1
|
Hunter CT, Gorman Z, Li QB, Sorg A, Rering C, Block A, Christensen S. Disruption of allene oxide cyclase in maize reveals the necessity of enzymatically produced 12-OPDA for the induction of jasmonic acid during herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70209. [PMID: 40344686 DOI: 10.1111/tpj.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/11/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
Allene oxide cyclase (AOC) catalyzes the formation of 12-oxo-phytodienoic acid (12-OPDA) and represents an understudied step in jasmonate biosynthesis. Here the effects of eliminating AOC function in maize (Zea mays) are investigated. Gene editing was used to disrupt a pair of redundant AOC-coding genes, and mutants were analyzed with targeted metabolomics in a biochemical characterization of jasmonate deficiency. Our findings confirm essential roles for AOC in male flower development and resistance to biotic stresses. Metabolomic examinations show that AOC deficiency leads to a 90% reduction in 12-OPDA and a 99% reduction in jasmonic acid (JA) and JA-Isoleucine after treatment with fall armyworm. The presence of 12-OPDA in equal proportions of cis-(+) and cis-(-) stereochemical isomers indicates nonenzymatic allene oxide cyclization in the absence of functional AOC. This residual 12-OPDA is not converted into JA or other downstream jasmonates during herbivory, revealing the necessity of enzymatic cyclization of allene oxide by AOC for insect-induced JA and JA-dependent defense responses. The AOC-deficient mutants developed here provide a new tool for investigating the roles of jasmonates in maize.
Collapse
Affiliation(s)
- Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Zachary Gorman
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Qin-Bao Li
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Ariel Sorg
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Caitlin Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Anna Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, Florida, 32608, USA
| | - Shawn Christensen
- College of Life Sciences, Brigham Young University, Provo, Utah, 84602, USA
| |
Collapse
|
2
|
Whitehead JN, Leferink NGH, Hay S, Scrutton NS. Determinants of Product Outcome in Two Sesquiterpene Synthases from the Thermotolerant Bacterium Rubrobacter radiotolerans. Chembiochem 2025; 26:e202400672. [PMID: 39400489 DOI: 10.1002/cbic.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/15/2024]
Abstract
Rubrobacter radiotolerans nerolidol synthase (NerS) and trans-α-bergamotene synthase (BerS) are among the first terpene synthases (TPSs) discovered from thermotolerant bacteria, and, despite sharing the same substrate, make terpenoid products with different carbon scaffolds. Here, the potential thermostability of NerS and BerS was investigated, and NerS was found to retain activity up to 55 °C. A library of 22 NerS and BerS variants was designed to probe the differing reaction mechanisms of NerS and BerS, including residues putatively involved in substrate sequestration, cation-π stabilisation of reactive intermediates, and shaping of the active site contour. Two BerS variants showed improved in vivo titres vs the WT enzyme, and also yielded different ratios of the related sesquiterpenoids (E)-β-farnesene and trans-α-bergamotene. BerS-L86F was proposed to encourage substrate isomerisation by cation-π stabilisation of the first cationic intermediate, resulting in a greater proportion of trans-α-bergamotene. By contrast, BerS-S82L significantly preferred (E)-β-farnesene formation, attributed to steric blocking of the isomerisation step, consistent with what has been observed in several plant TPSs. Our work highlights the importance of isomerisation as a key determinant of product outcome in TPSs, and shows how a combined computational and experimental approach can characterise TPSs and variants with improved and altered functionality.
Collapse
Affiliation(s)
- Joshua N Whitehead
- Future, Biomanufacturing Research Hub, Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, University of Manchester, 131 Princess Street, Manchester, M7 7DN, UK
| | - Nicole G H Leferink
- Future, Biomanufacturing Research Hub, Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, University of Manchester, 131 Princess Street, Manchester, M7 7DN, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, University of Manchester, 131 Princess Street, Manchester, M7 7DN, UK
| | - Nigel S Scrutton
- Future, Biomanufacturing Research Hub, Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, University of Manchester, 131 Princess Street, Manchester, M7 7DN, UK
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, University of Manchester, 131 Princess Street, Manchester, M7 7DN, UK
| |
Collapse
|
3
|
Tang X, Zhang XJ, Pan JF, Guo K, Tan CL, Zhang QZ, Long LP, Ding RF, Niu XM, Liu Y, Li SH. Z/E configuration controlled by a Taxus sesquiterpene synthase facilitating the biosynthesis of (3Z,6E)-α-farnesene. PHYTOCHEMISTRY 2025; 229:114304. [PMID: 39424093 DOI: 10.1016/j.phytochem.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Plant enzymes often present advantages in the synthesis of natural products with specific configurations. Farnesene is a pharmacologically active sesquiterpene with three natural Z/E configurations, among which the enzyme selectively responsible for the biosynthesis of (3Z,6E)-α-farnesene remains elusive. Herein, a sesquiterpene synthase TwSTPS1 biosynthesizing (3Z,6E)-α-farnesene as the major product was identified from Taxus wallichiana through genome mining. Utilizing molecular dynamics simulations and mutation analysis, the catalytic mechanism of TwSTPS1, especially Z/E configuration control, was explored. Moreover, the crucial residues associated with the specific catalytic activity of TwSTPS1 was elucidated through mutagenesis experiments. The findings contribute to our understanding of the Z/E configuration control by plant terpene synthases and also provide an alternative tool for manipulating (3Z,6E)-α-farnesene production using synthetic biology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xian-Jing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jing-Feng Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiao-Zhuo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui-Feng Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xue-Mei Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
4
|
Wu H, Han WH, Liang KL, Wang JX, Zhang FB, Ji SX, Liu SS, Wang XW. Using salicylic acid-responsive promoters to drive the expression of jasmonic acid-regulated genes enhances plant resistance to whiteflies. PEST MANAGEMENT SCIENCE 2024. [PMID: 39387811 DOI: 10.1002/ps.8461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Jasmonic acid (JA) is an important phytohormone used to defend against herbivores, but it does not respond to whitefly feeding. Conversely, another phytohormone, salicylic acid (SA), is induced when plants are fed upon by whiteflies. JA has a better anti-whitefly effect than SA; however, there is limited research on how to effectively improve plant resistance by utilizing the different responses of these phytohormones to whitefly feeding. RESULTS We discovered that protease inhibitors 8 (PI8) and terpene synthase 10 (TPS10) located downstream of the JA-regulated pathway in plants have anti-whitefly effects, but these two genes were not induced by whitefly feeding. To identify whitefly-inducible promoters, we compared the transcriptome data of tobacco fed upon by Bemisia tabaci with the control. We focused on pathogenesis-related (PR) genes because they are known to be induced by SA. Among these PR genes, we found that expression levels of pathogenes-related protein 1C-like (PR1) and glucose endo-1,3-beta-glucosidase (BGL) can be significantly induced by whitefly feeding and regulated by SA. We then engineered the whitefly-inducible promoters of BGL and PR1 to drive the expression of PI8 and TPS10. We found that compared with control plants that did not induce the expression of PI8 or TPS10, transformed plants expressing PI8 or TPS10 under the PR1 or BGL promoter showed a significant increase in the expression levels of PI8 and TPS10 after whitefly infection, significantly improving their resistance to whiteflies. CONCLUSION Our findings suggest that using SA-inducible promoters as tools to drive the expression of JA-regulated defense genes can enhance plant resistance to whiteflies. Our study provides a novel pathway for the enhancement of plant resistance against insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- He Wu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kai-Lu Liang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Bin Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Xia Ji
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhou H, Hua J, Li H, Song X, Luo S. Structurally diverse specialized metabolites of maize and their extensive biological functions. J Cell Physiol 2024; 239:e30955. [PMID: 36745523 DOI: 10.1002/jcp.30955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Maize originated in southern Mexico and various hybrid varieties have been bred during domestication. All maize tissues are rich in specialized plant metabolites (SPMs), which allow the plants to resist the stresses of herbivores and pathogens or environmental factors. To date, a total of 95 terpenoids, 91 phenolics, 31 alkaloids, and 6 other types of compounds have been identified from maize. Certain volatile sesquiterpenes released by maize plants attract the natural enemies of maize herbivores and provide an indirect defensive function. Kauralexins and dolabralexins are the most abundant diterpenoids in maize and are known to regulate and stabilize the maize rhizosphere microbial community. Benzoxazinoids and benzoxazolinones are the main alkaloids in maize and are found in maize plants at the highest concentrations at the seedling stage. These two kinds of alkaloids directly resist herbivory and pathogenic infection. Phenolics enhance the cross-links between maize cell walls. Meanwhile, SPMs also regulate plant-plant relationships. In conclusion, SPMs in maize show a large diversity of chemical structures and broad-spectrum biological activities. We use these to provide ideas and information to enable the improvement of maize resistances through breeding and to promote the rapid development of the maize industry.
Collapse
Affiliation(s)
- Huiwen Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Hongdi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xinyu Song
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
Rahimova H, Heinen R, Weber B, Weisser WW, Schnitzler JP. Exogenous stimulation of Tanacetum vulgare roots with pipecolic acid leads to tissue-specific responses in terpenoid composition. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150974 DOI: 10.1111/plb.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/19/2024] [Indexed: 08/18/2024]
Abstract
Tanacetum vulgare L., tansy, is a perennial plant with highly variable terpenoid composition, with mono- and sesquiterpenoids being the most abundant. The high diversity of terpenoids plays an important role in mediating ecological interactions. However, the distribution of terpenoids in different tissues and inducibility of terpenoids in these tissues via biotic stress are poorly understood. We investigated changes in terpenoid profiles and concentrations in different organs following treatment of roots with pipecolic acid (Pip), a non-proteinogenic amino acid that triggers defence responses leading to induce systemic resistance (SAR) in plants. Tansy leaves and midribs contained mainly monoterpenoids, while coarse and fine roots contained mainly sesquiterpenoids. Rhizomes contained terpenoid profiles of both midribs and roots but also unique compounds. Treatment with Pip led to an increase in concentrations of mono- and sesquiterpenoids in all tissues except rhizomes. However, significantly more sesquiterpenoids was formed in root tissues in response to Pip treatment, compared to shoots. The metabolic atlas for terpenoids presented here shows that there is exceptionally strong differentiation of terpenoid patterns and terpenoid content in different tissues of tansy. This, together with differential inducibility by Pip, suggests that the chemical diversity of terpenoids may play an important role in tansy ecological interactions and defence against biotic stressors that feed on below- and aboveground organs.
Collapse
Affiliation(s)
- H Rahimova
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
| | - R Heinen
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - B Weber
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
| | - W W Weisser
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J-P Schnitzler
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
7
|
Xiao Y, Tan X, He Q, Yang S. Systematic metabolic engineering of Zymomonas mobilis for β-farnesene production. Front Bioeng Biotechnol 2024; 12:1392556. [PMID: 38827034 PMCID: PMC11140730 DOI: 10.3389/fbioe.2024.1392556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium that can produce hopanoids using farnesyl pyrophosphate (FPP), which can be used as the precursor by β-farnesene synthase for β-farnesene production. To explore the possibility and bottlenecks of developing Z. mobilis for β-farnesene production, five heterologous β-farnesene synthases were selected and screened, and AaBFS from Artemisia annua had the highest β-farnesene titer. Recombinant strains with AaBFS driven by the strong constitutive promoter Pgap (Pgap-AaBFS) doubled its β-farnesene production to 25.73 ± 0.31 mg/L compared to the recombinant strain with AaBFS driven by Ptet (Ptet-AaBFS), which can be further improved by overexpressing the Pgap-AaBFS construct using the strategies of multiple plasmids (41.00 ± 0.40 mg/L) or genomic multi-locus integration (48.33 ± 3.40 mg/L). The effect of cofactor NADPH balancing on β-farnesene production was also investigated, which can be improved only in zwf-overexpressing strains but not in ppnK-overexpressing strains, indicating that cofactor balancing is important and sophisticated. Furthermore, the β-farnesene titer was improved to 73.30 ± 0.71 mg/L by overexpressing dxs, ispG, and ispH. Finally, the β-farnesene production was increased to 159.70 ± 7.21 mg/L by fermentation optimization, including the C/N ratio, flask working volume, and medium/dodecane ratio, which was nearly 13-fold improved from the parental strain. This work thus not only generated a recombinant β-farnesene production Z. mobilis strain but also unraveled the bottlenecks to engineer Z. mobilis for farnesene production, which will help guide the future rational design and construction of cell factories for terpenoid production in non-model industrial microorganisms.
Collapse
Affiliation(s)
| | | | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Wei G, Xu Y, Xu M, Shi X, Wang J, Feng L. Identification of Volatile Compounds and Terpene Synthase ( TPS) Genes Reveals ZcTPS02 Involved in β-Ocimene Biosynthesis in Zephyranthes candida. Genes (Basel) 2024; 15:185. [PMID: 38397175 PMCID: PMC10887521 DOI: 10.3390/genes15020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Zephyranthes candida is a frequently cultivated ornamental plant containing several secondary metabolites, including alkaloids, flavonoids, and volatile organic compounds (VOCs). However, extensive research has been conducted only on non-VOCs found in the plant, whereas the production of VOCs and the molecular mechanisms underlying the biosynthesis of terpenes remain poorly understood. In this study, 17 volatile compounds were identified from Z. candida flowers using gas chromatography-mass spectrometry (GC-MS), with 16 of them being terpenoids. Transcriptome sequencing resulted in the identification of 17 terpene synthase (TPS) genes; two TPS genes, ZcTPS01 and ZcTPS02, had high expression levels. Biochemical characterization of two enzymes encoded by both genes revealed that ZcTPS02 can catalyze geranyl diphosphate (GPP) into diverse products, among which is β-ocimene, which is the second most abundant compound found in Z. candida flowers. These results suggest that ZcTPS02 plays a vital role in β-ocimene biosynthesis, providing valuable insights into terpene biosynthesis pathways in Z. candida. Furthermore, the expression of ZcTPS02 was upregulated after 2 h of methyl jasmonate (MeJA) treatment and downregulated after 4 h of the same treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (G.W.); (Y.X.); (M.X.); (X.S.); (J.W.)
| |
Collapse
|
9
|
Maleki FA, Seidl-Adams I, Fahimi A, Peiffer ML, Kersch-Becker MF, Felton GW, Tumlinson JH. Stomatal closure prevents xylem transport of green leaf volatiles and impairs their systemic function in plants. PLANT, CELL & ENVIRONMENT 2024; 47:122-139. [PMID: 37828776 DOI: 10.1111/pce.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Plants perceive environmental stresses as whole organisms via distant signals conveying danger messages through their vasculature. In parallel to vascular transport, airborne plant volatile compounds, including green leaf volatiles (GLVs), can bypass the lack of vascular connection. However, some small volatile compounds move through the vasculature; such vascular transport is little known about GLVs. Here we illustrate GLV alcohols as solutes move within xylem vessels in Zea mays. We describe GLV alcohols, including Z-3-hexen-ol and its isomer E-3-hexen-ol, which is not synthesized in maize, moving through the transpiration stream via xylem vessels. Since transpiration is mediated by the stomatal aperture, closing stomata by two independent methods diminishes the transport of GLV alcohol and its isomer. In addition, the lower transport of GLV alcohols impairs their function in inducing terpenoid biosynthesis, suggesting that xylem transport of GLV alcohols plays a significant role in their systemic function. Our study suggests that GLV alcohols, in addition to airborne signals, are transported through xylem vessels. Our findings can be critical in future studies about the perception and function of these compounds in plants.
Collapse
Affiliation(s)
- Feizollah A Maleki
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irmgard Seidl-Adams
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Michelle L Peiffer
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Monica F Kersch-Becker
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Felton
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James H Tumlinson
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
10
|
Wang S, Zhan C, Nie S, Tian D, Lu J, Wen M, Qiao J, Zhu H, Caiyin Q. Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12452-12461. [PMID: 37574876 DOI: 10.1021/acs.jafc.3c03677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
α-Farnesene, a type of acyclic sesquiterpene, is an important raw material in agriculture, aircraft fuel, and the chemical industry. In this study, we constructed an efficient α-farnesene-producing yeast cell factory by combining enzyme and metabolic engineering strategies. First, we screened different plants for α-farnesene synthase (AFS) with the best activity and found that AFS from Camellia sinensis (CsAFS) exhibited the most efficient α-farnesene production in Saccharomyces cerevisiae 4741. Second, the metabolic flux of the mevalonate pathway was increased to improve the supply of the precursor farnesyl pyrophosphate. Third, inducing site-directed mutagenesis in CsAFS, the CsAFSW281C variant was obtained, which considerably increased α-farnesene production. Fourth, the N-terminal serine-lysine-isoleucine-lysine (SKIK) tag was introduced to construct the SKIK∼CsAFSW281C variant, which further increased α-farnesene production to 2.8 g/L in shake-flask cultures. Finally, the α-farnesene titer of 28.3 g/L in S. cerevisiae was obtained by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Daoguang Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Juane Lu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
11
|
Wang Y, Zou J, Li J, Kong F, Xu L, Xu D, Li J, Yang H, Zhang L, Li T, Fan H. Identification and functional analysis of ZmDLS associated with the response to biotic stress in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1162826. [PMID: 37546249 PMCID: PMC10399692 DOI: 10.3389/fpls.2023.1162826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Terpenes are the main class of secondary metabolites produced in response to pest and germ attacks. In maize (Zea mays L.), they are the essential components of the herbivore-induced plant volatile mixture, which functioned as a direct or indirect defense against pest and germ attacks. In this study, 43 maize terpene synthase gene (ZmTPS) family members were systematically identified and analyzed through the whole genomes of maize. Nine genes, including Zm00001d032230, Zm00001d045054, Zm00001d024486, Zm00001d004279, Zm00001d002351, Zm00001d002350, Zm00001d053916, Zm00001d015053, and Zm00001d015054, were isolated for their differential expression pattern in leaves after corn borer (Ostrinia nubilalis) bite. Additionally, six genes (Zm00001d045054, Zm00001d024486, Zm00001d002351, Zm00001d002350, Zm00001d015053, and Zm00001d015054) were significantly upregulated in response to corn borer bite. Among them, Zm00001d045054 was cloned. Heterologous expression and enzyme activity assays revealed that Zm00001d045054 functioned as d-limonene synthase. It was renamed ZmDLS. Further analysis demonstrated that its expression was upregulated in response to corn borer bites and Fusarium graminearum attacks. The mutant of ZmDLS downregulated the expressions of Zm00001d024486, Zm00001d002351, Zm00001d002350, Zm00001d015053, and Zm00001d015054. It was more attractive to corn borer bites and more susceptible to F. graminearum infection. The yeast one-hybrid assay and dual-luciferase assay showed that ZmMYB76 and ZmMYB101 could upregulate the expression of ZmDLS by binding to the promoter region. This study may provide a theoretical basis for the functional analysis and transcriptional regulation of terpene synthase genes in crops.
Collapse
Affiliation(s)
- Yiting Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Jie Zou
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Jiali Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Fanna Kong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Lina Xu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dafeng Xu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jiaxin Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huaying Yang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Lin Zhang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tingchun Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Honghong Fan
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Genome-wide identification, expression profile and evolutionary relationships of TPS genes in the neotropical fruit tree species Psidium cattleyanum. Sci Rep 2023; 13:3930. [PMID: 36894661 PMCID: PMC9998390 DOI: 10.1038/s41598-023-31061-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Terpenoids are essential for plant growth, development, defense, and adaptation mechanisms. Psidium cattleyanum (Myrtaceae) is a fleshy fruit tree species endemics from Atlantic Forest, known for its pleasant fragrance and sweet taste, attributed to terpenoids in its leaves and fruits. In this study, we conducted genome-wide identification, evolutionary and expression analyses of the terpene synthase gene (TPS) family in P. cattleyanum red guava (var. cattleyanum), and yellow guava (var. lucidum Hort.) morphotypes. We identified 32 full-length TPS in red guava (RedTPS) and 30 in yellow guava (YlwTPS). We showed different expression patterns of TPS paralogous in the two morphotypes, suggesting the existence of distinct gene regulation mechanisms and their influence on the final essential oil content in both morphotypes. Moreover, the oil profile of red guava was dominated by 1,8-cineole and linalool and yellow guava was enriched in α-pinene, coincident in proportion to TPS-b1 genes, which encode enzymes that produce cyclic monoterpenes, suggesting a lineage-specific subfamily expansion of this family. Finally, we identified amino acid residues near the catalytic center and functional areas under positive selection. Our findings provide valuable insights into the terpene biosynthesis in a Neotropical Myrtaceae species and their potential involvement in adaptation mechanisms.
Collapse
|
13
|
Li Z, Wang J, Zhang X, Zhu G, Fu Y, Jing Y, Huang B, Wang X, Meng C, Yang Q, Xu L. The genome of Aechmea fasciata provides insights into the evolution of tank epiphytic habits and ethylene-induced flowering. Commun Biol 2022; 5:920. [PMID: 36071139 PMCID: PMC9452560 DOI: 10.1038/s42003-022-03918-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
Aechmea fasciata is one of the most popular bromeliads and bears a water-impounding tank with a vase-like rosette. The tank habit is a key innovation that has promoted diversity among bromeliads. To reveal the genomic basis of tank habit formation and ethylene-induced flowering, we sequenced the genome of A. fasciata and assembled 352 Mb of sequences into 24 chromosomes. Comparative genomic analysis showed that the chromosomes experienced at least two fissions and two fusions from the ancestral genome of A. fasciata and Ananas comosus. The gibberellin receptor gene GID1C-like was duplicated by a segmental duplication event. This duplication may affect GA signalling and promote rosette expansion, which may permit water-impounding tank formation. During ethylene-induced flowering, AfFTL2 expression is induced and targets the EIN3 binding site 'ATGTAC' by AfEIL1-like. The data provided here will serve as an important resource for studying the evolution and mechanisms underlying flowering time regulation in bromeliads.
Collapse
Affiliation(s)
- Zhiying Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Jiabin Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Xuanbing Zhang
- College of Horticulture and Landscape Architecture, Hainan University, Haikou, 570228, China
| | - GuoPeng Zhu
- College of Horticulture and Landscape Architecture, Hainan University, Haikou, 570228, China
| | - Yunliu Fu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Yonglin Jing
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Bilan Huang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Chunyang Meng
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Qingquan Yang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China
| | - Li Xu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China.
- Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Danzhou, 571737, Hainan, China.
- Hainan Province Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation, Danzhou, 571737, Hainan, China.
- National Gene Bank of Tropical Crops, Danzhou, 571700, Hainan, China.
| |
Collapse
|
14
|
Raglin SS, Kent AD, Ngumbi EN. Herbivory Protection via Volatile Organic Compounds Is Influenced by Maize Genotype, Not Bacillus altitudinis-Enriched Bacterial Communities. Front Microbiol 2022; 13:826635. [PMID: 35586862 PMCID: PMC9108721 DOI: 10.3389/fmicb.2022.826635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Belowground, plants interact with beneficial soil microbes such as plant growth-promoting rhizobacteria (PGPR). PGPR are rhizosphere bacteria that colonize roots and elicit beneficial effects in plants such as improved plant growth, pathogen resistance, abiotic stress tolerance, and herbivore protection. Treatment of plants with PGPR has been shown to trigger the emission of volatile organic compounds (VOCs). Volatile emissions can also be triggered by herbivory, termed herbivore-induced plant volatiles (HIPV), with important ramifications for chemical-mediated plant and insect interactions. Much of our current understanding of PGPR and herbivore-induced volatiles is based on studies using one plant genotype, yet domestication and modern breeding has led to the development of diverse germplasm with altered phenotypes and chemistry. In this study, we investigated if volatile emissions triggered by PGPR colonization and herbivory varies by maize genotype and microbial community assemblages. Six maize genotypes representing three decades of crop breeding and two heterotic groups were used, with four microbiome treatments: live or sterilized soil, with or without a Bacillus inoculant. Soil sterilization was used to delay microbiome establishment, resulting in low-diversity treatments. At planting, maize seeds were inoculated with PGPR Bacillus altitudinis AP-283 and grown under greenhouse conditions. Four weeks post planting, plants were subjected to feeding by third instar Helicoverpa zea (Lepidoptera: Noctuidae) larvae. Volatiles were collected using solid phase microextraction and analyzed with gas chromatography-mass spectrometry. Illumina NovaSeq 16S rRNA amplicon sequencing was carried out to characterize the rhizosphere microbiome. Maize genotype significantly influenced total volatile emissions, and relative abundance of volatile classes. We did not document a strong influence of microbe treatment on plant VOC emissions. However, inoculating plants with PGPR improved plant growth under sterile conditions. Taken together, our results suggest that genotypic variation is the dominant driver in HIPV composition and individual HIPV abundances, and any bacterial-mediated benefit is genotype and HIPV-specific. Therefore, understanding the interplay of these factors is necessary to fully harness microbially-mediated benefits and improve agricultural sustainability.
Collapse
Affiliation(s)
- Sierra S. Raglin
- Microbial Ecology Laboratory, Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Angela D. Kent
- Microbial Ecology Laboratory, Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Esther N. Ngumbi
- Departments of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Esther N. Ngumbi,
| |
Collapse
|
15
|
Tang R, Wen Q, Li M, Zhang W, Wang Z, Yang J. Recent Advances in the Biosynthesis of Farnesene Using Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15468-15483. [PMID: 34905684 DOI: 10.1021/acs.jafc.1c06022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Farnesene, as an important sesquiterpene isoprenoid polymer of acetyl-CoA, is a renewable feedstock for diesel fuel, polymers, and cosmetics. It has been widely applied in agriculture, medicine, energy, and other fields. In recent years, farnesene biosynthesis is considered a green and economical approach because of its mild reaction conditions, low environmental pollution, and sustainability. Metabolic engineering has been widely applied to construct cell factories for farnesene biosynthesis. In this paper, the research progress, common problems, and strategies of farnesene biosynthesis are reviewed. They are mainly described from the perspectives of the current status of farnesene biosynthesis in different host cells, optimization of the metabolic pathway for farnesene biosynthesis, and key enzymes for farnesene biosynthesis. Furthermore, the challenges and prospects for future farnesene biosynthesis are discussed.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Qifeng Wen
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Meijie Li
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Wei Zhang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
16
|
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J Microbiol Biotechnol 2021; 37:201. [PMID: 34664124 DOI: 10.1007/s11274-021-03157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
17
|
Schotte C, Lukat P, Deuschmann A, Blankenfeldt W, Cox RJ. Understanding and Engineering the Stereoselectivity of Humulene Synthase. Angew Chem Int Ed Engl 2021; 60:20308-20312. [PMID: 34180566 PMCID: PMC8457177 DOI: 10.1002/anie.202106718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Indexed: 11/09/2022]
Abstract
The non-canonical terpene cyclase AsR6 is responsible for the formation of 2E,6E,9E-humulene during the biosynthesis of the tropolone sesquiterpenoid (TS) xenovulene A. The structures of unliganded AsR6 and of AsR6 in complex with an in crystallo cyclized reaction product and thiolodiphosphate reveal a new farnesyl diphosphate binding motif that comprises a unique binuclear Mg2+ -cluster and an essential K289 residue that is conserved in all humulene synthases involved in TS formation. Structure-based site-directed mutagenesis of AsR6 and its homologue EupR3 identify a single residue, L285/M261, that controls the production of either 2E,6E,9E- or 2Z,6E,9E-humulene. A possible mechanism for the observed stereoselectivity was investigated using different isoprenoid precursors and results demonstrate that M261 has gatekeeping control over product formation.
Collapse
Affiliation(s)
- Carsten Schotte
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Peer Lukat
- Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstr. 738124BraunschweigGermany
| | - Adrian Deuschmann
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Wulf Blankenfeldt
- Structure and Function of ProteinsHelmholtz Centre for Infection ResearchInhoffenstr. 738124BraunschweigGermany
- Institute for Biochemistry, Biotechnology and BioinformaticsTechnische Universität BraunschweigSpielmannstr. 738106BraunschweigGermany
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| |
Collapse
|
18
|
Schotte C, Lukat P, Deuschmann A, Blankenfeldt W, Cox RJ. Untersuchungen zum Verständnis und zur Kontrolle der Stereoselektivität der Humulen‐Synthase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Carsten Schotte
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| | - Peer Lukat
- Structure and Function of Proteins Helmholtz Zentrum für Infektionsforschung Inhoffenstr. 7 38124 Braunschweig Deutschland
| | - Adrian Deuschmann
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| | - Wulf Blankenfeldt
- Structure and Function of Proteins Helmholtz Zentrum für Infektionsforschung Inhoffenstr. 7 38124 Braunschweig Deutschland
- Institut für Biochemie, Biotechnologie und Bioinformatik Technische Universität Braunschweig Spielmannstr. 7 38106 Braunschweig Deutschland
| | - Russell J. Cox
- Institut für Organische Chemie und BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Deutschland
| |
Collapse
|
19
|
Velázquez-Márquez S, De-la-Cruz IM, Tapia-López R, Núñez-Farfán J. Tropane alkaloids and terpenes synthase genes of Datura stramonium (Solanaceae). PeerJ 2021; 9:e11466. [PMID: 34178440 PMCID: PMC8212831 DOI: 10.7717/peerj.11466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background Plants have evolved physical–chemical defense to prevent/diminish damage by their enemies. Chemical defense involves the synthesis’ pathways of specialized toxic, repellent, or anti-nutritive metabolites to herbivores. Molecular evolutionary studies have revealed the origin of new genes, acquisition and functional diversification along time in different plant lineages. Methods Using bioinformatic tools we analyze gene divergence of tropane alkaloids (TAs) and terpene synthases (TPSs) in Datura stramonium and other species of Solanaceae; compared gene and amino acids sequence of TAs and TPSs on genomes, cDNA and proteins sequences of Viridiplantae. We analyzed two recently assembled genomes of D. stramonium (Ticumán and Teotihuacán), transcriptomes of Datura metel and genomes of other Solanaceae. Hence, we analyzed variation of TAs and TPSs to infer genes involved in plant defense and plant responses before stress. We analyzed protein modeling and molecular docking to predict interactions between H6H and ligand; we translated the sequences (Teo19488, Tic8550 and Tic8549) obtained from the two genomes of D. stramonium by using Swiss-Model and Ramachandran plot and MolProbity structure validation of Teo19488 protein model. Results For TAs, we detected an expansion event in the tropinone reductase II (TRII) and the ratio synonymous/non-synonymous substitutions indicate positive selection. In contrast, a contraction event and negative selection was detected in tropinone reductase I (TRI). In Hy-oscyamine 6 b-hydroxylase (H6H), enzyme involved in the production of tropane alkaloids atropine and scopolamine, the synonymous/non-synonymous substitution ratio in its dominion indicates positive selection. For terpenes (TPS), we found 18 DsTPS in D. stramomiun and seven in D. metel; evolutionary analyses detected positive selection in TPS10.1 and TPS10.2 of D. stramonium and D. metel. Comparison of copies of TPSs in D. stramonium detected variation among them in the binding site. Duplication events and differentiation of TAs and TPSs of D. stramonium, as compared to other Solanaceae, suggest their possible involvement on adaptive evolution of defense to herbivores. Protein modeling and docking show that the three protein structures obtained of DsH6H from Teo19488, Tic-8550 and Tic8549 maintain the same interactions and the union site of 2OG-FeII_Oxy with the Hy-o ligand as in 6TTM of D. metel. Conclusion Our results indicate differences in the number of gene copies involved in the synthesis of tropane alkaloids, between the genomes of D. stramonium from two Mexican populations. More copies of genes related to the synthesis of tropane alkaloids (TRI, TRII, H6H, PMT) are found in D. stramonium as compared to Viridiplantae. Likewise, for terpene synthases (TPS), TPS-10 is duplicated in D. stramonium and D. metel. Further studies should be directed to experimentally assess gain (overexpression) or loss (silencing) of function of duplicated genes.
Collapse
Affiliation(s)
- Sabina Velázquez-Márquez
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Iván M De-la-Cruz
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Rosalinda Tapia-López
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| |
Collapse
|
20
|
Durairaj J, Melillo E, Bouwmeester HJ, Beekwilder J, de Ridder D, van Dijk ADJ. Integrating structure-based machine learning and co-evolution to investigate specificity in plant sesquiterpene synthases. PLoS Comput Biol 2021; 17:e1008197. [PMID: 33750949 PMCID: PMC8016262 DOI: 10.1371/journal.pcbi.1008197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/01/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Sesquiterpene synthases (STSs) catalyze the formation of a large class of plant volatiles called sesquiterpenes. While thousands of putative STS sequences from diverse plant species are available, only a small number of them have been functionally characterized. Sequence identity-based screening for desired enzymes, often used in biotechnological applications, is difficult to apply here as STS sequence similarity is strongly affected by species. This calls for more sophisticated computational methods for functionality prediction. We investigate the specificity of precursor cation formation in these elusive enzymes. By inspecting multi-product STSs, we demonstrate that STSs have a strong selectivity towards one precursor cation. We use a machine learning approach combining sequence and structure information to accurately predict precursor cation specificity for STSs across all plant species. We combine this with a co-evolutionary analysis on the wealth of uncharacterized putative STS sequences, to pinpoint residues and distant functional contacts influencing cation formation and reaction pathway selection. These structural factors can be used to predict and engineer enzymes with specific functions, as we demonstrate by predicting and characterizing two novel STSs from Citrus bergamia.
Collapse
Affiliation(s)
- Janani Durairaj
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Harro J. Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jules Beekwilder
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D. J. van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
- Biometris, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Luck K, Chen X, Norris AM, Chen F, Gershenzon J, Köllner TG. The reconstruction and biochemical characterization of ancestral genes furnish insights into the evolution of terpene synthase function in the Poaceae. PLANT MOLECULAR BIOLOGY 2020; 104:203-215. [PMID: 32683610 PMCID: PMC7417412 DOI: 10.1007/s11103-020-01037-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/12/2020] [Indexed: 05/05/2023]
Abstract
Distinct catalytic features of the Poaceae TPS-a subfamily arose early in grass evolution and the reactions catalyzed have become more complex with time. The structural diversity of terpenes found in nature is mainly determined by terpene synthases (TPS). TPS enzymes accept ubiquitous prenyl diphosphates as substrates and convert them into the various terpene skeletons by catalyzing a carbocation-driven reaction. Based on their sequence similarity, terpene synthases from land plants can be divided into different subfamilies, TPS-a to TPS-h. In this study, we aimed to understand the evolution and functional diversification of the TPS-a subfamily in the Poaceae (the grass family), a plant family that contains important crops such as maize, wheat, rice, and sorghum. Sequence comparisons showed that aside from one clade shared with other monocot plants, the Poaceae TPS-a subfamily consists of five well-defined clades I-V, the common ancestor of which probably originated very early in the evolution of the grasses. A survey of the TPS literature and the characterization of representative TPS enzymes from clades I-III revealed clade-specific substrate and product specificities. The enzymes in both clade I and II function as sesquiterpene synthases with clade I enzymes catalyzing initial C10-C1 or C11-C1 ring closures and clade II enzymes catalyzing C6-C1 closures. The enzymes of clade III mainly act as monoterpene synthases, forming cyclic and acyclic monoterpenes. The reconstruction and characterization of clade ancestors demonstrated that the differences among clades I-III were already present in their ancestors. However, the ancestors generally catalyzed simpler reactions with less double-bond isomerization and fewer cyclization steps. Overall, our data indicate an early origin of key enzymatic features of TPS-a enzymes in the Poaceae, and the development of more complex reactions over the course of evolution.
Collapse
Affiliation(s)
- Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745 Jena, Germany
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Ayla M. Norris
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745 Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745 Jena, Germany
| |
Collapse
|
22
|
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4140-4158. [PMID: 32275056 DOI: 10.1093/jxb/eraa184] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 05/09/2023]
Abstract
Previously, linalool was found to be the most abundant component among the cocktail of volatiles released from flowers of Freesia hybrida. Linalool formation is catalysed by monoterpene synthase TPS1. However, the regulatory network developmentally modulating the expression of the TPS1 gene in Freesia hybrida remains unexplored. In this study, three regulatory genes, FhMYB21L1, FhMYB21L2, and FhMYC2, were screened from 52 candidates. Two MYB transcription factor genes were synchronously expressed with FhTPS1 and could activate its expression significantly when overexpressed, and the binding of FhMYB21L2 to the MYBCORE sites in the FhTPS1 promoter was further confirmed, indicating a direct role in activation. FhMYC2 showed an inverse expression pattern compared with FhTPS1; its expression led to a decreased binding of FhMYB21 to the FhTPS1 promoter to reduce its activation capacity when co-expressed, suggesting a role for an MYB-bHLH complex in the regulation of the FhTPS1 gene. In Arabidopsis, both MYB21 and MYC2 regulators were shown to activate the expression of sesquiterpene synthase genes, and the regulatory roles of AtMYB21 and AtMYC2 in the expression of the linalool synthase gene were also confirmed, implying conserved functions of the MYB-bHLH complex in these two evolutionarily divergent plants. Moreover, the expression ratio between MYB21 and MYC2 orthologues might be a determinant factor in floral linalool emission.
Collapse
Affiliation(s)
- Zhongzhou Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Fengzhan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Wei Jin
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shuying Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Department of Biological and Physical Sciences, Karatina University, Karatina, Kenya
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
23
|
Karunanithi PS, Berrios DI, Wang S, Davis J, Shen T, Fiehn O, Maloof JN, Zerbe P. The foxtail millet (Setaria italica) terpene synthase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:781-800. [PMID: 32282967 PMCID: PMC7497057 DOI: 10.1111/tpj.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 05/18/2023]
Abstract
Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - David I. Berrios
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Sadira Wang
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - John Davis
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Tong Shen
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| |
Collapse
|
24
|
Zhang L, Lu G, Huang X, Guo H, Su X, Han L, Zhang Y, Qi Z, Xiao Y, Cheng H. Overexpression of the caryophyllene synthase gene GhTPS1 in cotton negatively affects multiple pests while attracting parasitoids. PEST MANAGEMENT SCIENCE 2020; 76:1722-1730. [PMID: 31762173 DOI: 10.1002/ps.5695] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Volatile terpenes can act as ecological signals to affect insect behavior. It has been proposed that the manipulation of terpenes in plants can help to control herbivore pests. In order to investigate the potential pest management function of (E)-β-caryophyllene in cotton plants, the (E)-β-caryophyllene synthase gene (GhTPS1) was inserted into Gossypium hirsutum variety R15 to generate overexpression lines. RESULTS Four GhTPS1-transgenic lines were generated, and GhTPS1 expression in transgenic L18 and L46 lines was 3-5-fold higher than in R15 plants. The transgenic L18 and L46 lines also emitted significantly more (E)-β-caryophyllene than R15. In laboratory bioassays, L18 and L46 plants reduced pests Apolygus lucorum, Aphis gossypii and Helicoverpa armigera, and attracted parasitoids Peristenus spretus and Aphidius gifuensis, but not Microplitis mediator. In open-field trials, L18 and L46 plants reduced A. lucorum, Adelphocoris suturalis and H. armigera, but had no significant effects on predators. CONCLUSION Our findings suggest that L18 and L46 plants reduce several major hemipteran and lepidopteran cotton pests, whereas, two parasitoids P. spretus and A. gifuensis, were attracted by L18 and L46 plants. This study shows that overexpressing GhTPS1 in cotton may help to improve pest management in cotton fields. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guoqing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzheng Huang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi Qi
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Ker DS, Chan KG, Othman R, Hassan M, Ng CL. Site-directed mutagenesis of β sesquiphellandrene synthase enhances enzyme promiscuity. PHYTOCHEMISTRY 2020; 173:112286. [PMID: 32059132 DOI: 10.1016/j.phytochem.2020.112286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor β-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of β-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Kok Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China; Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Roohaida Othman
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
26
|
The Product Specificities of Maize Terpene Synthases TPS4 and TPS10 Are Determined both by Active Site Amino Acids and Residues Adjacent to the Active Site. PLANTS 2020; 9:plants9050552. [PMID: 32357450 PMCID: PMC7284416 DOI: 10.3390/plants9050552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
Terpene synthases make up a large family of enzymes that convert prenyl diphosphates into an enormous variety of terpene skeletons. Due to their electrophilic reaction mechanism—which involves the formation of carbocations followed by hydride shifts and skeletal rearrangements—terpene synthases often produce complex mixtures of products. In the present study, we investigate amino acids that determine the product specificities of the maize terpene synthases TPS4 and TPS10. The enzymes showed 57% amino acid similarity and produced different mixtures of sesquiterpenes. Sequence comparisons and structure modeling revealed that out of the 43 amino acids forming the active site cavity, 17 differed between TPS4 and TPS10. While combined mutation of these 17 residues in TPS4 resulted in an enzyme with a product specificity similar to TPS10, the additional mutation of two amino acids next to the active site led to a nearly complete conversion of TPS4 into TPS10. These data demonstrate that the different product specificities of TPS4 and TPS10 are determined not only by amino acids forming the active site cavity, but also by neighboring residues that influence the conformation of active site amino acids.
Collapse
|
27
|
A Wheat β-Patchoulene Synthase Confers Resistance Against Herbivory in Transgenic Arabidopsis. Genes (Basel) 2019; 10:genes10060441. [PMID: 31185680 PMCID: PMC6628343 DOI: 10.3390/genes10060441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
Terpenoids play important roles in plant defense. Although some terpene synthases have been characterized, terpenoids and their biosynthesis in wheat (Triticum aestivum L.) still remain largely unknown. Here, we describe the identification of a terpene synthase gene in wheat. It encodes a sesquiterpene synthase that catalyzes β-patchoulene formation with E,E-farnesyl diphosphate (FPP) as the substrate, thus named as TaPS. TaPS exhibits inducible expression in wheat in response to various elicitations. Particularly, alamethicin treatment strongly induces TaPS gene expression and β-patchoulene accumulation in wheat. Overexpression of TaPS in Arabidopsis successfully produces β-patchoulene, verifying the biochemical function of TaPS in planta. Furthermore, these transgenic Arabidopsis plants exhibit resistance against herbivory by repelling beet armyworm larvae feeding, thereby indicating anti-herbivory activity of β-patchoulene. The catalytic mechanism of TaPS is also explored by homology modeling and site-directed mutagenesis. Two key amino acids are identified to act in protonation and stability of intermediates and product formation. Taken together, one wheat sesquiterpene synthase is identified as β-patchoulene synthase. TaPS exhibits inducible gene expression and the sesquiterpene β-patchoulene is involved in repelling insect infestation.
Collapse
|
28
|
Durairaj J, Di Girolamo A, Bouwmeester HJ, de Ridder D, Beekwilder J, van Dijk AD. An analysis of characterized plant sesquiterpene synthases. PHYTOCHEMISTRY 2019; 158:157-165. [PMID: 30446165 DOI: 10.1016/j.phytochem.2018.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/04/2023]
Abstract
Plants exhibit a vast array of sesquiterpenes, C15 hydrocarbons which often function as herbivore-repellents or pollinator-attractants. These in turn are produced by a diverse range of sesquiterpene synthases. A comprehensive analysis of these enzymes in terms of product specificity has been hampered by the lack of a centralized resource of sufficient functionally annotated sequence data. To address this, we have gathered 262 plant sesquiterpene synthase sequences with experimentally characterized products. The annotated enzyme sequences allowed for an analysis of terpene synthase motifs, leading to the extension of one motif and recognition of a variant of another. In addition, putative terpene synthase sequences were obtained from various resources and compared with the annotated sesquiterpene synthases. This analysis indicated regions of terpene synthase sequence space which so far are unexplored experimentally. Finally, we present a case describing mutational studies on residues altering product specificity, for which we analyzed conservation in our database. This demonstrates an application of our database in choosing likely-functional residues for mutagenesis studies aimed at understanding or changing sesquiterpene synthase product specificity.
Collapse
Affiliation(s)
- Janani Durairaj
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Netherlands.
| | - Alice Di Girolamo
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Netherlands.
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands.
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Netherlands.
| | - Jules Beekwilder
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Netherlands; Bioscience, Wageningen Plant Research, Wageningen University, Netherlands.
| | - Aalt Dj van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Netherlands; Biometris, Department of Plant Sciences, Wageningen University, Netherlands.
| |
Collapse
|
29
|
Jiang Y, Ownley BH, Chen F. Terpenoids from Weedy Ricefield Flatsedge ( Cyperus iria L.) Are Developmentally Regulated and Stress-Induced, and have Antifungal Properties. Molecules 2018; 23:E3149. [PMID: 30513639 PMCID: PMC6320843 DOI: 10.3390/molecules23123149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022] Open
Abstract
Ricefield flatsedge (Cyperus iria L.), a troublesome weed in rice production, actively adapts to ecological niches. In this study, terpenoids were identified as the dominant compounds from organic extracts of C. iria leaves. To understand the role of terpenoid production in plant development and resistance to abiotic and biotic stresses, the dynamics of terpenoid production at different developmental stages, and the regulation of these compounds by stresses were determined. Terpenoid production exhibited temporal and spatial specificity. During vegetative growth, the total concentration of sesquiterpenoids increased and reached a maximum at 70 d after germination, and then decreased until the emergence of inflorescence. Monoterpenoids were only detected from leaves 90 d after germination. During reproductive growth, the total concentration of sesquiterpenoids increased dramatically and mainly accumulated in inflorescences, indicating that the sesquiterpenoids were primarily produced in newly formed and actively growing tissues. The total amount of monoterpenoids, mostly accumulated in flowers, increased until 130 d after germination. Furthermore, accumulation of sesquiterpenoids in leaves was promoted significantly by methyl jasmonate (MeJA) and drought treatment. Infestation by beet armyworm (Spodoptera exigua, BAW) promoted the emission of total sesquiterpenoids significantly and induced the production of more monoterpenoids and sesquiterpenoids specifically. Furthermore, volatiles from C. iria leaves had an anti-fungal effect on Fusarium graminearum. The implications of our findings on the biosynthetic pathways leading to the production of sesquiterpenoids in C. iria as well as their potential as fungicides are discussed.
Collapse
Affiliation(s)
- Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | - Bonnie H Ownley
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Feng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
30
|
Gao F, Liu B, Li M, Gao X, Fang Q, Liu C, Ding H, Wang L, Gao X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4249-4265. [PMID: 29901784 PMCID: PMC6093421 DOI: 10.1093/jxb/ery224] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/06/2017] [Indexed: 05/19/2023]
Abstract
The development of flower scents was a crucial event in biological evolution, providing olfactory signals by which plants can attract pollinators. In this study, bioinformatics, metabolomics, and biochemical and molecular methodologies were integrated to investigate the candidate genes involved in the biosynthesis of volatile components in two cultivars of Freesia x hybrida, Red River® and Ambiance, which release different categories of compounds. We found that terpene synthase (TPS) genes were the pivotal genes determining spatiotemporal release of volatile compounds in both cultivars. Eight FhTPS genes were isolated and six were found to be functional: FhTPS1 was a single-product enzyme catalyzing the formation of linalool, whereas the other four FhTPS proteins were multi-product enzymes, among which FhTPS4, FhTPS6, and FhTPS7 could recognize geranyl diphosphate and farnesyl diphosphate simultaneously. The FhTPS enzymatic products closely matched the volatile terpenes emitted from flowers, and significant correlations were found between release of volatile terpenes and FhTPS gene expression. Graphical models based on these results are proposed that summarize the biosynthesis of Freesia floral volatile terpenes. The characterization of FhTPS genes paves the way to decipher their roles in the speciation and fitness of Freesia, and this knowledge could also be used to introduce or enhance scent in other plants.
Collapse
Affiliation(s)
- Fengzhan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Baofeng Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Min Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiaoyan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Qiang Fang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Chang Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Hui Ding
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Correspondence: or
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Correspondence: or
| |
Collapse
|
31
|
Block AK, Hunter CT, Rering C, Christensen SA, Meagher RL. Contrasting insect attraction and herbivore-induced plant volatile production in maize. PLANTA 2018; 248:105-116. [PMID: 29616394 DOI: 10.1007/s00425-018-2886-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The maize inbred line W22 has lower herbivore-induced volatile production than B73 but both fall armyworm larvae and the wasps that parasitize them prefer W22 over B73. Maize inbred line W22 is an important resource for genetic studies due to the availability of the UniformMu mutant population and a complete genome sequence. In this study, we assessed the suitability of W22 as a model for tritrophic interactions between maize, Spodoptera frugiperda (fall armyworm) and the parasitoid wasp Cotesia marginiventris. W22 was found to be a good model for studying the interaction as S. frugiperda prefers W22 over B73 and a higher parasitism rate by C. marginiventris was observed on W22 compared to the inbred line B73. W22 also produced lower amounts of many herbivore-induced volatile terpenes and indole emission upon treatment with S. frugiperda oral secretions. We propose that some of the major herbivore-induced terpene volatiles are perhaps impeding S. frugiperda and C. marginiventris preference and that as yet unidentified compounds are produced at low abundance may be positively impacting these interactions.
Collapse
Affiliation(s)
- Anna K Block
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| | - Charles T Hunter
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Caitlin Rering
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Shawn A Christensen
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Robert L Meagher
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| |
Collapse
|
32
|
Liang J, Liu J, Brown R, Jia M, Zhou K, Peters RJ, Wang Q. Direct production of dihydroxylated sesquiterpenoids by a maize terpene synthase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:847-856. [PMID: 29570233 PMCID: PMC6020683 DOI: 10.1111/tpj.13901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/20/2018] [Indexed: 05/21/2023]
Abstract
The astounding structural and biological diversities of the large class of terpenoid natural products are imparted by both their complex hydrocarbon backbones and further elaboration by the addition of multiple hydroxyl groups, which provide both solubility and specific binding properties. While the role of terpene synthases (TPSs) in generating hydrocarbons with complex backbones is well known, these also are known to generate (singly) hydroxylated products by the addition of water prior to terminating deprotonation. Here a maize sesquiterpene synthase was unexpectedly found to generate dually hydroxylated products directly from (E,E)-farnesyl diphosphate, primarily eudesmane-2,11-diol, along with two closely related structural isomers. The unprecedented formation of these diols was proposed to proceed via initial addition of water to a germacradienyl+ intermediate, followed by protonation of the internal carbon-6,7-double-bond in the resulting hedycarol, with subsequent cyclization and further addition of water to an eudesmolyl+ intermediate. Evidence for the proposed mechanism was provided by labeling studies, as well as site-directed mutagenesis, based on structural modeling, which identified an active site phenylalanine required for the protonation and further elaboration of hedycaryol. This dihydroxylated sesquiterpenoid synthase was specifically expressed in maize roots and induced by pathogen infection, with its major enzymatic product only detected in root exudates or infected roots, suggesting a role in defense. Regardless of the ultimate metabolic fate or physiological role of these diols, this report not only reveals an unanticipated extension of the catalytic prowess of TPSs, but also provides insight into the underlying enzymatic mechanism.
Collapse
Affiliation(s)
- Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Reid Brown
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Ke Zhou
- The Multidisciplinary Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
33
|
Block A, Vaughan MM, Christensen SA, Alborn HT, Tumlinson JH. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays. PLANT, CELL & ENVIRONMENT 2017; 40:1725-1734. [PMID: 28436049 DOI: 10.1111/pce.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO2 . Our data indicate that elevated CO2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO2 on stomatal conductance. These findings suggest that elevated CO2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses.
Collapse
Affiliation(s)
- Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture - Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Martha M Vaughan
- National Center for Agricultural Utilization Research, U.S. Department of Agriculture - Agricultural Research Service, Peoria, IL, 61604, USA
| | - Shawn A Christensen
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture - Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Hans T Alborn
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture - Agricultural Research Service, Gainesville, FL, 32608, USA
| | - James H Tumlinson
- Center for Chemical Ecology, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
34
|
Ker DS, Pang SL, Othman NF, Kumaran S, Tan EF, Krishnan T, Chan KG, Othman R, Hassan M, Ng CL. Purification and biochemical characterization of recombinant Persicaria minor β-sesquiphellandrene synthase. PeerJ 2017; 5:e2961. [PMID: 28265494 PMCID: PMC5333544 DOI: 10.7717/peerj.2961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sesquiterpenes are 15-carbon terpenes synthesized by sesquiterpene synthases using farnesyl diphosphate (FPP) as a substrate. Recently, a sesquiterpene synthase gene that encodes a 65 kDa protein was isolated from the aromatic plant Persicaria minor. Here, we report the expression, purification and characterization of recombinant P. minor sesquiterpene synthase protein (PmSTS). Insights into the catalytic active site were further provided by structural analysis guided by multiple sequence alignment. METHODS The enzyme was purified in two steps using affinity and size exclusion chromatography. Enzyme assays were performed using the malachite green assay and enzymatic product was identified using gas chromatography-mass spectrometry (GC-MS) analysis. Sequence analysis of PmSTS was performed using multiple sequence alignment (MSA) against plant sesquiterpene synthase sequences. The homology model of PmSTS was generated using I-TASSER server. RESULTS Our findings suggest that the recombinant PmSTS is mainly expressed as inclusion bodies and soluble aggregate in the E. coli protein expression system. However, the addition of 15% (v/v) glycerol to the protein purification buffer and the removal of N-terminal 24 amino acids of PmSTS helped to produce homogenous recombinant protein. Enzyme assay showed that recombinant PmSTS is active and specific to the C15 substrate FPP. The optimal temperature and pH for the recombinant PmSTS are 30 °C and pH 8.0, respectively. The GC-MS analysis further showed that PmSTS produces β-sesquiphellandrene as a major product and β-farnesene as a minor product. MSA analysis revealed that PmSTS adopts a modified conserved metal binding motif (NSE/DTE motif). Structural analysis suggests that PmSTS may binds to its substrate similarly to other plant sesquiterpene synthases. DISCUSSION The study has revealed that homogenous PmSTS protein can be obtained with the addition of glycerol in the protein buffer. The N-terminal truncation dramatically improved the homogeneity of PmSTS during protein purification, suggesting that the disordered N-terminal region may have caused the formation of soluble aggregate. We further show that the removal of the N-terminus disordered region of PmSTS does not affect the product specificity. The optimal temperature, optimal pH, Km and kcat values of PmSTS suggests that PmSTS shares similar enzyme characteristics with other plant sesquiterpene synthases. The discovery of an altered conserved metal binding motif in PmSTS through MSA analysis shows that the NSE/DTE motif commonly found in terpene synthases is able to accommodate certain level of plasticity to accept variant amino acids. Finally, the homology structure of PmSTS that allows good fitting of substrate analog into the catalytic active site suggests that PmSTS may adopt a sesquiterpene biosynthesis mechanism similar to other plant sesquiterpene synthases.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Sze Lei Pang
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Noor Farhan Othman
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Sekar Kumaran
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Ee Fun Tan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Thiba Krishnan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Roohaida Othman
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , Bangi , Selangor , Malaysia
| |
Collapse
|
35
|
Li Z, Gao R, Hao Q, Zhao H, Cheng L, He F, Liu L, Liu X, Chou WKW, Zhu H, Cane DE. The T296V Mutant of Amorpha-4,11-diene Synthase Is Defective in Allylic Diphosphate Isomerization but Retains the Ability To Cyclize the Intermediate (3R)-Nerolidyl Diphosphate to Amorpha-4,11-diene. Biochemistry 2016; 55:6599-6604. [PMID: 27933789 DOI: 10.1021/acs.biochem.6b01004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The T296V mutant of amorpha-4,11-diene synthase catalyzes the abortive conversion of the natural substrate (E,E)-farnesyl diphosphate mainly into the acyclic product (E)-β-farnesene (88%) instead of the natural bicyclic sesquiterpene amorphadiene (7%). Incubation of the T296V mutant with (3R,6E)-nerolidyl diphosphate resulted in cyclization to amorphadiene. Analysis of additional mutants of amino acid residue 296 and in vitro assays with the intermediate analogue (2Z,6E)-farnesyl diphosphate as well as (3S,6E)-nerolidyl diphosphate demonstrated that the T296V mutant can no longer catalyze the allylic rearrangement of farnesyl diphosphate to the normal intermediate (3R,6E)-nerolidyl diphosphate, while retaining the ability to cyclize (3R,6E)-nerolidyl diphosphate to amorphadiene. The T296A mutant predominantly retained amorphadiene synthase activity, indicating that neither the hydroxyl nor the methyl group of the Thr296 side chain is required for cyclase activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wayne K W Chou
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | | | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
36
|
Ren F, Mao H, Liang J, Liu J, Shu K, Wang Q. Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response. PLANTA 2016; 244:1065-1074. [PMID: 27421723 DOI: 10.1007/s00425-016-2570-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/11/2016] [Indexed: 05/14/2023]
Abstract
Maize ( Zea mays ) terpene synthase 7 (ZmTPS7) was characterized as a τ-cadinol synthase, which exhibited constitutive and inducible gene expression patterns, suggesting involvement in stress response. Maize produces a variety of terpenoids involved in defense response. Despite some terpene synthases (TPSs) responsible for these terpenoids have been characterized, biosynthesis of many terpenes, particularly sesquiterpenes, which were produced in response to biotic or abiotic stress, remains largely unknown. Here, we characterized ZmTPS7 biochemically through recombinant expression in Escherichia coli and detected that it catalyzed formation of a blend of sesquiterpenes and sesquiterpenoid alcohols as the sesquiterpene synthase through GC-MS analysis. Subsequently, the major product was purified and identified as τ-cadinol through nuclear magnetic resonance spectroscopy (NMR) analysis, which was also detected in maize tissues infected by pathogen fungus for the first time. ZmTPS7 constitutively expressed in aerial tissues while with trace amount of transcript in roots. Fungus spore inoculation and methyl jasmonate (MeJA) treatment induced gene expression of ZmTPS7 in leaves, while exogenous ABA induced ZmTPS7 dramatically in roots, suggesting that ZmTPS7 might be involved in stress response. τ-cadinol was quantified in infected maize tissues with the concentration of ~200 ng/g fresh weight, however, which was much lower than the inhibitory one on two tested necrotrophic fungi. Such evidences indicate that anti-fungal activity of τ-cadinol is not physiologically relevant, and further investigation is needed to clarify its biological functions in maize. Taken together, ZmTPS7 was characterized as the τ-cadinol synthase and suggested to be involved in stress response, which also increased the diversity of maize terpenoid profile.
Collapse
Affiliation(s)
- Fei Ren
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongjie Mao
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jin Liang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Shu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
37
|
Yang X, Nambou K, Wei L, Hua Q. Heterologous production of α-farnesene in metabolically engineered strains of Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2016; 216:1040-8. [PMID: 27347651 DOI: 10.1016/j.biortech.2016.06.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 05/02/2023]
Abstract
Herein, we studied the heterologous production of α-farnesene, a valuable sesquiterpene with various biotechnological applications, by metabolic engineering of Yarrowia lipolytica. Different overexpression vectors harboring combinations of tHMG1, IDI, ERG20 and codon-optimized α-farnesene synthase (OptFS) genes were constructed and integrated into the genome of Y. lipolytica Po1h. The engineered strain produced 57.08±1.43mg/L of α-farnesene corresponding to 20.8-fold increase over the initial production of 2.75±0.29mg/L in the YPD medium in shake flasks. Bioreactor scale-up in PM medium led to α-farnesene concentration of 259.98±2.15mg/L with α-farnesene to biomass ratio of 33.98±1.51mg/g, which was a 94.5-fold increase over the initial production. This first report on α-farnesene synthesis in Y. lipolytica lays a foundation for future research on production of sesquitepenes in Y. lipolytica and other closest yeast species and will potentially contribute in its industrial production.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Komi Nambou
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
38
|
Qi J, Sun G, Wang L, Zhao C, Hettenhausen C, Schuman MC, Baldwin IT, Li J, Song J, Liu Z, Xu G, Lu X, Wu J. Oral secretions from Mythimna separata insects specifically induce defence responses in maize as revealed by high-dimensional biological data. PLANT, CELL & ENVIRONMENT 2016; 39:1749-1766. [PMID: 26991784 PMCID: PMC5295635 DOI: 10.1111/pce.12735] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/06/2016] [Indexed: 05/13/2023]
Abstract
Attack from insect herbivores poses a major threat to plant survival, and accordingly, plants have evolved sophisticated defence systems. Maize is cultivated as a staple crop worldwide, and insect feeding causes large production losses. Despite its importance in agriculture, little is known about how maize reacts to insect herbivory. Taking advantage of advances in sequencing and mass spectrometry technology, we studied the response of maize to mechanical wounding and simulated Mythimna separata (a specialist insect) herbivory by applying its oral secretions (OS) to wounds. In comparison to the responses induced by mechanical wounding, OS elicited larger and longer-lasting changes in the maize transcriptome, proteome, metabolome and phytohormones. Specifically, many genes, proteins and metabolites were uniquely induced or repressed by OS. Nearly 290 transcription factor genes from 39 families were involved in OS-induced responses, and among these, more transcription factor genes were specifically regulated by OS than by wounding. This study provides a large-scale omics dataset for understanding maize response to chewing insects and highlights the essential role of OS in plant-insect interactions.
Collapse
Affiliation(s)
- Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chunxia Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhudong Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Guowang Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Corresponding author: Jianqiang Wu, Phone/Fax: +86-871-65229562,
| |
Collapse
|
39
|
Gordy JW, Leonard BR, Blouin D, Davis JA, Stout MJ. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants. PLoS One 2015; 10:e0136689. [PMID: 26332833 PMCID: PMC4557932 DOI: 10.1371/journal.pone.0136689] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA), benzothiadiazole (BTH), gibberellic acid (GA), harpin, and jasmonic acid (JA) are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith) (FAW) (Lepidoptera: Noctuidae) larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker)], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.
Collapse
Affiliation(s)
- John W. Gordy
- Texas A&M Agrilife Extension, Rosenberg, Texas, United States of America
| | - B. Rogers Leonard
- Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - David Blouin
- Department of Experimental Statistics, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Jeffrey A. Davis
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Michael J. Stout
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
40
|
Abstract
Background Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. Results The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Conclusions Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1598-x) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Külheim C, Padovan A, Hefer C, Krause ST, Köllner TG, Myburg AA, Degenhardt J, Foley WJ. The Eucalyptus terpene synthase gene family. BMC Genomics 2015. [PMID: 26062733 DOI: 10.1186/s.12864-015-1598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. RESULTS The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. CONCLUSIONS Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.
Collapse
Affiliation(s)
- Carsten Külheim
- Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, 0200, Australia.
| | - Amanda Padovan
- Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, 0200, Australia.
| | - Charles Hefer
- Department of Botany, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Sandra T Krause
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, 06120, Halle, (Saale), Germany.
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Private Bag X20, Pretoria, 0028, South Africa.
| | - Jörg Degenhardt
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, 06120, Halle, (Saale), Germany.
| | - William J Foley
- Research School of Biology, College of Medicine, Biology and the Environment, Australian National University, Canberra, 0200, Australia.
| |
Collapse
|
42
|
Abstract
This work is an update of a recently published review and is consistently referred to this article and recent findings about plants’ indirect defense are added on. Herbivore induced plant volatiles (HIPVs) and their effects on the third trophic level that involves predators and parasitoids are discussed. The fact that plants are not passive individuals is confirmed on the basis of several studies. Plants can perceive and respond to cues in their environments with plastic morphological, physiological and behavioral traits. Plasticity allows plants to tailor their defenses to their current and expected risks caused by herbivores. The “cry for help” of plants is also observed from the carnivores’ point of view. The volatile mixture contains crucial information for decisions of carnivorous insects. Furthermore, the most important methods to examine the behavioral response of carnivorous insects to HIPVs are presented not only in laboratory set ups but also in the field. Manipulations of plants by silencing genes or over-expressing genes can help to understand mechanisms of indirect defense. Various interesting examples of indirect defense reveal the possibility to use HIPVs in biological control. Therefore, the application of synthetic pesticides, that pollute the environment, may be reduced in the future.
Collapse
Affiliation(s)
- Christine Zitzelsberger
- Department of Pharmaceutical Chemistry, Center of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Gerhard Buchbauer
- Department of Pharmaceutical Chemistry, Center of Pharmacy, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| |
Collapse
|
43
|
Palmer-Young EC, Veit D, Gershenzon J, Schuman MC. The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses. PLoS One 2015; 10:e0127296. [PMID: 26030663 PMCID: PMC4452144 DOI: 10.1371/journal.pone.0127296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/14/2015] [Indexed: 11/29/2022] Open
Abstract
Among the terpenes, isoprene (C5) and monoterpene hydrocarbons (C10) have been shown to ameliorate abiotic stress in a number of plant species via two proposed mechanisms: membrane stabilization and direct antioxidant effects. Sesquiterpene hydrocarbons (C15) not only share the structural properties thought to lend protective qualities to isoprene and monoterpene hydrocarbons, but also react rapidly with ozone, suggesting that sesquiterpenes may similarly enhance tolerance of abiotic stresses. To test whether sesquiterpenes protect plants against ozone, UVB light, or drought, we used transgenic lines of the wild tobacco Nicotiana attenuata. The transgenic plants expressed a maize terpene synthase gene (ZmTPS10) which produced a blend of (E)-ß-farnesene and (E)-α-bergamotene, or a point mutant of the same gene (ZmTPS10M) which produced (E)-ß-farnesene alone,. (E)-ß-farnesene exerted a local, external, and transient ozone-quenching effect in ozone-fumigated chambers, but we found no evidence that enhanced sesquiterpene production by the plant inhibited oxidative damage, or maintained photosynthetic function or plant fitness under acute or chronic stress. Although the sesquiterpenes (E)-ß-farnesene and (E)-α-bergamotene might confer benefits under intermittent heat stress, which was not tested, any roles in relieving abiotic stress may be secondary to their previously demonstrated functions in biotic interactions.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniel Veit
- Technical Service, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
44
|
Schuman MC, Allmann S, Baldwin IT. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors. eLife 2015; 4:e04490. [PMID: 25873033 PMCID: PMC4397498 DOI: 10.7554/elife.04490] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/11/2015] [Indexed: 11/29/2022] Open
Abstract
Plants are at the trophic base of terrestrial ecosystems, and the diversity of plant species in an ecosystem is a principle determinant of community structure. This may arise from diverse functional traits among species. In fact, genetic diversity within species can have similarly large effects. However, studies of intraspecific genetic diversity have used genotypes varying in several complex traits, obscuring the specific phenotypic variation responsible for community-level effects. Using lines of the wild tobacco Nicotiana attenuata genetically altered in specific well-characterized defense traits and planted into experimental populations in their native habitat, we investigated community-level effects of trait diversity in populations of otherwise isogenic plants. We conclude that the frequency of defense traits in a population can determine the outcomes of these traits for individuals. Furthermore, our results suggest that some ecosystem-level services afforded by genetically diverse plant populations could be recaptured in intensive monocultures engineered to be functionally diverse.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Allmann
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
45
|
Vattekkatte A, Gatto N, Köllner TG, Degenhardt J, Gershenzon J, Boland W. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays. Org Biomol Chem 2015; 13:6021-30. [DOI: 10.1039/c5ob00711a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiproduct terpene synthases on incubation with (2Z) substrates showed enhanced enzymatic turnover with distinct preference for cyclic products than corresponding (2E) substrates.
Collapse
Affiliation(s)
- Abith Vattekkatte
- Department of Bioorganic Chemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Nathalie Gatto
- Department of Bioorganic Chemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Tobias G. Köllner
- Department of Biochemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Jörg Degenhardt
- Institute for Pharmacy
- University of Halle
- D-06120 Halle
- Germany
| | - Jonathan Gershenzon
- Department of Biochemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| |
Collapse
|
46
|
George KW, Alonso-Gutierrez J, Keasling JD, Lee TS. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:355-89. [PMID: 25577395 DOI: 10.1007/10_2014_288] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.
Collapse
Affiliation(s)
- Kevin W George
- Joint BioEnergy Institute, 5885 Hollis St. 4th floor, Emeryville, CA, 94608, USA
| | | | | | | |
Collapse
|
47
|
Seidl-Adams I, Richter A, Boomer KB, Yoshinaga N, Degenhardt J, Tumlinson JH. Emission of herbivore elicitor-induced sesquiterpenes is regulated by stomatal aperture in maize (Zea mays) seedlings. PLANT, CELL & ENVIRONMENT 2015; 38:23-34. [PMID: 24725255 DOI: 10.1111/pce.12347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Maize seedlings emit sesquiterpenes during the day in response to insect herbivory. Parasitoids and predators use induced volatile blends to find their hosts or prey. To investigate the diurnal regulation of biosynthesis and emission of induced sesquiterpenes, we applied linolenoyl-L-glutamine (LG) to maize seedlings in the morning or evening using a cut-stem assay and tracked farnesene emission, in planta accumulation, as well as transcript levels of farnesyl pyrophosphate synthase 3 (ZmFPPS3) and terpene synthase10 (ZmTPS10) throughout the following day. Independent of time of day of LG treatment, maximum transcript levels of ZmFPPS3 and ZmTPS10 occurred within 3-4 h after elicitor application. The similarity between the patterns of farnesene emission and in planta accumulation in light-exposed seedlings in both time courses suggested unobstructed emission in the light. After evening induction, farnesene biosynthesis increased dramatically during early morning hours. Contrary to light-exposed seedlings dark-kept seedlings retained the majority of the synthesized farnesene. Two treatments to reduce stomatal aperture, dark exposure at midday, and abscisic acid treatment before daybreak, resulted in significantly reduced amounts of emitted and significantly increased amounts of in planta accumulating farnesene. Our results suggest that stomata not only play an important role in gas exchange for primary metabolism but also for indirect plant defences.
Collapse
Affiliation(s)
- I Seidl-Adams
- Center of Chemical Ecology, Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | | | | | | | | | | |
Collapse
|
48
|
Chen H, Li G, Köllner TG, Jia Q, Gershenzon J, Chen F. Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza. BMC PLANT BIOLOGY 2014; 14:239. [PMID: 25224158 PMCID: PMC4172859 DOI: 10.1186/s12870-014-0239-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/03/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Terpenoids constitute the largest class of secondary metabolites made by plants and display vast chemical diversity among and within species. Terpene synthases (TPSs) are the pivotal enzymes for terpenoid biosynthesis that create the basic carbon skeletons of this class. Functional divergence of paralogous and orthologous TPS genes is a major mechanism for the diversification of terpenoid biosynthesis. However, little is known about the evolutionary forces that have shaped the evolution of plant TPS genes leading to terpenoid diversity. RESULTS The orthologs of Oryza Terpene Synthase 1 (OryzaTPS1), a rice terpene synthase gene involved in indirect defense against insects in Oryza sativa, were cloned from six additional Oryza species. In vitro biochemical analysis showed that the enzymes encoded by these OryzaTPS1 genes functioned either as (E)-β-caryophyllene synthases (ECS), or (E)-β-caryophyllene & germacrene A synthases (EGS), or germacrene D & germacrene A synthases (DAS). Because the orthologs of OryzaTPS1 in maize and sorghum function as ECS, the ECS activity was inferred to be ancestral. Molecular evolutionary detected the signature of positive Darwinian selection in five codon substitutions in the evolution from ECS to DAS. Homology-based structure modeling and the biochemical analysis of laboratory-generated protein variants validated the contribution of the five positively selected sites to functional divergence of OryzaTPS1. The changes in the in vitro product spectra of OryzaTPS1 proteins also correlated closely to the changes in in vivo blends of volatile terpenes released from insect-damaged rice plants. CONCLUSIONS In this study, we found that positive Darwinian selection is a driving force for the functional divergence of OryzaTPS1. This finding suggests that the diverged sesquiterpene blend produced by the Oryza species containing DAS may be adaptive, likely in the attraction of the natural enemies of insect herbivores.
Collapse
Affiliation(s)
- Hao Chen
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- />Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guanglin Li
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- />College of Life Sciences, Shaanxi Normal University, Xi’an, 710062 China
| | - Tobias G Köllner
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Qidong Jia
- />Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Jonathan Gershenzon
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Feng Chen
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- />Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
49
|
Abstract
Early detection of invasive aspergillosis is absolutely required for efficient therapy of this fungal infection. The identification of fungal volatiles in patient breath can be an alternative for the detection of Aspergillus fumigatus that still remains problematic. In this work, we investigated the production of volatile organic compounds (VOCs) by A. fumigatus in vitro, and we show that volatile production depends on the nutritional environment. A. fumigatus produces a multiplicity of VOCs, predominantly terpenes and related compounds. The production of sesquiterpenoid compounds was found to be strongly induced by increased iron concentrations and certain drugs, i.e., pravastatin. Terpenes that were always detectable in large amounts were α-pinene, camphene, and limonene, as well as sesquiterpenes, identified as α-bergamotene and β-trans-bergamotene. Other substance classes that were found to be present in the volatome, such as 1-octen-3-ol, 3-octanone, and pyrazines, were found only under specific growth conditions. Drugs that interfere with the terpene biosynthesis pathway influenced the composition of the fungal volatome, and most notably, a block of sesquiterpene biosynthesis by the bisphosphonate alendronate fundamentally changed the VOC composition. Using deletion mutants, we also show that a terpene cyclase and a putative kaurene synthase are essential for the synthesis of volatile terpenes by A. fumigatus. The present analysis of in vitro volatile production by A. fumigatus suggests that VOCs may be used in the diagnosis of infections caused by this fungus.
Collapse
|
50
|
Kang JH, Gonzales-Vigil E, Matsuba Y, Pichersky E, Barry CS. Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases. PLANT PHYSIOLOGY 2014; 164:80-91. [PMID: 24254315 PMCID: PMC3875827 DOI: 10.1104/pp.113.230466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Isoprenoids are diverse compounds that have their biosynthetic origin in the initial condensation of isopentenyl diphosphate and dimethylallyl diphosphate to form C10 prenyl diphosphates that can be elongated by the addition of subsequent isopentenyl diphosphate units. These reactions are catalyzed by either cis-prenyltransferases (CPTs) or trans-prenyltransferases. The synthesis of volatile terpenes in plants typically proceeds through either geranyl diphosphate (C10) or trans-farnesyl diphosphate (C15), to yield monoterpenes and sesquiterpenes, respectively. However, terpene biosynthesis in glandular trichomes of tomato (Solanum lycopersicum) and related wild relatives also occurs via the cis-substrates neryl diphosphate (NPP) and 2Z,6Z-farnesyl diphosphate (Z,Z-FPP). NPP and Z,Z-FPP are synthesized by neryl diphosphate synthase1 (NDPS1) and Z,Z-farnesyl diphosphate synthase (zFPS), which are encoded by the orthologous CPT1 locus in tomato and Solanum habrochaites, respectively. In this study, comparative sequence analysis of NDPS1 and zFPS enzymes from S. habrochaites accessions that synthesize either monoterpenes or sesquiterpenes was performed to identify amino acid residues that correlate with the ability to synthesize NPP or Z,Z-FPP. Subsequent structural modeling, coupled with site-directed mutagenesis, highlighted the importance of four amino acids located within conserved domain II of CPT enzymes that form part of the second α-helix, for determining substrate and product specificity of these enzymes. In particular, the relative positioning of aromatic amino acid residues at positions 100 and 107 determines the ability of these enzymes to synthesize NPP or Z,Z-FPP. This study provides insight into the biochemical evolution of terpene biosynthesis in the glandular trichomes of Solanum species.
Collapse
|