1
|
Feldman F, Koudoufio M, Sané AT, Marcil V, Sauvé MF, Butcher J, Patey N, Martel C, Spahis S, Duan H, Figeys D, Desjardins Y, Stintzi A, Levy E. Therapeutic Potential of Cranberry Proanthocyanidins in Addressing the Pathophysiology of Metabolic Syndrome: A Scrutiny of Select Mechanisms of Action. Antioxidants (Basel) 2025; 14:268. [PMID: 40227220 PMCID: PMC11939394 DOI: 10.3390/antiox14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Metabolic syndrome (MetS) constitutes a spectrum of interconnected conditions comprising obesity, dyslipidemia, hypertension, and insulin resistance (IR). While a singular, all-encompassing treatment for MetS remains elusive, an integrative approach involving tailored lifestyle modifications and emerging functional food therapies holds promise in preventing its multifaceted manifestations. Our main objective was to scrutinize the efficacy of cranberry proanthocyanidins (PAC, 200 mg/kg/day for 12 weeks) in mitigating MetS pathophysiology in male mice subjected to standard Chow or high-fat/high-fructose (HFHF) diets while unravelling intricate mechanisms. The administration of PAC, in conjunction with an HFHF diet, significantly averted obesity, evidenced by reductions in body weight, adiposity across various fat depots, and adipocyte hypertrophy. Similarly, PAC prevented HFHF-induced hyperglycemia and hyperinsulinemia while also lessening IR. Furthermore, PAC proved effective in alleviating key risk factors associated with cardiovascular diseases by diminishing plasma saturated fatty acids, as well as levels of triglycerides, cholesterol, and non-HDL-C levels. The rise in adiponectin and drop in circulating levels of inflammatory markers showcased PAC's protective role against inflammation. To better clarify the mechanisms behind PAC actions, gut-liver axis parameters were examined, showing significant enhancements in gut microbiota composition, microbiota-derived metabolites, and marked reductions in intestinal and hepatic inflammation, liver steatosis, and key biomarkers associated with endoplasmic reticulum (ER) stress and lipid metabolism. This study enhances our understanding of the complex mechanisms underlying the development of MetS and provides valuable insights into how PAC may alleviate cardiometabolic dysfunction in HFHF mice.
Collapse
Affiliation(s)
- Francis Feldman
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Mireille Koudoufio
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Alain Théophile Sané
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
| | - Valérie Marcil
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Mathilde Foisy Sauvé
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - James Butcher
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Natalie Patey
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Catherine Martel
- Montreal Heart Institute Research Centre, Montreal, QC H1T 1C8, Canada;
- Departement of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Schohraya Spahis
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Haonan Duan
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 4L3, Canada;
| | - Alain Stintzi
- School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 1M5, Canada; (J.B.); (H.D.); (D.F.); (A.S.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emile Levy
- Azraeli Research Centre, Sainte-Justine University Health Centre, Montreal, QC H3T 1C5, Canada; (F.F.); (M.K.); (A.T.S.); (V.M.); (M.F.S.); (S.S.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1A8, Canada
| |
Collapse
|
2
|
Scarpellini E, Scarcella M, Tack JF, Scarlata GGM, Zanetti M, Abenavoli L. Gut Microbiota and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:1386. [PMID: 39594528 PMCID: PMC11591341 DOI: 10.3390/antiox13111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The gut microbiota constitutes a complex microorganism community that harbors bacteria, viruses, fungi, protozoa, and archaea. The human gut bacterial microbiota has been extensively proven to participate in human metabolism, immunity, and nutrient absorption. Its imbalance, namely "dysbiosis", has been linked to disordered metabolism. Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the features of deranged human metabolism and is the leading cause of liver cirrhosis and hepatocellular carcinoma. Thus, there is a pathophysiological link between gut dysbiosis and MASLD. Aims and Methods: We aimed to review the literature data on the composition of the human bacterial gut microbiota and its dysbiosis in MASLD and describe the concept of the "gut-liver axis". Moreover, we reviewed the approaches for gut microbiota modulation in MASLD treatment. Results: There is consolidated evidence of particular gut dysbiosis associated with MASLD and its stages. The model explaining the relationship between gut microbiota and the liver has a bidirectional organization, explaining the physiopathology of MASLD. Oxidative stress is one of the keystones in the pathophysiology of MASLD and fibrosis generation. There is promising and consolidated evidence for the efficacy of pre- and probiotics in reversing gut dysbiosis in MASLD patients, with therapeutic effects. Few yet encouraging data on fecal microbiota transplantation (FMT) in MASLD are available in the literature. Conclusions: The gut dysbiosis characteristic of MASLD is a key target in its reversal and treatment via diet, pre/probiotics, and FMT treatment. Oxidative stress modulation remains a promising target for MASLD treatment, prevention, and reversal.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Translational Research in Gastroeintestinal Disorders, Gasthuisberg University Hospital, KULeuven, Herestraat 49, 3000 Lueven, Belgium;
| | - Marialaura Scarcella
- Anesthesia, Intensive Care and Nutritional Science-Azienda Ospedaliera “Santa Maria”, Via Tristano di Joannuccio, 05100 Terni, Italy;
| | - Jan F. Tack
- Translational Research in Gastroeintestinal Disorders, Gasthuisberg University Hospital, KULeuven, Herestraat 49, 3000 Lueven, Belgium;
| | | | - Michela Zanetti
- Geriatrics Department, Nutrition and Malnutrition Unit, Azienda Sanitario-Universitaria Giuliano Isontina, Ospedale Maggiore, piazza dell’Ospitale 1, 34100 Triste, Italy;
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy; (G.G.M.S.); (L.A.)
| |
Collapse
|
3
|
Šmíd V, Dvořák K, Stehnová K, Strnad H, Rubert J, Stříteský J, Staňková B, Stránská M, Hajšlová J, Brůha R, Vítek L. The Ameliorating Effects of n-3 Polyunsaturated Fatty Acids on Liver Steatosis Induced by a High-Fat Methionine Choline-Deficient Diet in Mice. Int J Mol Sci 2023; 24:17226. [PMID: 38139055 PMCID: PMC10743075 DOI: 10.3390/ijms242417226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism. On the contrary, a diet enriched with n-3 polyunsaturated fatty acids (n-3-PUFAs) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either a high-fat methionine choline-deficient diet (MCD) or standard chow with or without n-3-PUFAs. Liver histology, serum biochemistry, detailed plasma and liver lipidomic analyses, and genome-wide transcriptome analysis were performed. Mice fed an MCD developed histopathological changes characteristic of NAFLD, and these changes were ameliorated with n-3-PUFAs. Simultaneously, n-3-PUFAs decreased serum triacylglycerol and cholesterol concentrations as well as ALT and AST activities. N-3-PUFAs decreased serum concentrations of saturated and monounsaturated free fatty acids (FAs), while increasing serum concentrations of long-chain PUFAs. Furthermore, in the liver, the MCD significantly increased the hepatic triacylglycerol content, while the administration of n-3-PUFAs eliminated this effect. Administration of n-3-PUFAs led to significant beneficial differences in gene expression within biosynthetic pathways of cholesterol, FAs, and pro-inflammatory cytokines (IL-1 and TNF-α). To conclude, n-3-PUFA supplementation appears to represent a promising nutraceutical approach for the restoration of abnormalities in liver lipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Václav Šmíd
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Karel Dvořák
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Kamila Stehnová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Josep Rubert
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jan Stříteský
- Institute of Pathology, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 00 Prague, Czech Republic;
| | - Barbora Staňková
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| | - Milena Stránská
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.S.); (J.R.); (J.H.)
| | - Radan Brůha
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
| | - Libor Vítek
- 4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic (R.B.); (L.V.)
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08 Prague, Czech Republic
| |
Collapse
|
4
|
Farías C, Cisternas C, Gana JC, Alberti G, Echeverría F, Videla LA, Mercado L, Muñoz Y, Valenzuela R. Dietary and Nutritional Interventions in Nonalcoholic Fatty Liver Disease in Pediatrics. Nutrients 2023; 15:4829. [PMID: 38004223 PMCID: PMC10674812 DOI: 10.3390/nu15224829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is pediatrics' most common chronic liver disease. The incidence is high in children and adolescents with obesity, which is associated with an increased risk of disease progression. Currently, there is no effective drug therapy in pediatrics; therefore, lifestyle interventions remain the first line of treatment. This review aims to present an updated compilation of the scientific evidence for treating this pathology, including lifestyle modifications, such as exercise and dietary changes, highlighting specific nutritional strategies. The bibliographic review was carried out in different databases, including studies within the pediatric population where dietary and/or nutritional interventions were used to treat NAFLD. Main interventions include diets low in carbohydrates, free sugars, fructose, and lipids, in addition to healthy eating patterns and possible nutritional interventions with n-3 polyunsaturated fatty acids (EPA and DHA), amino acids (cysteine, L-carnitine), cysteamine, vitamins, and probiotics (one strain or multi-strain). Lifestyle changes remain the main recommendation for children with NAFLD. Nevertheless, more studies are required to elucidate the effectiveness of specific nutrients and bioactive compounds in this population.
Collapse
Affiliation(s)
- Camila Farías
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Camila Cisternas
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Juan Cristobal Gana
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| | - Gigliola Alberti
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| | - Francisca Echeverría
- Nutrition and Dietetic School, Department of Health Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Lorena Mercado
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Yasna Muñoz
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360134, Chile
| | - Rodrigo Valenzuela
- Department of Pediatric Gastroenterology and Nutrition, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile
| |
Collapse
|
5
|
Spiezia C, Di Rosa C, Fintini D, Ferrara P, De Gara L, Khazrai YM. Nutritional Approaches in Children with Overweight or Obesity and Hepatic Steatosis. Nutrients 2023; 15:nu15112435. [PMID: 37299398 DOI: 10.3390/nu15112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Childhood obesity is a global public health problem. Worldwide, 41 million children under 5 years and 340 million children and adolescents between 5 and 19 years are overweight. In addition, the recent COVID-19 epidemic has further amplified this social phenomenon. Obesity is a condition associated with various comorbidities, such as nonalcoholic fatty liver disease (NAFLD). The pathophysiology of NAFLD in obesity is intricate and involves the interaction and dysregulation of several mechanisms, such as insulin resistance, cytokine signaling, and alteration of the gut microbiota. NAFLD is defined as the presence of hepatic steatosis in more than 5% of hepatocytes, evaluated by histological analysis. It can evolve from hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, hepatocellular carcinoma, and end-stage liver failure. Body weight reduction through lifestyle modification remains the first-line intervention for the management of pediatric NAFLD. Indeed, studies suggest that diets low in fat and sugar and conversely rich in dietary fibers promote the improvement of metabolic parameters. This review aims to evaluate the existing relationship between obesity and NAFLD in the pediatric population and to assess the dietary patterns and nutritional supplementations that can be recommended to prevent and manage obesity and its comorbidities.
Collapse
Affiliation(s)
- Chiara Spiezia
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Claudia Di Rosa
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Danilo Fintini
- Endocrinology and Diabetology Unit, Bambino Gesù Children's Hospital, IRCCS L.go S.Onofrio, 4-00165 Roma, Italy
| | - Pietro Ferrara
- Operative Research Unit of Pediatrics, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| | - Laura De Gara
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
| | - Yeganeh Manon Khazrai
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21-00128 Roma, Italy
- Operative Research Unit of Nutrition and Prevention, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200-00128 Roma, Italy
| |
Collapse
|
6
|
Daniel N, Le Barz M, Mitchell PL, Varin TV, Julien IB, Farabos D, Pilon G, Gauthier J, Garofalo C, Kang JX, Trottier J, Barbier O, Roy D, Chassaing B, Levy E, Raymond F, Lamaziere A, Flamand N, Silvestri C, Jobin C, Di Marzo V, Marette A. Comparing Transgenic Production to Supplementation of ω-3 PUFA Reveals Distinct But Overlapping Mechanisms Underlying Protection Against Metabolic and Hepatic Disorders. FUNCTION 2022; 4:zqac069. [PMID: 36778746 PMCID: PMC9909367 DOI: 10.1093/function/zqac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.
Collapse
Affiliation(s)
| | | | - Patricia L Mitchell
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Thibault V Varin
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Isabelle Bourdeau Julien
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Dominique Farabos
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Geneviève Pilon
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Josée Gauthier
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Carole Garofalo
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Quebec Research Centre, and Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Denis Roy
- Faculty of Agricultural and Food Sciences, School of Nutrition, Laval University, Quebec, QC G1V 0A6, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada
| | - Benoit Chassaing
- INSERM U1016, Mucosal Microbiota in Chronic Inflammatory Diseases’ Team, CNRS UMR 8104, University of Paris, Paris, 75014, France
| | - Emile Levy
- Department of Nutrition, University of Montreal, Montreal QC H3T 1A8, Canada and Research Centre, Sainte-Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Frédéric Raymond
- Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Antonin Lamaziere
- Saint Antoine Research Center, Sorbonne University INSERM UMR 938; Assistance Publique - Hôpitaux de Paris, Clinical Metabolomics department, Hôpital Saint Antoine, Paris, 75571, France
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Cristoforo Silvestri
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada
| | - Christian Jobin
- Department of Medicine, Department of Infectious Diseases and Immunology, and Department of Anatomy and Cell Physiology, University of Florida, Gainesville FL, 32608, USA
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Laval University, Quebec, QC G1V 4G5, Canada,Institute of Nutrition and Functional Foods (INAF), Centre NUTRISS, Quebec, QC G1V 0A6, Canada,Faculty of Medicine, Department of Medicine, Laval University, QC G1V 0A6, Canada,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Laval University, Quebec, QC G1V 0A6, Canada,Joint International Research Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition between Laval University and Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Campania, 80078, Italy
| | | |
Collapse
|
7
|
Videla LA, Hernandez-Rodas MC, Metherel AH, Valenzuela R. Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102441. [PMID: 35537354 DOI: 10.1016/j.plefa.2022.102441] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Polyunsaturated fatty acids (PUFA) play essential roles in cell membrane structure and physiological processes including signal transduction, cellular metabolism and tissue homeostasis to combat diseases. PUFA are either consumed from food or synthesized by enzymatic desaturation, elongation and peroxisomal β-oxidation. The nutritionally essential precursors α-linolenic acid (C18:3n-3; ALA) and linoleic acid (C18:2n-6; LA) are subjected to desaturation by Δ6D/Δ5D desaturases and elongation by elongases 2/5, enzymes that are induced by insulin and repressed by PUFA. Maintaining an optimally low n-6/n-3 PUFA ratio is linked to prevention of the development of several diseases, including nonalcoholic fatty liver disease (NAFLD) that is characterized by depletion of PUFA promoting hepatic steatosis and inflammation. In this context, supplementation with n-3 PUFA revealed significant lowering of hepatic steatosis in obese patients, whereas prevention of fatty liver by high-fat diet in mice is observed in n-3 PUFA and hydroxytyrosol co-administration. The aim of this work is to review the role of nutritional status and nutrient availability on markers of PUFA biosynthesis. In addition, the impact of oxidative stress developed as a result of NAFLD, a redox imbalance that may alter the expression and activity of the enzymes involved, and diminished n-3 PUFA levels by free-radical dependent peroxidation processes will be discussed.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Šmíd V, Dvořák K, Šedivý P, Kosek V, Leníček M, Dezortová M, Hajšlová J, Hájek M, Vítek L, Bechyňská K, Brůha R. Effect of Omega-3 Polyunsaturated Fatty Acids on Lipid Metabolism in Patients With Metabolic Syndrome and NAFLD. Hepatol Commun 2022; 6:1336-1349. [PMID: 35147302 PMCID: PMC9134818 DOI: 10.1002/hep4.1906] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. n-3 polyunsaturated fatty acids (n-3-PUFAs) have been reported to ameliorate the progression of NAFLD in experimental studies; however, clinical trials have yielded contradictory results. The aim of our study was to assess the effects of n-3-PUFA administration on lipid metabolism and the progression of NAFLD in patients with metabolic syndrome. Sixty patients with metabolic syndrome and NAFLD were randomized in a double-blind placebo-controlled trial (3.6 g/day n-3-PUFA vs. placebo). During the 1-year follow-up, the patients underwent periodic clinical and laboratory examinations, liver stiffness measurements, magnetic resonance spectroscopy of the liver, and plasma lipidomic analyses. After 12 months of n-3-PUFA administration, a significant decrease in serum GGT activity was recorded compared with the placebo group (2.03 ± 2.8 vs. 1.43 ± 1.6; P < 0.05). Although no significant changes in anthropometric parameters were recorded, a significant correlation between the reduction of liver fat after 12 months of treatment-and weight reduction-was observed; furthermore, this effect was clearly potentiated by n-3-PUFA treatment (P < 0.005). In addition, n-3-PUFA treatment resulted in substantial changes in the plasma lipidome, with n-3-PUFA-enriched triacylglycerols and phospholipids being the most expressed lipid signatures. Conclusion: Twelve months of n-3-PUFA treatment of patients with NAFLD patients was associated with a significant decrease in GGT activity, the liver fat reduction in those who reduced their weight, and beneficial changes in the plasma lipid profile.
Collapse
Affiliation(s)
- Václav Šmíd
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Karel Dvořák
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Petr Šedivý
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Vít Kosek
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Monika Dezortová
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jana Hajšlová
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Milan Hájek
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Libor Vítek
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Kamila Bechyňská
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Radan Brůha
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| |
Collapse
|
9
|
Fish Oil Enriched n-3 Polyunsaturated Fatty Acids Improve Ketogenic Low-Carbohydrate/High-Fat Diet-Caused Dyslipidemia, Excessive Fat Accumulation, and Weight Control in Rats. Nutrients 2022; 14:nu14091796. [PMID: 35565762 PMCID: PMC9101890 DOI: 10.3390/nu14091796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Low-carbohydrate and high-fat diets have been used for body weight (BW) control, but their adverse effects on lipid profiles have raised concern. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids, has profound effects on lipid metabolism. We hypothesized that FO supplementation might improve the lipid metabolic disturbance elicited by low-carbohydrate and high-fat diets. Male SD rats were randomized into normal control diet (NC), high-fat diet (HF), and low-carbohydrate/high-fat diet (LC) groups in experiment 1, and NC, LC, LC + 5% FO (5CF), and LC + 10% FO diet (10CF) groups in experiment 2. The experimental duration was 11 weeks. In the LC group, a ketotic state was induced, and food intake was decreased; however, it did not result in BW loss compared to either the HF or NC groups. In the 5CF group, rats lost significant BW. Dyslipidemia, perirenal and epididymal fat accumulation, hepatic steatosis, and increases in triglyceride and plasma leptin levels were observed in the LC group but were attenuated by FO supplementation. These findings suggest that a ketogenic low-carbohydrate/high-fat diet with no favorable effect on body weight causes visceral and liver lipid accumulation. FO supplementation not only aids in body weight control but also improves lipid metabolism in low-carbohydrate/high-fat diet-fed rats.
Collapse
|
10
|
Vadarlis A, Chantavaridou S, Kalopitas G, Bakaloudi DR, Karanika E, Tsekitsidi E, Chourdakis M. Τhe anthropometric and biochemical profile of pediatric non-alcoholic fatty liver disease: A systematic review and a meta-analysis. Clin Nutr 2021; 41:105-121. [PMID: 34872045 DOI: 10.1016/j.clnu.2021.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in children and one of the leading indications for liver transplantation in adults. However, current screening methods are inadequate and are accompanied by several disadvantages. This meta-analysis aims to identify the anthropometrical and biochemical characteristics most commonly appearing in pediatric NAFLD that could contribute to the diagnosis of the disease in the every-day clinical setting. METHODS A systematic search was conducted in major electronic databases (MEDLINE, Scopus and Embase) up to 15th of August 2021. Primary outcome was the comparison of the anthropometric characteristics, whereas secondary outcomes were the comparisons of biochemical profile, lipid profile, and metabolic parameters in children with NAFLD compared with age-matched healthy controls. Quality assessment was performed with Newcastle-Ottawa Scale (NOS) and results were expressed as mean differences with 95% confidence intervals. RESULTS Sixty-four studies were included. Two different comparisons were designed regarding the body mass status. Statistically significant differences were demonstrated by comparing children with NAFLD vs lean/normal weighted controls in body weight (23.0 kg, 95% CI: 14.0-31.8, P < 0.00001), height (3.07 cm, 95% CI: 0.21-5.94, P = 0.04), ΒΜΙ (10 kg/m2, 95% CI: 8.36-11.7, P < 0.00001) and waist circumference 25.8 cm (95% CI: 20.6-30.9, P < 0.00001) and by comparing children with NAFLD vs overweight/obese controls in weight (6.81 kg, 95% CI: 3.81-9.81), height (3.18 cm, 95% CI: 1.24 to 5.13, P = 0.001), BMI (2.19 kg/m2, 95% CI: 1.76-2.62, P < 0.00001) and WC (7.35 cm, 95% CI: 6.20-8.49, P < 0.00001). CONCLUSIONS Anthropometrical and biochemical characteristics of children and adolescents with NAFLD are statistically significantly different compared to age-matched controls; these characteristics could be used to identify individuals at risk of developing NAFLD and related comorbidities.
Collapse
Affiliation(s)
- Andreas Vadarlis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece; Department of Gastroenterology and Hepatology, General Hospital of Thessaloniki "G. Papanikolaou", Greece
| | - Sofia Chantavaridou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece; 4(th) Department of Pediatrics, General Hospital of Thessaloniki, "Papageorgiou", Greece
| | - Georgios Kalopitas
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece; Division of Gastroenterology and Hepatology, 1(st) Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Dimitra Rafailia Bakaloudi
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Evangelia Karanika
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Eirini Tsekitsidi
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
11
|
Serum concentration of fatty acids in children with obesity and nonalcoholic fatty liver disease. Nutrition 2021; 94:111541. [PMID: 34974284 DOI: 10.1016/j.nut.2021.111541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/24/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES It has been suggested that circulating fatty acids (FAs) take part in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) in children with obesity. The aims of this study were to evaluate the serum FA concentration in this pediatric population. METHODS The prospective study included 80 children with obesity and suspected liver disease. Patients with viral hepatitis, autoimmune, toxic, and selected metabolic liver diseases were excluded. Criteria for NAFLD diagnosis included liver steatosis in ultrasound as well as elevated alanine transaminase (ALT) serum activity. The total intrahepatic lipid content (TILC) was assessed by magnetic resonance proton spectroscopy (1H-MRS). Fasting serum FA concentrations were measured in all children using gas-liquid chromatography. RESULTS NAFLD was diagnosed in 31 children. Total FA concentration was significantly higher (P < 0.01) in all obese children as well as in obese children with NAFLD compared with controls. In children with NAFLD, a significant, positive correlation was found between total FA concentration and cholesterol (R = 0.47, P < 0.01), triacylglycerols (R = 0.78, P < 0.001), and insulin (R = 0.45, P < 0.011). In a group of children with obesity, TILC correlated positively with saturated FA concentration (R = 0.23, P < 0.05). CONCLUSION Data from the present study do support the hypothesis that FAs are potentially involved in the pathogenesis of NAFLD in children with obesity.
Collapse
|
12
|
High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact 2020; 330:109199. [DOI: 10.1016/j.cbi.2020.109199] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
13
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
14
|
García-Jaramillo M, Lytle KA, Spooner MH, Jump DB. A Lipidomic Analysis of Docosahexaenoic Acid (22:6, ω3) Mediated Attenuation of Western Diet Induced Nonalcoholic Steatohepatitis in Male Ldlr -/- Mice. Metabolites 2019; 9:E252. [PMID: 31661783 PMCID: PMC6918288 DOI: 10.3390/metabo9110252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major public health problem worldwide. NAFLD ranges in severity from benign steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and primary hepatocellular cancer (HCC). Obesity and type 2 diabetes mellitus (T2DM) are strongly associated with NAFLD, and the western diet (WD) is a major contributor to the onset and progression of these chronic diseases. Our aim was to use a lipidomic approach to identify potential lipid mediators of diet-induced NASH. We previously used a preclinical mouse (low density lipoprotein receptor null mouse, Ldlr -/-) model to assess transcriptomic mechanisms linked to WD-induced NASH and docosahexaenoic acid (DHA, 22:6, ω3)-mediated remission of NASH. This report used livers from the previous study to carry out ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography coupled with dynamic multi-reaction monitoring (HPLC-dMRM) to assess the impact of the WD and DHA on hepatic membrane lipid and oxylipin composition, respectively. Feeding mice the WD increased hepatic saturated and monounsaturated fatty acids and arachidonic acid (ARA, 20:4, ω6) in membrane lipids and suppressed ω3 polyunsaturated fatty acids (PUFA) in membrane lipids and ω3 PUFA-derived anti-inflammatory oxylipins. Supplementing the WD with DHA lowered hepatic ARA in membrane lipids and ARA-derived oxylipins and significantly increased hepatic DHA and its metabolites in membrane lipids, as well as C20-22 ω3 PUFA-derived oxylipins. NASH markers of inflammation and fibrosis were inversely associated with hepatic C20-22 ω3 PUFA-derived Cyp2C- and Cyp2J-generated anti-inflammatory oxylipins (false discovery rate adjusted p-value; q ≤ 0.026). Our findings suggest that dietary DHA promoted partial remission of WD-induced NASH, at least in part, by lowering hepatic pro-inflammatory oxylipins derived from ARA and increasing hepatic anti-inflammatory oxylipins derived from C20-22 ω3 PUFA.
Collapse
Affiliation(s)
- Manuel García-Jaramillo
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Kelli A Lytle
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Melinda H Spooner
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
- The Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
15
|
Musa-Veloso K, Venditti C, Lee HY, Darch M, Floyd S, West S, Simon R. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr Rev 2019; 76:581-602. [PMID: 29917092 PMCID: PMC6367993 DOI: 10.1093/nutrit/nuy022] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Context Treatment options for nonalcoholic fatty liver disease (NAFLD) are needed. Objective The aim of this review was to systematically assess the effects of omega-3 long-chain
polyunsaturated fatty acids (n-3 LC-PUFAs), particularly eicosapentaenoic acid and
docosahexaenoic acid, on liver-related and metabolic outcomes in adult and pediatric
patients with NAFLD. Data Sources The online information service ProQuest Dialog was used to search 8 literature
databases. Study Selection Controlled intervention studies in which the independent effects of n-3 LC-PUFAs could
be isolated were eligible for inclusion. Data Extraction The 18 unique studies that met the criteria for inclusion were divided into 2 sets, and
data transcriptions and study quality assessments were conducted in duplicate. Each
effect size was expressed as the weighted mean difference and 95%CI, using a
random-effects model and the inverse of the variance as a weighting factor. Results Based on the meta-analyses, supplementation with n-3 LC-PUFAs resulted in statistically
significant improvements in 6 of 13 metabolic risk factors, in levels of 2 of 3 liver
enzymes, in liver fat content (assessed via magnetic resonance imaging/spectroscopy),
and in steatosis score (assessed via ultrasonography). Histological measures of disease
[which were assessed only in patients with nonalcoholic steatohepatitis (NASH)] were
unaffected by n-3 LC-PUFA supplementation. Conclusions Omega-3 LC-PUFAs are useful in the dietary management of patients with NAFLD.
Additional trials are needed to better understand the effects of n-3 LC-PUFAs on
histological outcomes in patients with NASH. Systematic Review Registration PROSPERO CRD42017055951.
Collapse
Affiliation(s)
- Kathy Musa-Veloso
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Carolina Venditti
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Han Youl Lee
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Maryse Darch
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Seth Floyd
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Spencer West
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Ryan Simon
- Intertek Scientific & Regulatory Consultancy, Health, Environmental & Regulatory Services (HERS), Mississauga, Ontario, Canada
| |
Collapse
|
16
|
Mann JP, Tang GY, Nobili V, Armstrong MJ. Evaluations of Lifestyle, Dietary, and Pharmacologic Treatments for Pediatric Nonalcoholic Fatty Liver Disease: A Systematic Review. Clin Gastroenterol Hepatol 2019; 17:1457-1476.e7. [PMID: 29857146 DOI: 10.1016/j.cgh.2018.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/06/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS There are no approved treatments for pediatric nonalcoholic fatty liver disease (NAFLD) and there is a lack of consensus on the best outcome measure for randomized controlled trials. We performed a systematic review of treatments tested for pediatric NAFLD, the degree of heterogeneity in trial design, and endpoints analyzed in these studies. METHODS We searched publication databases and clinical trial registries through January 7, 2018 for randomized controlled trials (published and underway) of children (<18 years) with NAFLD. We assessed improvements in histologic features, radiologic and biochemical markers of reduced fibrosis, metabolic syndrome parameters, and adverse events. The quality of the trials was assessed using a modified version of the Cochrane risk of bias tool. RESULTS Our final analysis included 21 randomized controlled trials, comprising 1307 participants (mean age, 12.6 years; 63% male; mean duration of intervention, 8 months). Most studies evaluated weight loss with lifestyle intervention (n=8), oral polyunsaturated fatty acid treatment (PUFAs, n=6), or oral antioxidant treatment (n=7). Biomarkers of NAFLD decreased with weight loss, but most studies did not include histologic data. Trials of antioxidants were heterogeneous; some reported reduced histologic features of steatohepatitis with no effect on triglycerides or insulin resistance. PUFAs and probiotics reduced radiologic markers of steatosis, insulin resistance, and levels of triglycerides. Only 38% of the trials had biopsy-proven NAFLD as an inclusion criterion. There was heterogeneity in trial primary endpoints; 10 studies (48%) used levels of aminotransferases or ultrasonography findings as a primary endpoint and only 3 trials (14%) used histologic features as the primary endpoint. We identified 13 randomized controlled trials that are underway in children with NAFLD. None of the protocols include collection of liver biopsies; 9 trials (69%) will use magnetic resonance imaging quantification of steatosis as a primary outcome. CONCLUSIONS In a systematic review of published and active randomized controlled trials of children with NAFLD, we found a large amount of heterogeneity in study endpoints and inclusion criteria. Few trials included histologic analyses. Antioxidants appear to reduce some features of steatohepatitis. Effects of treatment with lifestyle modification, PUFAs, or probiotics have not been validated with histologic analysis. Trials that are underway quantify steatosis magnetic resonance imaging-outcomes are anticipated.
Collapse
Affiliation(s)
- Jake Peter Mann
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom.
| | - George Yizhou Tang
- Clinical School of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Valerio Nobili
- Department of Pediatrics, University "La Sapienza," Rome, Italy; Hepatology, Gastroenterology, and Nutrition, Bambino Gesù Hospital, Rome, Italy
| | | |
Collapse
|
17
|
Braun HA, Faasse SA, Vos MB. Advances in Pediatric Fatty Liver Disease: Pathogenesis, Diagnosis, and Treatment. Gastroenterol Clin North Am 2018; 47:949-968. [PMID: 30337043 DOI: 10.1016/j.gtc.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pediatric nonalcoholic fatty liver disease is an increasingly prevalent disease, but its pathophysiology is not fully elucidated, diagnosis is difficult and invasive, and therapeutic options are limited. This article addresses the recent advancements made in understanding the pathophysiology of nonalcoholic fatty liver disease, the development of less invasive diagnostic modalities, and emerging therapeutic options, including ongoing clinical trials in children.
Collapse
Affiliation(s)
- Hayley A Braun
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive North East, Atlanta, GA 30322, USA.
| | - Sarah A Faasse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive North East, Atlanta, GA 30322, USA; Division of Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta, 1405 Clifton Road, Atlanta, GA 30329, USA
| | - Miriam B Vos
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive North East, Atlanta, GA 30322, USA; Division of Gastroenterology, Hepatology, and Nutrition, Children's Healthcare of Atlanta, 1405 Clifton Road, Atlanta, GA 30329, USA
| |
Collapse
|
18
|
Spahis S, Alvarez F, Ahmed N, Dubois J, Jalbout R, Paganelli M, Grzywacz K, Delvin E, Peretti N, Levy E. Non-alcoholic fatty liver disease severity and metabolic complications in obese children: impact of omega-3 fatty acids. J Nutr Biochem 2018; 58:28-36. [PMID: 29864682 DOI: 10.1016/j.jnutbio.2018.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
|
19
|
Lu LP, Wan YP, Xun PC, Zhou KJ, Chen C, Cheng SY, Zhang MZ, Wu CH, Lin WW, Jiang Y, Feng HX, Wang JL, He K, Cai W. Serum bile acid level and fatty acid composition in Chinese children with non-alcoholic fatty liver disease. J Dig Dis 2017; 18:461-471. [PMID: 28585279 DOI: 10.1111/1751-2980.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine serum bile acid (BA) and fatty acid (FA) profiles in Chinese children with non-alcoholic fatty liver disease (NAFLD). METHODS A total 76 children aged 4-17 years were categorized into three groups according to the presence and absence of as well as the severity of NAFLD, that is, non-NAFLD (control), mild and moderate to severe NAFLD groups, respectively, based on their liver ultrasonography findings. Serum BA and FA profiles were quantified separately by mass spectrometry and gas chromatography. General linear models were performed to assess the differences among the groups. RESULTS After adjusted for potential confounders, children with NAFLD had higher levels of chenodeoxycholic acid (CDCA), unconjugated primary BAs (CDCA + cholic acid) but lower levels of deoxycholic acid (DCA), taurodeoxycholic acid (TDCA), glycodeoxycholic acid (GDCA), total DCA (DCA + TDCA + GDCA), glycolithocholic acid (GLCA) and total lithocholic acid (GLCA + taurolithocholic acid) than children without NAFLD. As for FAs, children with mild and moderate to severe NAFLD had higher levels of n-7 monounsaturated FA. CONCLUSIONS Circulating BA and FA profiles may change in children with NAFLD. Further studies are needed to determine their associations and to understand the underlying mechanism of action.
Collapse
Affiliation(s)
- Li Ping Lu
- Department of Clinical Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Clinical Nutrition, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Ping Wan
- Department of Clinical Nutrition, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Cheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Ke Jun Zhou
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Cheng Chen
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Si Yang Cheng
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Min Zhong Zhang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Chun Hua Wu
- Department of Ultrasonic Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wei Lin
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jiang
- Department of Clinical Nutrition, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Xia Feng
- Department of Clinical Nutrition, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Lu Wang
- Department of Clinical Nutrition, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ka He
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, USA
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
20
|
Hua MC, Su HM, Yao TC, Kuo ML, Lai MW, Tsai MH, Huang JL. Alternation of plasma fatty acids composition and desaturase activities in children with liver steatosis. PLoS One 2017; 12:e0182277. [PMID: 28759573 PMCID: PMC5536264 DOI: 10.1371/journal.pone.0182277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
Objective The aim of this study was to investigate changes in plasma fatty acids proportions and estimated desaturase activities for variable grading of liver steatosis in children. Methods In total, 111 schoolchildren (aged 8–18 years) were included in the analysis from March 2015 to August 2016. Anthropometric evaluation, liver ultrasound examination and scoring for nonalcoholic fatty liver disease (NAFLD score = 0–6), and biochemical and plasma fatty acids analysis were performed. We compared the composition ratio of fatty acids between children with high-grade liver steatosis (NAFLD score = 4–6), low-grade liver steatosis (NAFLD score = 1–3), and healthy controls (NAFLD score = 0). In addition, correlation coefficients (r) between NAFLD score, metabolic variables, and estimated activity of desaturase indices (stearoyl-coenzyme A desaturase-1 (SCD1), delta-5 and delta-6 desaturase) were calculated. Results Compared with healthy controls, children with liver steatosis showed a higher proportion of monounsaturated fatty acids (21.16 ± 2.81% vs. 19.68 ± 2.71%, p = 0.024). In addition, children with high- grade liver steatosis exhibited higher proportions of palmitic acid (C16:0), palmitoleic acid (C16:1n-7), dihomo-γ-linolenic acid (C20:3n-6), adrenic acid (C22:4n-6), and docosapentaenoic acid (C22:5n-6); and lower proportions of eicosapentaenoic acid (C20:5n-3) (P< 0.05). In all subjects, the NAFLD score was positively correlated with body mass index (BMI) (kg/m2) (r = 0.696), homeostasis model of assessment ratio–index (HOMA-IR) (r = 0.510), SCD1(16) (r = 0.273), and the delta-6 index (r = 0.494); and inversely associated with the delta-5 index (r = -0.443). Conclusion Our current data suggested that children with liver steatosis was highly associated with obesity, and insulin resistance. In addition, increased endogenous lipogenesis through altered desaturase activity may contribute to the progression of liver steatosis in children.
Collapse
Affiliation(s)
- Man-Chin Hua
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- * E-mail: (MCH); (JLH)
| | - Hui-Min Su
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tsung-Chieh Yao
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Wei Lai
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
- Liver research center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Ming-Han Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Long Huang
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
- * E-mail: (MCH); (JLH)
| |
Collapse
|
21
|
A Review of Recruitment, Adherence and Drop-Out Rates in Omega-3 Polyunsaturated Fatty Acid Supplementation Trials in Children and Adolescents. Nutrients 2017; 9:nu9050474. [PMID: 28489030 PMCID: PMC5452204 DOI: 10.3390/nu9050474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION The influence of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation on health outcomes has been studied extensively with randomized controlled trials (RCT). In many research fields, difficulties with recruitment, adherence and high drop-out rates have been reported. However, what is unknown is how common these problems are in n-3 LCPUFA supplementation studies in children and adolescents. Therefore, this paper will review n-3 LCPUFA supplementation studies in children and adolescents with regard to recruitment, adherence and drop-out rates. METHODS The Web of Science, PubMed and Ovid databases were searched for papers reporting on RCT supplementing children and adolescents (2-18 years) with a form of n-3 LCPUFA (or placebo) for at least four weeks. As a proxy for abiding to CONSORT guidelines, we noted whether manuscripts provided a flow-chart and provided dates defining the period of recruitment and follow-up. RESULTS Ninety manuscripts (reporting on 75 studies) met the inclusion criteria. The majority of the studies did not abide by the CONSORT guidelines: 55% did not provide a flow-chart, while 70% did not provide dates. The majority of studies provided minimal details about the recruitment process. Only 25 of the 75 studies reported an adherence rate which was on average 85%. Sixty-five of the 75 studies included drop-out rates which were on average 17%. CONCLUSION Less than half of the included studies abided by the CONSORT guidelines (45% included a flow chart, while 30% reported dates). Problems with recruitment and drop-out seem to be common in n-3 LCPUFA supplementation trials in children and adolescents. However, reporting about recruitment, adherence and dropout rates was very heterogeneous and minimal in the included studies. Some techniques to improve recruitment, adherence and dropout rates were identified from the literature, however these techniques may need to be tailored to n-3 LCPUFA supplementation studies in children and adolescents.
Collapse
|
22
|
El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: A review. J Adv Res 2017; 8:487-493. [PMID: 28748115 PMCID: PMC5512149 DOI: 10.1016/j.jare.2017.03.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
Uric acid is synthesized mainly in the liver, intestines and the vascular endothelium as the end product of an exogenous pool of purines, and endogenously from damaged, dying and dead cells, whereby nucleic acids, adenine and guanine, are degraded into uric acid. Mentioning uric acid generates dread because it is the established etiological agent of the severe, acute and chronic inflammatory arthritis, gout and is implicated in the initiation and progress of the metabolic syndrome. Yet, uric acid is the predominant anti-oxidant molecule in plasma and is necessary and sufficient for induction of type 2 immune responses. These properties may explain its protective potential in neurological and infectious diseases, mainly schistosomiasis. The pivotal protective potential of uric acid against blood-borne pathogens and neurological and autoimmune diseases is yet to be established.
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.,Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo 11835, Cairo, Egypt
| |
Collapse
|
23
|
Mann JP, Feldstein AE, Nobili V. Update on lipid species and paediatric nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2017; 20:110-116. [PMID: 27906700 DOI: 10.1097/mco.0000000000000346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW To describe the recent advances in our understanding of fatty acids and lipids in paediatric nonalcoholic fatty liver disease (NAFLD) and their future implications. RECENT FINDINGS Data have been accumulated to suggest that ceramides are the main drivers of hepatic insulin resistance in NAFLD, and inhibition of ceramide synthesis improves histology in mice.Saturated fatty acids formed by de novo lipogenesis generate increased lipotoxicity compared with dietary-derived saturated fatty acids.Hepatic lipogenesis and associated insulin resistance have been found to be influenced by several novel proteins, including E2F1, cyclic AMP response element binding protein transcriptional coactivator 2, Raptor, and eukaryotic initiation factor 6. There are encouraging data from animal models that modulation of these could be therapeutic targets.Human and animal metabolomics and lipidomics data have been used to generate a lipid signature for NAFLD and nonalcoholic steatohepatitis. Serum lipidomics appears to correlate with hepatic lipidomics.Therapeutic trials of polyunsaturated fatty acids in children have had mixed results, with some reductions in noninvasive biomarkers. SUMMARY Multiple new pathways for drug targets have been identified, and use of lipidomics is likely to become a noninvasive method for assessing disease. However, much of the data for paediatric NAFLD are extrapolated from adult or animal studies.
Collapse
Affiliation(s)
- Jake P Mann
- aDepartment of Paediatrics, University of Cambridge, Cambridge, UK bDepartment of Pediatric Gastroenterology, University of California San Diego (UCSD) cRady Children's Hospital, San Diego, California, USA dHepatometabolic Unit eLiver Research Unit, Bambino Gesu Hospital, IRCCS, Rome, Italy
| | | | | |
Collapse
|
24
|
Lacasse MC, Tang A, Dubois J, Alvarez F, Spahis S, Chagnon M, Deschênes S, Levy E. Monitoring the efficacy of omega-3 supplementation on liver steatosis and carotid intima-media thickness: a pilot study. Obes Sci Pract 2017; 3:201-211. [PMID: 28702213 PMCID: PMC5478813 DOI: 10.1002/osp4.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose To determine the effects of omega‐3 supplementation on liver fat and carotid intima–media thickness (IMT) and to assess accuracy of ultrasound (US) for grading liver steatosis. Materials and Methods In this one‐way crossover pilot study, we assigned children with obesity and liver steatosis to receive 1.2 g daily of omega‐3 supplementation vs. inactive sunflower oil for 24 or 12 weeks. Liver fat content was assessed by magnetic resonance spectroscopy (MRS), magnetic resonance imaging (MRI) and US, and common carotid IMT by US. Statistical analysis included Chi‐square, Student's t‐tests, ANOVA tests and receiver operating characteristic (ROC) curves. Results Omega‐3 supplementation was associated with a trend towards decrease in MRS‐determined liver fat fraction (0.7% and 2.1% decrease in the 24‐week and 12‐week omega‐3 group, respectively) compared with the sunflower oil group (1.0% increase). These changes were not significant, whether assessed by MRS (P = 0.508), MRI (P = 0.508) or US (P = 0.678). Using US, the area under the ROC curves were 0.964, 0.817 and 0.783 for distinguishing inferred steatosis grades 0 vs. 1–2–3, 0–1 vs. 2–3 and 0–1–2 vs. 3, respectively, indicating good accuracy of US‐based fat grading. Omega‐3 supplementation was associated with a decrease in US‐determined IMT (0.05‐mm decrease in the 24‐week omega‐3 group. A 0.015‐mm increase was found in the 12‐week omega‐3 group, and a 0.007‐mm decrease in the sunflower oil group (P = 0.003). Conclusion Omega‐3 supplementation had no significant effect on liver fat fraction, but led to carotid IMT decrease in children with obesity and liver steatosis.
Collapse
Affiliation(s)
- M-C Lacasse
- Department of Radiology Centre Hospitalier de l'Université de Montréal (CHUM) Montréa Québec Canada
| | - A Tang
- Department of Radiology Centre Hospitalier de l'Université de Montréal (CHUM) Montréa Québec Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) Montréal Québec Canada
| | - J Dubois
- Department of Radiology Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| | - F Alvarez
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Gastroenterology, Hepatology and NutritionCentre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| | - S Spahis
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Gastroenterology, Hepatology and NutritionCentre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Nutrition Université de Montréal Québec Canada
| | - M Chagnon
- Department of Mathematics and Statistics, Pavillon André-Aisenstadt Université de Montréal Montréal Québec Canada
| | - S Deschênes
- Department of Radiology Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| | - E Levy
- Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine Montréal Québec Canada.,Department of Gastroenterology, Hepatology and NutritionCentre Hospitalier Universitaire Ste-Justine Montréal Québec Canada
| |
Collapse
|
25
|
Guo XF, Yang B, Tang J, Li D. Fatty acid and non-alcoholic fatty liver disease: Meta-analyses of case-control and randomized controlled trials. Clin Nutr 2017; 37:113-122. [PMID: 28161092 DOI: 10.1016/j.clnu.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/09/2016] [Accepted: 01/09/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND AIMS Blood and/or liver fatty acid contents of healthy subjects and non-alcoholic fatty liver disease (NAFLD) patients have shown inconsistent associations. In addition, the results of randomized controlled trials (RCTs) in relation to the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver fat, triglyceride (TAG) and fasting glucose levels are inconsistent. The present study aimed to investigate the differences of fatty acid content in the blood and/or liver tissue between healthy subjects and NAFLD patients, and to quantify the benefits of n-3 PUFA therapy in NAFLD patients. METHODS A systematic literature search was performed up to November 2016 using PubMed and Scopus databases. The differences of fatty acid content between cases and controls were calculated as weighted mean differences (WMD) by using a random-effects model. The intervention effects of RCTs were calculated as WMD for net changes in ALT, AST, liver fat, TAG and fasting glucose levels, respectively. Meta-regression with restricted maximum likelihood estimation was used to evaluate a potential linear relationship between confounding factors and effect sizes. Generalized least square was performed for dose-response analysis. RESULTS Ten eligible case-control studies and 11 RCTs were included. The pooled estimates of case-control studies showed that blood and/or liver docosahexaenoic acid (DHA) content was significantly higher in the controls compared with cases. The pooled estimates of RCTs showed that n-3 PUFA supplementation significantly reduced the ALT (-7.53 U/L; 95% CI: -9.98, -5.08 U/L), ASL (-7.10 U/L, 95% CI: -11.67, -2.52 U/L) and TAG (-36.16 mg/dL, 95% CI: -49.15, -23.18 mg/dL) concentrations, and marginally reduced the liver fat content (-5.11%, 95% CI: -10.24, 0.02%, P = 0.051), but not fasting glucose. Dose-response analysis of RCTs showed that 1 g per day increment of eicosapentaenoic acid (EPA)+DHA was associated with a 3.14 U/L, 2.43 U/L, 2.74% and 9.97 mg/dL reduction in ALT (95% CI: -5.25, -1.02 U/L), AST (95% CI: -3.90, -0.90 U/L), liver fat (95% CI: -4.32, -1.16%) and TAG (95% CI: -14.47, -5.48 mg/dL) levels, respectively. CONCLUSIONS The present meta-analysis provides substantial evidence that n-3 PUFA supplementation, especially DHA, has a favorable effect in treatment of NAFLD.
Collapse
Affiliation(s)
- Xiao-Fei Guo
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jun Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China; Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Clemente MG, Mandato C, Poeta M, Vajro P. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions. World J Gastroenterol 2016; 22:8078-8093. [PMID: 27688650 PMCID: PMC5037077 DOI: 10.3748/wjg.v22.i36.8078] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) in children is becoming a major health concern. A “multiple-hit” pathogenetic model has been suggested to explain the progressive liver damage that occurs among children with NAFLD. In addition to the accumulation of fat in the liver, insulin resistance (IR) and oxidative stress due to genetic/epigenetic background, unfavorable lifestyles, gut microbiota and gut-liver axis dysfunction, and perturbations of trace element homeostasis have been shown to be critical for disease progression and the development of more severe inflammatory and fibrotic stages [non-alcoholic steatohepatitis (NASH)]. Simple clinical and laboratory parameters, such as age, history, anthropometrical data (BMI and waist circumference percentiles), blood pressure, surrogate clinical markers of IR (acanthosis nigricans), abdominal ultrasounds, and serum transaminases, lipids and glucose/insulin profiles, allow a clinician to identify children with obesity and obesity-related conditions, including NAFLD and cardiovascular and metabolic risks. A liver biopsy (the “imperfect” gold standard) is required for a definitive NAFLD/NASH diagnosis, particularly to exclude other treatable conditions or when advanced liver disease is expected on clinical and laboratory grounds and preferably prior to any controlled trial of pharmacological/surgical treatments. However, a biopsy clearly cannot represent a screening procedure. Advancements in diagnostic serum and imaging tools, especially for the non-invasive differentiation between NAFLD and NASH, have shown promising results, e.g., magnetic resonance elastography. Weight loss and physical activity should be the first option of intervention. Effective pharmacological treatments are still under development; however, drugs targeting IR, oxidative stress, proinflammatory pathways, dyslipidemia, gut microbiota and gut liver axis dysfunction are an option for patients who are unable to comply with the recommended lifestyle changes. When morbid obesity prevails, bariatric surgery should be considered.
Collapse
|
27
|
Wang C, Tao Q, Wang X, Wang X, Zhang X. Impact of high-fat diet on liver genes expression profiles in mice model of nonalcoholic fatty liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:52-62. [PMID: 27262986 DOI: 10.1016/j.etap.2016.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 05/11/2023]
Abstract
Evidences have shown that NAFLD influences expression of some drug metabolic enzyme genes. This study aims to investigate the role of HFD-induced NAFLD in regulating the transcription of genes, particularly the drug metabolizing genes variation. Transcriptome analysis demonstrated that HFD feeding caused the 150 genes expression to change, most genes associated with lipid metabolism, inflammatory, oxidative stress and oxidoreductase activity up-regulated, whereas most genes involved in nucleic acid metabolism repressed. The genes involved in drug metabolism had 16 down-regulated and 21 up-regulated in NAFLD. The over-4-fold change genes included the down-regulation of Cyp8b1, Cyp7a1, Sult3a1, Sult1e1, Cyp17a1, Cyp3a41a, Gstt3, Cyp51, Cyp2c54 and Cyp4f14, and the up-regulation of Asns, Past1, Cyp2c55, Gstm2, Cyp2e1 and Gstaα1. In conclusion, significant alterations in the expression of drug metabolizing enzymes may affect the clearance of therapeutic drugs, with the potential to result in adverse drug reactions or drug toxicity in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Faculty of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157012, PR China
| | - Qimeng Tao
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin 150001, PR China
| | - Xinghe Wang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin 150001, PR China
| | - Xiuying Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
28
|
Joyal JS, Sun Y, Gantner ML, Shao Z, Evans LP, Saba N, Fredrick T, Burnim S, Kim JS, Patel G, Juan AM, Hurst CG, Hatton CJ, Cui Z, Pierce KA, Bherer P, Aguilar E, Powner MB, Vevis K, Boisvert M, Fu Z, Levy E, Fruttiger M, Packard A, Rezende FA, Maranda B, Sapieha P, Chen J, Friedlander M, Clish CB, Smith LE. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 2016; 22:439-45. [PMID: 26974308 PMCID: PMC4823176 DOI: 10.1038/nm.4059] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.
Collapse
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Ca
- Department of Pharmacology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Ca
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Ca
| | - Ye Sun
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Ca
| | | | - Zhuo Shao
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Lucy P. Evans
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Nicholas Saba
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Thomas Fredrick
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Samuel Burnim
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Jin Sung Kim
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Ca
| | - Gauri Patel
- Department of Pharmacology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Ca
| | - Aimee M. Juan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Ca
| | - Christian G. Hurst
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Colman J. Hatton
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Zhenghao Cui
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Kerry A. Pierce
- Metabolite Profiling Platform, The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Patrick Bherer
- Department of Genetics, Université de Sherbrooke, Sherbrooke, Qc, Ca
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Kristis Vevis
- Institute of Ophthalmology, University College London, London, UK
| | - Michel Boisvert
- Department of Nutrition, CHU Sainte-Justine Research Center, Université de Montreal, Montreal, Qc, Ca
| | - Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Emile Levy
- Department of Nutrition, CHU Sainte-Justine Research Center, Université de Montreal, Montreal, Qc, Ca
| | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Alan Packard
- Radiology, Harvard Medical School, Boston Children's Hospital, MA. USA
| | - Flavio A. Rezende
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Qc, Ca
| | - Bruno Maranda
- Department of Genetics, Université de Sherbrooke, Sherbrooke, Qc, Ca
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Qc, Ca
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Clary B. Clish
- Metabolite Profiling Platform, The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Lois E.H. Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, MA, USA
| |
Collapse
|
29
|
Alcoholic Liver Disease: Update on the Role of Dietary Fat. Biomolecules 2016; 6:1. [PMID: 26751488 PMCID: PMC4808795 DOI: 10.3390/biom6010001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/23/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) spans a spectrum of liver pathology, including fatty liver, alcoholic steatohepatitis, and cirrhosis. Accumulating evidence suggests that dietary factors, including dietary fat, as well as alcohol, play critical roles in the pathogenesis of ALD. The protective effects of dietary saturated fat (SF) and deleterious effects of dietary unsaturated fat (USF) on alcohol-induced liver pathology are well recognized and documented in experimental animal models of ALD. Moreover, it has been demonstrated in an epidemiological study of alcoholic cirrhosis that dietary intake of SF was associated with a lower mortality rates, whereas dietary intake of USF was associated with a higher mortality. In addition, oxidized lipids (dietary and in vivo generated) may play a role in liver pathology. The understanding of how dietary fat contributes to the ALD pathogenesis will enhance our knowledge regarding the molecular mechanisms of ALD development and progression, and may result in the development of novel diet-based therapeutic strategies for ALD management. This review explores the relevant scientific literature and provides a current understanding of recent advances regarding the role of dietary lipids in ALD pathogenesis.
Collapse
|