1
|
Dou X, Zhao L, Li J, Jiang Y. Effect and mechanism of GLP-1 on cognitive function in diabetes mellitus. Front Neurosci 2025; 19:1537898. [PMID: 40171533 PMCID: PMC11959055 DOI: 10.3389/fnins.2025.1537898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Diabetes mellitus (DM) is a metabolic disorder associated with cognitive impairment. Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) have shown neuroprotective effects. Scope of review This review explores the impact of DM on cognitive function. Diabetes-related cognitive impairment is divided into three stages: diabetes-associated cognitive decrements, mild cognitive impairment (MCI), and dementia. GLP-1R agonists (GLP-1RAs) have many functions, such as neuroprotection, inhibiting infection, and metabolic regulation, and show good application prospects in improving cognitive function. The mechanisms of GLP-1RAs neuroprotection may be interconnected, warranting further investigation. Understanding these mechanisms could lead to targeted treatments for diabetes-related cognitive dysfunction. Major conclusions Therefore, this paper reviewed the regulatory effects of GLP-1 on cognitive dysfunction and its possible mechanism. Further research is required to fully explore the potential of GLP-1 and its analogs in this context.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Zhao
- Department of Laboratory Medicine, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jing Li
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Yaqiu Jiang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Turcano P, Savica R, Benarroch E. What Is the Role of Glucagon-Like Peptide 1 Signaling in the Nervous System and Its Potential Neuroprotective Effects? Neurology 2024; 103:e209781. [PMID: 39079072 DOI: 10.1212/wnl.0000000000209781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 01/24/2025] Open
|
3
|
Zhang Y, Wang J, Yang L, Yan X, Qin C, Nie G. Spexin acts as a novel glucose-lowering factor in grass carp (Ctenopharyngodon idella). Biochem Biophys Res Commun 2024; 708:149810. [PMID: 38531222 DOI: 10.1016/j.bbrc.2024.149810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
At present, the physiological roles of various hormones in fish glucose metabolism have been elucidated. Spexin, a 14-amino acids polypeptide, is highly conserved in many species and has functions such as reducing body weight and improving insulin resistance. In this paper, the open reading frame (ORF) of spx21 in grass carp (Ctenopharyngodon idella) was cloned, and the tissue distribution of spx1 and spx2, their direct and indirect regulatory effects on glucose metabolism of grass carp were investigated. The ORF of spx2 gene in grass carp was 279 bp in length. Moreover, spx1 was highly expressed in the adipose tissue, while spx2 was highly expressed in the brain. In vitro, SPX1 and SPX2 showed opposite effects on the glycolytic pathway in the primary hepatocytes. In vivo, intraperitoneal injection of SPX1 and SPX2 significantly reduced serum glucose levels and increased hepatopancreas glycogen contents. Meanwhile, SPX1 and SPX2 promoted the expression of key genes of glycolysis (pk) and glycogen synthesis (gys) in the hepatopancreas at 3 h post injection. As for indirect effects, 1000 nM SPX1 and SPX2 significantly increased insulin-mediated liver type phosphofructokinase (pfkla) mRNA expression and enhanced the inhibitory effects of insulin on glucose-6-phosphatase (g6pase), phosphoenolpyruvate carboxykinase (pepck), glycogen phosphorylase L (pygl) mRNA expression. Our results show that SPX1 and SPX2 have similar indirect effects on the regulation of glucose metabolism that enhance insulin activity, but they exhibit opposite roles in terms of direct effects.
Collapse
Affiliation(s)
- Yingxin Zhang
- College of Life Science, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Junli Wang
- College of Life Science, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Liping Yang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Xiao Yan
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| |
Collapse
|
4
|
Tang H, Shao H, Shaaban CE, Yang K, Brown J, Anton S, Wu Y, Bress A, Donahoo WT, DeKosky ST, Bian J, Guo J. Newer glucose-lowering drugs and risk of dementia: A systematic review and meta-analysis of observational studies. J Am Geriatr Soc 2023; 71:2096-2106. [PMID: 36821780 PMCID: PMC10363181 DOI: 10.1111/jgs.18306] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/01/2023] [Accepted: 01/28/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Preclinical studies have suggested potential beneficial effects of newer glucose-lowering drugs (GLDs) including dipeptidyl peptidase (DPP)-4 inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), and sodium glucose co-transporter-2 (SGLT2) inhibitors, in protecting humans against cognitive decline and dementia. However, population studies aiming to demonstrate such cognitive benefits from newer GLDs have produced mixed findings. This meta-analysis aimed to evaluate the association between newer GLDs and risk of dementia in adults with type 2 diabetes (T2D). METHODS Electronic databases were searched up to March 11, 2022 to include observational studies that examined the association between DPP-4 inhibitors, GLP-1RAs, and SGLT2 inhibitors and risk of dementia (including all-cause dementia, Alzheimer's disease [AD], and vascular dementia [VD]) in people with T2D. We conducted a random-effects meta-analysis to calculate the relative risk (RR) with 95% confidence interval (CI) for each class of newer GLD. RESULTS Ten studies (from nine articles) involving 819,511 individuals with T2D were included. Three studies found that SGLT2 inhibitor users had a lower risk of all-cause dementia than non-SGLT2 inhibitor users (RR, 0.62; 95% CI, 0.39-0.97). Five studies found that users versus nonusers of GLP-1RAs were associated with a significant reduction in the risk of all-cause dementia (RR, 0.72; 95% CI, 0.54-0.97). However, a meta-analysis for AD and VD was unavailable for SGLT2 inhibitors and GLP-1RAs because only one study was included for each drug. In seven studies, users vs. nonusers of DPP-4 inhibitors were significantly associated with a decreased risk of all-cause dementia (RR, 0.84; 95% CI, 0.74-0.94) and VD (RR, 0.59; 95% CI, 0.47-0.75) but not AD (RR, 0.82; 95% CI, 0.63-1.08). CONCLUSION Newer GLDs were associated with a decreased risk of all-cause dementia in people with T2D. Because of the observational nature and significant heterogeneity between studies, the results should be interpreted with caution. Further research is warranted to confirm our findings.
Collapse
Affiliation(s)
- Huilin Tang
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | - Hui Shao
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
- Center for Drug Evaluation and Safety, University of Florida, Gainesville, Florida, USA
| | - C. Elizabeth Shaaban
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keming Yang
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua Brown
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
- Center for Drug Evaluation and Safety, University of Florida, Gainesville, Florida, USA
| | - Stephen Anton
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Adam Bress
- Division of Health System Innovation and Research, Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - William T Donahoo
- Division of Endocrinology, Diabetes and Metabolism, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida USA
- 1Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, Florida, USA
- Center for Drug Evaluation and Safety, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Aranäs C, Edvardsson CE, Shevchouk OT, Zhang Q, Witley S, Blid Sköldheden S, Zentveld L, Vallöf D, Tufvesson-Alm M, Jerlhag E. Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats. EBioMedicine 2023; 93:104642. [PMID: 37295046 PMCID: PMC10363436 DOI: 10.1016/j.ebiom.2023.104642] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Glucagon-like peptide1 receptor (GLP-1R) agonists have been found to reduce alcohol drinking in rodents and overweight patients with alcohol use disorder (AUD). However, the probability of low semaglutide doses, an agonist with higher potency and affinity for GLP-1R, to attenuate alcohol-related responses in rodents and the underlying neuronal mechanisms is unknown. METHODS In the intermittent access model, we examined the ability of semaglutide to decrease alcohol intake and block relapse-like drinking, as well as imaging the binding of fluorescently marked semaglutide to nucleus accumbens (NAc) in both male and female rats. The suppressive effect of semaglutide on alcohol-induced locomotor stimulation and in vivo dopamine release in NAc was tested in male mice. We evaluated effect of semaglutide on the in vivo release of dopamine metabolites (DOPAC and HVA) and gene expression of enzymes metabolising dopamine (MAOA and COMT) in male mice. FINDINGS In male and female rats, acute and repeated semaglutide administration reduced alcohol intake and prevented relapse-like drinking. Moreover, fluorescently labelled semaglutide was detected in NAc of alcohol-drinking male and female rats. Further, semaglutide attenuated the ability of alcohol to cause hyperlocomotion and to elevate dopamine in NAc in male mice. As further shown in male mice, semaglutide enhanced DOPAC and HVA in NAc when alcohol was onboard and increased the gene expression of COMT and MAOA. INTERPRETATION Altogether, this indicates that semaglutide reduces alcohol drinking behaviours, possibly via a reduction in alcohol-induced reward and NAc dependent mechanisms. As semaglutide also decreased body weight of alcohol-drinking rats of both sexes, upcoming clinical studies should test the plausibility that semaglutide reduces alcohol intake and body weight in overweight AUD patients. FUNDING Swedish Research Council (2019-01676), LUA/ALF (723941) from the Sahlgrenska University Hospital and the Swedish brain foundation.
Collapse
Affiliation(s)
- Cajsa Aranäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Qian Zhang
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sarah Witley
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lindsay Zentveld
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Yin Y, Guo Q, Zhou X, Duan Y, Yang Y, Gong S, Han M, Liu Y, Yang Z, Chen Q, Li F. Role of brain-gut-muscle axis in human health and energy homeostasis. Front Nutr 2022; 9:947033. [PMID: 36276808 PMCID: PMC9582522 DOI: 10.3389/fnut.2022.947033] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
The interrelationship between brain, gut and skeletal muscle plays a key role in energy homeostasis of the body, and is becoming a hot topic of research. Intestinal microbial metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites, communicate with the central nervous system (CNS) by binding to their receptors. In fact, there is a cross-talk between the CNS and the gut. The CNS, under the stimulation of pressure, will also affect the stability of the intestinal system, including the local intestinal transport, secretion and permeability of the intestinal system. After the gastrointestinal tract collects information about food absorption, it sends signals to the central system through vagus nerve and other channels to stimulate the secretion of brain-gut peptide and produce feeding behavior, which is also an important part of maintaining energy homeostasis. Skeletal muscle has receptors for SCFAs and BAs. Therefore, intestinal microbiota can participate in skeletal muscle energy metabolism and muscle fiber conversion through their metabolites. Skeletal muscles can also communicate with the gut system during exercise. Under the stimulation of exercise, myokines secreted by skeletal muscle causes the secretion of intestinal hormones, and these hormones can act on the central system and affect food intake. The idea of the brain-gut-muscle axis is gradually being confirmed, and at present it is important for regulating energy homeostasis, which also seems to be relevant to human health. This article focuses on the interaction of intestinal microbiota, central nervous, skeletal muscle energy metabolism, and feeding behavior regulation, which will provide new insight into the diagnostic and treatment strategies for obesity, diabetes, and other metabolic diseases.
Collapse
Affiliation(s)
- Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Xihong Zhou
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhikang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Winquist RJ, Gribkoff VK. Cardiovascular effects of GLP-1 receptor agonism. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:213-254. [PMID: 35659373 DOI: 10.1016/bs.apha.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are extensively used in type 2 diabetic patients for the effective control of hyperglycemia. It is now clear from outcomes trials that this class of drugs offers important additional benefits to these patients due to reducing the risk of developing major adverse cardiac events (MACE). This risk reduction is, in part, due to effective glycemic control in patients; however, the various outcomes trials, further validated by subsequent meta-analysis of the outcomes trials, suggest that the risk reduction in MACE is also dependent on glycemic-independent mechanisms operant in cardiovascular tissues. These glycemic-independent mechanisms are likely mediated by GLP-1 receptors found throughout the cardiovascular system and by the complex signaling cascades triggered by the binding of agonists to the G-protein coupled receptors. This heterogeneity of signaling pathways underlying different downstream effects of GLP-1 agonists, and the discovery of biased agonists favoring specific signaling pathways, may have import in the future treatment of MACE in these patients. We review the evidence supporting the glycemic-independent evidence for risk reduction of MACE by the GLP-1 receptor agonists and highlight the putative mechanisms underlying these benefits. We also comment on the different signaling pathways which appear important for mediating these effects.
Collapse
Affiliation(s)
| | - Valentin K Gribkoff
- Section on Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; TheraStat LLC, Weston, MA, United States
| |
Collapse
|
8
|
Cui QN, Stein LM, Fortin SM, Hayes MR. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma. Br J Pharmacol 2022; 179:715-726. [PMID: 34519040 PMCID: PMC8820182 DOI: 10.1111/bph.15683] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022] Open
Abstract
The medical applications of glucagon-like peptide-1 receptor (GLP-1R) agonists is evergrowing in scope, highlighting the urgent need for a comprehensive understanding of the mechanisms through which GLP-1R activation impacts physiology and behaviour. A new area of research aims to elucidate the role GLP-1R signalling in glia, which play a role in regulating energy balance, glycemic control, neuroinflammation and oxidative stress. Once controversial, existing evidence now suggests that subsets of glia (e.g. microglia, tanycytes and astrocytes) and infiltrating macrophages express GLP-1Rs. In this review, we discuss the implications of these findings, with particular focus on the effectiveness of both clinically available and novel GLP-1R agonists for treating metabolic and neurodegenerative diseases, enhancing cognition and combating substance abuse. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Qi N. Cui
- Scheie Eye InstitutePhiladelphiaPennsylvaniaUSA
| | - Lauren M. Stein
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Samantha M. Fortin
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Elevated Glucagon-like Peptide-1 and a Th2 Shift May Support Reduced Prevalence of Thoracic Aortic Aneurysm in Patients with Diabetes. J Cardiovasc Dev Dis 2021; 8:jcdd8110143. [PMID: 34821696 PMCID: PMC8618274 DOI: 10.3390/jcdd8110143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) regulates processes involved in the pathophysiology of thoracic aortic aneurysms (TAAs), including inflammation, while protecting against aortic aneurysms in animal models. Type 2 diabetes (T2D) involves altered GLP-1 signaling due to pathology and/or therapy and is associated with reduced prevalence of TAAs. We aimed to assess whether T2D alters the inflammatory profile/proteolytic activity, possible correlations to elevated fasting GLP-1 (F-GLP-1), and its relevance for TAA. F-GLP-1, pro-inflammatory T helper 1 (Th1) cytokines, Th2 cytokines, C-reactive protein, and matrix metalloproteinase-2 activity (MMP-2) were analyzed in surgical patients with aortic valve pathology with/without T2D and without T2D but with TAA. Patients with T2D displayed an increase in the relative systemic expression of interleukin 6 and tumor necrosis factor α and a clear trend towards reduced levels of interferon γ (IFNγ). In addition, a positive association between GLP-1 and the plasma interleukin 4 (IL-4)/IFNγ ratio was detected. TAA was associated with significantly lower plasma levels of the Th2 cytokines IL-4 and interleukin 5. Plasma MMP-2 activity did not differ between groups. We conclude that T2D involved a Th2 shift, which associates with elevated F-GLP-1 and may-considering Th1 bias in TAA-contribute to reduced prevalence of TAA in T2D.
Collapse
|
10
|
Ruze R, Xu Q, Liu G, Li Y, Chen W, Cheng Z, Xiong Y, Liu S, Zhang G, Hu S, Yan Z. Central GLP-1 contributes to improved cognitive function and brain glucose uptake after duodenum-jejunum bypass on obese and diabetic rats. Am J Physiol Endocrinol Metab 2021; 321:E392-E409. [PMID: 34370593 DOI: 10.1152/ajpendo.00126.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
The improvement of cognitive function following bariatric surgery has been highlighted, yet its underlying mechanisms remain elusive. Finding the improved brain glucose uptake of patients after Roux-en-Y gastric bypass (RYGB), duodenum-jejunum bypass (DJB), and sham surgery (Sham) were performed on obese and diabetic Wistar rats, and intracerebroventricular (ICV) injection of glucagon-like peptide-1 (GLP-1) analog liraglutide (Lira), antagonist exendin-(9-39) (Exe-9), and the viral-mediated GLP-1 receptor (Glp-1r) knockdown (KD) were applied on both groups to elucidate the role of GLP-1 in mediating cognitive function and brain glucose uptake assessed with the Morris water maze (MWM) and positron emission tomography (PET). Insulin and GLP-1 in serum and cerebral spinal fluid (CSF) were measured, and the expression of glucose uptake-related proteins including glucose transporter 1 (GLUT-1), GLUT-4, phospho-Akt substrate of 160kDa (pAS160), AS160, Rab10, Myosin-Va as well as the c-fos marker in the brain were examined. Along with augmented glucose homeostasis following DJB, central GLP-1 was correlated with the improved cognitive function and ameliorated brain glucose uptake, which was further confirmed by the enhancive role of Lira on both groups whereas the Exe-9 and Glp-1r KD were opposite. Known to activate insulin-signaling pathways, central GLP-1 contributes to improved cognitive function and brain glucose uptake after DJB.NEW & NOTEWORTHY The improvement of cognitive function following bariatric surgery has been highlighted while its mechanisms remain elusive. The brain glucose uptake of patients was improved after RYGB, and the DJB and sham surgery performed on obese and diabetic Wistar rats revealed that the elevated central GLP-1 contributes to the dramatic improvement of cognitive function, brain glucose uptake, transport, glucose sensing, and neuronal activation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Guoqin Liu
- Department of General Surgery, Jinan Central Hospital, Shandong University, Jinan, People's Republic of China
| | - Yuekai Li
- Department of Nuclear Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Cheng
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yacheng Xiong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Shaozhuang Liu
- Department of Bariatric and Metabolic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Sanyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Zhibo Yan
- Department of Colorectal Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
11
|
Watkins JD, Koumanov F, Gonzalez JT. Protein- and Calcium-Mediated GLP-1 Secretion: A Narrative Review. Adv Nutr 2021; 12:2540-2552. [PMID: 34192748 PMCID: PMC8634310 DOI: 10.1093/advances/nmab078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is an incretin hormone produced in the intestine that is secreted in response to nutrient exposure. GLP-1 potentiates glucose-dependent insulin secretion from the pancreatic β cells and promotes satiety. These important actions on glucose metabolism and appetite have led to widespread interest in GLP-1 receptor agonism. Typically, this involves pharmacological GLP-1 mimetics or targeted inhibition of dipeptidyl peptidase-IV, the enzyme responsible for GLP-1 degradation. However, nutritional strategies provide a widely available, cost-effective alternative to pharmacological strategies for enhancing hormone release. Recent advances in nutritional research have implicated the combined ingestion of protein and calcium with enhanced endogenous GLP-1 release, which is likely due to activation of receptors with high affinity and/or sensitivity for amino acids and calcium. Specifically targeting these receptors could enhance gut hormone secretion, thus providing a new therapeutic option. This narrative review provides an overview of the latest research on protein- and calcium-mediated GLP-1 release with an emphasis on human data, and a perspective on potential mechanisms that link potent GLP-1 release to the co-ingestion of protein and calcium. In light of these recent findings, potential future research directions are also presented.
Collapse
Affiliation(s)
- Jonathan D Watkins
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | - Françoise Koumanov
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
12
|
Chen Q, Cao T, Li N, Zeng C, Zhang S, Wu X, Zhang B, Cai H. Repurposing of Anti-Diabetic Agents as a New Opportunity to Alleviate Cognitive Impairment in Neurodegenerative and Neuropsychiatric Disorders. Front Pharmacol 2021; 12:667874. [PMID: 34108878 PMCID: PMC8182376 DOI: 10.3389/fphar.2021.667874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive impairment is a shared abnormality between type 2 diabetes mellitus (T2DM) and many neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease (AD) and schizophrenia. Emerging evidence suggests that brain insulin resistance plays a significant role in cognitive deficits, which provides the possibility of anti-diabetic agents repositioning to alleviate cognitive deficits. Both preclinical and clinical studies have evaluated the potential cognitive enhancement effects of anti-diabetic agents targeting the insulin pathway. Repurposing of anti-diabetic agents is considered to be promising for cognitive deficits prevention or control in these neurodegenerative and neuropsychiatric disorders. This article reviewed the possible relationship between brain insulin resistance and cognitive deficits. In addition, promising therapeutic interventions, especially current advances in anti-diabetic agents targeting the insulin pathway to alleviate cognitive impairment in AD and schizophrenia were also summarized.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
13
|
Hariyanto TI, Kurniawan A. Appetite problem in cancer patients: Pathophysiology, diagnosis, and treatment. Cancer Treat Res Commun 2021; 27:100336. [PMID: 33607591 DOI: 10.1016/j.ctarc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Abstract
AIM This study aims to review the current evidence regarding appetite problem in cancer patients, mainly focusing on pathophysiology, diagnosis, and treatment. INTRODUCTION Anorexia is the common symptom of malnutrition in cancer patients. Recently, the understanding of the pathophysiological mechanism of the appetite problem in cancer patients has been increasing that give impact to rigorous research to find the therapies for improving appetite in cancer patients. DISCUSSION The development of anorexia in cancer patients is a complex process that involves many cytokines, receptors, chemical mediators/substances, hormones, and peptides. Growth and differentiation factor-15 (GDF-15) and toll-like receptor (TLR-4) have recently been found to be implicated in the pathogenesis of anorexia. To help diagnose the appetite problem in cancer patients, several questionnaires can be used, starting from well-known questionnaires such as Functional Assessment of Anorexia Cachexia Therapy (FAACT), Visual Analog Scale (VAS), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ30). Several drugs with different mechanisms of action have been studied to help in improving appetite in cancer patients. New repurposed agents such as anamorelin, mirtazapine, thalidomide, and eicosapentaenoic acid (EPA) have shown a beneficial effect in improving appetite and quality of life in cancer patients, however more phase 3 clinical trial studies is still needed. CONCLUSION The pathophysiology of appetite problems in cancer patients is a complex process that involves many factors. Several drugs that target those factors have been studied, however more phase 3 clinical trial studies are needed to confirm the findings from previous studies.
Collapse
Affiliation(s)
- Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, , Indonesia.
| |
Collapse
|
14
|
Yaribeygi H, Rashidy-Pour A, Atkin SL, Jamialahmadi T, Sahebkar A. GLP-1 mimetics and cognition. Life Sci 2021; 264:118645. [PMID: 33121988 DOI: 10.1016/j.lfs.2020.118645] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of antidiabetic drugs that improve the glycaemia via several molecular pathways. Recent evidence suggest that they also have additional effects modulating pathophysiologic pathways included in cognitive disorders. Since some forms of cognitive dysfunction such as Alzheimer's disease are more common among diabetic patients than in the normal population, antidiabetic drugs that have neuroprotective effects affording protection for cognitive disorders would be of benefit. Therefore, we reviewed the pharmacologic effects of GLP-1 analogues and found that they may have the additional benefit of improving cognitive performance via at least eight molecular mechanisms.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Halal Research Center of IRI, FDA, Tehran, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
15
|
Dixon TN, McNally GP, Ong ZY. Glucagon-Like Peptide-1 Receptor Signaling in the Ventral Tegmental Area Reduces Alcohol Self-Administration in Male Rats. Alcohol Clin Exp Res 2020; 44:2118-2129. [PMID: 33043520 DOI: 10.1111/acer.14437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The misuse and abuse of alcohol is a major public health issue. However, available treatments are limited with variable efficacy. Recently, preclinical studies show that glucagon-like-peptide-1 (GLP-1) and its analogue Exendin-4 (Ex4) potently reduce a range of alcohol intake behaviors, thus highlighting its potential as a treatment for alcohol use disorders. However, the neural mechanisms and sites of action mediating the effects of Ex4 on alcohol intake behaviors remain to be characterized. This study examined the ventral tegmental area (VTA) as a site of action for the effects of GLP-1 on alcohol intake. METHODS Male Long-Evans rats were given intermittent access to 20% alcohol and trained to nose poke for 20% alcohol. Rats received intra-VTA injections of Ex4 (vehicle, 0.01, 0.05 μg), and the effects of VTA Ex4 on alcohol self-administration, motivation, and relapse were assessed. RESULTS When compared to vehicle treatment, intra-VTA Ex4 (0.01, 0.05 μg) delivery significantly reduced alcohol self-administration, an effect that was particularly prominent in high alcohol drinkers. However, VTA Ex4 did not reduce reacquisition of alcohol self-administration after extinction nor the motivation to obtain alcohol. Importantly, the lower dose of Ex4 (0.01 μg) used had no effect on food intake or locomotor activity, suggesting that the reduction in alcohol self-administration observed was not secondary to caloric intake or motor deficits. CONCLUSIONS Together, these findings provide support for the VTA as a key site of action for GLP-1 on alcohol self-administration but not the reacquisition of alcohol self-administration or motivation to work for alcohol.
Collapse
Affiliation(s)
- Tiarani N Dixon
- From the, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | - Gavan P McNally
- From the, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | - Zhi Yi Ong
- From the, School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Deng B, Zhu W, Duan Y, Hu Y, Chen X, Song S, Yi Z, Song Y. Exendin‑4 promotes osteogenic differentiation of adipose‑derived stem cells and facilitates bone repair. Mol Med Rep 2019; 20:4933-4942. [PMID: 31661134 PMCID: PMC6854547 DOI: 10.3892/mmr.2019.10764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation-related bone defects pose a heavy burden on patients and orthopedic surgeons. Although stem-cell-based bone repair has developed rapidly, it is of great significance to characterize bio-active molecules that facilitate bone regeneration. It is reported that a glucagon-like peptide 1 receptor agonist, exendin-4, promoted bone regeneration mediated by the transplantation of adipose-derived stem cells in a metaphyseal defect mouse model of femur injury. However, the underlying mechanism is unclear. Bone imaging, immunohistochemistry real-time PCR and western blot analysis were used in the present study, and the results revealed that exendin-4 increased the transcription of the osteogenic differentiation-related genes and induced osteogenic differentiation in situ. Furthermore, the present data obtained from sorted adipose-derived stem cells revealed that exendin-4 promoted osteogenic differentiation and inhibited adipogenic differentiation in vitro. These findings indicated that exendin-4 facilitates osteogenic differentiation of transplanted adipose-derived stem cells for bone repair and illuminated clinical prospects of both adipose-derived stem cells and exendin-4 in stem-cell-based bone defect repair.
Collapse
Affiliation(s)
- Banglian Deng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Oral Implantation, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenzhong Zhu
- Department of Stomatology, Shaanxi Province Geriatric Hospital, Xi'an, Shaanxi 710005, P.R. China
| | - Yansheng Duan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Oral Implantation, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuqian Hu
- Department of Stomatology, The Faculty of Medicine, Eastern University of Liaoning, Shenyang, Liaoning 110000, P.R. China
| | - Xuefeng Chen
- Xuefeng Dental Care Huaian, Huaian, Jiangsu 223000, P.R. China
| | - Shuang Song
- Health Science Center, Peking University, Beijing 100000, P.R. China
| | - Zian Yi
- Department of Stomatology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yingliang Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Oral Implantation, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
17
|
Zheng H, Reiner DJ, Hayes MR, Rinaman L. Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. J Neurosci 2019; 39:2649-2663. [PMID: 30683681 PMCID: PMC6445994 DOI: 10.1523/jneurosci.2180-18.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/26/2023] Open
Abstract
The anterior lateral bed nucleus of the stria terminalis (alBST) expresses glucagon-like peptide-1 receptors (GLP1Rs) and receives input from caudal brainstem GLP1 neurons. GLP1 administered centrally reduces food intake and increases anxiety-like behavior and plasma corticosterone (cort) levels in rats, whereas central GLP1R antagonism has opposite effects. Anxiogenic threats and other stressors robustly activate c-fos expression in both GLP1-producing neurons and also in neurons within alBST subregions expressing GLP1R. To examine the functional role of GLP1R signaling within the alBST, adult male Sprague Dawley rats received bilateral alBST-targeted injections of an adeno-associated virus (AAV) vector expressing short hairpin RNA (shRNA) to knock down the translation of GLP1R mRNA (GLP1R-KD rats), or similar injections of a control AAV (CTRL rats). In situ hybridization revealed that GLP1R mRNA is expressed in a subset of GABAergic alBST neurons, and quantitative real-time PCR confirmed that GLP1R-KD rats displayed a significant 60% reduction in translatable GLP1R mRNA. Compared with CTRL rats, GLP1R-KD rats gained more body weight over time and displayed less anxiety-like behavior, including a loss of light-enhanced acoustic startle and less stress-induced hypophagia. Conversely, while baseline plasma cort levels were similar in GLP1R-KD and CTRL rats, GLP1R-KD rats displayed a prolonged stress-induced elevation of plasma cort levels. GLP1R-KD and CTRL rats displayed similar home cage food intake and a similar hypophagic response to systemic Exendin-4, a GLP1R agonist that crosses the blood-brain barrier. We conclude that GLP1R expressed within the alBST contributes to multiple behavioral responses to anxiogenic threats, yet also serves to limit the plasma cort response to acute stress.SIGNIFICANCE STATEMENT Anxiety is an affective and physiological state that supports threat avoidance. Identifying the neural bases of anxiety-like behaviors in animal models is essential for understanding mechanisms that contribute to normative and pathological anxiety in humans. In rats, anxiety/avoidance behaviors can be elicited or enhanced by visceral or cognitive threats that increase glucagon-like peptide-1 (GLP1) signaling from the caudal brainstem to the hypothalamus and limbic forebrain. Data reported here support a role for limbic GLP1 receptor signaling to enhance anxiety-like behavior and to attenuate stress-induced elevations in plasma cort levels in rats. Improved understanding of central GLP1 neural pathways that impact emotional responses to stress could expand potential therapeutic options for anxiety and other stress-related disorders in humans.
Collapse
MESH Headings
- Animals
- Anxiety/metabolism
- Anxiety/prevention & control
- Anxiety/psychology
- Appetite Regulation/drug effects
- Appetite Regulation/physiology
- Biomarkers/blood
- Corticosterone/blood
- Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Male
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Septal Nuclei/metabolism
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| | - David J Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| |
Collapse
|
18
|
Liberini CG, Lhamo R, Ghidewon M, Ling T, Juntereal N, Chen J, Cao A, Stein LM, Hayes MR. Liraglutide pharmacotherapy reduces body weight and improves glycaemic control in juvenile obese/hyperglycaemic male and female rats. Diabetes Obes Metab 2019; 21:866-875. [PMID: 30456866 PMCID: PMC7274726 DOI: 10.1111/dom.13591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
AIMS To examine whether the glucagon-like peptide-1 receptor agonist liraglutide could be used in juvenile male and female rats as an anti-obesity/diabetic pharmaceutical to prevent not only adolescent obesity/hyperglycaemia, but also early-adult onset obesity. MATERIAL AND METHODS Pregnant dams were fed either standard chow or a high-fat, high-sucrose diet (HFSD) from gestational day 2, throughout pregnancy and lactation. Offspring were weaned onto the respective maternal diet. Juveniles received daily subcutaneous injection of liraglutide (50 μg/kg, from postnatal day [PND]30 to PND40 and 200 μg/kg from PND40 to PND60) or vehicle. Food intake, body weight and glycaemic levels were evaluated across the experimental period. RESULTS Chronic liraglutide administration in juveniles prevented body weight gain in males and retained a normoglycaemic profile in both male and female rats. CONCLUSION These preclinical data suggest that maternal and early-life consumption of an HFSD increases caloric intake, body weight gain and hyperglycaemia, a collective set of unwanted metabolic effects that appear to be treatable in juveniles with liraglutide pharmacotherapy intervention.
Collapse
Affiliation(s)
- Claudia G. Liberini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Misgana Ghidewon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tyler Ling
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nina Juntereal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jack Chen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anh Cao
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren M. Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
19
|
Combined vildagliptin and memantine treatment downregulates expression of amyloid precursor protein, and total and phosphorylated tau in a rat model of combined Alzheimer’s disease and type 2 diabetes. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:685-695. [DOI: 10.1007/s00210-019-01616-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
|
20
|
Abtahi S, Howell E, Salvucci JT, Bastacky JMR, Dunn DP, Currie PJ. Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus. Gen Comp Endocrinol 2019; 270:75-81. [PMID: 30336120 PMCID: PMC6886705 DOI: 10.1016/j.ygcen.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
In the current study we investigated the interaction of hypothalamic paraventricular nucleus (PVN) glucagon-like peptide-1 (GLP-1) and ghrelin signaling in the control of metabolic function. We first demonstrated that acylated ghrelin injected directly into the PVN reliably altered the respiratory exchange ratio (RER) of adult male Sprague Dawley rats. All testing was carried out during the initial 2 h of the nocturnal cycle using an indirect open circuit calorimeter. Results indicated that acylated ghrelin induced a robust increase in RER representing a shift toward enhanced carbohydrate oxidation and reduced lipid utilization. In contrast, treatment with comparable dosing of des-acyl ghrelin failed to significantly impact metabolic activity. In separate groups of rats we subsequently investigated the ability of exendin-4 (Ex-4), a GLP-1 analogue, to alter acylated ghrelin's metabolic effects. Rodents were treated with either systemic or direct PVN Ex-4 followed by acyl ghrelin microinjection. While our results showed that both systemic and PVN administration of Ex-4 significantly reduced RER, importantly, Ex-4 pretreatment itself reliably inhibited the impact of ghrelin on RER. Overall, these findings provide increasingly compelling evidence that GLP-1 and ghrelin signaling interact in the neural control of metabolic function within the PVN.
Collapse
Affiliation(s)
- Shayan Abtahi
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Erin Howell
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Jack T Salvucci
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Joshua M R Bastacky
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - David P Dunn
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States.
| |
Collapse
|
21
|
de Souza AG, Chaves Filho AJM, Souza Oliveira JV, de Souza DAA, Lopes IS, de Carvalho MAJ, de Lima KA, Florenço Sousa FC, Mendes Vasconcelos SM, Macedo D, de França Fonteles MM. Prevention of pentylenetetrazole-induced kindling and behavioral comorbidities in mice by levetiracetam combined with the GLP-1 agonist liraglutide: Involvement of brain antioxidant and BDNF upregulating properties. Biomed Pharmacother 2019; 109:429-439. [DOI: 10.1016/j.biopha.2018.10.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
|
22
|
Ang R, Mastitskaya S, Hosford PS, Basalay M, Specterman M, Aziz Q, Li Y, Orini M, Taggart P, Lambiase PD, Gourine A, Tinker A, Gourine AV. Modulation of Cardiac Ventricular Excitability by GLP-1 (Glucagon-Like Peptide-1). Circ Arrhythm Electrophysiol 2018; 11:e006740. [PMID: 30354404 PMCID: PMC6553567 DOI: 10.1161/circep.118.006740] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular outcomes in patients with type 2 diabetes mellitus. However, systemic actions of these agents cause sympathetic activation, which is generally considered to be detrimental in cardiovascular disease. Despite significant research interest in cardiovascular biology of GLP-1, the presence of GLP-1R in ventricular cardiomyocytes remains a controversial issue, and the effects of this peptide on the electrical properties of intact ventricular myocardium are unknown. We sought to determine the effects of GLP-1R agonist exendin-4 (Ex4) on ventricular action potential duration (APD) and susceptibility to ventricular arrhythmia in the rat heart in vivo and ex vivo. METHODS Ventricular monophasic action potentials were recorded in anaesthetized (urethane) rats in vivo and isolated perfused rat hearts during sinus rhythm and ventricular pacing. RESULTS In vivo, systemic administration of Ex4 (5 μg/kg intravenously) increased heart rate, and this effect was abolished by β-adrenoceptor blockade. Despite causing sympathetic activation, Ex4 increased APD at 90% repolarization during ventricular pacing by 7% ( P=0.044; n=6) and reversed the effect of β-adrenoceptor agonist dobutamine on APD at 90% repolarization. In isolated perfused hearts, Ex4 (3 nmol/L) increased APD at 90% repolarization by 14% ( P=0.015; n=6) with no effect on heart rate. Ex4 also reduced ventricular arrhythmia inducibility in conditions of β-adrenoceptor stimulation with isoproterenol. Ex4 effects on APD and ventricular arrhythmia susceptibility were prevented in conditions of muscarinic receptor blockade or inhibition of nitric oxide synthase. CONCLUSIONS These data demonstrate that GLP-1R activation effectively opposes the effects of β-adrenoceptor stimulation on cardiac ventricular excitability and reduces ventricular arrhythmic potential. The effect of GLP-1R activation on the ventricular myocardium is indirect, mediated by acetylcholine and nitric oxide and, therefore, can be explained by stimulation of cardiac parasympathetic (vagal) neurons.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| | - Marina Basalay
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| | - Mark Specterman
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Qadeer Aziz
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Yiwen Li
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.T., P.D.L.)
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.T., P.D.L.)
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.T., P.D.L.)
| | - Andrey Gourine
- Division of Cardiology, Karolinska Institute, Stockholm, Sweden (A.G.)
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| |
Collapse
|
23
|
López-Ferreras L, Richard JE, Noble EE, Eerola K, Anderberg RH, Olandersson K, Taing L, Kanoski SE, Hayes MR, Skibicka KP. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol Psychiatry 2018; 23:1157-1168. [PMID: 28894301 PMCID: PMC5984105 DOI: 10.1038/mp.2017.187] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022]
Abstract
Increased motivation for highly rewarding food is a major contributing factor to obesity. Most of the literature focuses on the mesolimbic nuclei as the core of reward behavior regulation. However, the lateral hypothalamus (LH) is also a key reward-control locus in the brain. Here we hypothesize that manipulating glucagon-like peptide-1 receptor (GLP-1R) activity selectively in the LH can profoundly affect food reward behavior, ultimately leading to obesity. Progressive ratio operant responding for sucrose was examined in male and female rats, following GLP-1R activation and pharmacological or genetic GLP-1R blockade in the LH. Ingestive behavior and metabolic parameters, as well as molecular and efferent targets, of the LH GLP-1R activation were also evaluated. Food motivation was reduced by activation of LH GLP-1R. Conversely, acute pharmacological blockade of LH GLP-1R increased food motivation but only in male rats. GLP-1R activation also induced a robust reduction in food intake and body weight. Chronic knockdown of LH GLP-1R induced by intraparenchymal delivery of an adeno-associated virus-short hairpin RNA construct was sufficient to markedly and persistently elevate ingestive behavior and body weight and ultimately resulted in a doubling of fat mass in males and females. Interestingly, increased food reinforcement was again found only in males. Our data identify the LH GLP-1R as an indispensable element of normal food reinforcement, food intake and body weight regulation. These findings also show, for we believe the first time, that brain GLP-1R manipulation can result in a robust and chronic body weight gain. The broader implications of these findings are that the LH differs between females and males in its ability to control motivated and ingestive behaviors.
Collapse
Affiliation(s)
- L López-Ferreras
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - J E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - E E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - K Eerola
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - R H Anderberg
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - K Olandersson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - L Taing
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - S E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - M R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, Gothenburg, Sweden,Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, Gothenburg SE-405 30, Sweden. E-mail:
| |
Collapse
|
24
|
Borner T, Liberini CG, Lutz TA, Riediger T. Brainstem GLP-1 signalling contributes to cancer anorexia-cachexia syndrome in the rat. Neuropharmacology 2018; 131:282-290. [DOI: 10.1016/j.neuropharm.2017.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/11/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
|
25
|
The Role of Glucagon-Like Peptide 1 (GLP1) in Type 3 Diabetes: GLP-1 Controls Insulin Resistance, Neuroinflammation and Neurogenesis in the Brain. Int J Mol Sci 2017; 18:ijms18112493. [PMID: 29165354 PMCID: PMC5713459 DOI: 10.3390/ijms18112493] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD), characterized by the aggregation of amyloid-β (Aβ) protein and neuroinflammation, is the most common neurodegenerative disease globally. Previous studies have reported that some AD patients show impaired glucose utilization in brain, leading to cognitive decline. Recently, diabetes-induced dementia has been called "type 3 diabetes", based on features in common with those of type 2 diabetes and the progression of AD. Impaired glucose uptake and insulin resistance in the brain are important issues in type 3 diabetes, because these problems ultimately aggravate memory dysfunction in the brain. Glucagon-like peptide 1 (GLP-1) has been known to act as a critical controller of the glucose metabolism. Several studies have demonstrated that GLP-1 alleviates learning and memory dysfunction by enhancing the regulation of glucose in the AD brain. However, the specific actions of GLP-1 in the AD brain are not fully understood. Here, we review evidences related to the role of GLP-1 in type 3 diabetes.
Collapse
|
26
|
Chen X, Mietlicki-Baase EG, Barrett TM, McGrath LE, Koch-Laskowski K, Ferrie JJ, Hayes MR, Petersson EJ. Thioamide Substitution Selectively Modulates Proteolysis and Receptor Activity of Therapeutic Peptide Hormones. J Am Chem Soc 2017; 139:16688-16695. [PMID: 29130686 PMCID: PMC7744120 DOI: 10.1021/jacs.7b08417] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptide hormones are attractive as injectable therapeutics and imaging agents, but they often require extensive modification by mutagenesis and/or chemical synthesis to prevent rapid in vivo degradation. Alternatively, the single-atom, O-to-S modification of peptide backbone thioamidation has the potential to selectively perturb interactions with proteases while preserving interactions with other proteins, such as target receptors. Here, we use the validated diabetes therapeutic, glucagon-like peptide-1 (GLP-1), and the target of clinical investigation, gastric inhibitory polypeptide (GIP), as proof-of-principle peptides to demonstrate the value of thioamide substitution. In GLP-1 and GIP, a single thioamide near the scissile bond renders these peptides up to 750-fold more stable than the corresponding oxopeptides toward cleavage by dipeptidyl peptidase 4, the principal regulator of their in vivo stability. These stabilized analogues are nearly equipotent with their parent peptide in cyclic AMP activation assays, but the GLP-1 thiopeptides have much lower β-arrestin potency, making them novel agonists with altered signaling bias. Initial tests show that a thioamide GLP-1 analogue is biologically active in rats, with an in vivo potency for glycemic control surpassing that of native GLP-1. Taken together, these experiments demonstrate the potential for thioamides to modulate specific protein interactions to increase proteolytic stability or tune activation of different signaling pathways.
Collapse
Affiliation(s)
- Xing Chen
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Elizabeth G. Mietlicki-Baase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
- Current Address: Department of Exercise and Nutrition Sciences, State University of New York at Buffalo, Buffalo, G10G Farber Hall, NY 14214
| | - Taylor M. Barrett
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Lauren E. McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
| | - John J. Ferrie
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| |
Collapse
|
27
|
Sekar R, Wang L, Chow BKC. Central Control of Feeding Behavior by the Secretin, PACAP, and Glucagon Family of Peptides. Front Endocrinol (Lausanne) 2017; 8:18. [PMID: 28223965 PMCID: PMC5293785 DOI: 10.3389/fendo.2017.00018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Constituting a group of structurally related brain-gut peptides, secretin (SCT), pituitary adenylate cyclase-activating peptide (PACAP), and glucagon (GCG) family of peptide hormones exert their functions via interactions with the class B1 G protein-coupled receptors. In recent years, the roles of these peptides in neuroendocrine control of feeding behavior have been a specific area of research focus for development of potential therapeutic drug targets to combat obesity and metabolic disorders. As a result, some members in the family and their analogs have already been utilized as therapeutic agents in clinical application. This review aims to provide an overview of the current understanding on the important role of SCT, PACAP, and GCG family of peptides in central control of feeding behavior.
Collapse
Affiliation(s)
- Revathi Sekar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Lei Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
28
|
Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance. J Neurosci 2016; 36:3531-40. [PMID: 27013681 DOI: 10.1523/jneurosci.3579-15.2016] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Astrocytes are well established modulators of extracellular glutamate, but their direct influence on energy balance-relevant behaviors is largely understudied. As the anorectic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists are partly mediated by central modulation of glutamatergic signaling, we tested the hypothesis that astrocytic GLP-1R signaling regulates energy balance in rats. Central or peripheral administration of a fluorophore-labeled GLP-1R agonist, exendin-4, localizes within astrocytes and neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus critical for energy balance control. This effect is mediated by GLP-1R, as the uptake of systemically administered fluorophore-tagged exendin-4 was blocked by central pretreatment with the competitive GLP-1R antagonist exendin-(9-39). Ex vivo analyses show prolonged exendin-4-induced activation (live cell calcium signaling) of NTS astrocytes and neurons; these effects are also attenuated by exendin-(9-39), indicating mediation by the GLP-1R. In vitro analyses show that the application of GLP-1R agonists increases cAMP levels in astrocytes. Immunohistochemical analyses reveal that endogenous GLP-1 axons form close synaptic apposition with NTS astrocytes. Finally, pharmacological inhibition of NTS astrocytes attenuates the anorectic and body weight-suppressive effects of intra-NTS GLP-1R activation. Collectively, data demonstrate a role for NTS astrocytic GLP-1R signaling in energy balance control. SIGNIFICANCE STATEMENT Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are approved by the Food and Drug Administration for the treatment of obesity, but the cellular mechanisms underlying the anorectic effects of GLP-1 require further investigation. Astrocytes represent a major cellular population in the CNS that regulates neurotransmission, yet the role of astrocytes in mediating energy balance is largely unstudied. The current data provide novel evidence that astrocytes within the NTS are relevant for energy balance control by GLP-1 signaling. Here, we report that GLP-1R agonists activate and internalize within NTS astrocytes, while behavioral data suggest the pharmacological relevance of NTS astrocytic GLP-1R activation for food intake and body weight. These findings support a previously unknown role for CNS astrocytes in energy balance control by GLP-1 signaling.
Collapse
|
29
|
Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol 2016; 310:R885-95. [PMID: 27030669 DOI: 10.1152/ajpregu.00520.2015] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/26/2016] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is currently one of the most promising biological systems for the development of effective obesity pharmacotherapies. Long-acting GLP-1 analogs potently reduce food intake and body weight, and recent discoveries reveal that peripheral administration of these drugs reduces food intake largely through humoral pathways involving direct action on brain GLP-1 receptors (GLP-1R). Thus, it is of critical importance to understand the neural systems through which GLP-1 and long-acting GLP-1 analogs reduce food intake and body weight. In this review, we discuss several neural, physiological, cellular and molecular, as well as behavioral mechanisms through which peripheral and central GLP-1R signaling reduces feeding. Particular attention is devoted to discussion regarding the numerous neural substrates through which GLP-1 and GLP-1 analogs act to reduce food intake and body weight, including various hypothalamic nuclei (arcuate nucleus of the hypothalamus, periventricular hypothalamus, lateral hypothalamic area), hindbrain nuclei (parabrachial nucleus, medial nucleus tractus solitarius), hippocampus (ventral subregion; vHP), and nuclei embedded within the mesolimbic reward circuitry [ventral tegmental area (VTA) and nucleus accumbens (NAc)]. In some of these nuclei [VTA, NAc, and vHP], GLP-1R activation reduces food intake and body weight without concomitant nausea responses, suggesting that targeting these specific pathways may be of particular interest for future obesity pharmacotherapy. The widely distributed neural systems through which GLP-1 and GLP-1 analogs act to reduce body weight highlight the complexity of the neural systems regulating energy balance, as well as the challenges for developing effective obesity pharmacotherapies that reduce feeding without producing parallel negative side effects.
Collapse
Affiliation(s)
- Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California;
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania; and
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Nauck MA, Stewart MW, Perkins C, Jones-Leone A, Yang F, Perry C, Reinhardt RR, Rendell M. Efficacy and safety of once-weekly GLP-1 receptor agonist albiglutide (HARMONY 2): 52 week primary endpoint results from a randomised, placebo-controlled trial in patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetologia 2016; 59:266-74. [PMID: 26577795 PMCID: PMC4705137 DOI: 10.1007/s00125-015-3795-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Additional safe and effective therapies for type 2 diabetes are needed, especially ones that do not cause weight gain and have a low risk of hypoglycaemia. The present study evaluated albiglutide as monotherapy. METHODS In this placebo-controlled study, 309 patients (aged ≥ 18 years) with type 2 diabetes inadequately controlled by diet and exercise and who were not using a glucose-lowering agent (HbA1c 7.0-10.0% [53.00-85.79 mmol/mol], body mass index 20-45 kg/m(2), and fasting C-peptide ≥ 0.26 nmol/l) were randomised (1:1:1 on a fixed randomisation schedule using an interactive voice response system) to receive once-weekly albiglutide 30 mg (n = 102) or 50 mg (n = 102) or matching placebo (n = 105). The study treatments were blinded to both patients and study personnel. All study data were collected at individual patient clinic visits. The primary efficacy endpoint was change in HbA1c from baseline to week 52. The primary analysis was applied to the intent-to-treat population. Additional efficacy and safety endpoints were assessed. RESULTS At week 52, both albiglutide 30 mg and 50 mg were superior to placebo in reducing HbA1c. The least-squares means treatment difference from placebo was -0.84% (95% CI -1.11%, -0.58%; p < 0.0001) with albiglutide 30 mg and -1.04% (-1.31%, -0.77%; p < 0.0001) with albiglutide 50 mg. Injection-site reactions were reported more frequently with albiglutide (30 mg: 17.8%; 50 mg: 22.2%) than with placebo (9.9%). Other commonly reported adverse events included nausea, diarrhoea, vomiting and hypoglycaemia; the incidences of these were generally similar across treatment groups. CONCLUSIONS/INTERPRETATION Albiglutide is safe and effective as monotherapy and significantly lowered HbA1c levels over 52 weeks, did not cause weight gain, and had good gastrointestinal tolerability and a low rate of hypoglycaemia compared with placebo. Trial registration ClinicalTrials.gov NCT00849017 Funding This study was sponsored by GlaxoSmithKline.
Collapse
Affiliation(s)
- Michael A Nauck
- St Josef Hospital (Ruhr-Universität Bochum), Gudrunstr. 56, D-44791, Bochum, Germany.
| | | | | | | | - Fred Yang
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | | |
Collapse
|
31
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
32
|
Duca FA, Katebzadeh S, Covasa M. Impaired GLP-1 signaling contributes to reduced sensitivity to duodenal nutrients in obesity-prone rats during high-fat feeding. Obesity (Silver Spring) 2015; 23:2260-8. [PMID: 26530935 DOI: 10.1002/oby.21231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Increased consumption of a high-fat (HF) diet is a salient contributor to obesity; however, how diminished satiation signaling contributes to overconsumption and obesity development remains poorly understood. METHODS Using obese-prone (OP) and obese-resistant (OR) rats, we tested feeding responses to intragastric liquid meal replacement, prior and after HF feeding. Next, chow- and HF-fed OP and OR rats were tested for sensitivity to intraduodenal glucose, intralipid, and meal replacement loads. To examine the role of glucagon-like peptide-1 (GLP-1) and vagal signaling, animals were treated with exendin-9, GLP-1 receptor antagonist, prior to meal replacement infusion, and Fos-like immunoreactivity (Fos-Li) in the dorsal hindbrain was examined after infusion. RESULTS OP and OR rats reduced chow intake equally following gastric liquid meal; however, after 2 weeks of HF feeding, intragastric meal replacement reduced food intake less in OP than OR. Similarly, HF feeding, but not chow, diminished the suppressive effects of intraduodenal meal replacement, glucose, and intralipid in OP compared to OR. This effect was associated with lower Fos-Li expression in the dorsal hindbrain of OP rats. Finally, exendin-9 failed to attenuate reduction of food intake by meal replacement in OP rats during HF feeding. CONCLUSIONS Susceptibility to obesity coupled with HF feeding results in rapid impairments in nutrient-induced satiation through blunted responses in endogenous GLP-1 and hindbrain vagal afferent signaling.
Collapse
Affiliation(s)
- Frank A Duca
- Toronto General Research Institute and Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Shahbaz Katebzadeh
- College of Dental Medicine, Western University of the Health Sciences, Pomona, California, USA
| | - Mihai Covasa
- College of Osteopathic Medicine, Department of Basic Medical Sciences, Western University of the Health Sciences, Pomona, California, USA
- Department of Health and Human Development, University "Stefan Cel Mare" Suceava, Suceava, Romania
| |
Collapse
|
33
|
Ali MA, El-Abhar HS, Kamel MA, Attia AS. Antidiabetic Effect of Galantamine: Novel Effect for a Known Centrally Acting Drug. PLoS One 2015; 10:e0134648. [PMID: 26262991 PMCID: PMC4532414 DOI: 10.1371/journal.pone.0134648] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/10/2015] [Indexed: 01/26/2023] Open
Abstract
The cholinergic anti-inflammatory pathway is one of the putative biochemical pathways that link diabetes with Alzheimer disease. Hence, we aimed to verify the potential antidiabetic effect of galantamine, unveil the possible mechanisms and evaluate its interaction with vildagliptin. The n5-STZ rat model was adopted and the diabetic animals were treated with galantamine and/or vildagliptin for 4 weeks. Galantamine lowered the n5-STZ-induced elevation in body weight, food/water intake, serum levels of glucose, fructosamine, and ALT/AST, as well as AChE in the tested organs. Moreover, it modulated successfully the lipid profile assessed in serum, liver, and muscle, and increased serum insulin level, as well as % β-cell function, in a pattern similar to that of vildagliptin. Additionally, galantamine confirmed its antioxidant (Nrf2, TAC, MDA), anti-inflammatory (NF-κB, TNF-α, visfatin, adiponectin) and anti-apoptotic (caspase-3, cytochrome c) capabilities by altering the n5-STZ effect on all the aforementioned parameters. On the molecular level, galantamine/vildagliptin have improved the insulin (p-insulin receptor, p-Akt, GLUT4/GLUT2) and Wnt/β-catenin (p-GSK-3β, β-catenin) signaling pathways. On almost all parameters, the galantamine effects surpassed that of vildagliptin, while the combination regimen showed the best effects. The present results clearly proved that galantamine modulated glucose/lipid profile possibly through its anti-oxidant, -apoptotic, -inflammatory and -cholinesterase properties. These effects could be attributed partly to the enhancement of insulin and Wnt/β-catenin signaling pathways. Galantamine can be strongly considered as a potential antidiabetic agent and as an add-on therapy with other oral antidiabetics.
Collapse
Affiliation(s)
- Mennatallah A. Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
Abstract
The ability to "see" both incoming and circulating nutrients plays an essential role in the maintenance of energy homeostasis. As such, nutrient-sensing mechanisms in both the gastrointestinal tract and the brain have been implicated in the regulation of energy intake and glucose homeostasis. The intestinal wall is able to differentiate individual nutrients through sensory machinery expressed in the mucosa and provide feedback signals, via local gut peptide action, to maintain energy balance. Furthermore, both the hypothalamus and hindbrain detect circulating nutrients and respond by controlling energy intake and glucose levels. Conversely, nutrient sensing in the intestine plays a role in stimulating food intake and preferences. In this review, we highlight the emerging evidence for the regulation of energy balance through nutrient-sensing mechanisms in the intestine and the brain, and how disruption of these pathways could result in the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sophie C Hamr
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada,
| | | | | | | |
Collapse
|
35
|
Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One 2015; 10:e0119034. [PMID: 25793511 PMCID: PMC4368564 DOI: 10.1371/journal.pone.0119034] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/09/2015] [Indexed: 02/06/2023] Open
Abstract
The gut/brain peptide, glucagon like peptide 1 (GLP-1), suppresses food intake by acting on receptors located in key energy balance regulating CNS areas, the hypothalamus or the hindbrain. Moreover, GLP-1 can reduce reward derived from food and motivation to obtain food by acting on its mesolimbic receptors. Together these data suggest a neuroanatomical segregation between homeostatic and reward effects of GLP-1. Here we aim to challenge this view and hypothesize that GLP-1 can regulate food reward behavior by acting directly on the hindbrain, the nucleus of the solitary tract (NTS), GLP-1 receptors (GLP-1R). Using two models of food reward, sucrose progressive ratio operant conditioning and conditioned place preference for food in rats, we show that intra-NTS microinjections of GLP-1 or Exendin-4, a stable analogue of GLP-1, inhibit food reward behavior. When the rats were given a choice between palatable food and chow, intra-NTS Exendin-4 treatment preferentially reduced intake of palatable food but not chow. However, chow intake and body weight were reduced by the NTS GLP-1R activation if chow was offered alone. The NTS GLP-1 activation did not alter general locomotor activity and did not induce nausea, measured by PICA. We further show that GLP-1 fibers are in close apposition to the NTS noradrenergic neurons, which were previously shown to provide a monosynaptic connection between the NTS and the mesolimbic system. Central GLP-1R activation also increased NTS expression of dopamine-β-hydroxylase, a key enzyme in noradrenaline synthesis, indicating a biological link between these two systems. Moreover, NTS GLP-1R activation altered the expression of dopamine-related genes in the ventral tegmental area. These data reveal a food reward-suppressing role of the NTS GLP-1R and indicate that the neurobiological targets underlying food reward control are not limited to the mesolimbic system, instead they are distributed throughout the CNS.
Collapse
Affiliation(s)
- Jennifer E. Richard
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Rozita H. Anderberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andreas Göteson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fiona M. Gribble
- MRC Metabolic Diseases Unit and Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- MRC Metabolic Diseases Unit and Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Karolina P. Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
36
|
Morris LC, Nance KD, Gentry PR, Days EL, Weaver CD, Niswender CM, Thompson AD, Jones CK, Locuson CW, Morrison RD, Daniels JS, Niswender KD, Lindsley CW. Discovery of (S)-2-cyclopentyl-N-((1-isopropylpyrrolidin2-yl)-9-methyl-1-oxo-2,9-dihydro-1H-pyrrido[3,4-b]indole-4-carboxamide (VU0453379): a novel, CNS penetrant glucagon-like peptide 1 receptor (GLP-1R) positive allosteric modulator (PAM). J Med Chem 2014; 57:10192-7. [PMID: 25423411 PMCID: PMC4266362 DOI: 10.1021/jm501375c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A duplexed,
functional multiaddition high throughput screen and
subsequent iterative parallel synthesis effort identified the first
highly selective and CNS penetrant glucagon-like peptide-1R (GLP-1R)
positive allosteric modulator (PAM). PAM (S)-9b potentiated low-dose exenatide to augment insulin secretion
in primary mouse pancreatic islets, and (S)-9b alone was effective in potentiating endogenous GLP-1R to
reverse haloperidol-induced catalepsy.
Collapse
Affiliation(s)
- Lindsey C Morris
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, ‡Department of Pharmacology, §Vanderbilt Center for Neuroscience Drug Discovery, ∥Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ramsey T, Brennan MD. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial. Schizophr Res 2014; 160:73-9. [PMID: 25449714 PMCID: PMC4258179 DOI: 10.1016/j.schres.2014.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/29/2022]
Abstract
Glucagon-like peptide 1 receptor (GLP1R) signaling has been shown to have antipsychotic properties in animal models and to impact glucose-dependent insulin release, satiety, memory, and learning in man. Previous work has shown that two coding mutations (rs6923761 and rs1042044) are associated with altered insulin release and cortisol levels. We identified four frequently occurring haplotypes in Caucasians, haplotype 1 through haplotype 4, spanning exons 4-7 and containing the two coding variants. We analyzed response to antipsychotics, defined as predicted change in PANSS-Total (dPANSS) at 18 months, in Caucasian subjects from the Clinical Antipsychotic Trial of Intervention Effectiveness treated with olanzapine (n=139), perphenazine (n=78), quetiapine (n=14), risperidone (n=143), and ziprasidone (n=90). Haplotype trend regression analysis revealed significant associations with dPANSS for olanzapine (best p=0.002), perphenazine (best p=0.01), quetiapine (best p=0.008), risperidone (best p=0.02), and ziprasidone (best p=0.007). We also evaluated genetic models for the two most common haplotypes. Haplotype 1 (uniquely including the rs1042044 [Leu(260)] allele) was associated with better response to olanzapine (p=0.002), and risperidone (p=0.006), and worse response to perphenazine (p=.03), and ziprasidone (p=0.003), with a recessive genetic model providing the best fit. Haplotype 2 (uniquely including the rs6923761 [Ser(168)] allele) was associated with better response to perphenazine (p=0.001) and worse response to olanzapine (p=.02), with a dominant genetic model providing the best fit. However, GLP1R haplotypes were not associated with antipsychotic-induced weight gain. These results link functional genetic variants in GLP1R to antipsychotic response.
Collapse
|
38
|
Duca FA, Lam TKT. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab 2014; 16 Suppl 1:68-76. [PMID: 25200299 DOI: 10.1111/dom.12340] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/22/2014] [Indexed: 01/08/2023]
Abstract
The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut-brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut-brain axis controlling energy balance, at both the level of intestinal nutrient-sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy-regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.
Collapse
Affiliation(s)
- F A Duca
- Toronto General Research Institute and Department of Medicine, University Health Network, Toronto, Canada
| | | |
Collapse
|
39
|
Alhadeff AL, Baird JP, Swick JC, Hayes MR, Grill HJ. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. Neuropsychopharmacology 2014; 39:2233-43. [PMID: 24681814 PMCID: PMC4104342 DOI: 10.1038/npp.2014.74] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/22/2023]
Abstract
Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA,Department of Psychology, University of Pennsylvania, 3720 Walnut Street D25, Philadelphia, PA 19104, USA, Tel: +6105338326, Fax: +215 898 7301, E-mail:
| | | | | | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA,Department of Psychology, University of Pennsylvania, 3720 Walnut Street D24, Philadelphia, PA 19104, USA, E-mail:
| |
Collapse
|
40
|
Zheng H, Stornetta RL, Agassandian K, Rinaman L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct 2014; 220:3011-22. [PMID: 25012114 DOI: 10.1007/s00429-014-0841-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 01/30/2023]
Abstract
The expression of a vesicular glutamate transporter (VGLUT) suffices to assign a glutamatergic phenotype to neurons and other secretory cells. For example, intestinal L cells express VGLUT2 and secrete glutamate along with glucagon-like peptide 1 (GLP1). We hypothesized that GLP1-positive neurons within the caudal (visceral) nucleus of the solitary tract (cNST) also are glutamatergic. To test this, the axonal projections of GLP1 and other neurons within the cNST were labeled in rats via iontophoretic delivery of anterograde tracer. Dual immunofluorescence and confocal microscopy was used to visualize tracer-, GLP1-, and VGLUT2-positive fibers within brainstem, hypothalamic, and limbic forebrain nuclei that receive input from the cNST. Electron microscopy was used to confirm GLP1 and VGLUT2 immunolabeling within the same axon varicosities, and fluorescent in situ hybridization was used to examine VGLUT2 mRNA expression by GLP1-positive neurons. Most anterograde tracer-labeled fibers displayed VGLUT2-positive varicosities, providing new evidence that ascending axonal projections from the cNST are primarily glutamatergic. Virtually all GLP1-positive varicosities also were VGLUT2-positive. Electron microscopy confirmed the colocalization of GLP1 and VGLUT2 immunolabeling in axon terminals that formed asymmetric (excitatory-type) synapses with unlabeled dendrites in the hypothalamus. Finally, in situ hybridization confirmed that GLP1-positive cNST neurons express VGLUT2 mRNA. Thus, hindbrain GLP1 neurons in rats are equipped to store glutamate in synaptic vesicles, and likely co-release both glutamate and GLP1 from axon varicosities and terminals in the hypothalamus and other brain regions.
Collapse
Affiliation(s)
- H Zheng
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, 15260, USA
| | | | | | | |
Collapse
|
41
|
Alhadeff AL, Grill HJ. Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding. Am J Physiol Regul Integr Comp Physiol 2014; 307:R465-70. [PMID: 24944243 DOI: 10.1152/ajpregu.00179.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Central glucagon-like peptide-1 receptor (GLP-1R) signaling reduces food intake by affecting a variety of neural processes, including those mediating satiation, motivation, and reward. While the literature suggests that separable neurons and circuits control these processes, this notion has not been adequately investigated. The intake inhibitory effects of GLP-1R signaling in the hindbrain medial nucleus tractus solitarius (mNTS) have been attributed to interactions with vagally transmitted gastrointestinal satiation signals that are also processed by these neurons. Here, behavioral and pharmacological techniques are used to test the novel hypothesis that the reduction of food intake following mNTS GLP-1R stimulation also results from effects on food-motivated appetitive behaviors. Results show that mNTS GLP-1R activation by microinjection of exendin-4, a long-acting GLP-1R agonist, reduced 1) intake of a palatable high-fat diet, 2) operant responding for sucrose under a progressive ratio schedule of reinforcement and 3) the expression of a conditioned place preference for a palatable food. Together, these data demonstrate that the intake inhibitory effects of mNTS GLP-1R signaling extend beyond satiation and include effects on food reward and motivation that are typically ascribed to midbrain and forebrain neurons.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Gejl M, Rungby J, Brock B, Gjedde A. At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose. Basic Clin Pharmacol Toxicol 2014; 115:162-71. [PMID: 24684709 DOI: 10.1111/bcpt.12240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/17/2014] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas.
Collapse
Affiliation(s)
- Michael Gejl
- Department of Biomedicine - Pharmacology, Aarhus University, Aarhus, Denmark; Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
43
|
Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014; 34:237-60. [PMID: 24819325 DOI: 10.1146/annurev-nutr-071812-161201] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.
Collapse
Affiliation(s)
- Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | | | | |
Collapse
|
44
|
Pratley RE, Nauck MA, Barnett AH, Feinglos MN, Ovalle F, Harman-Boehm I, Ye J, Scott R, Johnson S, Stewart M, Rosenstock J. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, open-label, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol 2014; 2:289-297. [PMID: 24703047 DOI: 10.1016/s2213-8587(13)70214-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND As new members of a drug class are developed, head-to-head trials are an important strategy to guide personalised treatment decisions. We assessed two glucagon-like peptide-1 receptor agonists, once-weekly albiglutide and once-daily liraglutide, in patients with type 2 diabetes inadequately controlled on oral antidiabetic drugs. METHODS We undertook this 32-week, open-label, phase 3 non-inferiority study at 162 sites in eight countries: USA (121 sites), Australia (9 sites), Peru (7 sites), Philippines (7 sites), South Korea (5 sites), UK (5 sites), Israel (4 sites), and Spain (4 sites). 841 adult participants (aged ≥18 years) with inadequately controlled type 2 diabetes and a BMI between 20 and 45 kg/m(2) were enrolled and randomised in a 1:1 ratio to receive albiglutide 30 mg once weekly titrated to 50 mg at week 6, or liraglutide 0·6 mg once daily titrated to 1·2 mg at week 1 and 1·8 mg at week 2. The randomisation schedule was generated by an independent randomisation team by the permuted block method with a fixed block size of 16. Participants and investigators were unmasked to treatment. The primary endpoint was change from baseline in HbA1c for albiglutide versus liraglutide, with a 95% CI non-inferiority upper margin of 0·3%. The primary analysis was by modified intention to treat. The study is registered with ClinicalTrials.gov, number NCT01128894. FINDINGS 422 patients were randomly allocated to the albigultide group and 419 to the liraglutide group; 404 patients in the abliglutide group and 408 in the liraglutide group received the study drugs. The primary endpoint analysis was done on the modified intention-to-treat population, which included 402 participants in the albiglutide group and 403 in the liraglutide group. Model-adjusted change in HbA1c from baseline to week 32 was -0·78% (95% CI -0·87 to -0·69) in the albigludite group and -0·99% (-1·08 to -0·90) in the liraglutide group; treatment difference was 0·21% (0·08-0·34; non-inferiority p value=0·0846). Injection-site reactions occurred in more patients given albiglutide than in those given liraglutide (12·9% vs 5·4%; treatment difference 7·5% [95% CI 3·6-11·4]; p=0·0002), whereas the opposite was the case for gastrointestinal events, which occurred in 49·0% of patients in the liraglutide group versus 35·9% in the albiglutide group (treatment difference -13·1% [95% CI -19·9 to -6·4]; p=0·00013). INTERPRETATION Patients who received once-daily liraglutide had greater reductions in HbA1c than did those who received once-weekly albiglutide. Participants in the albiglutide group had more injection-site reactions and fewer gastrointestinal events than did those in the liraglutide group. FUNDING GlaxoSmithKline.
Collapse
Affiliation(s)
- Richard E Pratley
- Florida Hospital Diabetes and Translational Research Institute, Sanford-Burnham Medical Research Institute, Orlando, FL, USA.
| | | | | | | | - Fernando Ovalle
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | | | - June Ye
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Rhona Scott
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | | | | | | | | |
Collapse
|
45
|
Mietlicki-Baase EG, Hayes MR. Amylin activates distributed CNS nuclei to control energy balance. Physiol Behav 2014; 136:39-46. [PMID: 24480072 DOI: 10.1016/j.physbeh.2014.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 01/25/2023]
Abstract
Amylin is a pancreas-derived neuropeptide that acts in the central nervous system (CNS) to reduce food intake. Much of the literature describing the anorectic effects of amylin are focused on amylin's actions in the area postrema, a hindbrain circumventricular structure. Although the area postrema is certainly an important site that mediates the intake-suppressive effects of amylin, several pieces of evidence indicate that amylin may also promote negative energy balance through action in additional CNS nuclei, including hypothalamic and mesolimbic structures. Therefore, this review highlights the distributed neural network mediating the feeding effects of amylin signaling with special attention being devoted to the recent discovery that the ventral tegmental area is physiologically relevant for amylin-mediated control of feeding. The production of amylin by alternative, extra-pancreatic sources and its potential relevance to food intake regulation is also considered. Finally, the utility of amylin and amylin-like compounds as a component of combination pharmacotherapies for the treatment of obesity is discussed.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014. [PMID: 24373234 DOI: 10.1016/b978-0-12-800101-1.00002-8.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
Abstract
Glucagon-like peptide-1(7-36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeostasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics.
Collapse
Affiliation(s)
- Prashant Nadkarni
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA; Joslin Diabetes Center, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA; Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
47
|
Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:23-65. [PMID: 24373234 DOI: 10.1016/b978-0-12-800101-1.00002-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1(7-36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeostasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics.
Collapse
Affiliation(s)
- Prashant Nadkarni
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA; Joslin Diabetes Center, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA; Department of Pharmacology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
48
|
Olivos DR, McGrath LE, Turner CA, Montaubin O, Mietlicki-Baase EG, Hayes MR. Intraduodenal milk protein concentrate augments the glycemic and food intake suppressive effects of DPP-IV inhibition. Am J Physiol Regul Integr Comp Physiol 2013; 306:R157-63. [PMID: 24352410 DOI: 10.1152/ajpregu.00358.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone released from intestinal L-cells in response to food entering into the gastrointestinal tract. GLP-1-based pharmaceuticals improve blood glucose regulation and may hold promise for obesity treatment, as GLP-1 drugs reduce food intake and body weight in humans and animals. In an effort to improve GLP-1 pharmacotherapies, we focused our attention on macronutrients that, when present in the gastrointestinal tract, may enhance GLP-1 secretion and improve glycemic regulation and food intake suppression when combined with systemic administration of sitagliptin, a pharmacological inhibitor of DPP-IV (enzyme responsible for GLP-1 degradation). In particular, previous data suggest that specific macronutrient constituents found in dairy foods may act as potent secretagogues for GLP-1 and therefore may potentially serve as an adjunct dietary therapy in combination with sitagliptin. To directly test this hypothesis, rats received intraperitoneal injections of sitagliptin (6 mg/kg) or saline vehicle followed by intraduodenal infusions of either milk protein concentrate (MPC; 80/20% casein/whey; 4 kcal), soy protein (nondairy control infusate; 4 kcal), or 0.9% NaCl. Food intake was assessed 30 min postinfusion. In separate studies, regulation of blood glucose was examined via a 2-h oral glucose tolerance test (2 g/kg) following identical sitagliptin treatment and intraduodenal nutrient infusions. Collectively, results show that intraduodenal MPC, but not soy protein, significantly enhances both the food intake suppression and improved control of blood glucose produced by sitagliptin. These data support the hypothesis that dietary intake of dairy protein may be beneficial as an adjunct behavioral therapy to enhance the glycemic and food intake suppressive effects of GLP-1-based pharmacotherapies.
Collapse
Affiliation(s)
- Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
49
|
Mietlicki-Baase EG, Ortinski PI, Rupprecht LE, Olivos DR, Alhadeff AL, Pierce RC, Hayes MR. The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am J Physiol Endocrinol Metab 2013; 305:E1367-74. [PMID: 24105414 PMCID: PMC3882373 DOI: 10.1152/ajpendo.00413.2013] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) activation in the ventral tegmental area (VTA) is physiologically relevant for the control of palatable food intake. Here, we tested whether the food intake-suppressive effects of VTA GLP-1R activation are mediated by glutamatergic signaling within the VTA. Intra-VTA injections of the GLP-1R agonist exendin-4 (Ex-4) reduced palatable high-fat food intake in rats primarily by reducing meal size; these effects were mediated in part via glutamatergic AMPA/kainate but not NMDA receptor signaling. Additional behavioral data indicated that GLP-1R expressed specifically within the VTA can partially mediate the intake- and body weight-suppressive effects of systemically administered Ex-4, offering the intriguing possibility that this receptor population may be clinically relevant for food intake control. Intra-VTA Ex-4 rapidly increased tyrosine hydroxylase levels within the VTA, suggesting that GLP-1R activation modulates VTA dopaminergic signaling. Further evidence for this hypothesis was provided by electrophysiological data showing that Ex-4 increased the frequency of AMPA-mediated currents and reduced the paired/pulse ratio in VTA dopamine neurons. Together, these data provide novel mechanisms by which GLP-1R agonists in the mesolimbic reward system control for palatable food intake.
Collapse
|
50
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|