1
|
Palmer BM, Bell SP. Preparing Excitable Cardiac Papillary Muscle and Cardiac Slices for Functional Analyses. Front Physiol 2022; 13:817205. [PMID: 35309048 PMCID: PMC8928577 DOI: 10.3389/fphys.2022.817205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
While the reductionist approach has been fruitful in understanding the molecular basis of muscle function, intact excitable muscle preparations are still important as experimental model systems. We present here methods that are useful for preparing cardiac papillary muscle and cardiac slices, which represent macroscopic experimental model systems with fully intact intercellular and intracellular structures. The maintenance of these in vivo structures for experimentation in vitro have made these model systems especially useful for testing the functional effects of protein mutations and pharmaceutical candidates. We provide solutions recipes for dissection and recording, instructions for removing and preparing the cardiac papillary muscles, as well as instruction for preparing cardiac slices. These instructions are suitable for beginning experimentalists but may be useful for veteran muscle physiologists hoping to reacquaint themselves with macroscopic functional analyses.
Collapse
Affiliation(s)
- Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
- *Correspondence: Bradley M. Palmer,
| | - Stephen P. Bell
- Department of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
2
|
Yeh SCA, Hou J, Wu JW, Yu S, Zhang Y, Belfield KD, Camargo FD, Lin CP. Quantification of bone marrow interstitial pH and calcium concentration by intravital ratiometric imaging. Nat Commun 2022; 13:393. [PMID: 35046411 PMCID: PMC8770570 DOI: 10.1038/s41467-022-27973-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
The fate of hematopoietic stem cells (HSCs) can be directed by microenvironmental factors including extracellular calcium ion concentration ([Ca2+]e), but the local [Ca2+]e around individual HSCs in vivo remains unknown. Here we develop intravital ratiometric analyses to quantify the absolute pH and [Ca2+]e in the mouse calvarial bone marrow, taking into account the pH sensitivity of the calcium probe and the wavelength-dependent optical loss through bone. Unexpectedly, the mean [Ca2+]e in the bone marrow (1.0 ± 0.54 mM) is not significantly different from the blood serum, but the HSCs are found in locations with elevated local [Ca2+]e (1.5 ± 0.57 mM). With aging, a significant increase in [Ca2+]e is found in M-type cavities that exclusively support clonal expansion of activated HSCs. This work thus establishes a tool to investigate [Ca2+]e and pH in the HSC niche with high spatial resolution and can be broadly applied to other tissue types.
Collapse
Affiliation(s)
- S-C A Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - J Hou
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - J W Wu
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - S Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, NJ, 07102, USA
| | - Y Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, NJ, 07102, USA
| | - K D Belfield
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, NJ, 07102, USA
| | - F D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - C P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Odierna GL, Phillips WD. The Safety Factor for Neuromuscular Transmission: Effects of Dimethylsulphoxide, Cannabinoids and Synaptic Homeostasis. J Neuromuscul Dis 2021; 8:831-844. [PMID: 34334412 DOI: 10.3233/jnd-210654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BackgroundIn myasthenia gravis, impaired postsynaptic sensitivity to acetylcholine results in failure of neuromuscular transmission and fatiguing muscle weakness.ObjectiveDevelop an ex vivo muscle contraction assay to test cannabinoids and other substances that might act on the myasthenic neuromuscular junction to restore control of the muscle.MethodsTubocurarine was added to an ex vivo, mouse phrenic nerve-hemidiaphragm muscle preparation to reduce acetylcholine sensitivity. This produced a myasthenia-like decrement in twitch force during a train of 10 nerve impulses (3 / sec). Endplate potential (EPP) recordings were used to confirm and extend the findings.ResultsSurprisingly, addition to the bath of dimethylsulphoxide (DMSO), at concentrations as low as 0.1%(v/v), partially reversed the decrement in nerve-evoked force. Intracellular electrophysiology, conducted in the presence of tubocurarine, showed that DMSO increased the amplitudes of both the spontaneous miniature EPP (MEPP) and the (nerve-evoked) EPP. In the absence of tubocurarine (synaptic potentials at physiological levels), an adaptive fall in quantal content negated the DMSO-induced rise in EPP amplitude. The effects of cannabinoid receptor agonists (solubilized with DMSO) in the contraction assay do not support their further exploration as useful therapeutic agents for myasthenia gravis. CP 55,940 (a dual agonist for cannabinoid receptor types 1 and 2) reversed the beneficial effects of DMSO.Conclusions:We demonstrate a powerful effect of DMSO upon quantal amplitude that might mislead pharmacological studies of synaptic function wherever DMSO is used as a drug vehicle. Our results also show that compounds targeting impaired neuromuscular transmission should be tested under myasthenic-like conditions, so as to avoid confounding effects of synaptic homeostasis.
Collapse
Affiliation(s)
- Gianmaria Lorenzo Odierna
- Discipline of Physiology and Bosch Institute, The University of Sydney, NSW, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - William Donald Phillips
- Discipline of Physiology and Bosch Institute, The University of Sydney, NSW, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
HEMATOLOGIC AND BIOCHEMICAL VALUES OF THE JUVENILE EASTERN GRAY SQUIRREL ( SCIURUS CAROLINENSIS). J Zoo Wildl Med 2021; 50:644-649. [PMID: 33517634 DOI: 10.1638/2018-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 11/21/2022] Open
Abstract
Venous blood samples were collected from 64 apparently healthy juvenile Eastern gray squirrels (Sciurus carolinensis) after sedation with midazolam at the Wildlife Center of Texas located in Houston, Texas, during 2012. Blood gas (pH, PCO2, PO2, base excess, bicarbonate, oxygen saturation), electrolyte (sodium, potassium), biochemical (total CO2, ionized calcium, glucose), and hematologic parameters (hematocrit, hemoglobin, complete blood count) were determined using the i-STAT point-of-care analyzer. Sex did not affect any analyte. All squirrels recovered uneventfully and were successfully rehabilitated and released. Most values were as expected based on comparison to other young rodent species. These analyte data for healthy juvenile Eastern gray squirrels may be useful in assessment of Eastern gray squirrel population health and management and treatment of individual squirrels presented in need of medical care.
Collapse
|
5
|
Laasmaa M, Branovets J, Barsunova K, Karro N, Lygate CA, Birkedal R, Vendelin M. Altered calcium handling in cardiomyocytes from arginine-glycine amidinotransferase-knockout mice is rescued by creatine. Am J Physiol Heart Circ Physiol 2021; 320:H805-H825. [PMID: 33275525 DOI: 10.1152/ajpheart.00300.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 01/14/2023]
Abstract
The creatine kinase system facilitates energy transfer between mitochondria and the major ATPases in the heart. Creatine-deficient mice, which lack arginine-glycine amidinotransferase (AGAT) to synthesize creatine and homoarginine, exhibit reduced cardiac contractility. We studied how the absence of a functional CK system influences calcium handling in isolated cardiomyocytes from AGAT-knockouts and wild-type littermates as well as in AGAT-knockout mice receiving lifelong creatine supplementation via the food. Using a combination of whole cell patch clamp and fluorescence microscopy, we demonstrate that the L-type calcium channel (LTCC) current amplitude and voltage range of activation were significantly lower in AGAT-knockout compared with wild-type littermates. Additionally, the inactivation of LTCC and the calcium transient decay were significantly slower. According to our modeling results, these changes can be reproduced by reducing three parameters in knockout mice when compared with wild-type: LTCC conductance, the exchange constant of Ca2+ transfer between subspace and cytosol, and SERCA activity. Because tissue expression of LTCC and SERCA protein were not significantly different between genotypes, this suggests the involvement of posttranslational regulatory mechanisms or structural reorganization. The AGAT-knockout phenotype of calcium handling was fully reversed by dietary creatine supplementation throughout life. Our results indicate reduced calcium cycling in cardiomyocytes from AGAT-knockouts and suggest that the creatine kinase system is important for the development of calcium handling in the heart.NEW & NOTEWORTHY Creatine-deficient mice lacking arginine-glycine amidinotransferase exhibit compromised cardiac function. Here, we show that this is at least partially due to an overall slowing of calcium dynamics. Calcium influx into the cytosol via the L-type calcium current (LTCC) is diminished, and the rate of the sarcoendoplasmic reticulum calcium ATPase (SERCA) pumping calcium back into the sarcoplasmic reticulum is slower. The expression of LTCC and SERCA did not change, suggesting that the changes are regulatory.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the British Heart Foundation Centre of Research Excellence, University of Oxford, Tallinn, United Kingdom
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
6
|
Mittal A, Park PD, Mitchell R, Fang H, Bagher P. Comparison of Adrenergic and Purinergic Receptor Contributions to Vasomotor Responses in Mesenteric Arteries of C57BL/6J Mice and Wistar Rats. J Vasc Res 2020; 58:1-15. [PMID: 33311016 DOI: 10.1159/000511462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The sympathetic nervous system can modulate arteriolar tone through release of adenosine triphosphate and norepinephrine, which bind to purinergic and adrenergic receptors (ARs), respectively. The expression pattern of these receptors, as well as the composition of neurotransmitters released from perivascular nerves (PVNs), can vary both in organ systems within and across species, such as mice and rats. OBJECTIVE This study explores the function of α1A subtypes in mouse and rat third-order mesenteric arteries and investigates PVN-mediated vasoconstriction to identify which neurotransmitters are released from sympathetic PVNs. METHODS Third-order mesenteric arteries from male C57BL/6J mice and Wistar rats were isolated and mounted on a wire myograph for functional assessment. Arteries were exposed to phenylephrine (PE) and then incubated with either α1A antagonist RS100329 (RS) or α1D antagonist BMY7378, before reexposure to PE. Electrical field stimulation was performed by passing current through platinum electrodes positioned adjacent to arteries in the absence and presence of a nonspecific alpha AR blocker phentolamine and/or P2X1-specific purinergic receptor blocker NF449. RESULTS Inhibition of α1 ARs by RS revealed that PE-induced vasoconstriction is primarily mediated through α1A and that the contribution of the α1A AR is greater in rats than in mice. In the mouse model, sympathetic nerve-mediated vasoconstriction is mediated by both ARs and purinergic receptors, whereas in rats, vasoconstriction appeared to only be mediated by ARs and a nonpurinergic neurotransmitter. Further, neither model demonstrated that α1D ARs play a significant role in PE-mediated vasoconstriction. CONCLUSIONS The mesenteric arteries of male C57BL/6J mice and Wistar rats have subtle differences in the signaling mechanisms used to mediate vasoconstriction. As signaling pathways in humans under physiological and pathophysiological conditions become better defined, the current study may inform animal model selection for preclinical studies.
Collapse
Affiliation(s)
- Astha Mittal
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Peter D Park
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Ray Mitchell
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hanwei Fang
- Department of Microbiology and Molecular Medicine University of Geneva, Geneva, Switzerland
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas, USA,
| |
Collapse
|
7
|
König C, Plank AC, Kapp A, Timotius IK, von Hörsten S, Zimmermann K. Thirty Mouse Strain Survey of Voluntary Physical Activity and Energy Expenditure: Influence of Strain, Sex and Day-Night Variation. Front Neurosci 2020; 14:531. [PMID: 32733181 PMCID: PMC7358574 DOI: 10.3389/fnins.2020.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
We measured indirect calorimetry and activity parameters, VO2 and VCO2 to extract respiratory exchange ratio (RER) and energy expenditure in both sexes of 30 inbred mouse strains of 6 genetic families at 9–13 weeks during one photophase and the subsequent scotophase. We observed a continuous distribution of all traits. While males had higher body weights than females, we observed no sex difference for food and water intake. All strains drank and fed more during the night even if they displayed no day–night difference in activity traits. Several strains showed absent or weak day–night variation in one or more activity traits and these included FVB and 129X1, males of 129S1, SWR, NZW, and SM, and females of SJL. In general females showed higher rearing and ambulatory activity with 6 and 9 strains, respectively, showing a sex difference. Fine motor movements, like grooming, showed less sex differences. RER underlied a strong day–night difference and no sex effect. Only FVB females and males of the RIIIS and SM strain had no day–night variation. Energy expenditure underlies a large day–night variation which was absent in SWR and in FVB females and RIIIS males. In general, female bodies had a tendency to higher energy expenditure values, which became a significant difference in C3H, MAMy, SM, DBA1, and BUB. Our data illustrate the diversity of these traits in male and female inbred mice and provide a resource in the selection of strains for future studies.
Collapse
Affiliation(s)
- Christine König
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne-Christine Plank
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Kapp
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ivanna K Timotius
- Machine Learning & Data Analytics Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Electronics Engineering, Satya Wacana Christian University, Salatiga, Indonesia
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Zimmermann
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Curry JN, Saurette M, Askari M, Pei L, Filla MB, Beggs MR, Rowe PS, Fields T, Sommer AJ, Tanikawa C, Kamatani Y, Evan AP, Totonchi M, Alexander RT, Matsuda K, Yu AS. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest 2020; 130:1948-1960. [PMID: 32149733 PMCID: PMC7108907 DOI: 10.1172/jci127750] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
The major risk factor for kidney stone disease is idiopathic hypercalciuria. Recent evidence implicates a role for defective calcium reabsorption in the renal proximal tubule. We hypothesized that claudin-2, a paracellular cation channel protein, mediates proximal tubule calcium reabsorption. We found that claudin-2-null mice have hypercalciuria due to a primary defect in renal tubule calcium transport and papillary nephrocalcinosis that resembles the intratubular plugs in kidney stone formers. Our findings suggest that a proximal tubule defect in calcium reabsorption predisposes to papillary calcification, providing support for the vas washdown hypothesis. Claudin-2-null mice were also found to have increased net intestinal calcium absorption, but reduced paracellular calcium permeability in the colon, suggesting that this was due to reduced intestinal calcium secretion. Common genetic variants in the claudin-2 gene were associated with decreased tissue expression of claudin-2 and increased risk of kidney stones in 2 large population-based studies. Finally, we describe a family in which males with a rare missense variant in claudin-2 have marked hypercalciuria and kidney stone disease. Our findings indicate that claudin-2 is a key regulator of calcium excretion and a potential target for therapies to prevent kidney stones.
Collapse
Affiliation(s)
- Joshua N Curry
- Department of Molecular and Integrative Physiology and
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew Saurette
- Department of Pediatrics and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Masomeh Askari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Lei Pei
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Michael B Filla
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Megan R Beggs
- Department of Pediatrics and
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Sn Rowe
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| | - Timothy Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Andre J Sommer
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - R Todd Alexander
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Alan Sl Yu
- Department of Molecular and Integrative Physiology and
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, and
| |
Collapse
|
9
|
Wakefield CB, Yumol JL, Sacco SM, Sullivan PJ, Comelli EM, Ward WE. Bone structure is largely unchanged in growing male CD-1 mice fed lower levels of vitamin D and calcium than in the AIN-93G diet. Bone Rep 2019; 10:100191. [PMID: 30656199 PMCID: PMC6324019 DOI: 10.1016/j.bonr.2018.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 11/15/2022] Open
Abstract
Background Calcium (Ca) and vitamin D (vit D) in the AIN-93G diet may be higher than required for healthy bone development, and mask the potential benefit of a dietary intervention. Objective The objective was to determine if lower levels of Ca and vit D than is present in the AIN-93G diet supports bone development in growing male CD-1 mice. Methods Weanling male CD-1 mice were randomized to modified AIN-93G diets containing either 100 (Trial 1) or 400 (Trial 2) IU vit D/kg diet within one of two or three Ca levels (0.35, 0.30, or 0.25% Ca diet in Trial 1 or 0.35% or 0.25% in Trial 2) or the AIN-93G diet (1000 IU/kg vit D and 0.5% Ca) from weaning to 4 months of age (n = 13–15/group). At 2 and 4 months of age, BMD and structural properties of the tibia were analyzed in vivo. Structure of lumbar vertebra 4 (L4) and mandible, and femur strength were assessed ex vivo at age 4 months. Results There were no differences in tibia, L4, and mandible structure between the AIN-93G diet and the 0.35% Ca groups at either vit D level. A few structure outcomes were compromised with the 0.25 and/or 0.3% Ca diets but there were no differences in femur biomechanical strength compared to AIN-93G group in either Trial. Conclusion At 400 or 100 IU vit D/kg diet, Ca can be lowered to 0.35% without detriment to BMD or bone structure while bone strength is not altered at lower Ca (0.25%) compared to CD-1 mice fed AIN-93G diet. Because of genetic variation in CD-1 mice among different breeding facilities, results in CD-1 mice from other facilities may differ from the present study.
Collapse
Key Words
- AIN-93G
- BMD, bone mineral density
- BV/TV, percent bone volume
- Bone mineral density
- Bone structure
- Ca, calcium
- Calcium
- Conn.D, connectivity density
- Ct.Ar/Tt.Ar, cortical area fraction
- Ct.Th, cortical thickness
- DA, degree anisotropy
- Ec.Pm, endocortical perimeter
- Ecc., eccentricity
- L4, lumbar vertebra 4
- Ma.Ar, medullary area
- Ps.Pm, periosteal perimeter
- ROI, region of interest
- Rodent diet
- Tb.N, trabecular number
- Tb.Sp, trabecular separation
- Tb.Th, trabecular thickness
- Vitamin D
- vit D, vitamin D
- μCT, micro-computed tomography
Collapse
Affiliation(s)
| | - Jenalyn L. Yumol
- Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Sandra M. Sacco
- Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | | | - Elena M. Comelli
- Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, Ontario, Canada
| | - Wendy E. Ward
- Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Health Sciences, Brock University, St. Catharines, Ontario, Canada
- Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Corresponding author at: Department of Kinesiology, Faculty of Applied Health Science, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
10
|
Nelson CA, Wilen CB, Dai YN, Orchard RC, Kim AS, Stegeman RA, Hsieh LL, Smith TJ, Virgin HW, Fremont DH. Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. Proc Natl Acad Sci U S A 2018; 115:E9201-E9210. [PMID: 30194229 PMCID: PMC6166816 DOI: 10.1073/pnas.1805797115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.
Collapse
Affiliation(s)
- Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert C Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur S Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Roderick A Stegeman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Leon L Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Thomas J Smith
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
11
|
Genetic control of oromotor phenotypes: A survey of licking and ingestive behaviors in highly diverse strains of mice. Physiol Behav 2017; 177:34-43. [PMID: 28411104 DOI: 10.1016/j.physbeh.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
Abstract
In order to examine genetic influences on fluid ingestion, 20-min intake of either water or 0.1M sucrose was measured in a lickometer in 18 isogenic strains of mice, including 15 inbred strains and 3 F1 hybrid crosses. Intake and licking data were examined at a number of levels, including lick rate as defined by mean or median interlick interval, as well as several microstructural parameters (i.e. burst-pause structure). In general, strain variation for ingestive phenotypes were correlated across water and sucrose in all strains, indicating fundamental, rather than stimulus-specific, mechanisms of intake. Strain variation was substantial and robust, with heritabilities for phenotypes ranging from 0.22 to 0.73. For mean interlick interval (MPI; a measure of lick rate) strains varied continuously from 94.3 to 127.0ms, a range consistent with previous studies. Furthermore, variation among strains for microstructural traits such as burst size and number suggested that strains possess different overall ingestive strategies, with some favoring more short bursts, and others favoring fewer, long bursts. Strains also varied in cumulative intake functions, exhibiting both linear and decelerated rates of intake across the session.
Collapse
|
12
|
McKee TJ, Komarova SV. Is it time to reinvent basic cell culture medium? Am J Physiol Cell Physiol 2017; 312:C624-C626. [PMID: 28228375 DOI: 10.1152/ajpcell.00336.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Turney J McKee
- Faculty of Dentistry, McGill University, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Triggered activity in atrial myocytes is influenced by Na +/Ca 2+ exchanger activity in genetically altered mice. J Mol Cell Cardiol 2016; 101:106-115. [PMID: 27838371 DOI: 10.1016/j.yjmcc.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 02/05/2023]
Abstract
AIMS In atrial fibrillation, increased function of the Na+/Ca2+-exchanger (NCX) is one among several electrical remodeling mechanisms. METHODS/RESULTS Using the patch-clamp- and Ca2+ imaging-methods, we investigated atrial myocytes from NCX-homozygous-overexpressor (OE)- and heterozygous-knockout (KO)-mice and their corresponding wildtypes (WTOE; WTKO). NCX mediated Ca2+ extrusion capacity was reduced in KO and increased in OE. There was no evidence for structural or molecular remodeling. During a proarrhythmic pacing-protocol, the number of low amplitude delayed afterdepolarizations (DADs) was unaltered in OE vs. WTOE and KO vs. WTKO. However, DADs triggered full spontaneous action potentials (sAP) significantly more often in OE vs. WTOE (ratio sAP/DAD: OE:0.18±0.05; WTOE:0.02±0.02; p<0.001). Using the same protocol, a DAD triggered an sAP by tendency less often in KO vs. WTKO (p=0.06) and significantly less often under a more aggressive proarrhythmic protocol (ratio sAP/DAD: KO:0.01±0.003; WT KO: 0.12±0.05; p=0.007). The DAD amplitude was increased in OE vs. WTOE and decreased in KO vs. WTKO. There were no differences in SR-Ca2+-load, the number of spontaneous Ca2+-release-events or IKACh/IK1. CONCLUSIONS Atrial myocytes with increased NCX expression exhibited increased vulnerability towards sAPs while atriomyocytes with reduced NCX expression were protected. The underlying mechanism consists of a modification of the DAD-amplitude by the level of NCX-activity. Thus, although the number of spontaneous Ca2+-releases and therefore DADs is unaltered, the higher DAD-amplitude in OE made a transgression of the voltage-threshold of an sAP more likely. These findings indicate that the level of NCX activity could influence triggered activity in atrial myocytes independent of possible remodeling processes.
Collapse
|
14
|
Martin LJ, Sollars SI. Contributory role of sex differences in the variations of gustatory function. J Neurosci Res 2016; 95:594-603. [DOI: 10.1002/jnr.23819] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Louis J. Martin
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| | - Suzanne I. Sollars
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| |
Collapse
|
15
|
Khokhlova ON, Tukhovskaya EA, Kravchenko IN, Sadovnikova ES, Pakhomova IA, Kalabina EA, Lobanov AV, Shaykhutdinova ER, Ismailova AM, Murashev AN. Using Tiletamine-Zolazepam-Xylazine Anesthesia Compared to CO 2-inhalation for Terminal Clinical Chemistry, Hematology, and Coagulation Analysis in Mice. J Pharmacol Toxicol Methods 2016; 84:11-19. [PMID: 27773843 DOI: 10.1016/j.vascn.2016.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/13/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023]
Abstract
INTRODUCTION It is important that the method of anesthesia of mice does not considerably alter the animal's physiological and metabolic status before terminal blood sampling taken in order to analyze clinical pathology parameters. METHODS Hematology, hemostasis, and clinical chemistry parameters were compared in male and female BALB/c mice exposed to either tiletamine-zolazepam-xylazine (TZX) anesthesia or euthanasia in carbon dioxide (CO2) chamber to reveal an alternative method of anesthesia vs. the recommended CO2 inhalation. Blood samples were taken from the inferior vena cava. RESULTS Clinical blood parameters in mice exposed to CO2 inhalation or TZX anesthesia proved to be substantially different. The TZX group had lower activated partial thromboplastin time (APTT) and fibrinogen (statistically in males and tending in females) and lower platelets (PLT), red blood cells (RBC), hemoglobin (HGB), and white blood cells (WBC) in both sexes. TZX anesthesia resulted in lower blood serum concentrations of total protein, albumin and globulins, creatinine in males (higher in females); cholesterol, triglycerides, alanine aminotransferase (АLT) and alkaline phosphatase (AP) in both sexes, and bilirubin in males. The calcium level decreased in TZX-anesthetized males and females while the phosphates decreased only in females. The volume of serum obtained from females of TZX group was approximately two times higher than in the CO2-anesthetized group, with the degree of hemolysis tending to decrease. DISCUSSION The studied method of mouse anesthesia, followed by terminal blood sampling and analysis of clinical pathology parameters, suggests that TZX is a good alternative to CO2 inhalation in toxicological and other nonclinical studies. The differences in hemostasis, hematology, and clinical chemistry parameters between these groups are supposedly associated with alterations in physiological and metabolic status of mice under conditions of increasing hypoxia, respiratory standstill, and circulatory arrest after CO2 inhalation.
Collapse
Affiliation(s)
- Oksana N Khokhlova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena A Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Irina N Kravchenko
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena S Sadovnikova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Irina A Pakhomova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elena A Kalabina
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Alexander V Lobanov
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Elvira R Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino 142290, Russia.
| |
Collapse
|
16
|
Abstract
The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination.
Collapse
|
17
|
Van Goor A, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress. BMC Genomics 2016; 17:287. [PMID: 27076351 PMCID: PMC4831167 DOI: 10.1186/s12864-016-2601-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. RESULTS There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. CONCLUSIONS The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the response to heat stress in chickens. Several candidate genes were identified, giving additional insight into potential mechanisms of physiologic response to high ambient temperatures.
Collapse
Affiliation(s)
| | | | - Michael E Persia
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
18
|
Vogt G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 2015; 40:159-204. [PMID: 25740150 DOI: 10.1007/s12038-015-9506-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term 'stochastic developmental variation' (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviously mediated by molecular and higher-order epigenetic mechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most pathogens are asexuals that exploit this third source of phenotypic variation to modify infectivity and resistance to antibiotics. Since SDV affects all types of organisms and almost all aspects of life, it urgently requires more intense research and a better integration into biological thinking.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany,
| |
Collapse
|
19
|
Poole RL, Aleman TR, Ellis HT, Tordoff MG. Maltodextrin Acceptance and Preference in Eight Mouse Strains. Chem Senses 2015; 41:45-52. [PMID: 26464499 DOI: 10.1093/chemse/bjv056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference.
Collapse
Affiliation(s)
- Rachel L Poole
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Tiffany R Aleman
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Hillary T Ellis
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Goudarzi M, Weber WM, Chung J, Doyle-Eisele M, Melo DR, Mak TD, Strawn SJ, Brenner DJ, Guilmette R, Fornace AJ. Serum Dyslipidemia Is Induced by Internal Exposure to Strontium-90 in Mice, Lipidomic Profiling Using a Data-Independent Liquid Chromatography-Mass Spectrometry Approach. J Proteome Res 2015; 14:4039-49. [PMID: 26262552 DOI: 10.1021/acs.jproteome.5b00576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite considerable research into the environmental risks and biological effects of exposure to external beam γ rays, incorporation of radionuclides has largely been understudied. This dosimetry and exposure risk assessment is challenging for first responders in the field during a nuclear or radiological event. Therefore, we have developed a workflow for assessing injury responses in easily obtainable biofluids, such as urine and serum, as the result of exposure to internal emitters cesium-137 ((137)Cs) and strontium-90 ((90)Sr) in mice. Here we report on the results of the untargeted lipidomic profiling of serum from mice exposed to (90)Sr. We also compared these results to those from previously published (137)Cs exposure to determine any differences in cellular responses based on exposure type. The results of this study conclude that there is a gross increase in the serum abundance of triacylglycerides and cholesterol esters, while phostaphatidylcholines and lysophosphatidylcholines displayed decreases in their serum levels postexposure at study days 4, 7, 9, 25, and 30, with corresponding average cumulative skeleton doses ranging from 1.2 ± 0.1 to 5.2 ± 0.73 Gy. The results show significant perturbations in serum lipidome as early as 2 days postexposure persisting until the end of the study (day 30).
Collapse
Affiliation(s)
- Maryam Goudarzi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , 3970 Reservoir Rd. NW, Washington, D.C. 20057, United States
| | - Waylon M Weber
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, New Mexico 87108, United States
| | - Juijung Chung
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , 3970 Reservoir Rd. NW, Washington, D.C. 20057, United States
| | - Melanie Doyle-Eisele
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, New Mexico 87108, United States
| | - Dunstana R Melo
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, New Mexico 87108, United States
| | - Tytus D Mak
- Mass Spectrometry Data Center, National Institute of Standards and Technology , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Steven J Strawn
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , 3970 Reservoir Rd. NW, Washington, D.C. 20057, United States
| | - David J Brenner
- Center for Radiological Research, Columbia University , 630 West 168th Street, VC11-240, New York, New York 10032, United States
| | - Raymond Guilmette
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, New Mexico 87108, United States
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , 3970 Reservoir Rd. NW, Washington, D.C. 20057, United States.,Lombardi Comprehensive Cancer Center, Georgetown University , Washington, D.C. 20057, United States
| |
Collapse
|
21
|
Tordoff MG, Downing A, Voznesenskaya A. Macronutrient selection by seven inbred mouse strains and three taste-related knockout strains. Physiol Behav 2014; 135:49-54. [PMID: 24912134 DOI: 10.1016/j.physbeh.2014.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Many animals thrive when given a choice of separate sources of macronutrients. How they do this is unknown. Here, we report some studies comparing the spontaneous choices between carbohydrate- and fat-containing food sources of seven inbred mouse strains (B6, BTBR, CBA, JF1, NZW, PWD and PWK) and three mouse models with genetic ablation of taste transduction components (T1R3, ITPR3 and CALHM1). For 8days, each mouse could choose between sources of carbohydrate (CHO-P; sucrose-cornstarch) and fat (Fat-P; vegetable shortening) with each source also containing protein (casein). We found that the B6 and PWK strains markedly preferred the CHO-P diet to the Fat-P diet, the BTBR and JF1 strains markedly preferred the Fat-P diet to the CHO-P diet, and the CBA, NZW and PWD strains showed equal intakes of the two diets (by weight). Relative to their WT littermates, ITPR3 and CALHM1 KO mice had elevated Fat-P preferences but T1R3 KO mice did not. There were differences among strains in adaption to the diet choice and there were differences in response between males and females on some days. These results demonstrate the diverse responses to macronutrients of inbred mice and they point to the involvement of chemosensory detectors (but not sweetness) as contributors to macronutrient selection.
Collapse
|
22
|
Hwang I, Yang H, Kang HS, Ahn C, Hong EJ, An BS, Jeung EB. Alteration of tight junction gene expression by calcium- and vitamin D-deficient diet in the duodenum of calbindin-null mice. Int J Mol Sci 2013; 14:22997-3010. [PMID: 24264043 PMCID: PMC3856102 DOI: 10.3390/ijms141122997] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 01/01/2023] Open
Abstract
Calcium absorption is regulated by both active (transcellular) and passive (paracellular) pathways. Although each pathway has been studied, correlations between the two pathways have not been well elucidated. In previous investigations, the critical transcellular proteins, calbindin-D9k (CaBP-9k) and -D28k (CaBP-28k), were shown to affect other transcellular pathways by buffering intracellular calcium concentrations. The rate of paracellular calcium transport in the duodenum is generally determined by the expression of tight junction genes. In the present study, the effect of dietary calcium and/or vitamin D supplementation on the expression of tight junction genes (occludin, ZO-1 and claudin 2, 10b, 12 and 15) in the duodenum of CaBP-9k- and/or -28k-deficient mice was examined. With a normal diet, the expression of most tight junction genes in the duodenum was significantly increased in CaBP-9k knockout (KO) mice compared to wild-type (WT) animals. With a calcium- and vitamin D-deficient diet, tight junction gene expression was significantly decreased in the duodenum of the CaBP-9k KO mice. These findings suggest that expression of paracellular tight junction genes is regulated by transcellular CaBP proteins, suggesting that active and passive calcium transport pathways may function cooperatively.
Collapse
Affiliation(s)
- Inho Hwang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea; E-Mails: (I.H.); (H.Y.); (H.-S.K.); (C.A.); (E.-J.H.)
| | - Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea; E-Mails: (I.H.); (H.Y.); (H.-S.K.); (C.A.); (E.-J.H.)
| | - Hong-Seok Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea; E-Mails: (I.H.); (H.Y.); (H.-S.K.); (C.A.); (E.-J.H.)
| | - Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea; E-Mails: (I.H.); (H.Y.); (H.-S.K.); (C.A.); (E.-J.H.)
| | - Eui-Ju Hong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea; E-Mails: (I.H.); (H.Y.); (H.-S.K.); (C.A.); (E.-J.H.)
| | - Beum-Soo An
- Department of Biomaterials Science, College of National Resources & Life Science, Pusan National University, 1268-50 Samrangjin-ro, Samrangjin-eup, Miryang-si, Gyeongsangnam-do 627-706, Korea; E-Mail:
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea; E-Mails: (I.H.); (H.Y.); (H.-S.K.); (C.A.); (E.-J.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-43-261-2397; Fax: +82-43-267-3150
| |
Collapse
|
23
|
Voznesenskaya A, Tordoff MG. Influence of cross-fostering on preference for calcium chloride in C57BL/6J and PWK/PhJ mice. Physiol Behav 2013; 122:159-62. [PMID: 24041724 DOI: 10.1016/j.physbeh.2013.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
We investigated whether maternal influences during the suckling period alter the avidity for calcium, using as models mice from the calcium-preferring PWK/PhJ strain and the calcium-avoiding C57BL/6J strain. We found that milk collected from PWK/PhJ dams had higher calcium concentrations than did milk collected from C57BL/6J dams. Despite this, cross-strain fostering had no effect on adult calcium preferences relative to mice of the same strain that were within-strain fostered or not fostered. Our results indicate that calcium avoidance by C57BL/6J mice and acceptance by PWK/PhJ mice are unaffected by maternal environment during the suckling period.
Collapse
Affiliation(s)
- Anna Voznesenskaya
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA, United States; A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia.
| | | |
Collapse
|
24
|
Berndt A, Sundberg BA, Silva KA, Kennedy VE, Richardson MA, Li Q, Bronson RT, Uitto J, Sundberg JP. Phenotypic characterization of the KK/HlJ inbred mouse strain. Vet Pathol 2013; 51:846-57. [PMID: 24009271 DOI: 10.1177/0300985813501335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detailed histopathological diagnoses of inbred mouse strains are important for interpreting research results and defining novel models of human diseases. The aim of this study was to histologically detect lesions affecting the KK/HlJ inbred strain. Mice were examined at 6, 12, and 20 months of age and near natural death (ie, moribund mice). Histopathological lesions were quantified by percentage of affected mice per age group and sex. Predominant lesions were mineralization, hyperplasia, and fibro-osseous lesions. Mineralization was most frequently found in the connective tissue dermal sheath of vibrissae, the heart, and the lung. Mineralization was also found in many other organs but to a lesser degree. Hyperplasia was found most commonly in the pancreatic islets, and fibro-osseous lesions were observed in several bones. The percentage of lesions increased with age until 20 months. This study shows that KK/HlJ mice demonstrate systemic aberrant mineralization, with greatest frequency in aged mice. The detailed information about histopathological lesions in the inbred strain KK/HlJ can help investigators to choose the right model and correctly interpret the experimental results.
Collapse
Affiliation(s)
- A Berndt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - K A Silva
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - M A Richardson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Q Li
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | | - J Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | |
Collapse
|
25
|
Tordoff MG, Ellis HT. Taste dysfunction in BTBR mice due to a mutation of Itpr3, the inositol triphosphate receptor 3 gene. Physiol Genomics 2013; 45:834-55. [PMID: 23859941 DOI: 10.1152/physiolgenomics.00092.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The BTBR T+ tf/J (BTBR) mouse strain is indifferent to exemplars of sweet, Polycose, umami, bitter, and calcium tastes, which share in common transduction by G protein-coupled receptors (GPCRs). To investigate the genetic basis for this taste dysfunction, we screened 610 BTBR×NZW/LacJ F2 hybrids, identified a potent QTL on chromosome 17, and isolated this in a congenic strain. Mice carrying the BTBR/BTBR haplotype in the 0.8-Mb (21-gene) congenic region were indifferent to sweet, Polycose, umami, bitter, and calcium tastes. To assess the contribution of a likely causative culprit, Itpr3, the inositol triphosphate receptor 3 gene, we produced and tested Itpr3 knockout mice. These were also indifferent to GPCR-mediated taste compounds. Sequencing the BTBR form of Itpr3 revealed a unique 12 bp deletion in Exon 23 (Chr 17: 27238069; Build 37). We conclude that a spontaneous mutation of Itpr3 in a progenitor of the BTBR strain produced a heretofore unrecognized dysfunction of GPCR-mediated taste transduction.
Collapse
|
26
|
Voznesenskaya A, Tordoff MG. Influence of estrous and circadian cycles on calcium intake of the rat. Physiol Behav 2013; 112-113:56-60. [PMID: 23458631 DOI: 10.1016/j.physbeh.2013.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/12/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022]
Abstract
The food, water and sodium intake of laboratory rats fluctuates over the circadian and estrous cycles. Blood calcium and calcium-regulating hormones also wax and wane in response to these cycles, raising the possibility that the same might be true of calcium intake. To investigate this, we monitored the fluid intakes of female Long-Evans rats given a choice between water and 10mM CaCl2 solution for two consecutive estrous cycles. We found that calcium solution intake changed over the circadian cycle in a similar manner to water intake; the preference scores for CaCl2 solution remained stable. We did not detect any changes in calcium solution intake or preference scores during the estrous cycle despite a decrease in fluid intake at estrus. Thus, fluctuations in intake of calcium solution during the circadian cycle appear to be nonspecific and probably the result of changes in fluid balance. Estrous changes either do not influence calcium intake or their effects are masked by other factors, resulting in stable levels of calcium intake.
Collapse
Affiliation(s)
- Anna Voznesenskaya
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA.
| | | |
Collapse
|
27
|
Liederer BM, Berezhkovskiy LM, Ubhayakar SS, Deng Y. An Alternative Approach for Quantitative Bioanalysis using Diluted Blood to Profile Oral Exposure of Small Molecule Anticancer Drugs in Mice. J Pharm Sci 2013; 102:750-60. [DOI: 10.1002/jps.23395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 11/11/2022]
|
28
|
Geelen T, Yeo SY, Paulis LEM, Starmans LWE, Nicolay K, Strijkers GJ. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages. J Nanobiotechnology 2012; 10:37. [PMID: 22929153 PMCID: PMC3495836 DOI: 10.1186/1477-3155-10-37] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. Results Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. Conclusions Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to inflammatory cells.
Collapse
Affiliation(s)
- Tessa Geelen
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, PO Box 513, Eindhoven, MB, 5600, the Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Golden GJ, Voznesenskaya A, Tordoff MG. Chorda tympani nerve modulates the rat's avoidance of calcium chloride. Physiol Behav 2011; 105:1214-8. [PMID: 22230254 DOI: 10.1016/j.physbeh.2011.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
Calcium intake depends on orosensory factors, implying the presence of a mechanism for calcium detection in the mouth. To better understand how information about oral calcium is conveyed to the brain, we examined the effects of chorda tympani nerve transection on calcium chloride (CaCl(2)) taste preferences and thresholds in male Wistar rats. The rats were given bilateral transections of the chorda tympani nerve (CTX) or control surgery. After recovery, they received 48-h two-bottle tests with an ascending concentration series of CaCl(2). Whereas control rats avoided CaCl(2) at concentrations of 0.1mM and higher, rats with CTX were indifferent to CaCl(2) concentrations up to 10mM. Rats with CTX had significantly higher preference scores for 0.316 and 3.16 mM CaCl(2) than did control rats. The results imply that the chorda tympani nerve is required for the normal avoidance of CaCl(2) solution.
Collapse
Affiliation(s)
- Glen J Golden
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA, USA
| | | | | |
Collapse
|
30
|
Cherukuri CM, McCaughey SA, Tordoff MG. Comparison of differences between PWD/PhJ and C57BL/6J mice in calcium solution preferences and chorda tympani nerve responses. Physiol Behav 2011; 102:496-502. [PMID: 21219921 PMCID: PMC3049455 DOI: 10.1016/j.physbeh.2010.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
We used the C57BL/6J (B6) and PWD/PhJ (PWD) mouse strains to investigate the controls of calcium intake. Relative to the B6 strain, the PWD strain had higher preferences in two-bottle choice tests for CaCl(2), calcium lactate (CaLa), MgCl(2), citric acid and quinine hydrochloride, but not for sucrose, KCl or NaCl. We also measured taste-evoked chorda tympani (CT) nerve activity in response to oral application of these compounds. Electrophysiological results paralleled the preference test results, with larger responses in PWD than in B6 mice for those compounds that were more highly preferred for the former strain. The strain differences were especially large for tonic, rather than phasic, chorda tympani activity. These data establish the PWD strain as a "calcium-preferring" strain and suggest that differences between B6 and PWD mice in taste transduction or a related peripheral event contributes to the differences between the strains in preferences for calcium solutions.
Collapse
Affiliation(s)
- Chandra M Cherukuri
- Department of Physiology and Health Science, Ball State University, Muncie, IN 47306, USA
| | | | | |
Collapse
|
31
|
Shuid AN, Mohamad S, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, Othman F, Suhaimi F, Muhammad N, Soelaiman IN. Effects of calcium supplements on fracture healing in a rat osteoporotic model. J Orthop Res 2010; 28:1651-6. [PMID: 20572125 DOI: 10.1002/jor.21180] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process, which is further complicated if the bone is osteoporotic. Calcium is one of the important minerals in bone and has been found to prevent osteoporosis but its role in fracture healing of osteoporotic bone is still unclear. We carried out a study on the effects of calcium supplementation on the late phase healing of fractured osteoporotic bone using an ovariectomized rat model. Twenty-four female Sprague-Dawley rats were divided into three groups: sham-operated (SO), ovariectomized-control (OVXC), and ovariectomized + calcium supplements (Ca). The right femurs of all the rats were fractured at mid-epiphysis and a K-wire was inserted for internal fixation. After 2 months of treatment, the rats were sacrificed and the femora were dissected out for radiological and biomechanical assessment. As expected, osteoporosis resulted in impaired healing as shown by the poor radiological and biomechanical properties of the OVXC group. CT scans showed significantly lower callus volumes in the SO and Ca groups compared to the OVXC group. Radiological scoring of fracture healing and callus staging of the SO and Ca groups were better than the OVXC group. However, the biomechanical parameters of the Ca group were significantly lower than the SO group and similar to the OVXC group. Therefore, calcium supplements may appear to improve fracture healing of osteoporotic bone but failed to improve strength.
Collapse
Affiliation(s)
- Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 KL, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
There has been extensive work to elucidate the behavioral and physiological mechanisms responsible for taste preferences of the rat but little attempt to delineate the underlying genetic architecture. Here, we exploit the FHH-Chr n(BN)/Mcwi consomic rat strain set to identify chromosomes carrying genes responsible for taste preferences. We screened the parental Fawn Hooded Hypertensive (FHH) and Brown Norway (BN) strains and 22 FHH-Chr n(BN) consomic strains, with 96-h 2-bottle tests, involving a choice between water and each of the following 16 solutions: 10 mM NaCl, 237 mM NaCl, 32 mM CaCl(2), 1 mM saccharin, 100 mM NH(4)Cl, 32 mM sucrose, 100 mM KCl, 4% ethanol, 1 mM HCl, 10 mM monosodium glutamate, 1 mM citric acid, 32 microM quinine hydrochloride, 1% corn oil, 32 microM denatonium, 1% Polycose, and 1 microM capsaicin. Depending on the taste solution involved, between 1 and 16 chromosomes were implicated in the response. Few of these chromosomes carried genes believed to mediate taste transduction in the mouse, and many chromosomes with no candidate taste genes were revealed. The genetic architecture of taste preferences is considerably more complex than has heretofore been acknowledged.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Abstract
In the U.S. and Europe, most people do not consume the recommended amounts of either calcium or vegetables. We investigated whether there might be a connection; specifically, whether the taste of calcium in vegetables contributes to their bitterness and thus acceptability. We found a strong correlation between the calcium content of 24 vegetables, based on USDA Nutrient Database values, and bitterness, based on the average ratings of 35 people (r = 0.93). Correlations between the content of other nutrients and bitterness were lower and most were not statistically significant. To assess whether it is feasible that humans can detect calcium in vegetables we tested two animal models known to display a calcium appetite. Previous work indicates that calcium solutions are preferentially ingested by PWK/PhJ mice relative to C57BL/6J mice, and by rats deprived of dietary calcium relative to replete controls. In choice tests between collard greens, a high-calcium vegetable, and cabbage, a low-calcium vegetable, the calcium-favoring animals had higher preferences for collard greens than did controls. These observations raise the possibility that the taste of calcium contributes to the bitterness and thus acceptability of vegetables.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA.
| | | |
Collapse
|
34
|
Abstract
Food intake of humans is governed by the food's nutritional value and pleasing taste, but also by other factors such as food cost and availability, cultural imperatives, and social status. The biological determinants of human food intake are not easily parsed from these other factors, making them hard to study against the whirligig aspects of human life in a modern age. The study of animals provides a useful alternative. Humans have a history of studying animal food intake, for agricultural reasons (e.g., pigs and cows), and for personal reasons (e.g., dogs and cats), and these practical concerns have been joined with the appreciation that other models can teach us the principles of behavior, genetics, and nutrition. Thus there is a steady use of the traditional animal models in this type of research, as well as growth in the use of other systems such as worms and flies. Rats and mice occupy a special niche as animal models for two reasons; first, they share with humans a love of the same types of food, and second, they are the target of a number of well-developed genetic tools. The available genetic tools that make mice a popular model include a well-annotated genome (Mouse Build 37), profiles of RNA expression from many tissues, a diverse panel of inbred strains, and the ability to manipulate genes in the whole animal, including removing a gene only in specific tissues (e.g., Cre-lox system). Mice have been harnessed to find genotypes that contribute to sweet-liking, and other studies are underway to understand how genetic variation might at least partially explain other puzzles of human appetites. Animal models provide a way to study the genetic determinants of food selection with experimental rigor and therefore complement human genetics studies.
Collapse
Affiliation(s)
- Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
35
|
Tordoff MG, Alarcon LK, Lawler MP. Preferences of 14 rat strains for 17 taste compounds. Physiol Behav 2008; 95:308-32. [PMID: 18639567 PMCID: PMC2642481 DOI: 10.1016/j.physbeh.2008.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Two-bottle choice tests were used to assess the taste preferences of 8 male and 8 female rats from 3 outbred strains (SD, LE, WI) and 11 inbred strains (BN, BUF, COP, DA, Dahl-S, F344, FHH, LEW, Noble, PVG, SHR). Each rat received a series of 109 48-h tests with a choice between water and a "taste solution". Four to eight concentrations of the following compounds were tested: NaCl, CaCl2, NH4Cl, KCl, MgCl2, saccharin, sucrose, ethanol, HCl, citric acid, quinine hydrochloride (QHCl), caffeine, denatonium, monosodium glutamate (MSG), Polycose, corn oil, and capsaicin. Strain differences (p<0.001) were observed in preferences for at least one concentration of all compounds tested except denatonium (p=0.0015). There were also strain differences in the following ancillary measures: fungiform papillae number, water intake, food intake, and body weight. There were sex differences in food intake and body weight but no concerted sex differences in any of the other measures, including preferences for any taste solution. This comprehensive source of information can be used to guide the choice of appropriate rat strains and taste solution concentrations for future genetic studies.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104-3308, USA.
| | | | | |
Collapse
|
36
|
Tordoff MG, Shao H, Alarcón LK, Margolskee RF, Mosinger B, Bachmanov AA, Reed DR, McCaughey S. Involvement of T1R3 in calcium-magnesium taste. Physiol Genomics 2008; 34:338-48. [PMID: 18593862 PMCID: PMC2519964 DOI: 10.1152/physiolgenomics.90200.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 06/24/2008] [Indexed: 02/05/2023] Open
Abstract
Calcium and magnesium are essential for survival but it is unknown how animals detect and consume enough of these minerals to meet their needs. To investigate this, we exploited the PWK/PhJ (PWK) strain of mice, which, in contrast to the C57BL/6J (B6) and other inbred strains, displays strong preferences for calcium solutions. We found that the PWK strain also has strong preferences for MgCl2 and saccharin solutions but not representative salty, sour, bitter, or umami taste compounds. A genome scan of B6 x PWK F2 mice linked a component of the strain difference in calcium and magnesium preference to distal chromosome 4. The taste receptor gene, Tas1r3, was implicated by studies with 129.B6ByJ-Tas1r3 congenic and Tas1r3 knockout mice. Most notably, calcium and magnesium solutions that were avoided by wild-type B6 mice were preferred (relative to water) by B6 mice null for the Tas1r3 gene. Oral calcium elicited less electrophysiological activity in the chorda tympani nerve of Tas1r3 knockout than wild-type mice. Comparison of the sequence of Tas1r3 with calcium and saccharin preferences in inbred mouse strains found 1) an inverse correlation between calcium and saccharin preference scores across primarily domesticus strains, which was associated with an I60T substitution in T1R3, and 2) a V689A substitution in T1R3 that was unique to the PWK strain and thus may be responsible for its strong calcium and magnesium preference. Our results imply that, in addition to its established roles in the detection of sweet and umami compounds, T1R3 functions as a gustatory calcium-magnesium receptor.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This review makes the case that gene discovery is a worthwhile approach to the study of ingestive behavior in general and to calcium appetite in particular. A description of the methods used to discover genes is provided for non-geneticists. Areas covered include the characterization of an appropriate phenotype, the choice of suitable mouse strains, the generation of a hybrid cross, interval mapping, congenic strain production, and candidate gene analysis. The approach is illustrated with an example involving mice of the C57BL/6J and PWK/PhJ strains, which differ in avidity for calcium solutions. The variation between the strains can be attributed to at least seven quantitative trait loci (QTLs). One of these QTLs is most likely accounted for by Tas1r3, which is a gene involved in the detection of sweet and umami tastes. The discovery of a novel function for a gene with no previously known role in calcium consumption illustrates the power of gene discovery methods to uncover novel mechanisms.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Tordoff MG, Reed DR, Shao H. Calcium taste preferences: genetic analysis and genome screen of C57BL/6J x PWK/PhJ hybrid mice. GENES, BRAIN, AND BEHAVIOR 2008; 7:618-28. [PMID: 18363849 PMCID: PMC2574724 DOI: 10.1111/j.1601-183x.2008.00398.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To characterize the genetic basis of voluntary calcium consumption, we tested C57BL/6J mice (B6; with low avidity for calcium), PWK/PhJ mice (PWK; with high avidity for calcium) and their F(1) and F(2) hybrids. All mice received a series of 96-h two-bottle preference tests with a choice between water and the following: 50 mm CaCl(2), 50 mm calcium lactate, 50 mm MgCl(2), 100 mm KCl, 100 mm NH(4)Cl, 100 mm NaCl, 5 mm citric acid, 30 microm quinine hydrochloride and 2 mm saccharin. Most frequency distributions of the parental and F(1) but not F(2) groups were normally distributed, and there were few sex differences. Reciprocal cross analysis showed that B6 x PWK F(1) mice had a non-specific elevation of fluid intake relative to PWK x B6 F(1) mice. In the F(2) mice, trait correlations were clustered among the divalent salts and the monovalent chlorides. A genome screen involving 116 markers showed 30 quantitative trait loci (QTLs), of which six involved consumption of calcium chloride or lactate. The results show pleiotropic controls of calcium and magnesium consumption that are distinct from those controlling consumption of monovalent chlorides or exemplars of the primary taste qualities.
Collapse
Affiliation(s)
- M G Tordoff
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
39
|
Abstract
To examine whether age influences taste solution preferences, we measured taste preferences of C57BL/6J and 129X1/SvJ mice given a series of 48-h 2-bottle tests with a choice between water and one of the following taste solutions: 2 mM saccharin, 5 mM citric acid, 30 microM quinine hydrochloride, 75 mM sodium chloride (NaCl), 10 mM inosine monophosphate (IMP), 50 mM calcium chloride (CaCl(2)), and 10% ethanol. We tested separate groups of male mice fed Teklad 8604 chow at ages 4, 6, 9, 12, 15, 20, 25, 30, 40, and 50 weeks and retested some of these mice at 54, 75, and 100 weeks and again at 125 weeks. Female mice fed chow were tested at ages 4, 12, 25, and 50 weeks and retested at 54, 75, 100, and 125 weeks. Male mice fed AIN-93G semisynthetic diet were tested at ages 4, 12, 25, and 50 weeks and retested at 54, 75, and 100 weeks. Concentration-response functions for each taste solution were collected from male and female mice fed chow aged 8 or 125 weeks. In general, the results showed that age had little effect on taste preferences. Exceptions included 1) a small increase in quinine hydrochloride preference between 54 and 125 weeks in mice of both strains and sexes, 2) a marked increase in NaCl preference between 4 and 12 weeks in female B6 mice, 3) a gradual decrease in IMP preference between 4 and 125 weeks in male and female 129 mice, 4) a marked decrease in CaCl(2) preference between 54 and 125 weeks in male and female 129 mice, and 5) a marked reduction in ethanol preference between 4 and 12 weeks in male B6 mice fed AIN-93G diet but not chow. These results show that over a wide range and with the exceptions noted, age contributes little to the variation in taste preferences observed in C57BL/6J and 129X1/SvJ mice.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Tordoff MG, Bachmanov AA, Reed DR. Forty mouse strain survey of water and sodium intake. Physiol Behav 2007; 91:620-31. [PMID: 17490693 PMCID: PMC2085363 DOI: 10.1016/j.physbeh.2007.03.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/22/2007] [Accepted: 03/26/2007] [Indexed: 11/25/2022]
Abstract
We measured voluntary water and sodium intakes of 40 inbred strains of mice. Groups of approximately 10 males and approximately 10 females from each strain received a series of 48-h tests with a choice between a bottle of water and a bottle of one of the following: water, 25, 75, and 225 mM NaCl, 25, 75, and 225 sodium lactate. Sodium solution intakes were influenced by strain, sex, anion and concentration: Nine strains drank significantly more chloride than lactate, and only one strain (I/LnJ) drank significantly more lactate than chloride. The other 30 strains drank similar volumes of chloride and lactate. Sodium intakes were higher in females than males of 8 strains and did not differ by sex in the other 32 strains. Some strains had consistently high sodium intakes and preferred all sodium solutions to water (129S1/SvImJ, MA/MyJ, NZW/LacJ and SWR/J), some showed indifference (i.e. preferences not significantly different from 50%) to all concentrations tested (A/J, C57BL/6J, FVB/NJ and SEA/GnJ), and some had consistently low sodium intakes (AKR/J, C3H/HeJ, C57BL/10J, CBA/J, DBA/2J, I/LnJ, JF1/Ms, LP/J, NON/LtJ, PERA/EiJ, PL/J, and RIIIS/J). The results illustrate the diversity of voluntary sodium intake in mice and will assist in the selection of appropriate strains for focused genetic and physiological analyses.
Collapse
|
41
|
Reed DR, Bachmanov AA, Tordoff MG. Forty mouse strain survey of body composition. Physiol Behav 2007; 91:593-600. [PMID: 17493645 PMCID: PMC2085171 DOI: 10.1016/j.physbeh.2007.03.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/22/2007] [Accepted: 03/26/2007] [Indexed: 01/09/2023]
Abstract
We measured body weight and composition of approximately 10 male and approximately 10 female mice from 40 inbred strains. Body composition was assessed in approximately 16-wk old mice that had been individually housed and fed a high-carbohydrate, low-fat diet (AIN-76A) for the previous 8 wk. Carcass lean and fat weights were assessed using a PIXIMus II DEXA and confirmed by fat extraction assay. There was a nearly continuous range of body weights, from a strain mean+/-SE of 11.4+/-0.2 g (MSM/MsJ) to 39.3+/-1.8 g (NON/LtJ). The percentage of body weight that was fat (%Fat) ranged from 16+/-4% (C58/J) to 39+/-2% (NON/LtJ). In general, heavier strains had a higher %Fat (r=0.57) but several light strains were also quite fat (e.g., SPRET/EiJ, body weight=15.7+/-0.6 g, %Fat=26+/-1%). Males were significantly heavier than females in 26 strains and significantly fatter than females in 9 strains; only the KK/H1J strain had fatter females than males. Some of the fattest strains are infrequently used in obesity experiments, for example the JF1/Ms and CBA/J strains. These data illustrate the diversity of body weight and composition in inbred mice. They will serve as a reference standard and assist in the selection of strains for future work.
Collapse
Affiliation(s)
- Danielle R. Reed
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA 19104, USA
| | | | - Michael G. Tordoff
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA 19104, USA
| |
Collapse
|