti-inflammatory and antioxidant effects. However, the effects of AS-IV on diabetes-related cognitive impairment and its precise mechanisms remain largely unknown. T2DM mice, induced by a high-fat diet (HFD) and an intraperitoneal injection of low-dose streptozotocin (STZ) were administrated with AS-IV every other day for eight consecutive weeks. Learning and memory abilities were assessed subsequently using the Ymaze test and the anxious behavior was evaluated using an open field test. Then, the morphology and number of neurons and microglia were observed by HE staining or immunohistochemistry. Oxidative stress biomarkers and pro-inflammatory cytokines were determined using relevant kits. In addition, the expression levels of Nrf2, Keap1, HO-1, and NQO1 were determined by Western blot analyses. The results indicated that AS-IV administration significantly improved neuronal damage and cognitive deficit in T2DM mice. Meanwhile, oxidative stress and neuroinflammation were also ameliorated in T2DM mice, which might be attributed to the regulation of Nrf2/Keap1/HO-1/NQO1 pathway in T2DM mice. Taken together, these data suggested that AS-IV ameliorates cognitive impairment in T2DM mice by attenuating oxidative stress and neuroinflammation, possibly through modulating the Nrf2/Keap1/HO1/NQO1 pathway.
Collapse
|
42
|
Bao J, Wang Y, Wang S, Niu D, Wang Z, Li R, Zheng Y, Ishfaq M, Wu Z, Li J. Polypharmacology-based approach for screening TCM against coinfection of Mycoplasma gallisepticum and Escherichia coli. Front Vet Sci 2022; 9:972245. [PMID: 36225794 PMCID: PMC9549337 DOI: 10.3389/fvets.2022.972245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products and their unique polypharmacology offer significant advantages for finding novel therapeutics particularly for the treatment of complex diseases. Meanwhile, Traditional Chinese Medicine exerts overall clinical benefits through a multi-component and multi-target approach. In this study, we used the previously established co-infection model of Mycoplasma gallisepticum and Escherichia coli as a representative of complex diseases. A new combination consisting of 6 herbs were obtained by using network pharmacology combined with transcriptomic analysis to reverse screen TCMs from the Chinese medicine database, containing Isatdis Radix, Forsythia Fructus, Ginkgo Folium, Mori Cortex, Licorice, and Radix Salviae. The results of therapeutic trials showed that the Chinese herbal compounds screened by the target network played a good therapeutic effect in the case of co-infection. In summary, these data suggested a new method to validate target combinations of natural products that can be used to optimize their multiple structure-activity relationships to obtain drug-like natural product derivatives.
Collapse
Affiliation(s)
- Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ze Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yadan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang, China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
43
|
Zhang W, Ye L, Fang H. Astragaloside IV Improve Neurological Function of Cerebral Ischemia. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study intends to assess astragaloside IV’s effect on neurological function in mice cerebral ischemia model. The mouse model of cerebral ischemia was established by photochemistry and then assigned into sham operation group (photochemical building do not accept cold light
irradiation) and control group (10 ug/ml by intraperitoneal injection of saline solution), drug group (10 ug/ml by intraperitoneal injection of Astragaloside IV) followed by analysis of neurological severity, cerebral infarction area, loss of neurons, glial cell activation and the activities
of LC3, Beclin1, Caspase-3, P62 and mTOR by Western Blot. The neurons in cerebral infarction were missing and marginal area and penumbra appeared. The tissue in cerebral infarction became white, and the modeling was successful. The drug group showed significantly reduced scores and decreased
infarct area of brain tissue compared with control group on day 14, 21 and 28 (P < 0.05). TUNEL staining showed increased number of TUNEL cells at the ischemic edge in the drug group (0.35±0.07)% (P < 0.05), while the IBAL staining of (27.12±3.01)% and GFAP
staining of (0.08±0.02)% in the drug group showed significant inhibition of astrocytes (P < 0.05). The activity of LC3, Beclin1, Caspase-3 and P62 in drug group was inhibited, while the activity of mTOR was promoted. In conclusion, Astragaloside IV improves the balance ability
and the neural function of cerebral ischemia repair in mice model.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Enesthesiology, Enshi Tujia and Miao Autonomous Prefecture Central Hospital, Enshi, Hubei, 445000, China
| | - Lun Ye
- Department of Emergency, Jiangjin Central Hospital of Chongqing, Chongqing, 402260, China
| | - Hairong Fang
- Department of Neurology (II) Ward, The First People’s Hospital of Jiangxia District, Wuhan, Hubei, 430000, China
| |
Collapse
|
44
|
Wang YN, Liu HJ, Ren LL, Suo P, Zou L, Zhang YM, Yu XY, Zhao YY. Shenkang injection improves chronic kidney disease by inhibiting multiple renin-angiotensin system genes by blocking the Wnt/β-catenin signalling pathway. Front Pharmacol 2022; 13:964370. [PMID: 36059935 PMCID: PMC9432462 DOI: 10.3389/fphar.2022.964370] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide public health problem. The increase in the number of patients with CKD and end-stage kidney disease requesting renal dialysis or transplantation will progress to epidemic proportions in the next several decades. Although blocking the renin-angiotensin system (RAS) has been used as a first-line standard therapy in patients with hypertension and CKD, patients still progress towards end-stage kidney disease, which might be closely associated with compensatory renin expression subsequent to RAS blockade through a homeostatic mechanism. The Wnt/β-catenin signalling pathway is the master upstream regulator that controls multiple intrarenal RAS genes. As Wnt/β-catenin regulates multiple RAS genes, we inferred that this pathway might also be implicated in blood pressure control. Therefore, discovering new medications to synchronously target multiple RAS genes is necessary and essential for the effective treatment of patients with CKD. We hypothesized that Shenkang injection (SKI), which is widely used to treat CKD patients, might ameliorate CKD by inhibiting the activation of multiple RAS genes via the Wnt/β-catenin signalling pathway. To test this hypothesis, we used adenine-induced CKD rats and angiotensin II (AngII)-induced HK-2 and NRK-49F cells. Treatment with SKI inhibited renal function decline, hypertension and renal fibrosis. Mechanistically, SKI abrogated the increased protein expression of multiple RAS elements, including angiotensin-converting enzyme and angiotensin II type 1 receptor, as well as Wnt1, β-catenin and downstream target genes, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in adenine-induced rats, which was verified in AngII-induced HK-2 and NRK-49F cells. Similarly, our results further indicated that treatment with rhein isolated from SKI attenuated renal function decline and epithelial-to-mesenchymal transition and repressed RAS activation and the hyperactive Wnt/β-catenin signalling pathway in both adenine-induced rats and AngII-induced HK-2 and NRK-49F cells. This study first revealed that SKI repressed epithelial-to-mesenchymal transition by synchronously targeting multiple RAS elements by blocking the hyperactive Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Hong-Jiao Liu
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Li-Li Ren
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- Key Disciplines Team of Clinical Pharmacy, School of Food and Bioengineering, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Ya-Mei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Liu F, Tian M. Study on the mechanism of Qiju Dihuang pill in the treatment of ophthalmic diseases based on systems pharmacology. Medicine (Baltimore) 2022; 101:e30033. [PMID: 35945711 PMCID: PMC9351859 DOI: 10.1097/md.0000000000030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Qiju Dihuang pill is one of the common Traditional Chinese Medicine to treat ophthalmic diseases. In vivo studies have suggested that Qiju Dihuang pill can be used for treating glaucoma, and it can also be used clinically to treat cataract patients. However, the bioactive ingredients and the therapeutic mechanism of Qiju Dihuang pill on treating these ophthalmic diseases remained unclear. Presently, a systems pharmacology approach which combines pharmacokinetic screening, targeted fishing, biological function enrichment, network pharmacology, and molecular docking analysis, was employed. A total of 134 active ingredients with 72 corresponding targets are identified from Qiju Dihuang pill. Additionally, 3 core targets including CHRM1, ESR1, and AR are obtained from the ingredients and drug targets network analysis. Besides, gen ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis reveal 3 important biological pathways, that is, calcium signaling pathway, insulin signaling pathway and Vascular endothelial growth factor signaling pathway. In final, a molecular docking model was constructed to study the interaction mechanism between active components and drug targets at the molecular level. All the findings show that Qiju Dihuang pill achieves therapeutic effects on treating ophthalmic diseases by regulating the crucial targets of the compounds in it. This work not only provides insight into the therapeutic mechanism of herbal medicine in the treatment of ophthalmic diseases from a multiscale perspective, but also offers an effective approach for drug discovery and development of Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Fei Liu
- Faculty of Medical Technology, Ophthalmology Laboratory of Anhui Medical College, Hefei, China
- * Correspondence: Fei Liu, MSc, Faculty of Medical Technology, Ophthalmology Laboratory of Anhui Medical College, Furong Road 632 #, Hefei 230601, Anhui, China (e-mail: )
| | - Mi Tian
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
Tang JL, Xin M, Zhang LC. Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury. Aging (Albany NY) 2022; 14:5855-5877. [PMID: 35859295 PMCID: PMC9365550 DOI: 10.18632/aging.204189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Background: Acute kidney injury (AKI) is the most common target organ damage in sepsis. Sepsis-associated AKI (SA-AKI) may be characterized by damage to the renal tubular epithelium. In this study, the pharmacological mechanisms of Astragalus membranaceus and its active monomer Astragaloside IV (AS-IV) were predicted based on a network pharmacology approach and validated both in vitro and in vivo using the SA-AKI model. Method: We constructed an in vivo sepsis model using a mouse cecum ligation puncture (CLP) and HK-2 cells were treated with lipopolysaccharide (LPS) to mimic Gram (–) induced sepsis to assess the renal-protective efficacy of Astragalus membranaceus and AS-IV. Results: The findings demonstrated that Astragalus membranaceus and AS-IV attenuate renal tubular injury in mice with polymicrobial sepsis, including vacuolization, loss of brush border, mitochondrial ultrastructural changes, and increased staining of kidney injury molecule-1 (KIM-1). AS-IV protected human proximal tubular epithelial (HK-2) cells against LPS induced cell viability loss. Both Astragalus membranaceus and AS-IV activated the PI3K/AKT pathway both in vitro and in vivo, as shown by Western blot and immunohistochemistry analysis. Conclusion: The findings demonstrate that Astragalus membranaceus and AS-IV protect against sepsis-induced kidney tubular injury by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jia-Long Tang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xin
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Noor F, Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals (Basel) 2022; 15:572. [PMID: 35631398 PMCID: PMC9143318 DOI: 10.3390/ph15050572] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Natural products have played a critical role in medicine due to their ability to bind and modulate cellular targets involved in disease. Medicinal plants hold a variety of bioactive scaffolds for the treatment of multiple disorders. The less adverse effects, affordability, and easy accessibility highlight their potential in traditional remedies. Identifying pharmacological targets from active ingredients of medicinal plants has become a hot topic for biomedical research to generate innovative therapies. By developing an unprecedented opportunity for the systematic investigation of traditional medicines, network pharmacology is evolving as a systematic paradigm and becoming a frontier research field of drug discovery and development. The advancement of network pharmacology has opened up new avenues for understanding the complex bioactive components found in various medicinal plants. This study is attributed to a comprehensive summary of network pharmacology based on current research, highlighting various active ingredients, related techniques/tools/databases, and drug discovery and development applications. Moreover, this study would serve as a protocol for discovering novel compounds to explore the full range of biological potential of traditionally used plants. We have attempted to cover this vast topic in the review form. We hope it will serve as a significant pioneer for researchers working with medicinal plants by employing network pharmacology approaches.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| |
Collapse
|
48
|
Fan Y, Fan H, Li P, Liu Q, Huang L, Zhou Y. Mitogen-activating protein kinase kinase kinase kinase-3, inhibited by Astragaloside IV through H3 lysine 4 monomethylation, promotes the progression of diabetic nephropathy by inducing apoptosis. Bioengineered 2022; 13:11517-11529. [PMID: 35510516 PMCID: PMC9275872 DOI: 10.1080/21655979.2022.2068822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Astragaloside IV (AS-IV) is a bioactive saponin extracted from the Astragalus root and has been reported to exert a protective effect on diabetic nephropathy (DN). However, the underlying mechanism remains unclear. Herein, we found that AS-IV treatment alleviated DN symptoms in DN mice accompanied by reduced metabolic parameters (body weight, urine microalbumin and creatinine, creatinine clearance, and serum urea nitrogen and creatinine), pathological changes, and apoptosis. Epigenetic histone modifications are closely related to diabetes and its complications, including H3 lysine 4 monomethylation (H3K4me1, a promoter of gene transcription). A ChIP-seq assay was conducted to identify the genes regulated by H3K4me1 in DN mice after AS-IV treatment and followed by a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results showed that there were 16 common genes targeted by H3K4me1 in normal and AS-IV-treated DN mice, 1148 genes were targeted by H3K4me1 only in DN mice. From the 1148 genes, we screened mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3) for the verification of gene expression and functional study. The results showed that MAP4K3 was significantly increased in DN mice and high glucose (HG)-treated NRK-52E cells, which was reversed by AS-IV. MAP4K3 silencing reduced the apoptosis of NRK-52E cells under HG condition, as evidenced by decreased cleaved caspase 3 and Bax (pro-apoptotic factors), and increased Bcl-2 and Bcl-xl (anti-apoptotic factors). Collectively, AS-IV may downregulate MAP4K3 expression by regulating H3K4me1 binding and further reducing apoptosis, which may be one of the potential mechanisms that AS-IV plays a protective effect on DN.
Collapse
Affiliation(s)
- Yuyan Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongyu Fan
- Remote Consultation Center, Liaoyang Central Hospital, Liaoyang, Liaoning, People’s Republic of China
| | - Ping Li
- Department of Pharmacy and Pharmacology, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Qingshan Liu
- IKey Laboratory of Ethnic Medicine of Ministry of Education, Minzu University of China, Beijing, People’s Republic of China
| | - Lixia Huang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yilun Zhou
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
49
|
Astragaloside IV Improves the Barrier Damage in Diabetic Glomerular Endothelial Cells Stimulated by High Glucose and High Insulin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7647380. [PMID: 35341134 PMCID: PMC8947930 DOI: 10.1155/2022/7647380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the protective effect and mechanism of astragaloside IV (AS-IV) on damage in human glomerular endothelial cells (GEnCs) stimulated by high glucose and high insulin. Methods. The transwell method was used to detect the integrity of the cell barrier after AS-IV intervention in a high glucose and high insulin environment for 24 h; immunofluorescence and Western blot methods were used to detect the tight junction protein ZO-1 and claudin-5 expression; intracellular and extracellular 1β (IL-1β) and tumor necrosis factor α (TNFα) were determined by ELISA; expression and activation of AKT, p-AKT, GSK3α/β, and p-GSK3α/β were evaluated by Western blot. Results. The results showed that AS-IV had a significant protective effect on the cell barrier of GEnCs. High glucose or insulin inhibited cell viability in a concentration-dependent manner. High glucose or insulin significantly inhibited glucose uptake and promoted release of reactive oxygen species in GEnCs. Administration with AS-IV dramatically preserved viability of the cells; moreover, the expression of intracellular tight junction proteins was upregulated, inflammatory cytokines including IL-1β and TNFα were decreased, and the AKT-GSK3 pathway participated in modulation of AS-IV in GEnCs cells. Conclusion. We found in the present study that AS-IV can preserve filtration barrier integrity in glomerular endothelial cells under diabetic settings, its effects on increasing the cell energy metabolism and cell viability, inhibiting inflammation and oxidative stress damage, and enhancing tight junction between cells play a role in it; and the intracellular signaling pathway AKT-GSK modulated the above function. Our present finding supplied a new understanding towards development of DN and provided an alternative method on ameliorating DN.
Collapse
|
50
|
Wang F, Fan J, Pei T, He Z, Zhang J, Ju L, Han Z, Wang M, Xiao W. Effects of Shenkang Pills on Early-Stage Diabetic Nephropathy in db/db Mice via Inhibiting AURKB/RacGAP1/RhoA Signaling Pathway. Front Pharmacol 2022; 13:781806. [PMID: 35222021 PMCID: PMC8873791 DOI: 10.3389/fphar.2022.781806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, so there is an urgent need to suppress its development at early stage. Shenkang pills (SKP) are a hospital prescription selected and optimized from effective traditional Chinese medicinal formulas for clinical treatment of DN. In the present study, liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS) and total contents qualification were applied to generate a quality control standard of SKP. For verifying the therapeutic effects of SKP, db/db mice were administered intragastrically with SKP at a human-equivalent dose (1.82 g/kg) for 4 weeks. Moreover, the underlying mechanism of SKP were analyzed by the renal RNA sequencing and network pharmacology. LC-Q-TOF-MS identified 46 compounds in SKP. The total polysaccharide and organic acid content in SKP were 4.60 and 0.11 mg/ml, respectively, while the total flavonoid, saponin, and protein content were 0.25, 0.31, and 0.42 mg/ml, respectively. Treatment of SKP significantly reduced fasting blood glucose, improved renal function, and ameliorated glomerulosclerosis and focal foot processes effacement in db/db mice. In addition, SKP protected podocytes from injury by increasing nephrin and podocin expression. Furthermore, transcriptome analyses revealed that 430 and 288 genes were up and down-regulated in mice treated with SKP, relative to untreated controls. Gene ontology enrichment analysis revealed that the differentially expressed genes mainly involved in modulation of cell division and chromosome segregation. Weighted gene co-expression network analysis and network pharmacology analysis indicated that aurora kinase B (AURKB), Rac GTPase activating protein 1 (RacGAP1) and SHC binding, and spindle associated 1 (shcbp1) might be the core targets of SKP. This protein and Ras homolog family member A (RhoA) were found overexpression in db/db mice, but significantly decreased with SKP treatment. We conclude that SKP can effectively treat early-stage DN and improve renal podocyte dysfunction. The mechanism may involve down-regulation of the AURKB/RacGAP1/RhoA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Xiao
- *Correspondence: Mingqing Wang, ; Wei Xiao,
| |
Collapse
|