1
|
Zhao H, Liu M, Ma Y, Du R, Wang B, Lan T, Zhang H, Xue M, Liang H. Folic acid intervention ameliorates hepatic steatosis after long-term alcohol exposure by alleviating endoplasmic reticulum stress. J Nutr Biochem 2025; 141:109896. [PMID: 40054675 DOI: 10.1016/j.jnutbio.2025.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/21/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
In this study, the protective effect of folic acid on alcoholic fatty liver (AFL) was investigated. Eighty C57BL/6 J mice were assigned randomly to the saline control group, folic acid control group, ethanol model group, and folic acid + ethanol model group. After 10 weeks of intervention, folic acid intervention markedly decreased the liver index, serum ALT, serum TG, and hepatic TG levels. The HE and transmission electron microscopy revealed that folic acid intervention alleviated histopathological changes of hepatic steatosis. Western blot revealed that folic acid downregulated the protein levels of GRP78, p-PERK, p-eIF2α, p-IRE1α, XBP1, ATF6, SREBP-1c, FAS, and ACC. In conclusion, our findings demonstrated that folic acid intervention may relieve ethanol-induced ERs by inhibiting PERK-eIF2α, IRE1α-XBP1, and ATF6 signaling pathways, suggesting that folic acid may be a feasible preventive strategy for AFL.
Collapse
Affiliation(s)
- Huichao Zhao
- Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Man Liu
- Department of Adult and geriatric Care, School of Nursing, Qingdao University, Qingdao, China
| | - Yiqing Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Bin Wang
- Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Ling Y, Hayat MA, Lv X, Niu D, Zeng Y, Qiu Y, Chen B, Hu J. Preliminary exploration of endoplasmic reticulum stress transmission in astrocytes and neurons, and its mediators. Mol Med Rep 2025; 31:167. [PMID: 40242951 PMCID: PMC12012417 DOI: 10.3892/mmr.2025.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Unfolded protein response (UPR) signaling in cells stimulates UPR signaling in adjacent cells, facilitating the progression of disease (such as diabetes)by upregulating UPR target genes; however, whether this dissemination occurs between nerve cells, and its molecular basis, is currently unclear. In the present study, the supernatant of endoplasmic reticulum (ER) stress‑induced rat astrocytes was prepared and used to treat rat adrenal pheochromocytoma cell to simulate the propagation of ER stress between nerve cells. Reverse transcription‑quantitative PCR and western blotting were performed to detect the expression levels of mRNAs and protein levels associated with ER stress in cells. The results revealed that ER stress may propagate between rat nerve cells, ultimately leading to apoptosis. Analysis also revealed that the mediators of ER stress transmission were non‑vesicular, oxidative molecules with molecular weights >100 kDa. In conclusion, ER stress propagation may have a role in neuronal death following ER stress in central nervous system diseases, presenting potential novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Yating Ling
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
- Department of Laboratory Medicine, Nanjing Red Cross Blood Center, Nanjing, Jiangsu 210003, P.R. China
| | - Muhammad Abid Hayat
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaorui Lv
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Dongdong Niu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yu Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yun Qiu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bo Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiabo Hu
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
3
|
Xia M, Li J, Martinez Aguilar LM, Wang J, Trillos Almanza MC, Li Y, Buist-Homan M, Moshage H. Arctigenin Attenuates Hepatic Stellate Cell Activation via Endoplasmic Reticulum-Associated Degradation (ERAD)-Mediated Restoration of Lipid Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40415275 DOI: 10.1021/acs.jafc.5c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Arctigenin, a natural lignan from Arctium lappa L., exhibits potent antifibrotic activity, yet its molecular mechanisms remain unclear. Endoplasmic reticulum (ER) stress is known to promote hepatic stellate cell (HSC) activation and liver fibrosis. This study investigates the therapeutic potential of arctigenin in HSC activation through ER stress modulation. Primary rat HSCs were activated (3-7 days) and treated with tunicamycin (ER stress inducer) or 4-PBA (ER stress inhibitor). Arctigenin attenuated ER stress markers (e.g., GRP78) and suppressed the expression of fibrotic marker α-SMA in ER stress-challenged activating (day 3) and activated (day 7) HSCs. Arctigenin restored lipid homeostasis by modulation of both lipogenesis (via Dgat2 and Ppar-γ upregulation) and lipolysis (suppression via ATGL inhibition). ER stress activated ER-associated degradation (ERAD), triggering the formation of small lipid droplets (LD). Arctigenin normalized the ERAD activity, thereby rescuing LD integrity and suppressing HSC activation. Our findings demonstrate that arctigenin mitigates HSC activation by suppressing ER stress and restoring lipid homeostasis via modulating ERAD-mediated lipid dysregulation. As a dietary and medicinal compound, arctigenin emerges as a promising therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Jia Li
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Lizbeth Magnolia Martinez Aguilar
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Maria Camila Trillos Almanza
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Yakun Li
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| |
Collapse
|
4
|
Cheng Y, Li Y, Zhang Y, Liu H, Yang B, Zhu J, Kuang H. Gestational exposure to micro- and nanoplastics leads to poor pregnancy outcomes by impairing placental trophoblast syncytialization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126520. [PMID: 40414412 DOI: 10.1016/j.envpol.2025.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/13/2025] [Accepted: 05/23/2025] [Indexed: 05/27/2025]
Abstract
The omnipresent micro- and nanoplastics (MNPs), emerging environmental contaminants, have caused a widespread concern because of their potential threats to public health. Increasing evidence has indicated that MNPs were deeply involved in poor pregnancy outcomes, but the detailed mechanism remains obscure. In this research, we firstly identified that maternal exposure to MNPs during gestation increased both the number and rate of embryo resorption, while reducing embryonic weight, placental diameter and placental weight. This was accompanied by disrupted progesterone and estradiol synthesis in MNPs-treated mouse placentas. In addition, our data suggested that MNPs exposure disturbed placental development, as evidenced by the reduction of the total area of placenta, area of spongiotrophoblast layer and area of labyrinth layer. Subsequently, in vivo and in vitro experiments further indicated that MNPs compromised syncytialization process and decreased the expression of syncytialization markers in mouse placentas and human placental trophoblasts. Further investigation indicated that PERK/eIF2α/ATF4 signaling was activated in MNPs-treated mouse placentas and human placental trophoblasts. More importantly,inhibition of PERK partially restored syncytialization insufficiency caused by MNPs administration. On the whole, our results suggested that gestational exposure to MNPs disturbed placental trophoblasts syncytialization possibly through activating PERK/eIF2α/ATF4 pathway, resulting in aberrant placentation and poor pregnancy outcomes.
Collapse
Affiliation(s)
- Yanmin Cheng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Yulu Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hui Liu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jun Zhu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
5
|
Ma F, Wang M, Zhong G, Liao J, Huo Y, Wang Z, He S. The impact of copper-induced oxidative damage on the endoplasmic reticulum quality control system in broiler kidneys. Biometals 2025:10.1007/s10534-025-00695-5. [PMID: 40404888 DOI: 10.1007/s10534-025-00695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025]
Abstract
Copper (Cu) is a pervasive element utilized in economic animal production. However, overuse can have toxic effects on animals and threaten public food safety. To gain a deeper understanding of the mechanisms underlying Cu-induced nephrotoxicity, an in-depth analysis was conducted on the effects of Cu on the renal endoplasmic reticulum quality control (ERQC) system. In the course of this experiment, one-day-old chicks were fed diets comprising Cu levels (11, 110, 220 and 330 mg/kg) for 49 days. Our findings indicate that an excess of Cu may result in oxidative stress, which may then induce tissue damage within the kidney. Furthermore, the experimental results indicated that elevated Cu levels may disrupt to the ERQC system in chicken kidneys. The mRNA levels of GRP78, GRP94, ATF4, IRE1, and XBP1, as well as the protein levels of GRP78, GRP94, IRE1, XBP1, and CHOP, were markedly elevated in all treatment groups relative to the control group. Conversely, the mRNA and protein levels of eIF2α and ATF6 exhibited a notable decline with the increase in Cu levels. Similarly, RTN3, ATL1, and ATL2 mRNA levels as well as RTN3 and ATL3 protein levels exhibited a notable elevation in conjunction with an appreciable decline in FAM134B and SEC62 mRNA and protein levels, respectively, as Cu levels increased. Furthermore, bioinformatics analyses indicated a correlation between oxidative damage and ERQC markers. The above results suggest that Cu-induced oxidative damage may injure to chicken kidneys via disturbances in the ERQC system.
Collapse
Affiliation(s)
- Feiyang Ma
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Anhui Science and Technology University, Chuzhou, 233100, Anhui, People's Republic of China
| | - Mengran Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yihui Huo
- College of Veterinary Medicine, China Agricultural University, Beijing, 100091, People's Republic of China
| | - Zekai Wang
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Anhui Science and Technology University, Chuzhou, 233100, Anhui, People's Republic of China
| | - Shaojun He
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Anhui Science and Technology University, Chuzhou, 233100, Anhui, People's Republic of China.
| |
Collapse
|
6
|
Wu C, Gao M, Xiao W, Huang X, Yang X, Wu Z, Yu X, Mo B, Du Z, Shang Z, Liu J, Shi C, Li R, Luo S, Wang W. Light-activatable manganese carbonate nanocubes elicit robust immunotherapy by amplifying endoplasmic reticulum stress-meditated pyroptotic cell death. J Exp Clin Cancer Res 2025; 44:147. [PMID: 40380194 DOI: 10.1186/s13046-025-03408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
Although tumor immunotherapy has emerged as a promising treatment modality, it faces significant challenges stemming from the immunosuppressive characteristics of the tumor microenvironment (TME), the low immunogenicity of tumors, and the poor specificity of immunoactivation. These factors can hinder the efficacy of immunotherapeutic approaches and lead to immune-related adverse events. This study reports a multifunctional nanocube (Mn-ER-Cy) that integrates Mn carbonate (MnCO3) and a photosensitizer (ER-Cy) by targeting tumor-cell endoplasmic reticulum (ER). The results demonstrate that Mn-ER-Cy preferentially accumulates in tumor tissues and is retained within ER organelles, facilitating photothermal therapy (PTT) and photodynamic therapy (PDT) upon exposure to 808 nm light irradiation. Triggered by acidic TME and light irradiation, MnCO3 is rapidly degraded to Mn2+, which in turn promotes the generation of reactive oxygen species through the Mn2+-mimic Fenton reaction, enabling chemical dynamics therapy (CDT). Triple-modal synergistic therapy simultaneously happens in ER to induce excessive ER stress, which subsequently amplify highly immunogenic pyroptotic cell death through activating NLRP3 inflammasome, caspase-1, and gasdermin D (GSDMD) pathway. Meanwhile, the decomposition of MnCO3 consumes H+ and contributes to an increased intracellular pH by regulating lactic acid levels, thereby counteracting the immunosuppressive acidic TME. Furthermore, Mn-ER-Cy serves as an inherent dual-modality imaging contrast agent for near-infrared fluorescence and photoacoustic imaging, facilitating imaging-guided precision therapy. These findings underscore the potential of Mn-ER-Cy to substantially enhance the efficacy and specificity of tumor immunotherapy, portraying a bright prospect to improve the clinical outcomes of patients with cancer.
Collapse
Affiliation(s)
- Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Mingquan Gao
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weidong Xiao
- Department of Pharmacy, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Xie Huang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xinrui Yang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zifei Wu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xudong Yu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Banghui Mo
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zaizhi Du
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziqian Shang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jing Liu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Can Shi
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
7
|
Yang J, Luo W, Chen Y, Zhou Y, Wang J, Mi L, Shi G. Molecular docking- and reporter-based screening identify dicoumarol against ER stress-induced liver injury in mice through inhibiting IRE1α activity. Life Sci 2025; 369:123526. [PMID: 40049366 DOI: 10.1016/j.lfs.2025.123526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
AIMS Drug-induced liver injury is among the most challenging liver disorders. Endoplasmic reticulum (ER) is responsible for the correct protein folding and secretion, which are highly active in hepatocytes. Failure in maintaining the proper protein folding under pathological condition or external stimuli leads to the unfolded protein response (UPR) to restore ER homeostasis or induce cell death. IRE1α pathway is the most conserved UPR branch with diverse physiological and pathological functions. This study aimed to screen for natural compounds to alleviate hepatic ER stress and liver injury by modulating IRE1α activity. MATERIALS AND METHODS ATP-competitive molecules from chemical libraries were recognized by virtual screening for targeting the IRE1α kinase domain. IRE1α activity-based XBP1s-reporter cell lines with flow cytometric analysis were employed to validate candidates from chemical libraries. Then the functions of the top candidate compound on IRE1α signaling were analyzed followed by the treatment with ER stress agonists in vitro. Finally, the candidate compound was used to treat ER stress-induced acute liver injury to evaluate its protective effect in vivo. KEY FINDINGS Dicoumarol (DIC) was discovered as a potential inhibitor of IRE1α activation in HEK293T cells, HepG2 cells and primary hepatocytes. Particularly, DIC ameliorates tunicamycin (Tm)- and carbon tetrachloride (CCl4)-induced acute hepatic ER stress to protect against liver injury. SIGNIFICANCE This study established a drug screening strategy against IRE1α activation and identified potential new therapeutic effects of DIC in treating liver injury-related diseases.
Collapse
Affiliation(s)
- Jifeng Yang
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Luo
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yanyu Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yimin Zhou
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiahai Wang
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Lin Mi
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Guojun Shi
- Joint Research Group of Metabolic Diseases and Biomaterials, Guangzhou University & The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Wu Z, Guo J, Lu K, Song K, Wang L, Ma R, Zhang C, Li X. Dietary phosphorus restriction induced phospholipid deficiency, endoplasmic reticulum stress, inflammatory response and gut microbiota disorders in Lateolabrax maculatus. Front Immunol 2025; 16:1592806. [PMID: 40443659 PMCID: PMC12119276 DOI: 10.3389/fimmu.2025.1592806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
This study evaluated the effects of low phosphorus on spotted seabass (Lateolabrax maculatus) from the perspective of phospholipid content and function, endoplasmic reticulum (ER) stress, inflammatory response and gut microbiota. Two diets were prepared to contain available phosphorus levels of 0.37% (low-phosphorus, LP) and 0.75% (normal-phosphorus, NP) and feed fish (3.53 ± 0.34 g) to satiety twice daily for 10 weeks. Compared with fish fed the NP diet, fish fed the LP diet showed lower body weight gain and higher abdominal fat percentage. Further studies showed that the LP diet decreased the content of phospholipid in the serum, liver, and abdominal fat tissue and induced ER stress and disruption of lipid metabolism in both of the liver and abdominal fat tissue and inflammatory responses in abdominal fat tissue. Furthermore, compared with fish fed the NP diet, the LP diet reduced microbial diversity in the gut. In contrast to fish fed the NP diet, fish fed the LP diet exhibited a decrease in the abundance of potential metabolically promoted probiotics (e.g., Lactococcus lactis) and an increase in the abundance of potential pathogenic bacteria (e.g., Plesiomonas) in the gut. The results of PICRUSt2 functional prediction also validated the metabolic disorders occurring in fish fed the LP diet as well as the reduced metabolic capacity. These results suggested that the LP diet decreased phospholipid content, induced ER stress and inflammatory responses then disturbed lipid metabolism and gut microbiota in spotted seabass. These negative effects contributed to poorer growth and higher percentage of abdominal fat in spotted seabass fed the LP diet than those of spotted seabass fed the NP diet.
Collapse
Affiliation(s)
- Zixiang Wu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Jiarong Guo
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Kangle Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Kai Song
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Ling Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Ruijuan Ma
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Chunxiao Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Xueshan Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
9
|
Liu S, Li Q, Deng Y, Wang Z, Feng Y, Zhao H, Zhao Z, Zhang L, Duan Y, Huang Z, Zhou J, Mou C. RNA-seq revealed the effects of heat stress on different brain regions of Leiocassis longirostris. Front Physiol 2025; 16:1579499. [PMID: 40432926 PMCID: PMC12106027 DOI: 10.3389/fphys.2025.1579499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Understanding how distinct brain regions of Leiocassis longirostris molecularly adapt to heat stress is vital for improving aquaculture sustainability and guiding conservation strategies in a warming climate. To elucidate the region-specific molecular mechanisms underlying heat stress responses in the brain of L. longirostris, we exposed L. longirostris to acute heat stress (32°C) for 24 h and performed RNA-seq and WGCNA on five brain regions (OB: olfactory bulb, FB: pituitary, hypothalamus, forebrain, MB: mesencephalon, CB: cerebellum, and SC: spinal cord). The results showed that, after heat stress, the FB region significantly activated the ER stress pathway, and the abnormal proteins were synergically cleared by HSP-mediated UPR (such as Hsp70, Hsp90, IRE1α, Perk, ATF6) and UPS-mediated ERAD (such as UBE2, UBE3, TRIM63). Meanwhile, the SC region showed marked downregulation of lipid metabolism and PPAR signaling pathway, suggesting energy conservation as a compensatory strategy. WGCNA further highlighted the FB as the hub for ER stress and the SC for metabolic suppression. In conclusion, our study suggests that distinct brain regions of L. longirostris adopt different strategies under heat stress, in which the FB region mediates protein quality control and the SC region drives metabolic inhibition. These findings highlight the adaptation strategies of the L. longirostris brain to heat stress and provides a potential target for improving its survival under global warming.
Collapse
Affiliation(s)
- Senyue Liu
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Qiang Li
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Yongqiang Deng
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Zhongwei Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Feng
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Han Zhao
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Zhongmeng Zhao
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Lu Zhang
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Yuanliang Duan
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Zhipeng Huang
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Jian Zhou
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| | - Chengyan Mou
- Sichuan Fisheries Research Institute, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Zhang Y, Wu Q, Liu S, Zhao Y, Dai Q, Jin Y, Zhang Q. Inner Ear Pathologies After Cochlear Implantation in Guinea Pigs: Functional, Histopathological, and Endoplasmic Reticulum Stress-Mediated Apoptosis. Ear Hear 2025:00003446-990000000-00433. [PMID: 40336156 DOI: 10.1097/aud.0000000000001668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
OBJECTIVES Vestibular dysfunction is one of the most common complications of cochlear implantation (CI); however, the pathological changes and mechanisms underlying inner ear damage post-CI remain poorly understood. This study aimed to investigate the functional and histopathological changes in the cochlea and vestibule as well as endoplasmic reticulum (ER) stress-mediated apoptosis in guinea pigs after CI. DESIGN Auditory brainstem response, ice water test, and vestibular evoked myogenic potentials were used to assess cochlear and vestibular function in guinea pigs before and after CI. Histopathological analyses were conducted at various time points post-CI to observe morphological changes in the cochlea and vestibule, as well as the impact of ER stress on these tissues. RESULTS After CI, 10.7% (9/84) of the guinea pigs exhibited nystagmus and balance dysfunction. Auditory brainstem response thresholds increased significantly after CI, and air-conducted cervical and ocular vestibular evoked myogenic potential response rates decreased. The ice water test revealed a gradual reduction in nystagmus elicitation rates, along with decreased nystagmus frequency, prolonged latency, and shortened duration. Histopathological analysis of the cochlea revealed fibrous and osseous tissue formation in the scala tympani and a reduction in hair cells and spiral ganglion cells. In the vestibule, alterations included flattening the ampullary crista and disorganized sensory epithelial cells. Transmission electron microscopy revealed pathological changes including cytoplasmic vacuolization and chromatin uniformity in both cochlear and vestibular hair cells. ER stress was prominent in the cochlea, while no substantial stress response was observed in the vestibule. CONCLUSIONS Our study highlights the various effects of CI surgery on cochlear and vestibular function and morphology in guinea pigs. ER stress-mediated apoptosis may contribute to secondary cochlear damage, whereas the vestibular system demonstrates adaptive responses that preserve cellular homeostasis. These findings provide insights into potential mechanisms underlying inner ear complications post-CI.
Collapse
Affiliation(s)
- Yuzhong Zhang
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiong Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute and Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shuyun Liu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qingqing Dai
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yulian Jin
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute and Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qing Zhang
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Ear Institute and Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Li PL, Fu HM, Liu K, Liu HF, Sui MZ, Yang JW. IL-33 facilitates endoplasmic reticulum stress and pyroptosis in LPS-stimulated ARDS model in vitro. Mol Immunol 2025; 181:102-112. [PMID: 40118005 DOI: 10.1016/j.molimm.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Inflammatory activation of pulmonary microvascular endothelial cells (PMVECs) initiated by endoplasmic reticulum stress (ERS) contributes to acute respiratory distress syndrome (ARDS). Interleukin 33 (IL-33) has pro-inflammatory and transcriptional regulatory effects. Therefore, this study intends to investigate the effect of IL-33 on ERS and pyroptosis in the hPMVEC. METHODS The hPMVEC-associated ARDS cell model was induced with lipopolysaccharide (LPS) and treated with 4-PBA (ERS inhibitor), thapsigargin (ERS activator), or IL-33 neutralizing antibody. Western blot and IF staining were performed to analyze the expression of cell-cell junction-associated (Cx37, Cx40, Cx43, Occludin, and Zo-1), ERS-associated (ATF6, IRE1a, and p-Erk), and pyroptosis-associated (NLRP3, IL-1β, and IL-18) proteins. Bioinformatics identified differential expression of IL-33 in ARDS-related datasets and targets of thapsigargin. RESULTS IL-33 was highly expressed in serum of ARDS patients and in ARDS cohorts from multiple GEO datasets (GSE237260, GSE216635, GSE89953, GSE263867, and GSE5883), and was significantly correlated with clinical features. 4-PBA decreased permeability and IL-33 levels, and increased Cx37, Cx40 and Cx43 levels in the ARDS cell model. IL-33 neutralizing antibody effectively augmented the levels of Cx43 and Zo-1, and diminished the levels of ATF6, IRE1a, p-Erk, NLRP3, IL-1β, IL-18, ROS, and Ca2 +. The therapeutic effect of IL-33 neutralizing antibodies was reverted by thapsigargin. Moreover, the Swiss Target Prediction and Super-PRED databases obtained 140 and 122 thapsigargin targets, which had 14 intersections. These intersections were associated with immunity, inflammation, apoptosis, pyroptosis, and Ca2+ homeostasis. Notably, CASP8 and PTGS2 interacted with IL-33 in these intersections. CONCLUSION IL-33 promotes ERS and pyroptosis, thereby contributing to barrier damage in ARDS cell models. IL-33 is a promising therapeutic target for ARDS.
Collapse
Affiliation(s)
- Pei-Long Li
- Children's Hospital Affiliated to Kunming Medical University & Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China; Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Hong-Min Fu
- Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China.
| | - Kai Liu
- Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Hai-Feng Liu
- Children's Hospital Affiliated to Kunming Medical University & Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China; Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Ming-Ze Sui
- Children's Hospital Affiliated to Kunming Medical University & Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China; Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China
| | - Jia-Wu Yang
- Department of Pulmonary and Critical Care Medicine, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming Medical University, Kunming, P.R. China.
| |
Collapse
|
12
|
Su Q, Pan H, Hong P, You Y, Wu Y, Zou J, Sun J, Rao G, Liao J, Tang Z, Hu L. Protective effect of curcumin against endoplasmic reticulum stress and lipid metabolism disorders in AFB1-intoxicated duck liver. Mycotoxin Res 2025; 41:359-372. [PMID: 40085329 DOI: 10.1007/s12550-025-00586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Aflatoxin B1 (AFB1) is a stable and highly toxic toxin that causes multi-organ toxicity with sustained ingestion, most typically in the duck liver. Previous research has shown that AFB1 can bring about endoplasmic reticulum stress (ERS) in animals, and ERS is strongly associated with lipid metabolism. However, the relationship between AFB1-induced duck liver toxicity and ERS and lipid metabolism is currently unclear. Great attention has been paid to the prevention and treatment of AFB1 because of its great harm. Curcumin, a natural polyphenol, is notable for its powerful anti-inflammatory and antioxidant properties. Studies have shown curcumin to be protective against afb1-induced avian multi-organ toxicity. However, the effects of curcumin on the liver of ducks exposed to AFB1 are largely unknown. In the present study, we aimed to investigate whether AFB1 exposure induces ERS and lipid metabolism disorders in duck liver, while exploring the positive role of curcumin in it. One-day-old ducks (n = 80) were randomly divided in four groups: control group, AFB1 group (0.1 mg / kg.bw AFB1), Cur group (400 mg/kg curcumin), and AFB1 + Cur group (0.1 mg/kg.bw AFB1 + 400 mg/kg curcumin), and blood and liver were collected for the study after 21 days of continuous administration. Our research has found that AFB1 exposure significantly increases the levels of liver function indicators ALP, AST, and ALT in ducks' serum (P < 0.05). Duck liver undergoes fatty degeneration under the influence of AFB1. Under the effect of curcumin, AFB1-induced structural damage in duck liver was somewhat controlled. Further experimental results showed that AFB1 treatment significantly increased the expression of glucose-regulated protein 78 (P < 0.001), and activated the endoplasmic reticulum stress pathway. Meanwhile, AFB1 inhibited the LKB1-AMPK signaling pathway and disrupted lipid metabolic homeostasis. And curcumin treatment effectively reversed these changes. Overall, our results suggest that curcumin attenuates AFB1-induced hepatotoxicity in ducks by inhibiting ERS and lipid metabolism disorders.
Collapse
Affiliation(s)
- Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Panjing Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanli You
- College of Life Science, Yantai University, Yantai City, 264005, Shandong Province, China
| | - Yuhan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junbo Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jingping Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gan Rao
- Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Lu L, Liao J, Xu C, Xiong Y, Zhou J, Wang G, Lin Z, Zha K, Lin C, Zeng R, Dai G, Feng Q, Mi B, Liu G. Kinsenoside-Loaded Microneedle Accelerates Diabetic Wound Healing by Reprogramming Macrophage Metabolism via Inhibiting IRE1α/XBP1 Signaling Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502293. [PMID: 40279546 DOI: 10.1002/advs.202502293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/28/2025] [Indexed: 04/27/2025]
Abstract
Continuously bacterial infection, undue oxidative stress, and inflammatory responses in the skin tissue microenvironment determine the delayed healing outcome of diabetic wounds, which remain a tough clinical challenge and need multifaceted therapeutic strategies. In this work, HA-ADH/HA-QA-ALD-based hydrogel microneedle (HAQA-MN) with antimicrobial and antioxidative activities incorporating kinsenoside (KD) coated with macrophage membrane (M-KD) targeting inflammation relief is developed to improve the cutaneous micro-niche. KD is observed to trigger trimethylamine N-oxide-irritated proinflammatory macrophages repolarization from M1 state to anti-inflammatory M2 phenotype, and the underlying mechanism is due to drug-induced IRE1α/XBP1/HIF-1α pathway suppression, accompanied by diminution of glycolysis and enhancement of oxidative phosphorylation, resulting in proinflammatory cascade inhibition and anti-inflammatory signaling enhancement. The hydrazone cross-linked HAQA-MN possesses favorable biocompatibility, self-healing, controlled release of M-KD and excellent mechanical properties. Moreover, the MN patch remarkedly restrains the survival of E. coli and S. aureus and eliminates hydrogen peroxide to preserve cellular viability. Notably, M-KD@HAQA-MN array effectively ameliorates cutaneous inflammation and oxidative stress and facilitate angiogenesis and collagen deposition, thereby accelerating tissue regeneration of diabetic mice with a full-thickness skin defect model. Collectively, this study highlights a multifunctional MN platform as a promising candidate in clinical application for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chuanlu Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
14
|
Wang L, Zhang C, Ma J, Li J, Wu Y, Ren Y, Li J, Li Y, Yang Y. Mammalian Ste20-like kinase 1 regulates AMPK to mitigate the progression of non-alcoholic fatty liver disease. Eur J Med Res 2025; 30:296. [PMID: 40247356 PMCID: PMC12004885 DOI: 10.1186/s40001-025-02557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) progression is strongly associated with deteriorating hepatic function, primarily driven by free cholesterol (FC) accumulation-induced lipotoxicity. Emerging evidence highlights the regulatory role of mammalian Ste20-like kinase 1 (MST1) in modulating intrahepatic lipid homeostasis, suggesting its therapeutic potential for non-alcoholic fatty liver disease (NAFLD) management. This investigation seeks to elucidate the pathophysiological mechanisms through which MST1 modulates NASH progression. METHODS The experimental design employed two murine genetic models-wild-type (WT) controls and MST1-knockout (MST1-KO) specimens-subjected to a nutritionally modified Western diet (WD) enriched with saturated fats, simple carbohydrates, and dietary cholesterol to induce non-alcoholic steatohepatitis (NASH) pathogenesis. Lentiviral transduction techniques facilitated targeted MST1 overexpression in WT animals maintained on this dietary regimen. Parallel in vitro investigations utilized HepG2 hepatocyte cultures exposed to free fatty acid (FFA) cocktails comprising palmitic and oleic acids, coupled with CRISPR-mediated MST1 suppression and complementary gain-of-function manipulations to delineate molecular mechanisms. RESULTS NASH triggers hepatic sterol biosynthesis activation, resulting in pathological FC overload concurrent with MST1 transcriptional suppression. Genetic ablation of MST1 amplifies intrahepatic FC retention and potentiates histopathological inflammation, while MST1 reconstitution mitigates steatotic FC deposition and attenuates inflammatory cascades. Mechanistic profiling revealed MST1-mediated AMPKα phosphorylation at Thr172, which suppresses cholesterogenic enzyme expression via sterol regulatory element-binding transcription factor 2 (SREBP2) axis modulation. This phosphorylation cascade demonstrates dose-dependent inhibition of HMGCR activity, resolving FC-induced hepatotoxicity. Crucially, MST1 orchestrates AMPK/SREBP2 crosstalk to maintain sterol homeostasis, with knockout models exhibiting 67% elevated SREBP2 nuclear translocation compared to controls. CONCLUSIONS The regulatory axis involving MST1-mediated AMPK phosphorylation emerges as a promising therapeutic modality for modulating hepatic sterol metabolism. It demonstrates significant potential in arresting the progression of inflammatory cascades and extracellular matrix remodeling characteristic of NASH pathogenesis. Mechanistic studies confirm that this phosphorylation cascade effectively suppresses de novo lipogenesis while enhancing cholesterol efflux capacity, thereby establishing a dual-target strategy against both metabolic dysfunction and fibrotic transformation in preclinical models.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jie Ma
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Jiarui Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yuanyuan Wu
- Department of Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Yanru Ren
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jianning Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yan Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
15
|
Cui Y, Bai S, Liu Z, Ding H, Li K, Li Z, Hou Y. High-fat stimulation induces atrial structural remodeling via the TPM1/P53/SHISA5 Axis. Lipids Health Dis 2025; 24:138. [PMID: 40221727 PMCID: PMC11992805 DOI: 10.1186/s12944-025-02554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Atrial structural remodeling plays a central role in the development and progression of atrial fibrillation (AF) and significantly influences its course. Hyperlipidemia, a potential contributor to AF, affects cardiac function through multiple pathways. This study aimed to investigate the underlying mechanisms by which high lipid levels promote AF progression. METHODS In vitro cell models were established using palmitic acid (PA) stimulation, and in vivo rat models were generated by feeding a high-fat diet (HFD). Proteomic and transcriptomic sequencing analyses were conducted to identify differentially expressed proteins and genes. Extracellular vesicles (EVs) were isolated and characterized by differential centrifugation. Cell proliferation was assessed using EdU incorporation and flow cytometry, while transmission electron microscopy (TEM) was used to observe autophagy. Protein expression was analyzed by immunoblotting, immunohistochemistry, and immunofluorescence. RESULTS High lipid stimulation significantly increased the expression of tropomyosin 1 (TPM1) in cardiomyocytes, which was transferred to cardiac fibroblasts via EVs, activating the P53/SHISA5 signaling axis and inducing endoplasmic reticulum (ER) stress and autophagy, thereby promoting atrial structural remodeling. Activation of P53 and overexpression of SHISA5 in human cardiac fibroblast (HCF) cells reduced ER stress, autophagy, and fibrosis. Furthermore, ER stress and autophagy markers were significantly elevated in the atrial tissues of HFD-fed rats, while SHISA5 overexpression mitigated these effects. CONCLUSION High-fat stimulation may induce atrial fibrosis through the TPM1/P53/SHISA5 axis by modulating the ER stress-autophagy pathway.
Collapse
Affiliation(s)
- Yansong Cui
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuting Bai
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China
| | - Zhenlin Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China
| | - Haifeng Ding
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kuan Li
- Clinical Medical Institute, Xinjiang Medical University, Urumqi, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China.
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, No. 16766, Jingshi Road, Jinan, Shandong Provincial, China.
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
16
|
Zhao LL, Liu YJ, Guo QJ, Yan N, Yang J, Han JQ, Xie XH, Luo YS. TPM4 influences the initiation and progression of gastric cancer by modulating ferroptosis via SCD1. Clin Exp Med 2025; 25:115. [PMID: 40214825 PMCID: PMC11991984 DOI: 10.1007/s10238-025-01629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Gastric cancer (GC) is a deadly disease with poor prognosis and few treatment options. Tropomyosin 4 (TPM4) is an actin-binding protein that stabilizes the cytoskeleton of cells and has an unclear role in GC. This study aimed to elucidate the role and underlying mechanisms of TPM4 in GC pathogenesis. The expression and diagnostic and prognostic value of TPM4 in GC were analyzed using bioinformatics. A nomogram based on TPM4 expression was created and validated with an external cohort. TPM4-knockdown GC cells and xenograft models in nude mice were used to study the function of TPM4 in vitro and in vivo. Proteomic and rescue experiments confirmed the regulatory effect of TPM4 on stearoyl-CoA desaturase 1 (SCD1) in GC. Immunohistochemistry verified the expression and correlation of the TPM4 and SCD1 proteins in GC tissues. Our study identified TPM4 as an oncogene in GC, suggesting its potential diagnostic and prognostic value. The TPM4-based nomogram showed potential prognostic value for clinical use. TPM4 knockdown inhibited GC cell proliferation, induced ferroptosis, and slowed tumor growth in vivo, which is achieved by inhibiting SCD1 expression. Immunohistochemical analysis of GC tissues revealed elevated expression levels of both TPM4 and SCD1 proteins, with a positive correlation observed between their expression. TPM4 is a promising target for new diagnostic, prognostic, and therapeutic strategies for GC. Downregulation of TPM4 inhibits GC cell growth and induces ferroptosis by suppressing SCD1 expression.
Collapse
Affiliation(s)
- Ling-Lin Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Jun Liu
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Qi-Jing Guo
- Department of Oncology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Nan Yan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jie Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jing-Qi Han
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xiao-Hong Xie
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Shuang Luo
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China.
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| |
Collapse
|
17
|
Wang X, Liang Y, Yang F, Shi Y, Shao R, Jing R, Yang T, Chu Q, An D, Zhou Q, Song J, Chen H, Liu C. Molecular mechanisms and targeted therapy of progranulin in metabolic diseases. Front Endocrinol (Lausanne) 2025; 16:1553794. [PMID: 40290306 PMCID: PMC12021630 DOI: 10.3389/fendo.2025.1553794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Progranulin (PGRN) is a secreted glycoprotein with cytokine-like properties, exerting tripartite mechanisms of inflammation suppression, tissue repair promotion, and metabolic regulation. This multifaceted functionality positions PGRN as a potential "multi-effect therapeutic strategy" for metabolic disorders characterised by cartilage degradation and imbalanced bone remodelling, potentially establishing it as a novel therapeutic target for such conditions. Osteoarthritis, rheumatoid arthritis, intervertebral disc degeneration, osteoporosis, periodontitis, and diabetes-related complications-representing the most prevalent metabolic diseases-currently lack effective treatments due to incomplete understanding of their precise pathogenic mechanisms. Recent studies have revealed that PGRN expression levels are closely associated with the onset and progression of these metabolic disorders. However, the exact regulatory role of PGRN in these diseases remains elusive, partly owing to its tissue-specific actions and context-dependent dual roles (anti-inflammatory vs. pro-inflammatory). In this review, we summarise the structure and functions of PGRN, explore its involvement in neurological disorders, immune-inflammatory diseases, and metabolic conditions, and specifically focus on its molecular mechanisms in metabolic diseases. Furthermore, we consolidate advances in targeting PGRN and the application of its engineered derivative, Atsttrin, in metabolic bone disorders. We also discuss potential unexplored mechanisms through which PGRN may exert influence within this field or other therapeutic domains. Collectively, this work aims to provide a new framework for elucidating PGRN's role in disease pathogenesis and advancing strategies for the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yonglin Liang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ruiwen Shao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ruge Jing
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Tong Yang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Qiao Chu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Dong An
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Qi Zhou
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haolan Chen
- TCM Internal Medicine Department, Nanhu Community Health Centre, Pinliang, Gansu, China
| | - Chun Liu
- Library, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Li X, Zhang L, Zhang Z, Li X, Qian J, Zhou J, Che H, Han Y, Qi X, Yang F, Huang Y, Peng C, Chen Y, Xing Y, Zhang S. Risks of respiratory and circulatory system diseases induced by exposure to PM 2.5 in high humidity and low solar radiation environments: disease types, genes, and functions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:155. [PMID: 40188413 DOI: 10.1007/s10653-025-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/18/2025] [Indexed: 04/08/2025]
Abstract
Epidemiological investigation has found that PM2.5 from high humidity and low solar radiation environments (HHLR-PM2.5) induces the highest premature mortality rates from respiratory and circulatory diseases in China. However, the disease types and pathogenic mechanisms of the respiratory and circulatory diseases induced by HHLR-PM2.5 have not been completely revealed. In this study, we explore the risks of commonly existing diseases induced by HHLR-PM2.5 in the respiratory and circulatory systems. For neoplasms, HHLR-PM2.5 significantly induces malignant mesothelioma and arteriovenous hemangioma, the former through the CDKN1A and KIT genes, and the latter through IL6, blood vessel morphogenesis, and transforming growth factor beta binding. Patent ductus arteriosus-persisting type and chronic thromboembolic pulmonary hypertension are the most prominent cardiopulmonary diseases caused by HHLR-PM2.5, with the key molecular target being ACTA2 for the former and CDH5 for the latter. For congenital, hereditary, and neonatal diseases and abnormalities, HHLR-PM2.5 obviously contributes to bronchopulmonary dysplasia and congenital arteriovenous malformation, the former by targeting HMOX1, response to glucocorticoid, and heparin binding, and the latter by targeting IL6, blood vessel morphogenesis, and transforming growth factor beta binding. This study helps to clarify the risks of HHLR-PM2.5 to the respiratory and circulatory systems, supporting and supplementing epidemiology data.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Institute of Basic Medicine, North Sichuan Medical College, Nanchongn, 637000, Sichua, China
| | - Liru Zhang
- Institute of Basic Medicine, North Sichuan Medical College, Nanchongn, 637000, Sichua, China
| | - Zhengliang Zhang
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Public Health, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xuan Li
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Public Health, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jingli Qian
- Department of Traditional Chinese Medicine and Rehabilitation, First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Jiawei Zhou
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Chao Peng
- Chongqing Key Laboratory of Urban Atmospheric Environment Observation and Pollution Prevention, Chongqing Research Academy of Ecological Environmental Sciences, Chongqing, 401121, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yan Xing
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Shumin Zhang
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Institute of Basic Medicine, North Sichuan Medical College, Nanchongn, 637000, Sichua, China.
| |
Collapse
|
19
|
Sun P, Liu Q, Yuan S, Wang XT, Qiu Y, Ge XY. SARS-CoV-2 Membrane Protein Induces MARCHF1/GPX4-Mediated Ferroptosis by Promoting Lipid Accumulation. J Med Virol 2025; 97:e70328. [PMID: 40186530 DOI: 10.1002/jmv.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
The membrane protein (M), a key structural protein of SARS-CoV-2 that regulates virus assembly and morphogenesis, is involved in the pathological processes of multiple organ damage and metabolic disorders. This study aims to elucidate the mechanisms of M-mediated host ferroptosis and lipid accumulation during SARS-CoV-2 infection. Here, we detected that M protein enhances cellular sensitivity to ferroptosis. Additionally, we uncovered the pivotal role of perilipin-2 and sterol regulatory element-binding protein 1 in M-induced lipid accumulation. Xanthohumol, a cost-effective and orally available diacylglycerol acyltransferase inhibitor, alleviated triglyceride and total cholesterol accumulation, thereby counteracting the M-induced ferroptosis. Furthermore, we identified that the mitochondrial import inner membrane translocase subunit TIM23 and the mitochondrial import receptor subunit TOM20 homolog contribute to M-induced mitochondrial dysfunction. Notably, inhibiting lipid synthesis effectively reduced mitochondrial reactive oxygen species and transmembrane potential, indicating a cross-talk between lipid and ferro metabolic pathways. Mechanistically, glutathione peroxidase 4 (GPX4) interacts with SARS-CoV-2 M, leading to its subsequent degradation by the Membrane Associated Ring-CH-Type Finger 1 (MARCHF1) ubiquitin ligase. M-GPX4 interaction occurs at the R72 residue, which may represent a potential therapeutic target against SARS-CoV-2 infection. M modulates lipid accumulation and further impairs mitochondrial functions, ultimately resulting in ferroptosis through MARCHF1-GPX4 axis. Disrupting host-virus interactions along this pathway may provide a therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pei Sun
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Shuofeng Yuan
- Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin-Tao Wang
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Ye Qiu
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xing-Yi Ge
- Department of Biomedical Engineering, Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
20
|
Liu C, Jiang J, Luo J, Zhang Y, Yang C, Shi J. ETS1 promotes cisplatin resistance of NSCLC cells by promoting GRP78 transcription. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4633-4643. [PMID: 39521757 DOI: 10.1007/s00210-024-03574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a common malignant tumor characterized by rapid growth and invasive power. Glucose regulatory protein 78 (GRP78) is important in cancer cell progression. Here, this study aimed to explore the effect and mechanism of GRP78 on cisplatin (DDP) resistance of NSCLC cells. qRT-PCR and Western blot detected the expression of genes and proteins. Flow cytometry was used to analyze endoplasmic reticulum stress (ERS) induced by DDP in NSCLC. Cell proliferation and apoptosis were examined using cell counting kit-8 (CCK8), cell cloning, and flow cytometry, respectively. Chromatin immunoprecipitation assay (CHIP) and dual-luciferase reporter assays were performed to determine the binding of ETS1 and GRP78 promoter. Mouse xenograft models were constructed for in vivo analysis. ERS was induced by DDP in NSCLC cells. GRP78 were upregulated in DDP-resistant NSCLC tissues, and knockdown of GRP78 suppressed DDP resistance, clone formation, promoted apoptosis, and inhibited ERS in DDP-resistant NSCLC cells. ETS1 knockdown repressed GRP78 expression and NSCLC tumor growth. Interestingly, ETS1 played a role in DDP-resistant NSCLC via GRP78. ETS1 inhibits cisplatin sensitivity of NSCLC cells by promoting GRP78 transcription.
Collapse
MESH Headings
- Endoplasmic Reticulum Chaperone BiP
- Cisplatin/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Humans
- Proto-Oncogene Protein c-ets-1/genetics
- Proto-Oncogene Protein c-ets-1/metabolism
- Drug Resistance, Neoplasm
- Animals
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Antineoplastic Agents/pharmacology
- Mice, Nude
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Cell Line, Tumor
- Apoptosis/drug effects
- Mice
- Endoplasmic Reticulum Stress/drug effects
- Mice, Inbred BALB C
- Cell Proliferation/drug effects
- Transcription, Genetic
- Gene Expression Regulation, Neoplastic
- Male
- A549 Cells
- Female
Collapse
Affiliation(s)
- Cong Liu
- Department of Geriatric Respiratory & Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junguang Jiang
- Department of Geriatric Respiratory & Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Luo
- Department of Geriatric Respiratory & Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Zhang
- Department of Geriatric Respiratory & Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yang
- Department of Geriatric Respiratory & Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiang Shi
- Department of Geriatric Respiratory & Sleep, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Wang Z, Zhu H, Xiong W. Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective. Front Med 2025; 19:200-225. [PMID: 39821730 DOI: 10.1007/s11684-024-1116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongying Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| | - Wei Xiong
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| |
Collapse
|
22
|
Kifer A, Pina F, Codallos N, Hermann A, Ziegler L, Niwa M. Orchestration of SARS-CoV-2 Nsp4 and host cell ESCRT proteins induces morphological changes of the endoplasmic reticulum. Mol Biol Cell 2025; 36:ar40. [PMID: 39937675 PMCID: PMC12005107 DOI: 10.1091/mbc.e24-12-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Upon entry into the host cell, the nonstructural proteins 3, 4, and 6 (Nsp3, Nsp 4, and Nsp6) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitate the formation of double-membrane vesicles (DMVs) through extensive rearrangement of the host cell endoplasmic reticulum (ER) to replicate the viral genome and translate viral proteins. To dissect the functional roles of each Nsp and the molecular mechanisms underlying the ER changes, we exploited both yeast Saccharomyces cerevisiae and human cell experimental systems. Our results demonstrate that Nsp4 alone is sufficient to induce ER structural changes. Nsp4 expression led to robust activation of both the unfolded protein response (UPR) and the ER surveillance (ERSU) cell cycle checkpoint, resulting in cortical ER inheritance block and septin ring mislocalization. Interestingly, these ER morphological changes occurred independently of the canonical UPR and ERSU components but were mediated by the endosomal sorting complex for transport (ESCRT) proteins Vps4 and Vps24 in yeast. Similarly, ER structural changes occurred in human cells upon Nsp4 expression, providing a basis for a minimal experimental system for testing the involvement of human ESCRT proteins and ultimately advancing our understanding of DMV formation.
Collapse
Affiliation(s)
- Allison Kifer
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Franciso Pina
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Nicholas Codallos
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Anita Hermann
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Lauren Ziegler
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| | - Maho Niwa
- School of Biological Sciences, Department of Molecular Biology, NSB, University of California, San Diego, San Diego, CA 92093-0377
| |
Collapse
|
23
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
24
|
He Z, Liu Q, Wang Y, Zhao B, Zhang L, Yang X, Wang Z. The role of endoplasmic reticulum stress in type 2 diabetes mellitus mechanisms and impact on islet function. PeerJ 2025; 13:e19192. [PMID: 40166045 PMCID: PMC11956770 DOI: 10.7717/peerj.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a globally prevalent metabolic disorder characterized by insulin resistance and dysfunction of islet cells. Endoplasmic reticulum (ER) stress plays a crucial role in the pathogenesis and progression of T2DM, especially in the function and survival of β-cells. β-cells are particularly sensitive to ER stress because they require substantial insulin synthesis and secretion energy. In the early stages of T2DM, the increased demand for insulin exacerbates β-cell ER stress. Although the unfolded protein response (UPR) can temporarily alleviate this stress, prolonged or excessive stress leads to pancreatic cell dysfunction and apoptosis, resulting in insufficient insulin secretion. This review explores the mechanisms of ER stress in T2DM, particularly its impact on islet cells. We discuss how ER stress activates UPR signaling pathways to regulate protein folding and degradation, but when stress becomes excessive, these pathways may contribute to β-cell death. A deeper understanding of how ER stress impacts islet cells could lead to the development of novel T2DM treatment strategies aimed at improving islet function and slowing disease progression.
Collapse
Affiliation(s)
- Zhaxicao He
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Liu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Zhao
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Lumei Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xia Yang
- Tianshui Hospital of Traditional Chinese Medicine, Tianshui, China
| | - Zhigang Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Tianshui Hospital of Traditional Chinese Medicine, Tianshui, China
| |
Collapse
|
25
|
Sun XH, Chai YH, Bai XT, Li HX, Yang PP, Xi YM. Saikosaponin A Mediates the Anti-Acute Myeloid Leukemia Effect via the P-JNK Signaling Pathway Induced by Endoplasmic Reticulum Stress. Drug Des Devel Ther 2025; 19:1983-2001. [PMID: 40124558 PMCID: PMC11928444 DOI: 10.2147/dddt.s498458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Objective This study aims to investigate the antitumor effects of saikosaponin A (SSA) on acute myeloid leukemia (AML) and elucidate its underlying mechanisms, particularly focusing on the endoplasmic reticulum stress (ERS)-mediated MAPK-p-JNK signaling pathway. Methods The inhibitory effects of SSA on the proliferation of AML cell lines K562 and HL60 were evaluated using CCK8 and EdU assays. Apoptotic effects induced by SSA were analyzed via flow cytometry. RNA sequencing was performed to identify differentially expressed genes and enriched signaling pathways. Western blot analysis was utilized to confirm the involvement of ERS and activation of the MAPK-p-JNK signaling pathway. Further validation of the potential mechanism of SSA-induced apoptosis was conducted using SP600125 and 4PBA. The in vivo anti-AML efficacy of SSA was assessed using a xenograft model. Results SSA exhibited significant inhibitory effects on the proliferation of AML cell lines K562 and HL60, with IC50 values at 12, 24, and 48 hours demonstrating time- and dose-dependency (19.84 μM, 17.86 μM, and 15.38 μM for K562; 22.73 μM, 17.02 μM, and 15.25 μM for HL60, respectively). Western blot analysis demonstrated that SSA induces apoptosis in AML cells through the mitochondrial apoptotic pathway. Transcriptomic profiling and Western blot analyses confirmed that SSA activates the ERS-mediated p-JNK signaling pathway to induce apoptosis in AML, a process that can be reversed by the addition of 4PBA or SP600125. Furthermore, SSA significantly reduced tumor volume and weight in a NOD-SCID mouse xenograft model without causing notable toxicity to the liver, kidneys, lungs, or heart, while also activating the ERS and p-JNK signaling pathways in vivo. Conclusion SSA induces apoptosis in AML cells by activating the ERS-mediated p-JNK signaling pathway, exhibiting significant anti-AML effects both in vitro and in vivo, accompanied by a favorable safety profile.
Collapse
MESH Headings
- Oleanolic Acid/analogs & derivatives
- Oleanolic Acid/pharmacology
- Oleanolic Acid/chemistry
- Saponins/pharmacology
- Saponins/chemistry
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Endoplasmic Reticulum Stress/drug effects
- Animals
- Cell Proliferation/drug effects
- Mice
- Apoptosis/drug effects
- Drug Screening Assays, Antitumor
- MAP Kinase Signaling System/drug effects
- Dose-Response Relationship, Drug
- Tumor Cells, Cultured
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Structure-Activity Relationship
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- HL-60 Cells
- Molecular Structure
- K562 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiao-Hong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Yi-Hong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Xiao-Teng Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Hong-Xing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Pan-Pan Yang
- Department of Gynecology and Obstetrics, The First Hospital of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Ya-Ming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, People’s Republic of China
- Division of Hematology, The First Hospital of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
26
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
27
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2025; 203:1251-1268. [PMID: 38829477 PMCID: PMC11872778 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
28
|
Wang T, Xia G, Li X, Gong M, Lv X. Endoplasmic reticulum stress in liver fibrosis: Mechanisms and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167695. [PMID: 39864668 DOI: 10.1016/j.bbadis.2025.167695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
This paper reviews the important role of endoplasmic reticulum stress in the patho mechanism of liver fibrosis and its potential as a potential target for the treatment of liver fibrosis. Liver fibrosis is the result of sustained inflammation and injury to the liver due to a variety of factors, triggering excessive deposition of extracellular matrix and fibrous scar formation, which in turn leads to loss of liver function and a variety of related complications. Endoplasmic reticulum stress is one of the characteristics of chronic liver disease and is closely related to the pathological process of chronic liver disease, including alcohol-related liver disease, viral hepatitis, and liver fibrosis. The unfolded protein response is one of the important response mechanisms to endoplasmic reticulum stress. It is associated with several pathological aspects of liver fibrosis and the maintenance of endoplasmic reticulum homeostasis. Interventions targeting endoplasmic reticulum stress for the treatment of liver fibrosis have potential research and application value. An in-depth understanding of the biological basis of endoplasmic reticulum stress is also needed in the treatment of liver fibrosis, as well as the development of more effective drugs and interventions to accurately regulate the endoplasmic reticulum signaling network, to achieve the restoration and maintenance of endoplasmic reticulum homeostasis at the cellular and organ levels, and to further promote the reversal of the pathological process of liver fibrosis.
Collapse
Affiliation(s)
- Tiantian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Guoqing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Mingxu Gong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
29
|
Huang Z, Shi M, Zhang C, Deng Z, Qin T, Wu J, Zhang X, Han W, Li S, Gao B, Xiao Y, Huang D, Ye W. Meteorin-like protein alleviates intervertebral disc degeneration by suppressing lipid accumulation in nucleus pulposus cells via PPARα-CPT1A activation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167635. [PMID: 39706351 DOI: 10.1016/j.bbadis.2024.167635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Disturbances in lipid metabolism are closely related to intervertebral disc degeneration (IDD). However, the lipid metabolism characteristics of nucleus pulposus (NP) cells during IDD are unclear. Exercise protects against IDD and acts as a potent mediator of organ metabolism, in which muscle-secreted myokines actively participate. However, whether exercise-induced myokines alleviate IDD by regulating lipid metabolism in NP cells remains unknown. The present study revealed that lipid accumulation is the metabolic reprogramming phenotype in NP cells during IDD, which was attributed to an imbalance between increased fatty acid/triglyceride synthesis and diminished utilization, and was further associated with extracellular matrix (ECM) degradation and cell senescence. To explore the interaction between exercise and IDD, Sprague-Dawley rats were subjected to five weeks of treadmill running exercise, and rats in the exercise group exhibited less severe IDD than did those in the sedentary group. The expression of meteorin-like protein (Metrnl), a newly-discovered myokine that participates in lipid metabolism regulation, was observed to increase in muscle, serum and NP tissue after exercise. Moreover, Metrnl ameliorated lipid accumulation in NP cells and further alleviated ECM degradation and cell senescence. Mechanistically, Metrnl activated the fatty acid β-oxidation rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A) via peroxisome proliferator-activated receptor α (PPARα) to increase lipid utilization in NP cells. This study provides insight into the lipid metabolic features of NP cells in IDD and reveals the intrinsic connections among exercise, metabolism and IDD, with the myokine Metrnl emerging as a pivotal mediator with therapeutic potential.
Collapse
Affiliation(s)
- Zhengqi Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihuai Deng
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiajun Wu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohe Zhang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weitao Han
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuangxing Li
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Gao
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Xiao
- School of Medicine and Dentistry & Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wei Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Zhou X, Li Z, Ren F, Deng H, Wen J, Xiang Q, Zhou Z, Yang X, Rao C. Endoplasmic reticulum stress and unfolded protein response in renal lipid metabolism. Exp Cell Res 2025; 446:114463. [PMID: 39971174 DOI: 10.1016/j.yexcr.2025.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The endoplasmic reticulum (ER) is a crucial cellular organelle involved in protein synthesis, folding, modification, and transport. Exposure to internal and external stressors can induce endoplasmic reticulum stress (ERS), leading to abnormal protein folding and ER malfunction. This stress can disrupt lipid synthesis, metabolism, and transport processes. Fatty acid oxidation is the primary energy source for the renal system. When energy intake exceeds the storage capacity of adipose tissue, lipids accumulate abnormally in non-adipose tissues, including kidneys, liver, and pancreas. Lipids accumulate in the kidneys of nearly all cell types, including thylakoid membranous, pedunculated, and proximal renal tubular epithelial cells. Intracellular free fatty acids can significantly disrupt renal lipid metabolism, contributing to ischemia-reperfusion acute kidney injury, diabetic nephropathy, renal fibrosis, and lupus nephritis. Consequently, this study delineated the primary signaling pathways and mechanisms of the ERS-induced unfolded protein response, explored the mechanistic link between ERS and lipid metabolism, and elucidated its role in renal lipid metabolism. This study aimed to offer new perspectives on managing and treating renal disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ziyi Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Deng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihui Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiyun Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
31
|
Mashayekhi-Sardoo H, Hedayati-Moghadam M, Baghcheghi Y. Hippocampal Apoptosis: Molecular Mechanisms Triggered by Toxic Cannabinoid Exposure: A Narrative Review. Neurotoxicology 2025:S0161-813X(25)00019-1. [PMID: 40024347 DOI: 10.1016/j.neuro.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Hippocampal apoptosis is increasingly recognized as a significant consequence of toxic cannabinoid exposure, with profound implications for cognitive function and mental health. This narrative review comprehensively examines the molecular mechanisms underlying cannabinoid-induced apoptosis, focusing on the interplay of various bioactive compounds and their effects on neuronal integrity. We begin by discussing the key players in cannabinoid biology, followed by a synthesis of findings from animal and clinical studies that highlight the neurotoxic potential of cannabinoids. Central to our analysis are the roles of neuroinflammation and oxidative stress, which exacerbate neuronal damage and contribute to cell death. The activation of cannabinoid receptors, particularly CB1 and CB2, is scrutinized for its dual role in mediating neuroprotective and neurotoxic effects. We explore calcium dysregulation as a critical mechanism that leads to excitotoxicity, mitochondrial dysfunction, and the activation of pro-apoptotic pathways. Additionally, we address the inhibition of anti-apoptotic proteins, induction of endoplasmic reticulum (ER) stress, and disruption of neurotransmitter systems, all of which further facilitate apoptosis in hippocampal neurons. Alterations in neurotrophic factor levels are also examined, as they play a vital role in neuronal survival and plasticity. Ultimately, this review underscores the multifaceted nature of cannabinoid-induced hippocampal apoptosis and calls for further research to elucidate these complex interactions, aiming to inform clinical practices and public health policies regarding cannabinoid use. The findings presented herein highlight the urgent need for a nuanced understanding of the risks associated with cannabinoid exposure, particularly in vulnerable populations.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran; Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran; School of Health, Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Mahdiyeh Hedayati-Moghadam
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran; Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Yousef Baghcheghi
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran; Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
32
|
Zhao J, Jin J, Li Y, Zhang S, Li F, Cui J, Wang Z, Yan D, Qiu F. Yinchen-Gancao decoction ameliorated NASH in mice by reducing hepatic lipid accumulation, inhibiting hepatic inflammatory and endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119318. [PMID: 39755186 DOI: 10.1016/j.jep.2025.119318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.) ameliorated symptoms in NASH mouse models. However, the underlying mechanisms have not been elucidated. AIM OF STUDY This study aimed to assess the therapeutic efficacy of YG and explore the underlying mechanisms. MATERIALS AND METHODS YG was prepared and characterized, and then orally administered to high-fat diet (HFD) or high-fat high-sugar diet (HFHS) induced mice. Histopathological examinations and biochemical analyses were performed to evaluate the therapeutic effects. Fxr-/- mice were used to investigate the role of farnesoid X receptor (FXR) in the therapeutic effects of YG. The mechanism of action was explored by quantitative real-time PCR (RT-qPCR), western blotting, molecular docking, and cellular thermal shift assay (CETSA). RESULTS YG improved liver histopathology and biochemical parameters in wild-type mice but only improved alanine aminotransferase (ALT) in Fxr-/- mice. YG upregulated FXR with Chlorogenic acid (CGA) identified as a bioactive constituent. In wild-type (WT) mice, YG downregulated de novo lipogenesis (DNL), fatty acid (FA) uptake, and upregulated FA β-oxidation. However, these effects were absent in the Fxr-/- mice. YG inhibited hepatic inflammation and endoplasmic reticulum stress (ERS) in both WT and Fxr-/- mice. CONCLUSION Our study supported the use of YG as a promising therapeutic agent to attenuate NASH. Its mechanism of action involved the reduction of hepatic lipid accumulation (FXR-dependent) and the inhibition of hepatic inflammation and ERS.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Zhang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengling Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiamin Cui
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuoyuan Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
33
|
Ban J, Tian H, Wei Y, Ao L, Gu H, Zeng J, Peng X, Ao C, Zhang Y, He X, Zhao H, Li J. Elevating VAPB-PTPIP51 integration repairs damaged mitochondria-associated endoplasmic reticulum membranes and inhibits lung fibroblasts activation. Int Immunopharmacol 2025; 147:113982. [PMID: 39755114 DOI: 10.1016/j.intimp.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Long-term silica exposure to silica dust leads to irreversible pulmonary fibrosis, during which lung fibroblast activation plays an essential role. Mitochondria-associated endoplasmic reticulum membranes (MAMs) is a structural interface for communication between the outer mitochondrial membrane and the endoplasmic reticulum. VAPB-PTPIP51 is a key complex on MAMs. However, the role of VAPB-PTPIP51-linked MAMs in lung fibroblast activation remains under investigation. In this study, we observed mitochondrial damage and endoplasmic reticulum stress in a SiO2-induced lung fibrosis model using C57BL/6J mice. In the model of TGF-β1-induced mouse lung fibroblast (MLG) activation, interventions with Dioscin and TUDCA reduced mitochondrial damage and alleviated endoplasmic reticulum stress by repairing damaged MAMs. Additionally, TUDCA may restore the MAMs structure by enhancing the interaction between VAPB and PTPIP51. Our findings indicate that MAMs may play a crucial role in linking mitochondrial damage and endoplasmic reticulum stress, suggesting their potential involvement in fibroblast activation.
Collapse
Affiliation(s)
- Jiaqi Ban
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hongru Tian
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yungeng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lihong Ao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hequn Gu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jiamin Zeng
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Xiao Peng
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Chunyan Ao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yanzi Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Xiu He
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hua Zhao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jun Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China.
| |
Collapse
|
34
|
Zhu L, Dong H, Li L, Liu X. The Mechanisms of Sepsis Induced Coagulation Dysfunction and Its Treatment. J Inflamm Res 2025; 18:1479-1495. [PMID: 39925935 PMCID: PMC11804232 DOI: 10.2147/jir.s504184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
Sepsis is a critical condition characterized by organ dysfunction due to a dysregulated response to infection that poses significant global health challenges. Coagulation dysfunction is nearly ubiquitous among sepsis patients. Its mechanisms involve platelet activation, coagulation cascade activation, inflammatory reaction imbalances, immune dysregulation, mitochondrial damage, neuroendocrine network disruptions, and endoplasmic reticulum (ER) stress. These factors not only interact but also exacerbate one another, leading to severe organ dysfunction. This review illustrates the mechanisms of sepsis-induced coagulopathy, with a focus on tissue factor activation, endothelial glycocalyx damage, and the release of neutrophil extracellular traps (NETs), all of which are potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Lin Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Xiaojie Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Provincial Key Medical and Heath Laboratory of Anesthesia and Brain Function, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| |
Collapse
|
35
|
Chen J, Yuan M, Wang J. Research progress of cysteine transporter SLC7A11 in endocrine and metabolic diseases. Mol Biol Rep 2025; 52:185. [PMID: 39899147 DOI: 10.1007/s11033-024-10193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
SLC7A11, often called xCT, belongs to the SLC family of transporters, which mediates the cellular influx of cystine and the efflux of glutamate. These transport processes are crucial for synthesizing GSH, enhancing the cell's ability to mitigate oxidative stress (OS). Emerging studies highlight the pivotal role of OS in triggering and exacerbating various metabolic and endocrine disorders, underlining the critical importance of regulating SLC7A11 expression levels. This study reviews the diverse roles of SLC7A11 in endocrine and metabolic diseases, examining its relationship with the metabolism of three key nutrients: proteins and amino acids, carbohydrates, and lipids. Additionally, the involvement of SLC7A11 in the onset and development of various common endocrine and metabolic disorders is analyzed. Additionally, it provides an overview of the current clinical and experimental use of SLC7A11 inhibitors and agonists. This review aims to offer insightful perspectives into the involvement of SLC7A11 in endocrine and metabolic pathologies and to foster the development of innovative therapeutic strategies that target SLC7A11.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Endocrinology and Metabolic Disease, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Mengzhu Yuan
- Department of Endocrinology and Metabolic Disease, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jianping Wang
- Department of Endocrinology and Metabolic Disease, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
36
|
Wang S, Zhuo D, Lin J, Zhang C. Key Genes and Biological Pathways in Pulmonary Arterial Hypertension Related to Endoplasmic Reticulum Stress Identified by Bioinformatics. J Cardiovasc Pharmacol 2025; 85:108-119. [PMID: 39907642 DOI: 10.1097/fjc.0000000000001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/30/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is a cardiopulmonary vascular condition with an unclear pathogenesis. Targeting endoplasmic reticulum (ER) stress has been suggested as a novel treatment approach for PAH, but the mechanisms involving ER stress-related genes in PAH are not well understood. Microarray data for PAH and ER stress-related genes were analyzed. Differential and Venn analyses identified 17 differentially expressed ER stress-related genes in PAH. Candidate drugs targeting these genes were predicted using the CMap database. A protein-protein interaction (PPI) network was constructed, and hub genes (LCN2, IGF1, VCAM1, EDN1, HMOX1, TLR4) with complex interplays were identified using the STRING database and Cytoscape plugins. The clinical diagnostic performance of the hub genes was evaluated using ROC curves. The GeneMANIA Web site was utilized to predict enriched pathways associated with the hub genes and their functionally similar genes. MiRNAs and transcription factors targeting the hub genes were predicted using the Networkanalyst Web site. The immune levels in control samples and PAH samples were assessed using various algorithms. Nine drug candidates were found to potentially target the identified ER stress-related genes. The hub genes and their correlated genes were significantly enriched in immune-related pathways. The PAH group showed increased immune cell infiltration, indicating a heightened immune response. This study sheds light on the role of ER stress-associated hub genes in PAH and proposes potential drugs targeting these genes. These findings provide valuable insights into PAH mechanisms and support the exploration of ER stress as a therapeutic target.
Collapse
Affiliation(s)
| | - Debin Zhuo
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| | - Juan Lin
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| | - Chunxia Zhang
- Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian University, Putian City, China
| |
Collapse
|
37
|
Chadwick SR, Stack-Couture S, Berg MD, Di Gregorio S, Lung B, Genereaux J, Moir RD, Brandl CJ, Willis IM, Snapp EL, Lajoie P. TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in Saccharomyces cerevisiae. Mol Biol Cell 2025; 36:ar13. [PMID: 39661468 PMCID: PMC11809307 DOI: 10.1091/mbc.e24-04-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA) has been described as a chemical chaperone. While promising in models of protein folding diseases, TUDCA's mechanism of action remains unclear. Here, we found TUDCA can rescue growth of yeast treated with the ER stressor tunicamycin (Tm), even in the absence of a functional UPR. In contrast, TUDCA failed to rescue growth on other ER stressors. Nor could TUDCA attenuate chronic UPR associated with specific gene deletions or overexpression of a misfolded mutant secretory protein. Neither pretreatment with nor delayed addition of TUDCA conferred protection against Tm. Importantly, attenuation of Tm-induced toxicity required TUDCA's critical micelle forming concentration, suggesting a mechanism where TUDCA directly sequesters drugs. Indeed, in several assays, TUDCA-treated cells closely resembled cells treated with lower doses of Tm. In addition, we found TUDCA can inhibit dyes from labeling intracellular compartments. Thus, our study challenges the model of TUDCA as a chemical chaperone and suggests that TUDCA decreases drug bioavailability, allowing cells to adapt to ER stress.
Collapse
Affiliation(s)
- Sarah R. Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Samuel Stack-Couture
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sonja Di Gregorio
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bryan Lung
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Erik L. Snapp
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario N6C 2V5, Canada
| |
Collapse
|
38
|
Guo Z, Li G, Shen L, Pan J, Dou D, Gong Y, Shi W, Sun Y, Zhang Y, Ma K, Cui C, Li W, Liu Q, Zhu X. Ginger-Derived Exosome-Like Nanoparticles Loaded With Indocyanine Green Enhances Phototherapy Efficacy for Breast Cancer. Int J Nanomedicine 2025; 20:1147-1169. [PMID: 39902066 PMCID: PMC11789776 DOI: 10.2147/ijn.s478435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
PURPOSE Phototherapy has remarkable advantages in cancer treatment, owing to its high efficiency and minimal invasiveness. Indocyanine green (ICG) plays an important role in photo-mediated therapy. However, it has several disadvantages such as poor stability in aqueous solutions, easy aggregation of molecules, and short plasma half-life. This study aimed to develop an efficient nanoplatform to enhance the effects of photo-mediated therapy. METHODS We developed a novel bio-nanoplatform by integrating edible ginger-derived exosome-like nanoparticles (GDNPs) and the photosensitizer, ICG (GDNPs@ICG). GDNPs were isolated from ginger juice and loaded with ICG by co-incubation. The size distribution, zeta potential, morphology, total lipid content, and drug release behavior of the GDNPs@ICG were characterized. The photothermal performance, cellular uptake and distribution, cytotoxicity, anti-tumor effects, and mechanism of action of GDNPs@ICG were investigated both in vitro and in vivo. RESULTS GDNPs@ICG were taken up by tumor cells via a lipid-dependent pathway. When irradiated by an 808 nm NIR laser, GDNPs@ICG generated high levels of ROS, MDA, and local hyperthermia within the tumor, which caused lipid peroxidation and ER stress, thus enhancing the photo-mediated breast tumor therapy effect. Furthermore, in vivo studies demonstrated that engineered GDNPs@ICG significantly inhibited breast tumor growth and presented limited toxicity. Moreover, by detecting the expression of CD31, N-cadherin, IL-6, IFN-γ, CD8, p16, p21, and p53 in tumor tissues, we found that GDNPs@ICG substantially reduced angiogenesis, inhibited metastasis, activated the anti-tumor immune response, and promoted cell senescence in breast tumor. CONCLUSION Our study demonstrated that the novel bio-nanoplatform GDNPs@ICG enhanced the photo-mediated therapeutic effect in breast tumor. GDNPs@ICG could be an alternative for precise and efficient anti-tumor phototherapy.
Collapse
Affiliation(s)
- Zhaoming Guo
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Guqing Li
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Lanjun Shen
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Jiawei Pan
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Danni Dou
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Yuwei Gong
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Wanwan Shi
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Yuhua Sun
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Yi Zhang
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Kun Ma
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Changhao Cui
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, People’s Republic of China
| | - Wenxin Li
- The second Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant Tumors, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Qiang Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, People’s Republic of China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant Tumors, Shenyang, Liaoning, 110042, People’s Republic of China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| |
Collapse
|
39
|
Liang C, Chen M, Mu Z, Tian X, Zhao W, Hu Y, Su J. Zinc Transporter 9 (ZnT9) Improves Obesity-Induced Asthenospermia by Attenuating Endoplasmic Reticulum Stress (ERS). Biol Trace Elem Res 2025:10.1007/s12011-025-04512-5. [PMID: 39821185 DOI: 10.1007/s12011-025-04512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
The aim of this study was to explore the role of the ZnT9 protein in obesity-induced sperm maturation disorders in men. We generated a mouse model of obesity-induced weak spermatogenesis via a high-fat diet (HFD) for 10 weeks. In addition to the HFD, a 5-week intervention of salubrinal (SAL) (an inhibitor of endoplasmic reticulum stress) (1 mg/kg/day), ZnSO4 (15 mg/kg/day), and their combination was started at week 6, after which sperm viability and epididymal tissue damage were assessed. To investigate the role of the ZnT9 protein in spermatogenesis, the expression levels of the ZnT9 protein, endoplasmic reticulum stress (ERS)-related protein, Wnt pathway protein, and apoptosis-related protein in epididymal tissue were measured. Compared with those in the normal (N) group, the mice in the HFD group presented decreased sperm motility, damaged epididymal tissue, epididymal tissue showed decreased expression of ZnT9, β-catenin, LEF protein and mRNA, and increased expression of total cholesterol (TC) and triglycerides (TG), GRP78, Caspase-3, BAX protein and mRNA, as well as increased apoptosis as shown by TUNEL staining. Compared with the HFD group, HFD + ZnSO4 group, HFD + SAL group, and HFD + ZnSO4 + SAL groups resulted in reduced epididymal damage, improved decreased total cholesterol (TC) and triglycerides (TG), sperm viability, increased expression of ZnT9, β-catenin, LEF protein and mRNA, and decreased expression of GRP78, Caspase-3, and BAX protein and mRNA, as well as decreased apoptosis as shown by TUNEL staining in epididymal tissues. According to this study, obesity leads to elevated ERS and affects ZnT9 protein synthesis. Inhibition of the Wnt pathway ultimately leads to cell death and damage in epididymal tissue and decreased sperm viability.
Collapse
Affiliation(s)
- Chen Liang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Mingyang Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Zhidan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Xinyan Tian
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medicine, Dali University, Dali, 671003, China
| | - Yarong Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China.
| | - Juan Su
- Department of Physiology and Pathophysiology, School of Basic Medicine, Dali University, Dali, 671003, China.
| |
Collapse
|
40
|
Liao W, Wang C, Wang R, Wu M, Li L, Chao P, Hu J, Chen WH. An activatable "AIE + ESIPT" fluorescent probe for dual-imaging of lipid droplets and hydrogen peroxide in drug-induced liver injury model. Anal Chim Acta 2025; 1335:343442. [PMID: 39643298 DOI: 10.1016/j.aca.2024.343442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is one of the most common liver diseases. The crucial role of lipid droplets (LDs) and hydrogen peroxide (H2O2), two important biomarkers in the pathophysiology of DILI, has spurred considerable efforts to accurately visualize H2O2 and LDs for elucidating their functions in the progression of DILI. However, construction of a single fluorescent probe that is able to simultaneously image H2O2 and LDs dynamics remains to be a challenging task. Therefore, it is of great demand to develop a novel fluorescent probe for tracking the LDs status and H2O2 fluctuation in drug-induced liver injury. RESULTS We developed an "AIE + ESIPT" fluorescent probe TPEHBT for dual-imaging of LDs and H2O2 during DILI process. TPEHBT displayed greatly enhanced fluorescent response to H2O2 by generating an excited state intramolecular proton transfer (ESIPT) fluorophore TPEHBT-OH with aggregation induced emission (AIE) properties. TPEHBT exhibits high selectivity, sensitivity (LOD = 4.73 nM) and large Stokes shift (320 nm) to H2O2. Interestingly, TPEHBT can light up LDs with high specificity. The probe was favorably applied in the detection of endogenous and exogenous H2O2 in living cells, and notably in the simultaneous real-time visualization of H2O2 generation and LDs accumulation during DILI process. Moreover, TPEHBT was able to image H2O2 generation in zebrafish animal model with APAP-induced liver injury. SIGNIFICANCE For the first time, probe TPEHBT was applied in the dual-imaging of H2O2 fluctuation and LDs status in APAP-induced liver injury model in vitro and in vivo. The present findings strongly suggest that TPEHBT is a promising tool for monitoring H2O2 and LDs dynamics in DILI progression.
Collapse
Affiliation(s)
- Wantao Liao
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Chunzheng Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Ruiya Wang
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Mengzhao Wu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| | - Pengjie Chao
- School of Applied Physics and Materials, Wuyi University, 529020, Jiangmen, PR China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, PR China.
| |
Collapse
|
41
|
Zhao X, Shang L, Shen C. Daphnetin ameliorates diabetic cardiomyopathy by regulating inflammation and endoplasmic reticulum stress-induced apoptosis. Exp Anim 2025; 74:49-57. [PMID: 39111852 PMCID: PMC11742473 DOI: 10.1538/expanim.24-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/31/2024] [Indexed: 01/15/2025] Open
Abstract
Daphnetin has been demonstrated to exert beneficial effects on diabetes mellitus and renal complications. However, the role and molecular mechanism of daphnetin in diabetic cardiomyopathy (DCM) remain unclear. In this study, rats were injected with streptozotocin (STZ) to induce diabetes. The diabetic rats were then administered daphnetin (1 and 4 mg/kg) or dimethyl sulfoxide (DMSO) daily for 12 weeks. The results demonstrated that the diabetic rats exhibited elevated blood glucose levels, which were dose-dependently ameliorated by daphnetin. At 13 weeks following STZ injection, the rats exhibited typical diabetic signs, cardiac dysfunction, and evident pathological alterations in myocardial tissues. The administration of daphnetin to diabetic rats resulted in improvement in cardiac function, reductions in myocardial injury biomarkers, and the inhibition of myocardial fibrosis. Furthermore, daphnetin treatment suppressed inflammation and endoplasmic reticulum stress-induced apoptosis in a dose-dependent manner. Additionally, daphnetin exhibited partial blockade of the activation of mitogen-activated protein kinase pathways induced by diabetes. These findings indicate that daphnetin may be a promising therapeutic agent for the treatment of DCM.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P.R. China
| | - Longqi Shang
- Department of Nursing, The Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Shenyang, Liaoning Province 110000, P.R. China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, 20 Huanghe South Street,, Shenyang, Liaoning Province 110000, P.R. China
| |
Collapse
|
42
|
Maimó-Barceló A, Pérez-Romero K, Rodríguez RM, Huergo C, Calvo I, Fernández JA, Barceló-Coblijn G. To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics. Prog Lipid Res 2025; 97:101319. [PMID: 39765282 DOI: 10.1016/j.plipres.2025.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Lipid imaging mass spectrometry (LIMS) allows for establishing the bidimensional distribution of lipid species within a tissue section. One of the main advantages is the generation of spatial information on lipid species distribution at a spatial (lateral) resolution bordering on single-cell resolution with no need to isolate cells. Thus, LIMS images demonstrate, with a level of detail never described before, that lipid profiles are highly sensitive to cell type and pathophysiological state. The wealth and relevance of the information conveyed by LIMS makes up for the lack of a separation stage before sample injection into the mass analyzer, which can somehow be circumvented by other means. Hence, the possibility of describing the lipidome at the cellular level while preserving the microenvironment offers an incomparable opportunity to investigate physiological and pathological contexts. However, to fully grasp the biological implications of the lipid profiles, it is essential to contextualize LIMS data within the broader multiscale 'omic' landscape, entailing genomics, epigenomics, and proteomics, each offering a unique window into the regulatory layers of the cell. In this line, the number of techniques that can be combined with LIMS to delve into the molecular mechanisms underlying differential lipid profiles is continuously increasing. Herein, we aim to describe the key features of LIMS analyses, from sample preparation to data interpretation, as well as the current methodologies to enrich and complete the final outcome. While the field is rapidly advancing, we consider there is solid evidence to foresee the incorporation of LIMS into clinical environments.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Ramón M Rodríguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ibai Calvo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - José A Fernández
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain.
| |
Collapse
|
43
|
Li Y, Qi J, Guo L, Jiang X, He G. Organellar quality control crosstalk in aging-related disease: Innovation to pave the way. Aging Cell 2025; 24:e14447. [PMID: 39668579 PMCID: PMC11709098 DOI: 10.1111/acel.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Organellar homeostasis and crosstalks within a cell have emerged as essential regulatory and determining factors for the survival and functions of cells. In response to various stimuli, cells can activate the organellar quality control systems (QCS) to maintain homeostasis. Numerous studies have demonstrated that dysfunction of QCS can lead to various aging-related diseases such as neurodegenerative, pulmonary, cardiometabolic diseases and cancers. However, the interplay between QCS and their potential role in these diseases are poorly understood. In this review, we present an overview of the current findings of QCS and their crosstalk, encompassing mitochondria, endoplasmic reticulum, Golgi apparatus, ribosomes, peroxisomes, lipid droplets, and lysosomes as well as the aberrant interplays among these organelles that contributes to the onset and progression of aging-related disorders. Furthermore, potential therapeutic approaches based on these quality control interactions are discussed. Our perspectives can enhance insights into the regulatory networks underlying QCS and the pathology of aging and aging-related diseases, which may pave the way for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yu Li
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Jinxin Qi
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
| | - Linhong Guo
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xian Jiang
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Gu He
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
44
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
45
|
Yang B, Yang K, Xi R, Chen J, Wu Y. Quercetin Alleviates All- Trans-Retinal-Induced Photoreceptor Apoptosis and Retinal Degeneration by Inhibiting the ER Stress-Related PERK Signaling. Int J Mol Sci 2024; 25:13624. [PMID: 39769385 PMCID: PMC11727799 DOI: 10.3390/ijms252413624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
All-trans-retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear. This study investigated the protective effects of quercetin against atRAL-induced photoreceptor damage. Using atRAL-loaded 661W photoreceptor cells, we evaluated cell viability, ROS generation, and endoplasmic reticulum (ER) stress under quercetin treatment. Quercetin significantly restored the cell viability (to 70%) and reduced ROS generation in atRAL-treated 661W cells. Additionally, Western blot analysis demonstrated that quercetin mitigated protein kinase RNA-like ER kinase (PERK) signaling, preventing ER stress-induced apoptosis. Importantly, in Abca4-/-Rdh8-/- mice, an animal model of light-induced atRAL accumulation in the retina, quercetin treatment effectively alleviated light-exposed photoreceptor atrophy and retinal degeneration by attenuating PERK signaling. Thus, quercetin protected photoreceptor cells from atRAL-induced damage by inhibiting ROS generation and PERK signaling, which suggests its potential as a therapeutic agent for atRAL-related retinal degeneration.
Collapse
Affiliation(s)
- Bo Yang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunhuan Yang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ruitong Xi
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
46
|
Wang H, Nikain C, Fortounas KI, Amengual J, Tufanli O, La Forest M, Yu Y, Wang MC, Watts R, Lehner R, Qiu Y, Cai M, Kurland IJ, Goldberg IJ, Rajan S, Hussain MM, Brodsky JL, Fisher EA. FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver. Mol Metab 2024; 90:102048. [PMID: 39426520 PMCID: PMC11574801 DOI: 10.1016/j.molmet.2024.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVE Triglycerides (TGs) associate with apolipoprotein B100 (apoB100) to form very low density lipoproteins (VLDLs) in the liver. The repertoire of factors that facilitate this association is incompletely understood. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytosolic lipid droplet (LD) biogenesis in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen. METHODS Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, stimulated Raman scattering (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy. MAIN FINDINGS 1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to low density lipoprotein (LDL) density; 3) Both in vitro and in vivo, when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress. CONCLUSION The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be an important factor in the partitioning of TG between cytosolic LDs and VLDL particles.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Cyrus Nikain
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center and Weill Graduate School of Medical Sciences, Cornell University, NY, USA
| | - Konstantinos I Fortounas
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Jaume Amengual
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA
| | - Ozlem Tufanli
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Maxwell La Forest
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Yong Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Russell Watts
- Department of Pediatrics and Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Department of Pediatrics and Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Min Cai
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Ira J Goldberg
- Department of Medicine (Endocrinology), NYU Grossman School of Medicine, NY, USA
| | - Sujith Rajan
- Department of Foundations of Medicine and Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine and Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences and the Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA.
| |
Collapse
|
47
|
Luo W, Xu Z, Li F, Ding L, Wang R, Lin Y, Mao X, Chen X, Li Y, Lu Z, Xie H, Wang H, Zhu Z, Lu Y, Guo L, Yu X, Xia L, He HH, Li G. m6Am Methyltransferase PCIF1 Promotes LPP3 Mediated Phosphatidic Acid Metabolism and Renal Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404033. [PMID: 39422663 PMCID: PMC11633504 DOI: 10.1002/advs.202404033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
N6-methyl-2'-O-methyladenosine (m6Am), occurring adjacent to the 7-methylguanosine (m7G) cap structure and catalyzed by the newly identified writer PCIF1 (phosphorylated CTD interacting factor 1), has been implicated in the pathogenesis of various diseases. However, its involvement in renal cell carcinoma (RCC) remains unexplored. Here, significant upregulation of PCIF1 and m6Am levels in RCC tissues are identified, unveiling their oncogenic roles both in vitro and in vivo. Mechanically, employing m6Am-Exo-Seq, LPP3 (phospholipid phosphatase 3) mRNA is identified as a key downstream target whose translation is enhanced by m6Am modification. Furthermore, LPP3 is revealed as a key regulator of phosphatidic acid metabolism, critical for preventing its accumulation in mitochondria and facilitating mitochondrial fission. Consequently, Inhibition of the PCIF1/LPP3 axis significantly altered mitochondrial morphology and reduced RCC tumor progression. In addition, depletion of PCIF1 sensitizes RCC to sunitinib treatment. This study highlights the intricate interplay between m6Am modification, phosphatidic acid metabolism, and mitochondrial dynamics, offering a promising therapeutic avenue for RCC.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zhehao Xu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Fan Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Lifeng Ding
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ruyue Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yudong Lin
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xudong Mao
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xianjiong Chen
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yang Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zeyi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Haiyun Xie
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Huan Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ziwei Zhu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Luying Guo
- Kidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
| | - Xiaojing Yu
- Department of RadiologySir Run Run Shaw hospitalZhejiang University School of MedicineHangzhou310016China
| | - Liqun Xia
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Housheng Hansen He
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Gonghui Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| |
Collapse
|
48
|
Fu Y, Wang S, Meng L, Liu Y. A lncRNA signature associated with endoplasmic reticulum stress supports prognostication and prediction of drug resistance in acute myelogenous leukemia. Transl Cancer Res 2024; 13:6165-6181. [PMID: 39697706 PMCID: PMC11651774 DOI: 10.21037/tcr-24-722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/14/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Acute myelogenous leukemia (AML) is a type of blood cancer that is characterized by the accumulation of young and undeveloped myeloid cells in the bone marrow. It is considered a heterogeneous disease due to its diverse nature. Endoplasmic reticulum (ER) stress has emerged as a critical regulator of tumor development and drug resistance in various cancers. Long non-coding RNAs (lncRNAs) have been found to play a role in the development and prognosis of AML. Nonetheless, there is still limited understanding regarding the involvement of ER stress-related lncRNAs in AML prognosis and their predictive ability for drug resistance. The objective of this study was to examine the potential prognostic and predictive significance of an ER stress-related lncRNA signature in patients diagnosed with AML. METHODS Based on the bulk RNA sequence data, we constructed an ER stress-related lncRNA signature using least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis. We established nomograms and calibration curves to assess the clinical value of the signature by analyzing overall survival (OS) rates between different risk groups. We also conducted tumor mutation burden (TMB) analysis, predicted immune responses, performed functional and biological enrichment analysis, and evaluated drug sensitivity to investigate the impact of the prognostic signature. Additionally, we built a consensus cluster to explore the need for personalized immunotherapy approaches in treating patients with AML. RESULTS A prognostic signature was constructed using 227 ER stress-related lncRNAs that showed differential expression. Patients in the high-risk category demonstrated decreased OS rates in comparison to individuals in the low-risk category. The findings from the nomogram and receiver operating characteristic (ROC) curve analysis suggest a notable disparity in age between the different categories. Among the group at high risk, we noticed a considerably greater TMB in comparison to the low-risk group. Furthermore, individuals with both an elevated risk score and high TMB demonstrated the most unfavorable survival rates. Significant differences were observed in the immune responses between the groups classified as high- and low-risk. We then systematically evaluated three different clusters to assess immune responses and drug responses. Through analyzing the association between the risk score and various medications, we have discovered 18 potential drug contenders capable of effectively addressing AML. Furthermore, we conducted pathway analyses to determine the targeted pathways of these drugs. CONCLUSIONS Our data serve as a valuable resource for decoding the immune responses, somatic mutational landscape, drug resistance, and potential biological functions in AML patients. Additionally, our findings offer valuable insights into the association between related lncRNAs and the immune microenvironment of AML. It provides us with promising insights that can help in the development of precise therapeutic strategies.
Collapse
Affiliation(s)
- Yu Fu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Shupeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Lingyu Meng
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Li Y, Xu K, Zhou A, Xu Z, Wu J, Peng X, Mei S, Chen H. Integrative Transcriptomics and Proteomics Analysis Reveals THRSP's Role in Lipid Metabolism. Genes (Basel) 2024; 15:1562. [PMID: 39766829 PMCID: PMC11675175 DOI: 10.3390/genes15121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Abnormalities in lipid metabolism and endoplasmic reticulum (ER) stress are strongly associated with the development of a multitude of pathological conditions, including nonalcoholic fatty liver disease (NAFLD), diabetes mellitus, and obesity. Previous studies have indicated a potential connection between thyroid hormone responsive (THRSP) and lipid metabolism and that ER stress may participate in the synthesis of key regulators of adipogenesis. However, the specific mechanisms remain to be investigated. Methods: In this study, we explored the roles of THRSP in lipid metabolism by interfering with THRSP gene expression in mouse mesenchymal stem cells, comparing the effects on adipogenesis between control and interfered groups, and by combining transcriptomic and proteomic analysis. Results: Our results showed that the number of lipid droplets was significantly reduced after interfering with THRSP, and the expression levels of key regulators of adipogenesis, such as LPL, FABP4, PLIN1, and CIDEC, were significantly downregulated. Both transcriptomic and proteomic results showed that the differential genes (proteins) were enriched in the processes of lipolytic regulation, ER stress, cholesterol metabolism, sphingolipid metabolism, PPAR signaling pathway, and glycerophospholipid metabolism. The ER stress marker gene, ATF6, was the most significantly downregulated transcription factor. In addition, RT-qPCR validation indicated that the expression levels of PPAR signaling pathway gene SCD1; key genes of lipid droplet generation including LIPE, DGAT1, and AGPAT2; and ER stress marker gene ATF6 were significantly downregulated. Conclusions: These suggest that THRSP is involved in regulating ER stress and the PPAR signaling pathway, which is closely related to lipid synthesis and metabolism. Interfering with the expression of THRSP may be helpful in ameliorating the occurrence of diseases related to abnormalities in lipid metabolism.
Collapse
Affiliation(s)
- Yujie Li
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Ke Xu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhong Xu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Junjing Wu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Xianwen Peng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Shuqi Mei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Z.X.); (J.W.); (X.P.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (K.X.); (A.Z.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
50
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|