1
|
Zanotti C, Vurro M, Evidente A, Marra M. α-costic acid, the main sesquiterpenoid isolated from Dittrichia viscosa (L) Greuter, induces oxidative stress and autophagy in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1213-1222. [PMID: 39331833 DOI: 10.1111/plb.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Dittrichia viscosa (L.) Greuter, a perennial plant in the Asteraceae, has strong allelopathic activity due to the high content of various secondary metabolites. The bicyclic sesquiterpenoid α-costic acid is the most abundant secondary metabolite of D. viscosa. Its remarkable insecticidal, antiparasitic, and phytotoxic activities point to its potential use as a natural herbicide, but information on its mode of action is lacking. To shed light on the mechanism of action of α-costic acid in plant cells, we investigated the phytotoxicity of α-costic acid in tomato plants (Solanum lycopersicum L.) through in vivo assays, the underlying cellular effects using biochemical assays, and the effect on subcellular organelles using confocal microscopy on tomato protoplasts incubated with organelle-specific fluorescent probes. In vivo tests showed that α-costic acid inhibited the growth of tomato seedlings and induced chlorosis and spot lesions in leaves. Biochemical assays demonstrated that α-costic acid caused ion leakage, chlorophyll depletion, H2O2 overproduction, callose deposition, and membrane lipid peroxidation. Confocal microscopy demonstrated that α-costic acid determined ROS overproduction and network disruption in mitochondria, singlet oxygen overproduction in chloroplasts, vacuole disintegration, and autophagosome formation. Overall, our data are consistent with a model according to which α-costic acid phytotoxicity is related to oxidative stress in mitochondria and chloroplasts that induces extensive membrane damage, ultimately resulting in cell death associated with autophagy.
Collapse
Affiliation(s)
- C Zanotti
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - M Vurro
- Institute of Sciences and Food Production, National Research Council, Bari, Italy
| | - A Evidente
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - M Marra
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Begum K, Hasan N, Shammi M. Selective biotic stressors' action on seed germination: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112156. [PMID: 38866107 DOI: 10.1016/j.plantsci.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
In the realm of plant biology and agriculture, seed germination serves as a fundamental process with far-reaching implications for crop production and environmental health. This comprehensive review seeks to unravel the intricate web of interactions between some biotic stressors and seed germination, addressing the pertinent issue of how these stressors influence seed germination. Different chemicals produced by interacting plants (different parts), fungi, bacteria, or insects can either promote or inhibit seed germination. Releasing chemicals that modulate signaling pathways and cellular processes significantly disrupt essential cellular functions. This disruption leads to diverse germination outcomes, introducing additional layers of complexity to this regulatory landscape. The chemicals perturb enzyme activity and membrane integrity, imposing unique challenges on the germination process. Understanding the mechanisms- how allelochemicals, mycotoxins, or bacterial toxins affect seed germination or the modes of action holds promise for more sustainable agricultural practices, enhanced pest control, and improved environmental outcomes. In sum, this review contributes to a fundamental exposition of the pivotal role of biotic stressors in shaping the germination of seeds.
Collapse
Affiliation(s)
- Kohinoor Begum
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Nazmul Hasan
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Fruit Science Laboratory, Saga University, Saga 840-8502, Japan.
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
3
|
Evidente A. The incredible story of ophiobolin A and sphaeropsidin A: two fungal terpenes from wilt-inducing phytotoxins to promising anticancer compounds. Nat Prod Rep 2024; 41:434-468. [PMID: 38131643 DOI: 10.1039/d3np00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Covering: 2000 to 2023This review presents the exceptional story of ophiobolin A (OphA) and sphaeropsidin A (SphA), a sesterterpene and a diterpene, respectively, which were initially isolated as fungal phytotoxins and subsequently shown to possess other interesting biological activities, including promising anticancer activities. Ophiobolin A is a phytotoxin produced by different fungal pathogens, all belonging to the Bipolaris genus. Initially, it was only known as a very dangerous phytotoxin produced by fungi attacking essential cereals, such as rice and barley. However, extensive and interesting studies were carried out to define its original carbon skeleton, which is characterized by a typical 5 : 8 : 5 ring system and shared with fusicoccins and cotylenins, and its phytotoxic activity on host and non-host plants. The biosynthesis of OphA was also defined by describing the different steps starting from mevalonate and through the rearrangement of the acyclic C-25 precursor lead the toxin is obtained. OphA was also produced as a bioherbicide from Drechslera gigantea and proposed for the biocontrol of the widespread and dangerous weed Digitaria sanguinaria. To date, more than sixty ophiobolins have been isolated from different fungi and their biological activities and structure-activity relationship investigated, which were also described using their hemisynthetic derivatives. In the last two decades, thorough studies have been performed on the potential anticancer activity of OphA and its original mode of action, attracting great interest from scientists. Sphaeropsidin A has a similar story. It was isolated as the main phytotoxin from Diplodia cupressi, the causal agent of Italian cypress canker disease, resulting in the loss of millions of plants in a few years in the Mediterranean basin. The damage to the forest, environment and ornamental heritage are noteworthy and economic losses are also suffered by tree nurseries and the wood industry. Six natural analogues of SphA were isolated and several interesting hemisynthetic derivatives were prepared to study its structure-activity relationship. Surprisingly, sphaeropsidin A showed other interesting biological activities, including antibiotic, antifungal, and antiviral. In the last decade, extensive studies have focused on the anticancer activity and original mode of action of SphA. Furthermore, specific hemisynthetic studies enable the preparation of derivatives of SphA, preserving its chromophore, which showed a noteworthy increase in anticancer activity. It has been demonstrated that ophiobolin A and sphaeropsidin A are promising natural products showing potent activity against some malignant cancers, such as brain glioblastoma and different melanomas.
Collapse
Affiliation(s)
- Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy.
| |
Collapse
|
4
|
Zorrilla JG, Innangi M, Cala Peralta A, Soriano G, Russo MT, Masi M, Fernández-Aparicio M, Cimmino A. Sesquiterpene Lactones Isolated from Centaurea cineraria L. subsp. cineraria Inhibit the Radicle Growth of Broomrape Weeds. PLANTS (BASEL, SWITZERLAND) 2024; 13:178. [PMID: 38256732 PMCID: PMC10818712 DOI: 10.3390/plants13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The plant Centaurea cineraria L. subsp. cineraria has been investigated as a potential source of inhibitors of broomrape radicle growth. The latter are weeds that pose a threat to agriculture and for which there are few methods available for the control of infestations. Four sesquiterpene lactones have been isolated from C. cineraria L. subsp. cineraria aerial parts and identified as isocnicin, cnicin, salonitenolide, and 11β,13-dihydrosalonitenolide using spectroscopic, spectrometric, and optical methods. Salonitenolide and 11β,13-dihydrosalonitenolide have been isolated for the first time from this plant. Tested at 1.0-0.1 mM against the broomrape species Phelipanche ramosa, Orobanche minor, Orobanche crenata, and Orobanche cumana, isocnicin, cnicin, and salonitenolide demonstrated remarkable inhibitory activity (over 80% in most of the cases) at the highest concentrations. Structure-activity relationship conclusions indicated the significance of the α,β-unsaturated lactone ring. In addition, the synthetic acetylated derivative of salonitenolide showed the strongest activity among all compounds tested, with inhibitions close to 100% at different concentrations, which has been related to a different lipophilicity and the absence of H-bond donor atoms in its structure. Neither the extracts nor the compounds exhibited the stimulating activity of broomrape germination (induction of suicidal germination). These findings highlight the potential of C. cineraria to produce bioactive compounds for managing parasitic weeds and prompt further studies on its sesquiterpene lactones as tools in developing natural product-based herbicides.
Collapse
Affiliation(s)
- Jesús G. Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (J.G.Z.); (G.S.); (M.T.R.); (A.C.)
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain;
| | - Michele Innangi
- EnvixLab, Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy;
| | - Antonio Cala Peralta
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain;
| | - Gabriele Soriano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (J.G.Z.); (G.S.); (M.T.R.); (A.C.)
| | - Maria Teresa Russo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (J.G.Z.); (G.S.); (M.T.R.); (A.C.)
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (J.G.Z.); (G.S.); (M.T.R.); (A.C.)
| | - Mónica Fernández-Aparicio
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS), CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (J.G.Z.); (G.S.); (M.T.R.); (A.C.)
| |
Collapse
|
5
|
Cheng Y, Li M, Xu P. Allelochemicals: A source for developing economically and environmentally friendly plant growth regulators. Biochem Biophys Res Commun 2024; 690:149248. [PMID: 37992526 DOI: 10.1016/j.bbrc.2023.149248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Allelochemicals are specific secondary metabolites that can exhibit autotoxicity by inhibiting the growth of the same plant species that produced them. These metabolites have been found to affect various physical processes during plant growth and development, including inhibition of seed germination, photosynthesis, respiration, root growth, and nutrient uptake, with diverse mechanisms involving cell destruction, oxidative homeostasis and photoinhibition. In some cases, allelochemicals can also have positive effects on plant growth and development. In addition to their ecological significance, allelochemicals also possess potential as plant growth regulators (PGRs) due to their extensive physiological effects. However, a comprehensive summary of the development and applications of allelochemicals as PGRs is currently lacking. In this review, we present an overview of the sources and categories of allelochemicals, discuss their effects and the underlying mechanisms on plant growth and development. We showcase numerous instances of key phytohormonal allelochemicals and non-phytohormonal allelochemicals, highlighting their potential as candidates for the development of PGRs. This review aims to provide a theoretical basis for the development of economical, safe and effective PGRs utilizing allelochemicals, and emphasizes the need for further research in this area.
Collapse
Affiliation(s)
- Yusu Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China.
| | - Mingxuan Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China.
| | - Pei Xu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China.
| |
Collapse
|
6
|
Anglana C, Rojas M, Girelli CR, Barozzi F, Quiroz-Troncoso J, Alegría-Aravena N, Montefusco A, Durante M, Fanizzi FP, Ramírez-Castillejo C, Di Sansebastiano GP. Methanolic Extracts of D. viscosa Specifically Affect the Cytoskeleton and Exert an Antiproliferative Effect on Human Colorectal Cancer Cell Lines, According to Their Proliferation Rate. Int J Mol Sci 2023; 24:14920. [PMID: 37834370 PMCID: PMC10573359 DOI: 10.3390/ijms241914920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Numerous studies have reported the pharmacological effects exhibited by Dittrichia viscosa, (D. viscosa) including antioxidant, cytotoxic, antiproliferative, and anticancer properties. In our research, our primary objective was to validate a prescreening methodology aimed at identifying the fraction that demonstrates the most potent antiproliferative and anticancer effects. Specifically, we investigated the impact of various extract fractions on the cytoskeleton using a screening method involving transgenic plants. Tumors are inherently heterogeneous, and the components of the cytoskeleton, particularly tubulin, are considered a strategic target for antitumor agents. To take heterogeneity into account, we used different lines of colorectal cancer, specifically one of the most common cancers regardless of gender. In patients with metastasis, the effectiveness of chemotherapy has been limited by severe side effects and by the development of resistance. Additional therapies and antiproliferative molecules are therefore needed. In our study, we used colon-like cell lines characterized by the expression of gastrointestinal differentiation markers (such as the HT-29 cell line) and undifferentiated cell lines showing the positive regulation of epithelial-mesenchymal transition and TGFβ signatures (such as the DLD-1, SW480, and SW620 cell lines). We showed that all three of the D. viscosa extract fractions have an antiproliferative effect but the pre-screening on transgenic plants anticipated that the methanolic fraction may be the most promising, targeting the cytoskeleton specifically and possibly resulting in fewer side effects. Here, we show that the preliminary use of screening in transgenic plants expressing subcellular markers can significantly reduce costs and focus the advanced characterization only on the most promising therapeutic molecules.
Collapse
Affiliation(s)
- Chiara Anglana
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Makarena Rojas
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Fabrizio Barozzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Josefa Quiroz-Troncoso
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Nicolás Alegría-Aravena
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
- Deer Production and Biology Group, Regional Development Institute, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Anna Montefusco
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Miriana Durante
- Institute of Sciences of Food Production (ISPA-CNR), 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Carmen Ramírez-Castillejo
- Oncology Group IDISSC and Biomedical Technology Centre (CTB), Biotecnology-B.V. Departament ETSIAAB, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
7
|
Pane C, Manganiello G, Vitti A, Celano R, Piccinelli AL, De Falco E. Phytochemical Extracts of Dittrichia viscosa (L.) Greuter from Agroecological Systems: Seed Antigerminative Properties and Effectiveness in Counteracting Alternaria Leaf Spot Disease on Baby-Leaf Spinach. BIOLOGY 2023; 12:790. [PMID: 37372075 DOI: 10.3390/biology12060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Dittrichia viscosa (L.) Greuter subsp. viscosa (Asteraceae) is a perennial species naturally distributed in arid and marginal areas whose agroecological cultivation could be a useful innovation to produce quality biomass to extract phenolic-rich phytochemical blends. Here, biomass-yield trends were profiled at different growth stages under direct cropping, and inflorescences, leaves, and stems were submitted to water extraction and hydrodistillation. Then, four extracts were investigated for their biological activities in invitro and in planta assays. Extracts inhibited cress (Lepidium sativum)- and radish (Raphanus sativus)-seed germination and root elongation. All samples showed dose-dependent antifungal activity in the plate experiments, inhibiting up to 65% of the growth of the fungal pathogen Alternaria alternata, a leaf-spot disease agent of baby spinach (Spinacea oleracea). However, only the extracts from dried green parts and fresh inflorescences at the highest concentration significantly reduced (54%) the extent of Alternaria necrosis on baby spinach. UHPLC-HRMS/MS analysis revealed that the main specialized metabolites of the extracts are caffeoyl quinic acids, methoxylated flavonoids, sesquiterpene compounds such as tomentosin, and dicarboxylic acids, which may explain the observed bioactivity. Plant extracts obtained through sustainable methodology can be effective in biological agricultural applications.
Collapse
Affiliation(s)
- Catello Pane
- Consiglio per la Ricerca in Agricoltura e L'analisi dell'Economia Agraria (CREA), Centro di Ricerca Orticoltura e Florovivaismo, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Gelsomina Manganiello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rita Celano
- Department of Pharmacy, Course of Agriculture, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Anna Lisa Piccinelli
- Department of Pharmacy, Course of Agriculture, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Enrica De Falco
- Department of Pharmacy, Course of Agriculture, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023; 11:1269. [PMCID: PMC10220622 DOI: 10.3390/microorganisms11051269] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Periodontal diseases and dental caries are the most common infectious oral diseases impacting oral health globally. Oral cavity health is crucial for enhancing life quality since it serves as the entranceway to general health. The oral microbiome and oral infectious diseases are strongly correlated. Gram-negative anaerobic bacteria have been associated with periodontal diseases. Due to the shortcomings of several antimicrobial medications frequently applied in dentistry, the lack of resources in developing countries, the prevalence of oral inflammatory conditions, and the rise in bacterial antibiotic resistance, there is a need for reliable, efficient, and affordable alternative solutions for the prevention and treatment of periodontal diseases. Several accessible chemical agents can alter the oral microbiota, although these substances also have unfavorable symptoms such as vomiting, diarrhea, and tooth discoloration. Natural phytochemicals generated from plants that have historically been used as medicines are categorized as prospective alternatives due to the ongoing quest for substitute products. This review concentrated on phytochemicals or herbal extracts that impact periodontal diseases by decreasing the formation of dental biofilms and plaques, preventing the proliferation of oral pathogens, and inhibiting bacterial adhesion to surfaces. Investigations examining the effectiveness and safety of plant-based medicines have also been presented, including those conducted over the past decade.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hamid Tebyaniyan
- Science and Research Branch, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
9
|
Di Lecce R, Mérindol N, Pérez MG, Karimzadegan V, Berthoux L, Boari A, Zidorn C, Vurro M, Surico G, Desgagné-Penix I, Evidente A. Biochemical Analyses of Bioactive Extracts from Plants Native to Lampedusa, Sicily Minor Island. PLANTS (BASEL, SWITZERLAND) 2022; 11:3447. [PMID: 36559555 PMCID: PMC9788634 DOI: 10.3390/plants11243447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Major threats to the human lifespan include cancer, infectious diseases, diabetes, mental degenerative conditions and also reduced agricultural productivity due to climate changes, together with new and more devastating plant diseases. From all of this, the need arises to find new biopesticides and new medicines. Plants and microorganisms are the most important sources for isolating new metabolites. Lampedusa Island host a rich contingent of endemic species and subspecies. Seven plant species spontaneously growing in Lampedusa, i.e., Atriplex halimus L. (Ap), Daucus lopadusanus Tineo (Dl), Echinops spinosus Fiori (Es) Glaucium flavum Crantz (Gf) Hypericum aegypticum L: (Ha), Periploca angustifolia Labill (Pa), and Prasium majus L. (Pm) were collected, assessed for their metabolite content, and evaluated for potential applications in agriculture and medicine. The HPLC-MS analysis of n-hexane (HE) and CH2Cl2 (MC) extracts and the residual aqueous phases (WR) showed the presence of several metabolites in both organic extracts. Crude HE and MC extracts from Dl and He significantly inhibited butyrylcholinesterase, as did WR from the extraction of Dl and Pa. HE and MC extracts showed a significant toxicity towards hepatocarcinoma Huh7, while Dl, Ha and Er HE extracts were the most potently cytotoxic to ileocecal colorectal adenocarcinoma HCT-8 cell lines. Most extracts showed antiviral activity. At the lowest concentration tested (1.56 μg/mL), Dl, Gf and Ap MC extracts inhibited betacoronavirus HCoV-OC43 infection by> 2 fold, while the n-hexane extract of Pm was the most potent. In addition, at 1.56 μg/mL, potent inhibition (>10 fold) of dengue virus was detected for Dl, Er, and Pm HE extracts, while Pa and Ap MC extracts dampened infections to undetectable levels. Regarding to phytotoxicity, MC extracts from Er, Ap and Pm were more effective in inhibiting tomato rootlet elongation; the same first two extracts also inhibited seed cress germination while its radicle elongation, due to high sensitivity, was affected by all the extracts. Es and Gf MC extracts also inhibited seed germination of Phelipanche ramosa. Thus, we have uncovered that many of these Lampedusa plants displayed promising biopesticide, antiviral, and biological properties.
Collapse
Affiliation(s)
- Roberta Di Lecce
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
| | - Natacha Mérindol
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Mayra Galarza Pérez
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Vahid Karimzadegan
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Lionel Berthoux
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| | - Giuseppe Surico
- Department of Agriculture, Food, Environment, and Forestry (DAGRI), Section of Agricultural Microbiology, Plant Pathology and Enthomology, University of Florence, 50121 Firenze, Italy
| | - Isabel Desgagné-Penix
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy
| |
Collapse
|
10
|
Cárdenas DM, Bajsa‐Hirschel J, Cantrell CL, Rial C, Varela RM, Molinillo JMG, Macías FA. Evaluation of the phytotoxic and antifungal activity of C 17 -sesquiterpenoids as potential biopesticides. PEST MANAGEMENT SCIENCE 2022; 78:4240-4251. [PMID: 35709310 PMCID: PMC9540635 DOI: 10.1002/ps.7042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Natural products are a promising source for the development of new pesticides with alternative mechanisms of action. In this study, we evaluated the phytotoxic and antifungal activity of a novel family of natural C17 -sesquiterpenoids and performed a study of the effect caused by the elimination of the α-methylene-γ-butyrolactone system and its importance to their biological activity. RESULTS Many tested compounds exhibited a strong phytotoxic activity. Lappalone and pertyolide B were the most potent molecules from the tested group. Lappalone displayed a strong inhibition profile against selected weed species, reaching a half-maximal inhibitory concentration (IC50 ) value of 5.0 μm against Echinochloa crus-galli L. shoot and 5.7 μm against the germination rate of Amaranthus viridis L., as well as a good stimulation of the germination of Phelipanche ramosa L. Pertyolide B demonstrated excellent inhibition against Amaranthus viridis L. (IC50 : 56.7, 70.3 and 24.0 μm against the root and shoot growth, and germination rate, respectively) and Allium cepa L. (representative of the Liliaceae family, with IC50 values of 25.3 and 64.4 μm against root and shoot growth). Regarding the antifungal activity, pertyolide B presented significant activity against Colletotrichum fragareae and Fusarium oxysporum with a minimum inhibitory concentration of 6.6 μg μL-1 . CONCLUSION The bioassays revealed that frequently the presence of the α-methylene-γ-butyrolactone system is not essential for the bioactivities of sesquiterpene lactones, and suggest that C17 -sesquiterpenoids may function through a different mechanism of action not related to the widely assumed Michael addition. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- David M. Cárdenas
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of ScienceUniversity of CadizCádizSpain
| | - Joanna Bajsa‐Hirschel
- Natural Products Utilization Research Unit, United States Department of AgricultureAgricultural Research Service, UniversityOxfordMSUSA
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, United States Department of AgricultureAgricultural Research Service, UniversityOxfordMSUSA
| | - Carlos Rial
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of ScienceUniversity of CadizCádizSpain
| | - Rosa M. Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of ScienceUniversity of CadizCádizSpain
| | - José M. G. Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of ScienceUniversity of CadizCádizSpain
| | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of ScienceUniversity of CadizCádizSpain
| |
Collapse
|
11
|
Barilli E, Agudo FJ, Masi M, Nocera P, Evidente A, Rubiales D. Anthraquinones and their analogues as potential biocontrol agents of rust and powdery mildew diseases of field crops. PEST MANAGEMENT SCIENCE 2022; 78:3489-3497. [PMID: 35567400 PMCID: PMC9543780 DOI: 10.1002/ps.6989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rusts and powdery mildews are severe fungal diseases of major crops worldwide, including cereals and legumes. They can be managed by chemical fungicide treatments, with negative consequences as environmental pollution and risk for human and animal health. Bioactive natural products could be the safest alternative for pest control. The family of anthraquinones, as well as analogue compounds containing an anthraquinone moiety or some modified anthraquinone rings, has been reported to exhibit certain antibiotic activity. Thus, the potential antifungal activity of some anthraquinones isolated from Ascochyta lentis, was assayed in this study for their effectiveness to reduce rust and powdery mildew diseases on pea and oat. Their effect on fungal development was macro- and microscopically assessed on inoculated leaves, and compared to the control achieved by the chemical fungicide (Tetraconazol 12.5% and Azoxystrobin 25%). In addition, the most promising compound was also tested at different concentrations in inoculated whole plants in order to evaluate its preventive and curative potential against fungal infection. RESULTS All metabolites studied strongly reduced the development of rust and powdery mildews in both pea and oat, being pachybasin and lentiquinone C the most effective ones in hampering fungal spore germination and appressoria formation. Some of them also affected post-penetration events reducing colony size and number of haustoria per colony. Results were confirmed for pachybasin in whole plants assays, showing an efficacy similar to the commercial fungicide to control fungal diseases, both in preventive and curative applications. CONCLUSIONS Some fungal anthraquinones and close metabolites, especially pachybasin, could be very promising molecules with effective potential as antifungal agents against both rust and powdery mildew of both pea and oat. Some structure activity-relationships feature have also been evaluated. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico IIComplesso Universitario Monte Sant'AngeloNaplesItaly
| | - Paola Nocera
- Dipartimento di Scienze Chimiche, Università di Napoli Federico IIComplesso Universitario Monte Sant'AngeloNaplesItaly
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico IIComplesso Universitario Monte Sant'AngeloNaplesItaly
| | | |
Collapse
|
12
|
Inuloxin A Inhibits Seedling Growth and Affects Redox System of Lycopersicon esculentum Mill. and Lepidium sativum L. Biomolecules 2022; 12:biom12020302. [PMID: 35204800 PMCID: PMC8869190 DOI: 10.3390/biom12020302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Allelochemicals are considered an environment-friendly and promising alternative for weed management, although much effort is still needed for understanding their mode of action and then promoting their use in plant allelopathy management practices. Here, we report that Inuloxin A (InA), an allelochemical isolated from Dittrichia viscosa, inhibited root elongation and growth of seedlings of Lycopersicon esculentum and Lepidium sativum at the highest concentrations tested. InA-induced antioxidant responses in the seedlings were investigated by analysing the contents of glutathione (GSH) and ascorbate (ASC), and their oxidized forms, dehydroascorbate (DHA), and glutathione disulphide (GSSG), as well as the redox state of thiol-containing proteins. An increase in ASC, DHA, and GSH levels at high concentrations of InA, after 3 and 6 days, were observed. Moreover, the ASC/DHA + ASC and GSH/GSSG + GSH ratios showed a shift towards the oxidized form. Our study provides the first insight into how the cell redox system responds and adapts to InA phytotoxicity, providing a framework for further molecular studies.
Collapse
|
13
|
Greinwald A, Hartmann M, Heilmann J, Heinrich M, Luick R, Reif A. Soil and Vegetation Drive Sesquiterpene Lactone Content and Profile in Arnica montana L. Flower Heads From Apuseni-Mountains, Romania. FRONTIERS IN PLANT SCIENCE 2022; 13:813939. [PMID: 35154225 PMCID: PMC8832060 DOI: 10.3389/fpls.2022.813939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Arnica montana L. (AM, Asteraceae) is a perennial, herbaceous vascular plant species of commercial importance. The flower heads' pharmacological properties are attributed mainly to sesquiterpene lactones (SLs), with phenolic acids and flavonoids also considered of relevance. The botanical drug is still partly collected in different European mountain regions. The SL content can be influenced by genetic factors and environmental conditions (altitude, temperature and rainfall). Surprisingly, the influence of the soil on SL-content have rarely been investigated. However, the soil determines the occurrence, distribution and overall fitness of AM. Equally, environmental factors are crucial determinants for the biosynthesis and fluctuations in plant secondary metabolites. Therefore, different abiotic (pH, C/N ratio, base saturation, cation exchange capacity) and biotic (species richness, vegetation cover) parameters need to be assessed as potential drivers of the variable content of AM's secondary metabolites. Consequently, we developed an in situ experimental design aiming to cover a wide range of soil pH conditions. We detected and investigated different AM populations growing in grassland on acidic soils, on siliceous as well as calcareous geologies within the same geographical region and altitudinal belt. The total SL content and most single SL contents of the AM flower heads differed significantly between the two geologies. AM flower heads of plants growing on loam on limestone showed a significant higher total SL content than the flower heads of plants growing in siliceous grasslands. Furthermore, the SL contents were significantly correlated with geobotanical species richness and vegetation cover pointing toward an effect of species interactions on the production of SLs. Moreover, the ratios of the main SLs helenalin to dihydrohelenalin esters were significantly correlated to environmental parameters indicating that SL composition might be a function of habitat conditions. The findings of this study shed light upon the often ignored, complex interactions between environmental conditions and plant secondary metabolites. We highlight the importance of both abiotic and biotic habitat parameters for SLs in AM.
Collapse
Affiliation(s)
- Anja Greinwald
- Nature Conservation, University of Applied Forest Science, Rottenburg, Germany
- Vegetation Science, University of Freiburg, Freiburg, Germany
| | - Martin Hartmann
- Pharmaceutical Biology, University of Regensburg, Regensburg, Germany
| | - Jörg Heilmann
- Pharmaceutical Biology, University of Regensburg, Regensburg, Germany
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, University College London (UCL) School of Pharmacy, London, United Kingdom
| | - Rainer Luick
- Nature Conservation, University of Applied Forest Science, Rottenburg, Germany
| | - Albert Reif
- Vegetation Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
In Vitro and In Vivo Toxicity Evaluation of Natural Products with Potential Applications as Biopesticides. Toxins (Basel) 2021; 13:toxins13110805. [PMID: 34822589 PMCID: PMC8617648 DOI: 10.3390/toxins13110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
The use of natural products in agriculture as pesticides has been strongly advocated. However, it is necessary to assess their toxicity to ensure their safe use. In the present study, mammalian cell lines and fish models of the zebrafish (Danio rerio) and medaka (Oryzias latipes) have been used to investigate the toxic effects of ten natural products which have potential applications as biopesticides. The fungal metabolites cavoxin, epi-epoformin, papyracillic acid, seiridin and sphaeropsidone, together with the plant compounds inuloxins A and C and ungeremine, showed no toxic effects in mammalian cells and zebrafish embryos. Conversely, cyclopaldic and α-costic acids, produced by Seiridium cupressi and Dittrichia viscosa, respectively, caused significant mortality in zebrafish and medaka embryos as a result of yolk coagulation. However, both compounds showed little effect in zebrafish or mammalian cell lines in culture, thus highlighting the importance of the fish embryotoxicity test in the assessment of environmental impact. Given the embryotoxicity of α-costic acid and cyclopaldic acid, their use as biopesticides is not recommended. Further ecotoxicological studies are needed to evaluate the potential applications of the other compounds.
Collapse
|
15
|
Antimicrobial Effects of Inula viscosa Extract on the In Situ Initial Oral Biofilm. Nutrients 2021; 13:nu13114029. [PMID: 34836285 PMCID: PMC8622444 DOI: 10.3390/nu13114029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.
Collapse
|
16
|
Sevgi E, Dag A, Kızılarslan-Hançer Ç, Atasoy S, Kurt BZ, Aksakal Ö. Evaluation of cytotoxic and antioxidant potential of Dittrichia viscosa (L.) Greuter used in traditional medicine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114211. [PMID: 34015367 DOI: 10.1016/j.jep.2021.114211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dittrichia viscosa (L.) Greuter ("Sarı ot, Yapışkan andız otu" in Turkish) is a medicinal plant that has been traditionally used in the Mediterranean area. This plant is used by the local population for the treatment of cancer. Investigation of their biological activities is therefore very important to be supported by scientific basis for traditional use. AIMS OF THE STUDY In this study, it is aimed to assess the phytochemical composition, in vitro antioxidant, cytotoxic, and antiproliferative activities of the aqueous and ethanolic extracts obtained from the aerial parts (stems, leaves, flowers) of D. viscosa, collected from two sites in Turkey (Istanbul and Marmaris) against breast and prostate tumor cell lines. MATERIALS AND METHODS Validated methods were used to evaluate the in vitro antioxidant capacity (DPPH, ABTS, CUPRAC), cytotoxicity (Cell Viability Assay), antiproliferative (Apoptosis assay), and phytochemical compositions. The nepetin (N), 3-O-methylquercetin (Q), and hispidulin (H) in the extracts of D. viscosa were quantified by HPLC and LC-HRMS. Furthermore, in order to control the standards of benefiting from the plant in a healthy way, the contents of some heavy metals were also assessed by ICP-OES in the plant and soil samples as well as the species soil's physical and chemical characteristics. RESULTS We have found that heavy metal accumulation in the soil does not exceed the allowable limit value except for the nickel. The results showed that ethanol extraction is an efficient strategy to get NQH molecules with a higher content compared with other extraction techniques. However, using the same extraction method revealed that the amount of NQH molecules in the samples of two different regions were variable. The results suggested that all extracts had a high amount of total phenolic content (12.354-22.184 μg GAE/mg) and total flavonoid content (4.442-17.263 μg QE/g). In the antioxidant assay according to the DPPH method, the aqueous ethanol extracts (IC50; 21.00 μg/mL) showed stronger antioxidant activity than BHT. A significant reduction in cell viability was particularly observed in MDA-MB-231 cells, which were sensitive to ethanolic extracts in Istanbul (12-22%) and in Marmaris (14-15%), while PC3 cell lines were also more sensitive to extracts of the aqueous in Istanbul (16%) and the decoction in Marmaris (12%) after 72 h. Especially, it was observed that Marmaris and Istanbul samples induced the toxicity against PC3 cells. CONCLUSION The study supports the medicinal use of D. viscosa as a potential anticancer against breast and prostate cancer cells in vitro and underlines the immense therapeutic potential of the plant.
Collapse
Affiliation(s)
- Ece Sevgi
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 34093, Fatih-Istanbul, Turkey.
| | - Aydan Dag
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093, Fatih-Istanbul, Turkey; Bezmialem Vakif University, Drug Application and Research Center, 34093, Istanbul, Turkey.
| | - Çağla Kızılarslan-Hançer
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 34093, Fatih-Istanbul, Turkey.
| | - Sezen Atasoy
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Biochemistry, 34093, Fatih-Istanbul, Turkey.
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093, Fatih-Istanbul, Turkey.
| | - Öznur Aksakal
- Turgut Mahallesi, Merkez 7 sok., 114/1, Marmaris, Muğla, Turkey.
| |
Collapse
|
17
|
Sesquiterpene Lactones with the 12,8-Guaianolide Skeleton from Algerian Centaurea omphalotricha. Biomolecules 2021; 11:biom11071053. [PMID: 34356677 PMCID: PMC8301927 DOI: 10.3390/biom11071053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
In continuing our investigation on the chemical diversity of Algerian plants, we examined Centaurea omphalotricha, whose chemical composition has been poorly studied. The present work was aimed at characterizing the secondary metabolite pattern of the CHCl3 extract of the aerial parts of this plant that displayed antiproliferative properties in a preliminary screening on HeLa cell line. The chemical analysis led us to characterize the bioactive oxygenated terpenoid fraction which includes, within major known metabolites, two new minor sesquiterpene lactones, centaurolide-A (1) and centaurolide-B (2). The structures of two compounds exhibiting the 12,8-guaianolide skeleton were determined by spectroscopic methods as well as by chemical correlation with inuviscolide (3), a well-known bioactive guaianolide isolated from Dittrichia (=Inula) viscosa. Centaurolides A and B represent the first report of 8,12-guaianolide skeleton in Centaurea genus. The effect of new compounds 1 and 2 and inuviscolide (3) on HeLa cell has also been evaluated.
Collapse
|
18
|
Biological Activity of Selected Natural and Synthetic Terpenoid Lactones. Int J Mol Sci 2021; 22:ijms22095036. [PMID: 34068609 PMCID: PMC8126056 DOI: 10.3390/ijms22095036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
Terpenoids with lactone moieties have been indicated to possess high bioactivity. Certain terpenoid lactones exist in nature, in plants and animals, but they can also be obtained by chemical synthesis. Terpenoids possessing lactone moieties are known for their cytotoxic, anti-inflammatory, antimicrobial, anticancer, and antimalarial activities. Moreover, one terpenoid lactone, artemisinin, is used as a drug against malaria. Because of these abilities, there is constant interest in new terpenoid lactones that are both isolated and synthesized, and their biological activities have been verified. In some cases, the activity of the terpenoid lactone is specifically connected to the lactone moiety. Recent works have revealed that new terpenoid lactones can demonstrate such functions and are thus considered to be potential active agents against many diseases.
Collapse
|
19
|
Johnson JL, Santoro E, Zatout R, Petrovic AG, Cimmino A, Superchi S, Evidente A, Berova ND, Polavarapu PL. Absolute configuration of seco-eudesmanolide inuloxin D from experimental and predicted chiroptical studies of its 4-O-acetyl derivative. Chirality 2021; 33:233-241. [PMID: 33598968 DOI: 10.1002/chir.23301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Sesquitepenoids inuloxins A-D, belonging to different subgroups, were isolated from Dittrichia viscosa and showed potential biocontrol of some parasitic plants as Pelipanche, Orobanche, and Cuscuta species. The absolute configurations of the first three inuloxins A-C were previously determined by using experimental and computational chiroptical spectroscopic methods. The absolute configuration of inuloxin D remains to be established. The bioactive inuloxin E, closely related to inuloxin D, was recently isolated from the same plant organic extract. The same relative configuration of inuloxin D was assigned to inuloxin E by comparison of their NMR spectroscopic data. The absolute configurations of inuloxin D and inuloxin E are suggested in this work by analysis of the experimental and predicted chiroptical properties of the 4-O-acetyl derivative of inuloxin D.
Collapse
Affiliation(s)
- Jordan L Johnson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ernesto Santoro
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Roukia Zatout
- Department of chemical Sciences, University of Naples Federico II, Naples, Italy
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri, Constantine, Algeria
| | - Ana G Petrovic
- Department of Chemical and Biological Sciences, New York Institute of Technology, New York, New York, USA
| | - Alessio Cimmino
- Department of chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Evidente
- Department of chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Nina D Berova
- Department of Chemistry, Columbia University, New York, New York, USA
| | | |
Collapse
|
20
|
Allelopathic Effect of Quercetin, a Flavonoid from Fagopyrum esculentum Roots in the Radicle Growth of Phelipanche ramosa: Quercetin Natural and Semisynthetic Analogues Were Used for a Structure-Activity Relationship Investigation. PLANTS 2021; 10:plants10030543. [PMID: 33805844 PMCID: PMC8001586 DOI: 10.3390/plants10030543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Allelopathic potential of buckwheat roots on the radicle growth of the broomrape weed species Orobanche cumana and Phelipanche ramosa was studied. Buckwheat root exudates induced a significant growth inhibition in P. ramosa radicles but radicles of O. cumana were not affected. Among the metabolites present in the root organic extract we identified the flavonol quercetin and the stilbene p-coumaric acid methyl ester with only quercetin showing inhibitory effect on P. ramosa. The activity of quercetin was compared with other two similar flavanoids, the flavone apigenin and the dihydroflavanol 3-O-acetylpadmatin extracted respectively from Lavandula stoechas and Dittrichia viscosa plants. In this comparative assay only 3-O-acetylpadmatin besides quercetin, showed inhibition activity of radicle growth while apigenin was inactive. These results indicated that the presence of two ortho-free hydroxy groups of C ring, like catechol, could be an important feature to impart activity while the carbon skeleton of B ring and substituents of both A and B rings are not essential. Besides reduction of radicle growth, haustorium induction was observed at the tip of P. ramosa radicles treated with quercetin which swelled and a layer of papillae was formed. Activity of quercetin on haustorium induction in P. ramosa was assayed in comparison with the known haustorium-inducing factor 2,6-dimethoxy-p-benzoquinone (DMBQ) and a three partial methyl ether derivatives semisynthetized from quercetin. Results indicated that P. ramosa haustorium was induced by DMBQ at concentrations of 1–0.5 mM and quercetin and its derivatives at concentration range 0.1–0.05 mM.
Collapse
|
21
|
Sun CP, Jia ZL, Huo XK, Tian XG, Feng L, Wang C, Zhang BJ, Zhao WY, Ma XC. Medicinal Inula Species: Phytochemistry, Biosynthesis, and Bioactivities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:315-358. [PMID: 33622212 DOI: 10.1142/s0192415x21500166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a genus of the Asteraceae, Inula is widely distributed all over the world, and several of them are being used in traditional medicines. A number of metabolites were isolated from Inula species, and some of these have shown to possess ranges of pharmacological activities. The genus Inula contains abundant sesquiterpenoids, such as eudesmanes, xanthanes, and sesquiterpenoid dimers and trimers. In addition, other types of terpenoids, flavonoids, and lignins also exist in the genus Inula. Since 2010, more than 300 new secondary metabolites, including several known natural products that were isolated for the first time from the genus Inula. Most of them exhibited potential bioactivities in various diseases. The review aimed to summarize the advance of recent researches (2010-2020) on phytochemical constituents, biosynthesis, and pharmacological properties of the genus Inula for providing a scientific basis and supporting its application and exploitation for new drug development.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zi-Li Jia
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiao-Kui Huo
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China
| | - Xiang-Ge Tian
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China
| | - Bao-Jing Zhang
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China
| | - Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target, Characterization and Traditional Chinese, Medicine Intervention, College of Pharmacy, Institute of Integrative Medicine, Dalian, Medical University, Dalian, P. R. China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| |
Collapse
|
22
|
Serino N, Boari A, Santagata G, Masi M, Malinconico M, Evidente A, Vurro M. Biodegradable polymers as carriers for tuning the release and improve the herbicidal effectiveness of Dittrichia viscosa plant organic extracts. PEST MANAGEMENT SCIENCE 2021; 77:646-658. [PMID: 33012130 DOI: 10.1002/ps.6123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND The organic extracts (OEs) of Dittrichia viscosa, a ruderal plant common in the Mediterranean regions, proved to have herbicidal properties. In order to improve OE effectiveness and to develop novel eco-friendly bioherbicidal products, different amounts of OE were included in poly(butylene succinate)- and polycaprolactone-based films (PBS and PCL, respectively). Particular attention was given to the study of interactions between the polymers and OEs, with a deep spotlight concerning the influence of OEs on structural, morphological and thermal properties of both polymers, in order to assess the OE releasing kinetics from the matrices and its tuned herbicidal action against seeds. RESULTS The bioassays carried out on Lepidium sativum and Phelipanche ramosa seeds evidenced a more controlled and effective OE release by PBS than PCL, and a longer lasting efficacy by the polymers with a higher OE content. The chemical-physical analyses were performed on films before and after biological assays. The thermogravimetric analysis confirmed that OE was a thermal stabilizer of the polymer; the presence of OE and polymer separated degradative kinetics suggested that only a partial and functional miscibility between polymers and OE occurred. The morphological analysis confirmed the good OE dispersion between PBS and PCL molecular chains. Infrared spectroscopy highlighted the enhanced hydrolysed structure of the doped polymers after the bioassays. These outcomes well matched the quantitative information outlined by release kinetics. DISCUSSION The use of biodegradable polymers allows the effectiveness and tuning of the release of the formulated bioactive compounds to be improved. The easy-to-obtain and easy-to-formulate OE could become a suitable and environmentally friendly instrument in weed management programmes.
Collapse
Affiliation(s)
- Nadia Serino
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cinthia, 4, Naples, 80126, Italy
| | - Angela Boari
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Amendola, 122/O, Bari, 70125, Italy
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Via Campi Flegrei, 34, Pozzuoli (Naples), 80078, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cinthia, 4, Naples, 80126, Italy
| | - Mario Malinconico
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Via Campi Flegrei, 34, Pozzuoli (Naples), 80078, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cinthia, 4, Naples, 80126, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), via Amendola, 122/O, Bari, 70125, Italy
| |
Collapse
|
23
|
Evaluation of Dittrichia viscosa (L.) Greuter Dried Biomass for Weed Management. PLANTS 2021; 10:plants10010147. [PMID: 33445708 PMCID: PMC7828174 DOI: 10.3390/plants10010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Abstract
Dittrichia viscosa (L.) Greuter, a plant species common in the Mediterranean basin, produces several bioactive compounds, some of which have herbicidal effects. A number of greenhouse and field experiments were carried out in order to evaluate if these effects could be obtained also by using the whole plant biomass, to identify the efficacious doses, determine their effects on seed germination and weed emergence, and to evaluate influence of soil characteristics on biomass efficacy. The experiments carried out evidenced that: (i) the dried biomass completely hampers plant emergence when high doses (30–40 kg biomass m−3 of soil) are mixed into the soil, or delays it at a lower dose (10 kg m−3); (ii) the detrimental effects are not affected by soil type. The exploitation of the D. viscosa dried biomass appears to be a feasible option in weed management practices and its potential is discussed.
Collapse
|
24
|
Zeouk I, Sifaoui I, Rizo-Liendo A, Arberas-Jiménez I, Reyes-Batlle M, L. Bazzocchi I, Bekhti K, E. Piñero J, Jiménez IA, Lorenzo-Morales J. Exploring the Anti-Infective Value of Inuloxin A Isolated from Inula viscosa against the Brain-Eating Amoeba ( Naegleria fowleri) by Activation of Programmed Cell Death. ACS Chem Neurosci 2021; 12:195-202. [PMID: 33296597 DOI: 10.1021/acschemneuro.0c00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary amoebic meningoencephalitis (PAM), caused by the pathogenic free-living amoeba Naegleria fowleri, is a rare but fatal disease. Nowadays, no fully effective therapy is available to erradicate or prevent this disease. Natural products could constitute a promising source of useful bioactive compounds in drug discovery. The present study is a characterization of main active compounds from the ethanolic extract of Inula viscosa (Asteraceae) leaves against N. fowleri trophozoites. Four compounds (1-4) were successfully identified by spectroscopic techniques, but only inuloxin A displayed a potential antiamoebic activity with an IC50 of 21.27 μM. The specificity of this compound toward the studied strain leads us to analyze the insight into its mechanism of action by performing in vitro assays of programmed cell death markers and to discuss the structure-activity relationship (SAR). The obtained results demonstrated that inuloxin A interferes with various processes leading to membrane damage, mitochondria alteration, chromatin condensation, and ROS accumulation, which highlight features specific to apoptosis. The current findings could be a promising step for developing new effective drugs against PAM.
Collapse
Affiliation(s)
- Ikrame Zeouk
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET),
- Departement of Biology, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Microbial Biotechnology and Bioactive Molecules, PB 2202, Fez, Morocco
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET),
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, Islas Canarias 38203, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, Islas Canarias 38203, Spain
| | - Iñigo Arberas-Jiménez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, Islas Canarias 38203, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET),
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, Islas Canarias 38203, Spain
| | - Isabel L. Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Khadija Bekhti
- Departement of Biology, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Microbial Biotechnology and Bioactive Molecules, PB 2202, Fez, Morocco
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET),
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, Islas Canarias 38203, Spain
| | - Ignacio A. Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, La Laguna, Tenerife, Islas Canarias 38203, Spain
- Red de Investigación Colaborativa en Enfermedades Tropicales (RICET),
- Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad De La Laguna, La Laguna, Tenerife, Islas Canarias 38203, Spain
| |
Collapse
|
25
|
Zeouk I, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Bethencourt-Estrella CJ, Bazzocchi IL, Bekhti K, Lorenzo-Morales J, Jiménez IA, Piñero JE. Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids. Biomed Pharmacother 2020; 130:110518. [DOI: 10.1016/j.biopha.2020.110518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
|
26
|
Masi M, Pannacci E, Santoro E, Zermane N, Superchi S, Evidente A. Stoechanones A and B, Phytotoxic Copaane Sesquiterpenoids Isolated from Lavandula stoechas with Potential Herbicidal Activity against Amaranthus retroflexus. JOURNAL OF NATURAL PRODUCTS 2020; 83:1658-1665. [PMID: 32383878 DOI: 10.1021/acs.jnatprod.0c00182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
From the organic extract of Lavandula stoechas, a Mediterranean native plant species, two new phytotoxic copaane sesquiterpenoids were isolated and named stoechanones A and B (1 and 2). They were obtained together with the methyl esters of caffeic and p-coumaric acids and the flavonoid apigenin (3-5, respectively). The structures of stoechanones A and B were determined by spectroscopic (essentially 1D and 2D 1H and 13C NMR and HRESIMS) and chemical methods, and they were characterized as 9,10-dihydroxy-8-isopropyl-1,5-dimethyltricyclo[4.4.0.02.7]dec-4-en-3-one and its 9-O-acetyl derivative. Their relative configurations were assigned by NOESY experiments, and the absolute configurations by comparison of the experimental and DFT-computed ECD spectra. When assayed through Petri dish bioassays, both stoechanones A and B showed phytotoxic effects against seed germination and seedling growth of Amaranthus retroflexus, strongly inhibiting seed germination percentage and radicle and hypocotyl lengths of seedlings. Owing to the herbicidal activity toward A. retroflexus, these two new tricyclic sesquiterpenoids could be proposed and developed as natural bioherbicides in order to increase the control of this problematic weed in the future.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Euro Pannacci
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| | - Ernesto Santoro
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Nadjia Zermane
- Faculty of Sciences, University of Algiers, 2 Didouche Mourad Street, 16002 Algiers, Algeria
| | - Stefano Superchi
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
27
|
Dalinova A, Dubovik V, Chisty L, Kochura D, Ivanov A, Smirnov S, Petrova M, Zolotarev A, Evidente A, Berestetskiy A. Stagonolides J and K and Stagochromene A, Two New Natural Substituted Nonenolides and a New Disubstituted Chromene-4,5-dione Isolated from Stagonospora cirsii S-47 Proposed for the Biocontrol of Sonchus arvensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13040-13050. [PMID: 31670962 DOI: 10.1021/acs.jafc.9b04573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two new natural 10-membered macrolides (1, 2) and one chromene-4,5-dione derivative (3), named stagonolides J and K and stagochromene A, respectively, were isolated from the phytopathogenic fungus Stagonospora cirsii S-47, together with two known compounds, stagonolide A (4) and herbarumin I (5). Stagonolides J and K and stagochromene A were characterized as (5E,7R*,8S*,9R*)-7,8-dihydroxy-9-propyl-5-nonen-9-olide, (5E,7R,9S)-7-hydroxy-9-propyl-5-nonen-9-olide, and (2R*,3R*)-3-hydroxy-2-propyltetrahydro-2H-chromene-4,5(3H,4aH)-dione, respectively, by spectroscopic (mostly by NMR and ESIMS) data. Compounds 1-5 showed different rates of phytotoxic activity on punctured leaf discs of Sonchus arvensis. The antimicrobial, cytotoxic, and antiprotozoal activity of isolated compounds was also evaluated. Based on our data, stagonolide K and herbarumin I can be proposed as a potential scaffold for the development of a new natural herbicide and estimated as possible selection/quality markers of a bioherbicide based on S. cirsii, while stagonolide A can be considered as a mycotoxin.
Collapse
Affiliation(s)
- Anna Dalinova
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
| | - Vsevolod Dubovik
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
- Higher School of Technology and Energy (HSTE) , Saint Petersburg State University of Technology and Design , Ivana Chernyh st., 4 , Saint-Petersburg 198095 , Russian Federation
| | - Leonid Chisty
- Research Institute of Hygiene, Occupational Pathology and Human Ecology , Federal Medical Biological Agency , p/o Kuz'molovsky, Kapitolovo, 93 , Saint-Petersburg 188663 , Russian Federation
| | - Dmitriy Kochura
- Research Institute of Hygiene, Occupational Pathology and Human Ecology , Federal Medical Biological Agency , p/o Kuz'molovsky, Kapitolovo, 93 , Saint-Petersburg 188663 , Russian Federation
| | - Alexander Ivanov
- St. Petersburg State University , Universitetsky Av. 26 , St. Petersburg 198504 , Russian Federation
| | - Sergey Smirnov
- St. Petersburg State University , Universitetsky Av. 26 , St. Petersburg 198504 , Russian Federation
| | - Maria Petrova
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
| | - Andrey Zolotarev
- St. Petersburg State University , Universitetsky Av. 26 , St. Petersburg 198504 , Russian Federation
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo , Via. Cintia 4 , 80126 Napoli , Italy
| | - Alexander Berestetskiy
- All-Russian Institute of Plant Protection , Russian Academy of Agricultural Sciences , Podbelskogo st., 3 , Pushkin , Saint-Petersburg 196608 , Russian Federation
| |
Collapse
|
28
|
Inuloxin E, a New Seco-Eudesmanolide Isolated from Dittrichia viscosa, Stimulating Orobanche cumana Seed Germination. Molecules 2019; 24:molecules24193479. [PMID: 31557920 PMCID: PMC6803869 DOI: 10.3390/molecules24193479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
A new sesquiterpenoid belonging to the subgroup seco-eudesmanolides and named inuloxin E was isolated from Dittrichia viscosa, together with the already known sesquiterpenoids inuloxins A–D and α-costic acid. Inuloxin E was characterized by spectroscopic data (essentially NMR and ESI MS) as 3-methylene-6-(1-methyl-4-oxo-pentyl)-3a,4,7,7a-tetrahydro-3H-benzofuran-2-one. Its relative configuration was determined by comparison with the closely related inuloxin D and chemical conversion of inuloxin E into inuloxin D and by the observed significant correlation in the NOESY spectrum. Both inuloxins D and E induced germination of the parasitic weed Orobanche cumana, but were inactive on the seeds of Orobanche minor and Phelipanche ramosa. The germination activity of some hemisynthetic esters of inuloxin D was also investigated.
Collapse
|
29
|
Tori M, Saito Y, Gong X, Kuroda C. Chemical Studies of Cremanthodium (Asteraceae) Species; Sesquiterpenoids and Related Compounds. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19878594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chemical constituents of Cremanthodium angustifolium, C. brunneopilosum, C. campanulatum, C. daochengense, C. discoideum, C. ellisii, C. helianthus, C. lineare, C. nobile, C. potaninii, C. principis, C. pulchrum, C. rhodocephalum, C. stenactinium, C. pleurocaule, and C. stenoglossum were reviewed. They produced mainly sesquiterpenoids–bicyclic and/or tricyclic eremophilanes, bisabolanes, bakkanes–and related compounds. Cremanthodium was shown to be close to Ligularia in chemical constituents.
Collapse
Affiliation(s)
- Motoo Tori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Japan
| | - Yoshinori Saito
- Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi, Japan
| | - Xun Gong
- Kunming Institute of Botany, Chinese Academy of Science, China
| | - Chiaki Kuroda
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo, Japan
| |
Collapse
|
30
|
Macías FA, Mejías FJ, Molinillo JM. Recent advances in allelopathy for weed control: from knowledge to applications. PEST MANAGEMENT SCIENCE 2019; 75:2413-2436. [PMID: 30684299 DOI: 10.1002/ps.5355] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/27/2023]
Abstract
Allelopathy is the biological phenomenon of chemical interactions between living organisms in the ecosystem, and must be taken into account in addressing pest and weed problems in future sustainable agriculture. Allelopathy is a multidisciplinary science, but in some cases, aspects of its chemistry are overlooked, despite the need for a deep knowledge of the chemical structural characteristics of allelochemicals to facilitate the design of new herbicides. This review is focused on the most important advances in allelopathy, paying particular attention to the design and development of phenolic compounds, terpenoids and alkaloids as herbicides. The isolation of allelochemicals is mainly addressed, but other aspects such as the analysis and activities of derivatives or analogs are also covered. Furthermore, the use of allelopathy in the fight against parasitic plants is included. The past 12 years have been a prolific period for publications on allelopathy. This critical review discusses future research areas in this field and the state of the art is analyzed from the chemist's perspective. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - Francisco Jr Mejías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - José Mg Molinillo
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| |
Collapse
|
31
|
Barilli E, González-Bernal MJ, Cimmino A, Agudo-Jurado FJ, Masi M, Rubiales D, Evidente A. Impact of fungal and plant metabolites application on early development stages of pea powdery mildew. PEST MANAGEMENT SCIENCE 2019; 75:2464-2473. [PMID: 30672110 DOI: 10.1002/ps.5351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pea powdery mildew incited by Erysiphe pisi represents a major constraint for pea crops worldwide. Crop protection is largely based on chemical control, although recently a renewed interest in the discovery of natural products as alternatives to synthetic fungicides application has emerged. Thus, 12 bioactive plant and fungal metabolites belonging to different class of natural compounds were evaluated, together with a commercial fungicide, at different concentrations on detached pea leaves for their potential to inhibit spore germination and subsequent stages of fungal growth. The most effective metabolites were tested at different concentrations in planta under controlled conditions to evaluate the level of control achieved by treatments before, concurrently and after pathogen inoculation. Pathogen development was macroscopically scored on whole plants as percentage of disease severity and area under the disease progress curve. RESULTS Cavoxin, inuloxin C and sphaeropsidin A strongly inhibited E. pisi germination and haustoria formation and reduced colony size. This effect was dose dependent. These results were further confirmed in whole plants by spraying the metabolites on plant leaves for preventive or curative control, which reduced fungal developmental of E. pisi at levels comparable with those obtained by application of the fungicide. CONCLUSIONS Cavoxin, inuloxin C and sphaeropsidin A have potential as alternatives to synthetic fungicides for the control of crop pathogens of economic importance such as powdery mildew. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | | | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
32
|
Cimmino A, Freda F, Santoro E, Superchi S, Evidente A, Cristofaro M, Masi M. α-Costic acid, a plant sesquiterpene with acaricidal activity against Varroa destructor parasitizing the honey bee. Nat Prod Res 2019; 35:1428-1435. [PMID: 31418584 DOI: 10.1080/14786419.2019.1652291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The organic extract of the aerial parts of Dittrichia viscosa, a perennial native plant of the Mediterranean basin, showed a significant acaricidal activity against Varroa destructor, the parasite mite of Apis mellifera, commonly called honey bee. Among the metabolites isolated from the organic extract of this Asteraceae, α-costic acid showed to be one of the compounds responsible for the toxic activity exhibited by the crude plant extract on this parasite mite species. In addition to the toxic effect a clear acaricidal response has been recorded when the parasitic mite was exposed to 1 mg/mL concentration of α-costic acid while no effects have been showed on honey bees using the same compound at the same concentration. This finding suggests a potential use of α-costic acid to control Varroa mites. The possibility to reliably achieve absolute configuration of α-costic acid by DFT computational analysis of chiroptical spectra has been also demonstrated.†.
Collapse
Affiliation(s)
- Alessio Cimmino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Napoli, Italy
| | | | - Ernesto Santoro
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - Stefano Superchi
- Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Napoli, Italy
| | - Massimo Cristofaro
- BBCA onlus, Rome, Italy.,ENEA C.R. Casaccia, SSPT-BIOAG-PROBIO, Rome, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Napoli, Italy
| |
Collapse
|
33
|
Rotundo G, Paventi G, Barberio A, De Cristofaro A, Notardonato I, Russo MV, Germinara GS. Biological activity of Dittrichia viscosa (L.) Greuter extracts against adult Sitophilus granarius (L.) (Coleoptera, Curculionidae) and identification of active compounds. Sci Rep 2019; 9:6429. [PMID: 31015563 PMCID: PMC6478880 DOI: 10.1038/s41598-019-42886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/05/2019] [Indexed: 01/25/2023] Open
Abstract
Dittrichia viscosa (L.) Greuter, a perennial weed of the Mediterranean area, was reported to be source of active substances. Here, by means of both ingestion and contact assays, the biological activity of three different extracts (n-hexane, methanol, and distilled water) of D. viscosa aerial part has been evaluated against Sitophilus granarius (L.) adults, an important pest of stored grains. Ingestion assays showed negligible mortality and food deterrence for all the extracts, whereas only a slight reduction of some nutritional parameters (relative growth rate, relative consumption rate, food efficiency conversion) was recorded for water extract. High contact toxicity was found only for the n-hexane extract (24 h median lethal dose LD50 = 53.20 μg/adult). This extract was further subfractioned by silica gel column chromatography and then by thin layer chromatography. Further contact toxicity bioassays highlighted two active subfractions which were analyzed by GC-MS. This revealed the occurrence, in both subfractions, of two major peaks that were identified as α- and γ- costic acid isomers. Moreover, D. viscosa active subfractions, did not cause acetylcholinesterase (AChE) inhibition; therefore, in the light of progressive limitation of compounds acting by this mechanism of action, D. viscosa represents a promising eco-sustainable source of natural products for pest control.
Collapse
Affiliation(s)
- Giuseppe Rotundo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy.
| | - Gianluca Paventi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, via de Sanctis, 86100, Campobasso, Italy.
| | - Antonia Barberio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Mario V Russo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via de Sanctis, 86100, Campobasso, Italy
| | - Giacinto S Germinara
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71100, Foggia, Italy
| |
Collapse
|
34
|
Moeini A, Masi M, Zonno MC, Boari A, Cimmino A, Tarallo O, Vurro M, Evidente A. Encapsulation of inuloxin A, a plant germacrane sesquiterpene with potential herbicidal activity, in β-cyclodextrins. Org Biomol Chem 2019; 17:2508-2515. [PMID: 30758008 DOI: 10.1039/c8ob03156h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inuloxin A is a promising plant phytotoxic sesquiterpene that deserves further studies to evaluate its potential as a bioherbicide. However, its low solubility in water and its bioavailability could hamper its practical applications. For this reason, inuloxin A was complexed with β-cyclodextrins by using three different methods, i.e., kneading, co-precipitation and grinding. The resulted complexes were fully characterized by different techniques such as 1H NMR, UV-vis, XRD, DSC and SEM, and they were biologically assayed in comparison with the pure compound in several biological systems. The efficacy of the kneading and grinding complexes was similar to that of inuloxin A and these complexes almost completely inhibit Phelipanche ramosa seed germination. The complete solubility in water and the preservation of the biological properties of these two complexes could allow further studies to develop a novel natural herbicide for parasitic plant management based on these formulations.
Collapse
Affiliation(s)
- Arash Moeini
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Johnson JL, Raghavan V, Cimmino A, Moeini A, Petrovic AG, Santoro E, Superchi S, Berova N, Evidente A, Polavarapu PL. Absolute configurations of chiral molecules with multiple stereogenic centers without prior knowledge of the relative configurations: A case study of inuloxin C. Chirality 2018; 30:1206-1214. [DOI: 10.1002/chir.23013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Vijay Raghavan
- Department of Chemistry Vanderbilt University Nashville TN USA
| | - Alessio Cimmino
- Department of Chemical Science University of Naples Federico II Naples Italy
| | - Arash Moeini
- Department of Chemical Science University of Naples Federico II Naples Italy
| | - Ana G. Petrovic
- Department of Chemistry Columbia University New York NY USA
- Department of Life Sciences New York Institute of Technology New York NY USA
| | - Ernesto Santoro
- Department of Science University of Basilicata Potenza Italy
| | | | - Nina Berova
- Department of Chemistry Columbia University New York NY USA
| | - Antonio Evidente
- Department of Chemical Science University of Naples Federico II Naples Italy
| | | |
Collapse
|
36
|
Bouyahya A, Et-Touys A, Khouchlaa A, El-Baaboua A, Benjouad A, Amzazi S, Dakka N, Bakri Y. Notes ethnobotaniques et phytopharmacologiques sur Inula viscosa. ACTA ACUST UNITED AC 2018. [DOI: 10.3166/s10298-017-1176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Kheyar-Kraouche N, da Silva AB, Serra AT, Bedjou F, Bronze MR. Characterization by liquid chromatography-mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J Pharm Biomed Anal 2018; 156:297-306. [PMID: 29730339 DOI: 10.1016/j.jpba.2018.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023]
Abstract
Inula viscosa (I. viscosa) is a common Mediterranean plant, well known for its content on bioactive molecules. The chemical composition of an ethanolic extract from I. viscosa leaves, growing in Algeria, was analysed by liquid chromatography coupled to photodiode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS/MS) operating in negative and positive mode. The methodology used revealed the presence of 51 compounds from which 47 were putatively identified, including 11 phenolic acids, 23flavonoids, one lignan and 12 terpenoids. Twenty-six of these compounds are described for the first time in I. viscosa. Antioxidant activity was measured using three different and complementary chemical assays: DPPH radical scavenging activity, oxygen radical absorbance capacity (ORAC) and hydroxyl radical scavenging capacity (HOSC). Results demonstrate that ethanolic leaf extract exhibit a high scavenging ability against DPPH (157.72 ± 6.45 μM TE/g DW), peroxyl (4471.42 ± 113.16 μM TE/g DW) and hydroxyl (630.10 ± 17.81 μM TE/g DW) radicals, indicating that I. viscosa can be a promising source of bioactive compounds.
Collapse
Affiliation(s)
- Naoual Kheyar-Kraouche
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Andreia Bento da Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Fatiha Bedjou
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Maria R Bronze
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; iMED, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| |
Collapse
|
38
|
Aznar-Fernández T, Cimmino A, Masi M, Rubiales D, Evidente A. Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid ( Acyrthosiphon pisum) as potential biocontrol strategy. Nat Prod Res 2018; 33:2471-2479. [PMID: 29595339 DOI: 10.1080/14786419.2018.1452013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aphids are noxious insect pests of major crops including cereals and legumes. Particularly, pea aphid (Acyrthosiphon pisum) causes significant yield and quality loses in pea. Crop protection is largely based on noxious chemical pesticides which have prompted a renewed interest in the discovery of natural products as alternatives to synthetic insecticides. In this study different classes of natural compounds were tested in dual choice bioassays to evaluate their feeding deterrence and mortality effect on pea aphid. High feeding deterrence was produced by some of the compounds, particularly1-hexadecanol, gliotoxin, cyclopaldic acid and seiridin. On the contrary, aphid mortality was low although significant for 1-heptadecanol, cytochalasin A, 1-nonadecanol and gliotoxin. Phytotoxicity assessment showed low or imperceptible plant damaged for cytochalasin A, seiridin and 1-nonadecanol. The results obtained showed the potential of seiridin to be used as an alternative to synthetic insecticides.
Collapse
Affiliation(s)
| | - Alessio Cimmino
- b Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Marco Masi
- b Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Diego Rubiales
- a Institute for Sustainable Agriculture , CSIC , Cordoba , Spain
| | - Antonio Evidente
- b Dipartimento di Scienze Chimiche , Università di Napoli Federico II, Complesso Universitario Monte S. Angelo , Napoli , Italy
| |
Collapse
|
39
|
Cimmino A, Masi M, Rubiales D, Evidente A, Fernández-Aparicio M. Allelopathy for Parasitic Plant Management. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A number of parasitic plants have adapted to agricultural environments becoming weedy and posing a serious threat to important crops. Available control measures rely heavily on use of synthetic herbicides. The side effects on environmental pollution and food health of chemical control prompted studies to find alternative strategies based on the use of natural products. This article reviews plant and fungal metabolites with potential for the development of specific and efficient methods for the control of parasitic plants.
Collapse
Affiliation(s)
- Alessio Cimmino
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Via Cintia 4,80126, Università di Napoli Federico II, Napoli, Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Via Cintia 4,80126, Università di Napoli Federico II, Napoli, Italy
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Via Cintia 4,80126, Università di Napoli Federico II, Napoli, Italy
| | | |
Collapse
|
40
|
Cuvertino-Santoni J, Asakawa Y, Nour M, Montenegro G. Volatile Chemical Constituents of the Chilean Bryophytes. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of this study is to increase the phytochemical knowledge of South American bryophytes, particularly from those of the southern tip of the continent, due to the uniqueness of its poorly known bryoflora. Thirty-two specimens were analyzed using GC-MS technique. Most of the molecules found in the present bryophyte species belong to sesquiterpenes. In general, liverworts resulted to be richer in terpenoid compounds, while mosses in n-alkanes. Oplopanone, trans- chrysanthenyl acetate and 6,7-secoeudesm-7(11)-en-6-al are compounds here newly reported to the bryophytes. α-Ylangene and α-herbertenol are new to hornworts, while α-herbertenol and n-heneicosane are new to mosses.
Collapse
Affiliation(s)
- Jorge Cuvertino-Santoni
- Faculty of Chemistry, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshinori Asakawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Mohammed Nour
- Laboratoire Insulaire du Vivant et de l'Environnement, Université de la Nouvelle-Calédonie, France
| | - Gloria Montenegro
- Faculty of Agronomy and Forestry Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
41
|
Valerio F, Masi M, Cimmino A, Moeini SA, Lavermicocca P, Evidente A. Antimould microbial and plant metabolites with potential use in intelligent food packaging. Nat Prod Res 2017; 32:1605-1610. [DOI: 10.1080/14786419.2017.1385018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Francesca Valerio
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Seyed Arash Moeini
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Paola Lavermicocca
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
42
|
Cimmino A, Masi M, Evidente M, Superchi S, Evidente A. Application of Mosher’s method for absolute configuration assignment to bioactive plants and fungi metabolites. J Pharm Biomed Anal 2017; 144:59-89. [DOI: 10.1016/j.jpba.2017.02.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 12/30/2022]
|
43
|
Masi M, Cimmino A, Tabanca N, Becnel JJ, Bloomquist JR, Evidente A. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus. OPEN CHEM 2017. [DOI: 10.1515/chem-2017-0019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractAedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites belonging to different chemical subgroups, including Amaryllidaceae alkaloids, anthracenes, azoxymethoxytetrahydropyrans, cytochalasans, 2,5-diketopiperazines, isochromanones, naphthoquinones, organic small acids and their methyl esters, sterols and terpenes including sesquiterpenes and diterpenes, were tested for their larvicidal and adulticidal activity against Ae. aegypti. Out of 23 compounds tested, gliotoxin exhibited mosquitocidal activity in both bioassays with an LC50 value of 0.0257 ± 0.001 µg/µL against 1st instar Ae. aegypti and LD50 value of 2.79 ± 0.1197 µg/mosquito against adult female Ae. aegypti. 2-Methoxy-1,4-naphthoquinone and cytochalasin A showed LC50 values of 0.0851 ± 0.0012 µg/µL and 0.0854 ± 0.0019 µg/µL, respectively, against Ae. aegypti larvae. In adult bioassays, fusaric acid (LD50= 0.8349 ± 0.0118 µg/mosquito), 3-nitropropionic acid (LD50 = 1.6641 ± 0.0494 µg/mosquito) and α-costic acid (LD50 = 2.547 ± 0.0835 µg/mosquito) exhibited adulticidal activity. Results from the current study confirm that compounds belonging to cytochalsin, diketopiperazine, naphthoquinone and low molecular weight organic acid groups are active and may stimulate further SAR investigations.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia4, 80126, Italy
| | - Alessio Cimmino
- Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia4, 80126, Italy
| | - Nurhayat Tabanca
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 USA
| | - James J. Becnel
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Jeffrey R. Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Antonio Evidente
- Dipartimento di Science Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia4, 80126, Italy
| |
Collapse
|
44
|
Barilli E, Cimmino A, Masi M, Evidente M, Rubiales D, Evidente A. Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid and epi-epoformin. PEST MANAGEMENT SCIENCE 2017; 73:1161-1168. [PMID: 27624539 DOI: 10.1002/ps.4438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Rusts are a noxious group of plant diseases affecting major economically important crops. Crop protection is largely based on chemical control. There is a renewed interest in the discovery of natural products as alternatives to synthetic fungicides for control. In this study we tested two fungal metabolites, namely cyclopaldic acid and epi-epoformin, for their effectiveness in reducing early stages of development of two major rust fungi from the genera Puccinia and Uromyces, P. triticina and U. pisi. Spore germination and appressorium formation were assessed on pretreated detached leaves under controlled conditions. Cyclopaldic acid and epi-epoformin were also tested in infected plants in order to evaluate the level of control achieved by treatments both before and after inoculation. RESULTS Cyclopaldic acid and epi-epoformin were strongly effective in inhibiting fungal germination and penetration of both rust species studied. This effect was not dose dependent. These results were further confirmed in planta by spraying the metabolites on plant leaves, which reduced fungal developmental of U. pisi and P. triticina at values comparable with those obtained by application of the fungicide. CONCLUSION Our results further demonstrate the potential of fungal metabolites as natural alternatives to synthetic fungicides for the control of crop pathogens of economic importance as rusts. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Cordoba, Spain
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| |
Collapse
|
45
|
|
46
|
Evidente M, Santoro E, Petrovic AG, Cimmino A, Koshoubu J, Evidente A, Berova N, Superchi S. Absolute configurations of phytotoxic inuloxins B and C based on experimental and computational analysis of chiroptical properties. PHYTOCHEMISTRY 2016; 130:328-34. [PMID: 27498046 DOI: 10.1016/j.phytochem.2016.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/03/2016] [Accepted: 07/20/2016] [Indexed: 05/23/2023]
Abstract
The absolute configuration of phytotoxins inuloxins B and C, produced by Inula viscosa, and with potential herbicidal activity for the management of parasitic plants, has been determined by Time-dependent density functional theory computational prediction of electronic circular dichroism and optical rotatory dispersion spectra. The inuloxin B has been converted to its 5-O-acetyl derivative, which due to its more constrained conformational features facilitated the computational analysis of its chiroptical properties. The analysis based on experimental and computed data led to assignment of absolute configuration to naturally occurring (+)-inuloxin B and (-)-inuloxin C as (7R,8R,10S,11S) and (5S,7S,8S,10S), respectively.
Collapse
Affiliation(s)
- Marco Evidente
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy; Department of Chemistry, Columbia University, 3000 Broadway, 3114, New York, NY 10027, USA
| | - Ernesto Santoro
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Ana G Petrovic
- Department of Chemistry, Columbia University, 3000 Broadway, 3114, New York, NY 10027, USA; Department of Life Sciences, New York Institute of Technology (NYIT), 1855 Broadway, New York, NY 10023, USA
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Jun Koshoubu
- JASCO Corporation, Hachioji-shi, Tokyo 192-8537, Japan
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy.
| | - Nina Berova
- Department of Chemistry, Columbia University, 3000 Broadway, 3114, New York, NY 10027, USA.
| | - Stefano Superchi
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
47
|
Barilli E, Cimmino A, Masi M, Evidente M, Rubiales D, Evidente A. Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal Metabolites. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eight fungal and plant metabolites belonging to different classes of naturally occurring compounds, a 24-oxa[14]-cytochalasan as cytochalasin B (1), a trisubstituted isocoumarin as 6-hydroxymellein (2), a tetracyclic pimarane diterpene as sphaeropsidin A (3), a chalcone as cavoxin (4), a pentasubstituted benzofuranone as cyclopaldic acid (5), a bicyclic-sesquiterpene as inuloxin A (6), a epipolythiopiperazine as gliotoxin (7) and a cyclohexene epoxide as epi-epoformin (8), were tested for their effectiveness in reducing early stages of development of several major rust fungi from the genera Puccinia and Uromyces. Spore germination and appressoria formation were assessed on pre-treated detached leaves, under controlled conditions. Among the various metabolites evaluated, compounds 5 and 8 were the most effective in inhibiting fungal germination and penetration of all rust species studied at values comparable with those obtained by fungicide application, while compound 4 was phytotoxic to plant leaves at any concentration tested.
Collapse
Affiliation(s)
- Eleonora Barilli
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
48
|
Akour A, Kasabri V, Afifi FU, Bulatova N. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: a review of folkloric practice vs. evidence-based pharmacology. PHARMACEUTICAL BIOLOGY 2016; 54:1901-1918. [PMID: 26911517 DOI: 10.3109/13880209.2015.1113994] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
Context National statistical reports in Jordan indicate a decrease in the total fertility rate along with a parallel increase in contraceptive use. The folkloric use of medicinal herbs in gynecological disorders has been growing in Jordan, despite of deficient reports on the evidence-based safety and efficacy of these practices. Objective The aim of this comprehensive article is to review medicinal plants with claimed ethnonpharmacological usage in various gynecological and pregnancy-related issues in Jordan, and to assess their evidence-based pharmacological studies as well as their phytochemistry. Methods The published literature was surveyed using Google Scholar entering the terms "ethnopharmacology AND Jordan AND infertility AND gynecology OR gestation". We included ethnopharmacological surveys in Jordan with available full-text. Results Twelve articles were reviewed. Plant species which are commonly used for female gynecological issues such as Artemisia monosperma Del. and A. herba-alba Asso. (Asteraceae) have been found to exert an antifertility effect. Ricinus communis L. (Euphorbiaceae) and Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) had antifertility effects in male rats, but Nigella sativa oil L. (Ranunculaceae) and Cinnamon zeylanicum J. Presl (Lauraceae) were found to enhance it. Conclusion Using plants for gynecological disorders is a common practice in Jordan. Many of them, whether utilised for gynecological or non-gynecological conditions equally, were found to have detrimental effects on female or male fertility. Thus, couples planning pregnancy should be discouraged from the consumption of these herbs. Further local studies are warranted to confirm the appreciable beneficial pharmacological effects and safety of these plants.
Collapse
MESH Headings
- Animals
- Ethnopharmacology
- Evidence-Based Medicine
- Female
- Fertility/drug effects
- Folklore
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/epidemiology
- Humans
- Infertility, Female/chemically induced
- Infertility, Female/epidemiology
- Infertility, Female/physiopathology
- Infertility, Male/chemically induced
- Infertility, Male/epidemiology
- Infertility, Male/physiopathology
- Jordan/epidemiology
- Male
- Medicine, Traditional
- Phytotherapy
- Plant Preparations/adverse effects
- Plant Preparations/therapeutic use
- Plants, Medicinal
- Pregnancy
- Pregnancy Complications/drug therapy
- Pregnancy Complications/epidemiology
- Risk Assessment
- Risk Factors
Collapse
Affiliation(s)
- Amal Akour
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Violet Kasabri
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Fatma U Afifi
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Nailya Bulatova
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| |
Collapse
|
49
|
Mazur M, Skrobiszewski A, Gładkowski W, Podkowik M, Bania J, Nawrot J, Klejdysz T, Wawrzeńczyk C. Lactones 46. Synthesis, antifeedant and antibacterial activity of γ-lactones with a p-methoxyphenyl substituent. PEST MANAGEMENT SCIENCE 2016; 72:489-496. [PMID: 25809724 DOI: 10.1002/ps.4012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Lactones are well known for their biological activity. Grosheimin and repin are potent deterrents against storage pests. The unsaturated lactones have exhibited a wide spectrum of antibacterial activity. In our study we focused on the synthesis and evaluation of the biological activity of anisaldehyde derivatives containing lactone function. RESULTS Four new lactones were synthesized in one-step reductive dehalogenation or dehydrohalogenation reactions. These compounds, together with halolactones synthesized earlier, were tested for their antifeedant activity towards Sitophilus granaries, Trogoderma granarium and Tribolium confusum. The results of the tests showed that the highest activity, comparable with that of azadirachtin, towards all tested pests (total coefficient of deterrence 143.3-183.9) was observed for lactone with a vinyl substituent. The antibacterial activity of these compounds was also evaluated. The most potent lactone was active towards gram-positive bacteria strains. CONCLUSIONS The results of biological tests showed that halogen atom removal significantly increased the antifeedant properties of γ-lactones with a p-methoxyphenyl substituent. Unsaturated lactones are most promising in the context of their possible industrial application as crop protection agents. Further structural modifications of lactones with aromatic rings are needed to find important structural factors increasing the antibacterial activity.
Collapse
Affiliation(s)
- Marcelina Mazur
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Andrzej Skrobiszewski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Podkowik
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Nawrot
- Institute of Plant Protection - National Reasearch Institute, Poznań, Poland
| | - Tomasz Klejdysz
- Institute of Plant Protection - National Reasearch Institute, Poznań, Poland
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
50
|
Chen J, Zheng G, Zhang Y, Aisa HA, Hao XJ. Phytotoxic Terpenoids from Ligularia cymbulifera Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:2033. [PMID: 28119715 PMCID: PMC5221121 DOI: 10.3389/fpls.2016.02033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/20/2016] [Indexed: 05/07/2023]
Abstract
Ligularia cymbulifera is one of the predominant species in the Hengduan Mountains, China, and has led to a decrease in the amount of forage grass in this area. However, little is known about the mechanism behind its predominance. In this study, two novel eremophilane sesquiterpenes, ligulacymirin A and B (1 and 2), together with seven other known terpenoids (3-9), were isolated from the roots of L. cymbulifera. The structures of 1 and 2 were determined by spectroscopic methods and single-crystal X-ray diffraction. Each compound showed phytotoxic activities against Arabidopsis thaliana, and each was detected and identified in rhizosphere soil by UHPLC-MS. Compound 3 was the most potent phytotoxin, showing remarkable inhibition against both seedling growth (EC50 = 30.33 ± 0.94 μg/mL) and seed germination (EC50 = 155.13 ± 0.52 μg/mL), with an average content in rhizosphere soil of 3.44 μg/g. These results indicate that terpenoids in L. cymbulifera roots might be released as phytotoxins in rhizosphere soil to interfere with neighboring plants.
Collapse
Affiliation(s)
- Jia Chen
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of SciencesUrumqi, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Graduate School of Chinese Academy of SciencesBeijing, China
| | - Guowei Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Yu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Haji A. Aisa
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of SciencesUrumqi, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- *Correspondence: Xiao-Jiang Hao
| |
Collapse
|