1
|
Ciani C, Falcone C. Interlaminar and varicose-projection astrocytes: toward a new understanding of the primate brain. Front Cell Neurosci 2024; 18:1477753. [PMID: 39655243 PMCID: PMC11626530 DOI: 10.3389/fncel.2024.1477753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
In the last years, science started to move toward a more glio-neurocentric view, in which astrocytes are hypothesized to be directly involved in cognitive functions. Indeed, astrocytes show a variety of shapes with species-specific characteristics, suggesting a specialization of roles during evolution. Interlaminar (ILA) and varicose-projection (VP-As) astrocytes show an anatomical organization that is different compared to the classical horizontal net typically formed by protoplasmic and fibrous astrocytes. ILAs show a modular architecture with the soma in the first cortical layer and processes toward the deep layers with species-specific length. VP-As reside in the deep layers of the cortex, are characterized by varicosities on the longest processes, and are individual-specific. These characteristics suggest roles that are more complex than what was theorized until now. Here, we recapitulate what we know so far from literature from the first time ILAs were described to the most recent discoveries, spanning from morphology description, hypothesis on the development to their features in diseases. For a complete glance on this topic, we included a final paragraph on which techniques and models were used to study ILAs and VP-As, and what new avenues may be opened thanks to more novel methods.
Collapse
Affiliation(s)
| | - Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
2
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Akter M, Fu Z, Zheng X, Iqbal Z, Zhang N, Karim A, Li Y. Astrocytic GPCR signaling in the anterior cingulate cortex modulates decision making in rats. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae010. [PMID: 38915791 PMCID: PMC11194462 DOI: 10.1093/oons/kvae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Decision making is a process of selecting a course of action by assessing the worth or value of the potential consequences. Rat Gambling Task (RGT) is a well-established behavioral paradigm that allows for assessment of the decision-making performance of rats. Astrocytes are emerging as key players in modulating cognitive functions. Using repeated RGTs with short intersession time intervals (48 h), the current study demonstrates that Gi pathway activation of astrocytes in the anterior cingulate cortex (ACC) leads to impaired decision-making in consistently good decision-making rats. On the other hand, ACC astrocytic Gq pathway activation improves decision-making in a subset of rats who are not consistently good decision-makers. Furthermore, we show that astrocytic Gq activation is associated with an increase in the L-lactate level in the extracellular fluid of the ACC. Together, these results expand our knowledge of the role of astrocytic GPCR signaling in modulating cognitive functions.
Collapse
Affiliation(s)
- Mastura Akter
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Zhongqi Fu
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Xianlin Zheng
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Zafar Iqbal
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 17W, Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
| | - Na Zhang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Anwarul Karim
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 17W, Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
4
|
Lombardi AM, Wong H, Bower ME, Milstead R, Borski C, Schmitt E, Griffioen M, LaPlante L, Ehringer MA, Stitzel J, Hoeffer CA. AKT2 modulates astrocytic nicotine responses in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596856. [PMID: 38854016 PMCID: PMC11160815 DOI: 10.1101/2024.05.31.596856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A better understanding of nicotine neurobiology is needed to reduce or prevent chronic addiction, ameliorate the detrimental effects of nicotine withdrawal, and increase successful cessation of use. Nicotine binds and activates two astrocyte-expressed nicotinic acetylcholine receptors (nAChRs), α4β2 and α7. We recently found that Protein kinase B-β (Pkb-β or Akt2) expression is restricted to astrocytes in mice and humans. To determine if AKT2 plays a role in astrocytic nicotinic responses, we generated astrocyte-specific Akt2 conditional knockout (cKO) and full Akt2 KO mice for in vivo and in vitro experiments. For in vivo studies, we examined mice exposed to chronic nicotine for two weeks in drinking water (200 μg/mL) and following acute nicotine challenge (0.09, 0.2 mg/kg) after 24 hrs. Our in vitro studies used cultured mouse astrocytes to measure nicotine-dependent astrocytic responses. We validated our approaches using lipopolysaccharide (LPS) exposure inducing astrogliosis. Sholl analysis was used to measure glial fibrillary acidic protein responses in astrocytes. Our data show that wild-type (WT) mice exhibit increased astrocyte morphological complexity during acute nicotine exposure, with decreasing complexity during chronic nicotine use, whereas Akt2 cKO mice showed increased astrocyte morphology complexity. In culture, we found that 100μM nicotine was sufficient for morphological changes and blocking α7 or α4β2 nAChRs prevented observed morphologic changes. Finally, we performed conditioned place preference (CPP) in Akt2 cKO mice and found that astrocytic AKT2 deficiency reduced nicotine preference compared to controls. These findings show the importance of nAChRs and Akt2 signaling in the astrocytic response to nicotine.
Collapse
Affiliation(s)
- Andrew M. Lombardi
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
| | - Helen Wong
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Myra E. Bower
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Ryan Milstead
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Emily Schmitt
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
| | - Mina Griffioen
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Marissa A. Ehringer
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Jerry Stitzel
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
| | - Charles A. Hoeffer
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80303
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309
- Linda Crnic Institute, Anschutz Medical Center, Aurora, CO 80045
| |
Collapse
|
5
|
Guidolin D, Tortorella C, De Caro R, Agnati LF. A Self-Similarity Logic May Shape the Organization of the Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 36:203-225. [PMID: 38468034 DOI: 10.1007/978-3-031-47606-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
From the morphological point of view, the nervous system exhibits a fractal, self-similar geometry at various levels of observations, from single cells up to cell networks. From the functional point of view, it is characterized by a hierarchical organization in which self-similar structures (networks) of different miniaturizations are nested within each other. In particular, neuronal networks, interconnected to form neuronal systems, are formed by neurons, which operate thanks to their molecular networks, mainly having proteins as components that via protein-protein interactions can be assembled in multimeric complexes working as micro-devices. On this basis, the term "self-similarity logic" was introduced to describe a nested organization where, at the various levels, almost the same rules (logic) to perform operations are used. Self-similarity and self-similarity logic both appear to be intimately linked to the biophysical evidence for the nervous system being a pattern-forming system that can flexibly switch from one coherent state to another. Thus, they can represent the key concepts to describe its complexity and its concerted, holistic behavior.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy.
| | | | | | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Kim CS. Roles of Diet-Associated Gut Microbial Metabolites on Brain Health: Cell-to-Cell Interactions between Gut Bacteria and the Central Nervous System. Adv Nutr 2024; 15:100136. [PMID: 38436218 PMCID: PMC10694655 DOI: 10.1016/j.advnut.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/21/2023] [Accepted: 10/26/2023] [Indexed: 03/05/2024] Open
Abstract
Gut microbiota have crucial effects on brain function via the gut-brain axis. Growing evidence suggests that this interaction is mediated by signaling molecules derived from dietary components metabolized by the intestinal microbiota. Although recent studies have provided a substantial understanding of the cell-specific effects of gut microbial molecules in gut microbiome-brain research, further validation is needed. This review presents recent findings on gut microbiota-derived dietary metabolites that enter the systemic circulation and influence the cell-to-cell interactions between gut microbes and cells in the central nervous system (CNS), particularly microglia, astrocytes, and neuronal cells, ultimately affecting cognitive function, mood, and behavior. Specifically, this review highlights the roles of metabolites produced by the gut microbiota via dietary component transformation, including short-chain fatty acids, tryptophan metabolites, and bile acid metabolites, in promoting the function and maturation of brain cells and suppressing inflammatory signals in the CNS. We also discuss future directions for gut microbiome-brain research, focusing on diet-induced microbial metabolite-based therapies as possible novel approaches to mental health treatment.
Collapse
Affiliation(s)
- Chong-Su Kim
- Department of Food and Nutrition, College of Natural Information Sciences, Dongduk Women's University, Seoul 02748, Republic of Korea.
| |
Collapse
|
7
|
Hastings N, Yu Y, Huang B, Middya S, Inaoka M, Erkamp NA, Mason RJ, Carnicer‐Lombarte A, Rahman S, Knowles TPJ, Bance M, Malliaras GG, Kotter MRN. Electrophysiological In Vitro Study of Long-Range Signal Transmission by Astrocytic Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301756. [PMID: 37485646 PMCID: PMC10582426 DOI: 10.1002/advs.202301756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Astrocytes are diverse brain cells that form large networks communicating via gap junctions and chemical transmitters. Despite recent advances, the functions of astrocytic networks in information processing in the brain are not fully understood. In culture, brain slices, and in vivo, astrocytes, and neurons grow in tight association, making it challenging to establish whether signals that spread within astrocytic networks communicate with neuronal groups at distant sites, or whether astrocytes solely respond to their local environments. A multi-electrode array (MEA)-based device called AstroMEA is designed to separate neuronal and astrocytic networks, thus allowing to study the transfer of chemical and/or electrical signals transmitted via astrocytic networks capable of changing neuronal electrical behavior. AstroMEA demonstrates that cortical astrocytic networks can induce a significant upregulation in the firing frequency of neurons in response to a theta-burst charge-balanced biphasic current stimulation (5 pulses of 100 Hz × 10 with 200 ms intervals, 2 s total duration) of a separate neuronal-astrocytic group in the absence of direct neuronal contact. This result corroborates the view of astrocytic networks as a parallel mechanism of signal transmission in the brain that is separate from the neuronal connectome. Translationally, it highlights the importance of astrocytic network protection as a treatment target.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Yi‐Lin Yu
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Department of Neurological SurgeryTri‐Service General HospitalNational Defence Medical CentreTaipei, Neihu District11490Taiwan
| | - Botian Huang
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - Sagnik Middya
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Misaki Inaoka
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Nadia A. Erkamp
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Roger J. Mason
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | | | - Saifur Rahman
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AveCambridgeCB3 0HEUK
| | - Manohar Bance
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Mark R. N. Kotter
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| |
Collapse
|
8
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
9
|
Cervetto C, Maura G, Guidolin D, Amato S, Ceccoli C, Agnati LF, Marcoli M. Striatal astrocytic A2A-D2 receptor-receptor interactions and their role in neuropsychiatric disorders. Neuropharmacology 2023:109636. [PMID: 37321323 DOI: 10.1016/j.neuropharm.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
It is now generally accepted that astrocytes are active players in synaptic transmission, so that a neurocentric perspective of the integrative signal communication in the central nervous system is shifting towards a neuro-astrocentric perspective. Astrocytes respond to synaptic activity, release chemical signals (gliotransmitters) and express neurotransmitter receptors (G protein-coupled and ionotropic receptors), thus behaving as co-actors with neurons in signal communication in the central nervous system. The ability of G protein-coupled receptors to physically interact through heteromerization, forming heteromers and receptor mosaics with new distinct signal recognition and transduction pathways, has been intensively studied at neuronal plasma membrane, and has changed the view of the integrative signal communication in the central nervous system. One of the best-known examples of receptor-receptor interaction through heteromerization, with relevant consequences for both the physiological and the pharmacological points of view, is given by adenosine A2A and dopamine D2 receptors on the plasma membrane of striatal neurons. Here we review evidence that native A2A and D2 receptors can interact through heteromerization at the plasma membrane of astrocytes as well. Astrocytic A2A-D2 heteromers were found able to control the release of glutamate from the striatal astrocyte processes. A2A-D2 heteromers on striatal astrocytes and astrocyte processes are discussed as far as their potential relevance in the control of glutamatergic transmission in striatum is concerned, including potential roles in glutamatergic transmission dysregulation in pathological conditions including schizophrenia or the Parkinson's disease.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Italy.
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Cristina Ceccoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Luigi F Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy; Center of Excellence for Biomedical Research, University of Genova, Italy.
| |
Collapse
|
10
|
Pereira A, Garcia JW, Muotri A. Neural Stimulation of Brain Organoids with Dynamic Patterns: A Sentiomics Approach Directed to Regenerative Neuromedicine. NEUROSCI 2023; 4:31-42. [PMID: 39484293 PMCID: PMC11523742 DOI: 10.3390/neurosci4010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 11/03/2024] Open
Abstract
The new science called Sentiomics aims to identify the dynamic patterns that endow living systems with the capacity to feel and become conscious. One of the most promising fields of investigation in Sentiomics is the development and 'education' of human brain organoids to become sentient and useful for the promotion of human health in the (also new) field of Regenerative Neuromedicine. Here, we discuss the type of informational-rich input necessary to make a brain organoid sentient in experimental settings. Combining this research with the ecological preoccupation of preserving ways of sentience in the Amazon Rainforest, we also envisage the development of a new generation of biosensors to capture dynamic patterns from the forest, and use them in the 'education' of brain organoids to afford them a 'mental health' quality that is likely to be important in future advances in 'post-humanist' procedures in regenerative medicine. This study is closely related to the psychophysical approach to human mental health therapy, in which we have proposed the use of dynamic patterns in electric and magnetic brain stimulation protocols, addressing electrochemical waves in neuro-astroglial networks.
Collapse
Affiliation(s)
- Alfredo Pereira
- Philosophy Graduate Program, UNESP/Marilia Campus, São Paulo State University, Botucatu 18618-689, Brazil
| | - José Wagner Garcia
- Architecture and Urbanism, USP and PUC, São Paulo, Brazil
- Media Lab, MIT, Cambridge, MA, USA
| | - Alysson Muotri
- Stem Cell Program, Department of Pediatrics & Cellular Molecular Medicine/UCSD, Institute for Genomic Medicine, San Diego, CA, USA
| |
Collapse
|
11
|
Higinio-Rodríguez F, Rivera-Villaseñor A, Calero-Vargas I, López-Hidalgo M. From nociception to pain perception, possible implications of astrocytes. Front Cell Neurosci 2022; 16:972827. [PMID: 36159392 PMCID: PMC9492445 DOI: 10.3389/fncel.2022.972827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Astrocytes are determinants for the functioning of the CNS. They respond to neuronal activity with calcium increases and can in turn modulate synaptic transmission, brain plasticity as well as cognitive processes. Astrocytes display sensory-evoked calcium responses in different brain structures related to the discriminative system of most sensory modalities. In particular, noxious stimulation evoked calcium responses in astrocytes in the spinal cord, the hippocampus, and the somatosensory cortex. However, it is not clear if astrocytes are involved in pain. Pain is a private, personal, and complex experience that warns us about potential tissue damage. It is a perception that is not linearly associated with the amount of tissue damage or nociception; instead, it is constructed with sensory, cognitive, and affective components and depends on our previous experiences. However, it is not fully understood how pain is created from nociception. In this perspective article, we provide an overview of the mechanisms and neuronal networks that underlie the perception of pain. Then we proposed that coherent activity of astrocytes in the spinal cord and pain-related brain areas could be important in binding sensory, affective, and cognitive information on a slower time scale.
Collapse
Affiliation(s)
- Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isnarhazni Calero-Vargas
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Mónica López-Hidalgo,
| |
Collapse
|
12
|
Marx G, Gilon C. History of Chemical Notations from Alchemy to Psycho‐Chemistry. Isr J Chem 2022. [DOI: 10.1002/ijch.202100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Chaim Gilon
- Institute of Chemistry Hebrew University Jerusalem 9675518 Israel
| |
Collapse
|
13
|
Zeltser G, Sukhanov IM, Nevorotin AJ. MMM - The molecular model of memory. J Theor Biol 2022; 549:111219. [PMID: 35810778 DOI: 10.1016/j.jtbi.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Identifying mechanisms underlying neurons ability to process information including acquisition, storage, and retrieval plays an important role in the understanding of the different types of memory, pathogenesis of many neurological diseases affecting memory and therapeutic target discovery. However, the traditional understanding of the mechanisms of memory associated with the electrical signals having a unique combination of frequency and amplitude does not answer the question how the memories can survive for life-long periods of time, while exposed to synaptic noise. Recent evidence suggests that, apart from neuronal circuits, a diversity of the molecular memory (MM) carriers, are essential for memory performance. The molecular model of memory (MMM) is proposed, according to which each item of incoming information (the elementary memory item - eMI) is encoded by both circuitries, with the unique for a given MI electrical parameters, and also the MM carriers, unique by its molecular composition. While operating as the carriers of incoming information, the MMs, are functioning within the neuron plasma membrane. Inactive (latent) initially, during acquisition each of the eMIs is activated to become a virtual copy of some real fact or events bygone. This activation is accompanied by the considerable remodeling of the MM molecule associated with the resonance effect.
Collapse
Affiliation(s)
| | - Ilya M Sukhanov
- Lab. Behavioral Pharmacology, Dept. Psychopharmacology, Valdman Institute of Pharmacology, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| | - Alexey J Nevorotin
- Laboratory of Electron Microscopy, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| |
Collapse
|
14
|
Vicente-Acosta A, Ceprian M, Sobrino P, Pazos MR, Loría F. Cannabinoids as Glial Cell Modulators in Ischemic Stroke: Implications for Neuroprotection. Front Pharmacol 2022; 13:888222. [PMID: 35721207 PMCID: PMC9199389 DOI: 10.3389/fphar.2022.888222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is the second leading cause of death worldwide following coronary heart disease. Despite significant efforts to find effective treatments to reduce neurological damage, many patients suffer from sequelae that impair their quality of life. For this reason, the search for new therapeutic options for the treatment of these patients is a priority. Glial cells, including microglia, astrocytes and oligodendrocytes, participate in crucial processes that allow the correct functioning of the neural tissue, being actively involved in the pathophysiological mechanisms of ischemic stroke. Although the exact mechanisms by which glial cells contribute in the pathophysiological context of stroke are not yet completely understood, they have emerged as potentially therapeutic targets to improve brain recovery. The endocannabinoid system has interesting immunomodulatory and protective effects in glial cells, and the pharmacological modulation of this signaling pathway has revealed potential neuroprotective effects in different neurological diseases. Therefore, here we recapitulate current findings on the potential promising contribution of the endocannabinoid system pharmacological manipulation in glial cells for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Andrés Vicente-Acosta
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Ceprian
- ERC Team, PGNM, INSERM U1315, CNRS UMR5261, University of Lyon 1, University of Lyon, Lyon, France
| | - Pilar Sobrino
- Departamento de Neurología, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Maria Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Frida Loría
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| |
Collapse
|
15
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
16
|
Developing the Concepts of Homeostasis, Homeorhesis, Allostasis, Elasticity, Flexibility and Plasticity of Brain Function. NEUROSCI 2021. [DOI: 10.3390/neurosci2040027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
I discuss some concepts advanced for the understanding of the complex dynamics of brain functions, and relate them to approaches in affective, cognitive and action neurosciences. These functions involve neuro-glial interactions in a dynamic system that receives sensory signals from the outside of the central nervous system, processes information in frequency, amplitude and phase-modulated electrochemical waves, and control muscles and glands to generate behavioral patterns. The astrocyte network is in charge of controlling global electrochemical homeostasis, and Hodgkin–Huxley dynamics drive the bioelectric homeostasis of single neurons. In elastic processes, perturbations cause instability, but the system returns to the basal equilibrium. In allostatic processes, perturbations elicit a response from the system, reacting to the deviation and driving the system to stable states far from the homeostatic equilibrium. When the system does not return to a fixed point or region of the state space, the process is called homeorhetic, and may present two types of evolution: (a) In flexible processes, there are previously existing “attractor” stable states that may be achieved after the perturbation, depending on context; (b) In plastic processes, the homeostatic set point(s) is(are) changed; the system is in a process of adaptation, in which the allostatic forces do not drive it back to the previous set point, but project to the new one. In the temporal phase from the deviant state to the recovery of stability, the system generates sensations that indicate if the recovery is successful (pleasure-like sensations) or if there is a failure (pain-like sensations).
Collapse
|
17
|
Wang XL, Li L. Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions. Front Cell Neurosci 2021; 15:722028. [PMID: 34720877 PMCID: PMC8549960 DOI: 10.3389/fncel.2021.722028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are brain resident macrophages, which actively survey the surrounding microenvironment and promote tissue homeostasis under physiological conditions. During this process, microglia participate in synaptic remodeling, neurogenesis, elimination of unwanted neurons and cellular debris. The complex interplay between microglia and neurons drives the formation of functional neuronal connections and maintains an optimal neural network. However, activation of microglia induced by chronic inflammation increases synaptic phagocytosis and leads to neuronal impairment or death. Microglial dysfunction is implicated in almost all brain diseases and leads to long-lasting functional deficiency, such as hippocampus-related cognitive decline and hypothalamus-associated energy imbalance (i.e., obesity). High-fat diet (HFD) consumption triggers mediobasal hypothalamic microglial activation and inflammation. Moreover, HFD-induced inflammation results in cognitive deficits by triggering hippocampal microglial activation. Here, we have summarized the current knowledge of microglial characteristics and biological functions and also reviewed the molecular mechanism of microglia in shaping neural circuitries mainly related to cognition and energy balance in homeostatic and diet-induced inflammatory conditions.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
18
|
Asslih S, Damri O, Agam G. Neuroinflammation as a Common Denominator of Complex Diseases (Cancer, Diabetes Type 2, and Neuropsychiatric Disorders). Int J Mol Sci 2021; 22:ijms22116138. [PMID: 34200240 PMCID: PMC8201050 DOI: 10.3390/ijms22116138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The term neuroinflammation refers to inflammation of the nervous tissue, in general, and in the central nervous system (CNS), in particular. It is a driver of neurotoxicity, it is detrimental, and implies that glial cell activation happens prior to neuronal degeneration and, possibly, even causes it. The inflammation-like glial responses may be initiated in response to a variety of cues such as infection, traumatic brain injury, toxic metabolites, or autoimmunity. The inflammatory response of activated microglia engages the immune system and initiates tissue repair. Through translational research the role played by neuroinflammation has been acknowledged in different disease entities. Intriguingly, these entities include both those directly related to the CNS (commonly designated neuropsychiatric disorders) and those not directly related to the CNS (e.g., cancer and diabetes type 2). Interestingly, all the above-mentioned entities belong to the same group of "complex disorders". This review aims to summarize cumulated data supporting the hypothesis that neuroinflammation is a common denominator of a wide variety of complex diseases. We will concentrate on cancer, type 2 diabetes (T2DM), and neuropsychiatric disorders (focusing on mood disorders).
Collapse
|
19
|
Li P, Wu Q, Li X, Hu B, Wen W, Xu S. Shenqi Yizhi Granule attenuates Aβ 1-42 induced cognitive dysfunction via inhibiting JAK2/STAT3 activated astrocyte reactivity. Exp Gerontol 2021; 151:111400. [PMID: 33974937 DOI: 10.1016/j.exger.2021.111400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 01/23/2023]
Abstract
Shenqi Yizhi Granule (SYG), a modern preparation herbs based on the theory of traditional Chinese medicine, has been proved to be effective against Alzheimer's disease in clinical trials, APP/PS1 mice and 5XFAD transgenic mice. But the underlying mechanism remains ambiguous. Increasing evidence supports the crucial role of astrocyte reactivity in the pathogenesis of Alzheimer's disease (AD). In the present study, we attempt to explore the underlying mechanisms of SYG from astrocyte reactivity in Aβ1-42-induced rat model of Alzheimer's disease. After SYG treatment, the impairment of learning and memory induced by Aβ1-42 was significantly improved and the hippocampal neuron damages were alleviated. Additionally, the activity of glutamine synthetase and the concentration of glutamate, which might be involved in the cognitive dysfunctions, were outstandingly reduced. Meanwhile, the astrocyte reactivity was also remarkably inhibited. The expressions of JAK2 and STAT3, key proteins in the JAK2/STAT3 signaling pathway that is tightly associated with reactive astrocytes, were clearly attenuated, too. Collectively, our data demonstrate that SYG might exert protective effects on cognitive impairment induced by amyloid-β oligomers via inhibition of astrocyte reactivity regulated by the JAK2/STAT3 signaling pathway. It may be a potential therapeutic for cognitive dysfunctions in many neurological and psychiatric disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ping Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qian Wu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaoqiong Li
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Bangyan Hu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wen Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
20
|
Abrego L, Gordleeva S, Kanakov O, Krivonosov M, Zaikin A. Estimating integrated information in bidirectional neuron-astrocyte communication. Phys Rev E 2021; 103:022410. [PMID: 33736090 DOI: 10.1103/physreve.103.022410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
There is growing evidence that suggests the importance of astrocytes as elements for neural information processing through the modulation of synaptic transmission. A key aspect of this problem is understanding the impact of astrocytes in the information carried by compound events in neurons across time. In this paper, we investigate how the astrocytes participate in the information integrated by individual neurons in an ensemble through the measurement of "integrated information." We propose a computational model that considers bidirectional communication between astrocytes and neurons through glutamate-induced calcium signaling. Our model highlights the role of astrocytes in information processing through dynamical coordination. Our findings suggest that the astrocytic feedback promotes synergetic influences in the neural communication, which is maximized when there is a balance between excess correlation and spontaneous spiking activity. The results were further linked with additional measures such as net synergy and mutual information. This result reinforces the idea that astrocytes have integrative properties in communication among neurons.
Collapse
Affiliation(s)
- Luis Abrego
- Department of Mathematics, University College London, London, United Kingdom
| | - Susanna Gordleeva
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Oleg Kanakov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Mikhail Krivonosov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Zaikin
- Department of Mathematics, University College London, London, United Kingdom
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Institute for Women's Health, University College London, London WC1E 6BT, United Kingdom
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
21
|
Miterauer B, Baer W. Disorders of human consciousness in the Tri-partite synapses. Med Hypotheses 2020; 136:109523. [PMID: 31927223 DOI: 10.1016/j.mehy.2019.109523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 01/10/2023]
Abstract
Conscious Action Theory extends quantum theory to macroscopic phenomena and suggests physical correlates of consciousness occur at the intersection of external measurement signals and internally generated signals from memories that model the outside world. This physical theory predicts conscious phenomena happen at all scales and differ only by the size and complexity of material organizations involved. At the scale of the human "Brain" consciousness is predicted to happen where the processing loop of activity in the Glial network interfaces with the real world input-output processing loop of the Nuronal network. This happens at the Tripartite synapses creating an intersection plenum in biological systems that produces the experience of empty space and the objects it contains. Analysis of the transmitter-receptor strengths implementing the control and feedback between the Glial and Neuronal networks indicate imbalances can be directly related to schizophrenia, mania, epilepsy, and depression. This paper addresses three topics supporting the above mechanisms for normal consciousness functioning and its medical deviations. First we preset the architecture of a pan-psychic physical theory, which supports the hypothesis that tri-partite synapses are the location of human conscious experience. Second we discuss the inner workings of the Glial network to support long term memory and control functions corresponding to the inner feeling of the "I" self. Third, we consider the relation between psychiatric conditions and the balance states between the number of neuronal transmitters and astrocytic receptors.
Collapse
Affiliation(s)
- B Miterauer
- University of Salzburg, Volitronics-Institute, Wals, Austria
| | - W Baer
- Naval Postgraduate School, Monterey, CA, USA
| |
Collapse
|
22
|
Classical-quantum interfaces in living neural tissue supporting conscious functions. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
|
24
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. From the hierarchical organization of the central nervous system to the hierarchical aspects of biocodes. Biosystems 2019; 183:103975. [PMID: 31128147 DOI: 10.1016/j.biosystems.2019.103975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
The quite recent (at least on the evolutionary time scale) emergence of nervous systems in complex organisms enabled the living beings to build a wide-ranging model of the external world in order to predict and evaluate the outcomes of their actions. Such a process likely represents a real coding activity, since, by proper handling of information, it generates a mapping between the external environment and internal cerebral activity patterns. The patterns of neural activity that correspond to the final maps, however, emerge from the holistic assembly of a multilevel functional organization. Nerve tissue components, indeed, appear organized in compartments, also called functional modules (FM), that contain system components and circuits of different miniaturizations not only arranged to work together either in parallel or in series but also nested within each other. At least three levels can be recognized in a functional module and it is possible to point out that such a hierarchical organization of the brain circuits could be mirrored by a corresponding hierarchical organization of biocodes. This feature can also suggest the hypothesis that the same logic could operate also at system level to integrate FM into functional brain areas and to associate areas to generate the final map used by humans to image the external world and to imagine untestable worlds.
Collapse
Affiliation(s)
- D Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, via Gabelli 65, 35121 Padova, Italy.
| | - M Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genova, Italy
| | - C Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, via Gabelli 65, 35121 Padova, Italy
| | - G Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148, Genova, Italy
| | - L F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm, Sweden
| |
Collapse
|
25
|
Valles SL, Iradi A, Aldasoro M, Vila JM, Aldasoro C, de la Torre J, Campos-Campos J, Jorda A. Function of Glia in Aging and the Brain Diseases. Int J Med Sci 2019; 16:1473-1479. [PMID: 31673239 PMCID: PMC6818212 DOI: 10.7150/ijms.37769] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Microglia cells during aging, neurodegeneration and neuroinflammation show different morphological and transcriptional profiles (related to axonal direction and cell adhesion). Furthermore, expressions of the receptors on the surface and actin formation compared to young are also different. This review delves into the role of glia during aging and the development of the diseases. The susceptibility of different regions of the brain to disease are linked to the overstimulation of signals related to the immune system during aging, as well as the damaging impact of these cascades on the functionality of different populations of microglia present in each region of the brain. Furthermore, a decrease in microglial phagocytosis has been related to many diseases and also has been detected during aging. In this paper we also describe the role of glia in different illness, such as AD, ALS, pain related disorders, cancer, developmental disorders and the problems produced by opening of the blood brain barrier. Future studies will clarify many points planted by this review.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Jose M Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | | | - Juan Campos-Campos
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, Spain
| |
Collapse
|
26
|
Hoogland G, Hendriksen RGF, Slegers RJ, Hendriks MPH, Schijns OEMG, Aalbers MW, Vles JSH. The expression of the distal dystrophin isoforms Dp140 and Dp71 in the human epileptic hippocampus in relation to cognitive functioning. Hippocampus 2018; 29:102-110. [PMID: 30069964 DOI: 10.1002/hipo.23015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023]
Abstract
Dystrophin is an important protein within the central nervous system. The absence of dystrophin, characterizing Duchenne muscular dystrophy (DMD), is associated with brain related comorbidities such as neurodevelopmental (e.g., cognitive and behavioural) deficits and epilepsy. Especially mutations in the downstream part of the DMD gene affecting the dystrophin isoforms Dp140 and Dp71 are found to be associated with cognitive deficits. However, the function of Dp140 is currently not well understood and its expression pattern has previously been implicated to be developmentally regulated. Therefore, we evaluated Dp140 and Dp71 expression in human hippocampi in relation to cognitive functioning in patients with drug-resistant temporal lobe epilepsy (TLE) and post-mortem controls. Hippocampal samples obtained as part of epilepsy surgery were quantitatively analyzed by Western blot and correlations with neuropsychological test results (i.e., memory and intelligence) were examined. First, we demonstrated that the expression of Dp140 does not appear to differ across different ages throughout adulthood. Second, we identified an inverse correlation between memory loss (i.e., verbal and visual memory), but not intelligence (i.e., neither verbal nor performance), and hippocampal Dp140 expression. Finally, patients with TLE appeared to have similar Dp140 expression levels compared to post-mortem controls without neurological disease. Dp140 may thus have a function in normal cognitive (i.e., episodic memory) processes.
Collapse
Affiliation(s)
- Govert Hoogland
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ruben G F Hendriksen
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rutger J Slegers
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marc P H Hendriks
- Kempenhaeghe Epilepsy Centre, Heeze, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, Groningen University Medical Centre, Groningen, The Netherlands
| | - Johan S H Vles
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
27
|
Guidolin D, Fede C, Tortorella C. Nerve cells developmental processes and the dynamic role of cytokine signaling. Int J Dev Neurosci 2018; 77:3-17. [PMID: 30465872 DOI: 10.1016/j.ijdevneu.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
The stunning diversity of neurons and glial cells makes possible the higher functions of the central nervous system (CNS), allowing the organism to sense, interpret and respond appropriately to the external environment. This cellular diversity derives from a single primary progenitor cell type initiating lineage leading to the formation of both differentiated neurons and glial cells. The processes governing the differentiation of the progenitor pool of cells into mature nerve cells will be here briefly reviewed. They involve morphological transformations, specialized modes of cell division, migration, and controlled cell death, and are regulated through cell-cell interactions and cues provided by the extracellular matrix, as well as by humoral factors from the cerebrospinal fluid and the blood system. In this respect, a quite large body of studies have been focused on cytokines, proteins representing the main signaling network that coordinates immune defense and the maintenance of homeostasis. At the same time, they are deeply involved in CNS development as regulatory factors. This dual role in the nervous system appears of particular relevance for CNS pathology, since cytokine dysregulation (occurring as a consequence of maternal infection, exposure to environmental factors or prenatal hypoxia) can profoundly impact on neurodevelopment and likely influence the response of the adult tissue during neuroinflammatory events.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, via Gabelli 65, I-35121, Padova, Italy
| | - Caterina Fede
- Department of Neuroscience, University of Padova, via Gabelli 65, I-35121, Padova, Italy
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, via Gabelli 65, I-35121, Padova, Italy
| |
Collapse
|
28
|
Pregnolato M, Damiani G, Pereira A. Patterns of calcium signaling: A link between chronic emotions and cancer. J Integr Neurosci 2018; 16:S43-S63. [PMID: 29154288 DOI: 10.3233/jin-170066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra and inter-cellular calcium signaling is present in all types of cells and body tissues. In the human brain, calcium currents and waves are related to mental activities, including emotions. We present a theoretical interpretation of these phenomena suggesting their involvement in chronic emotional patterns and in the pathology of cancer. Recent developments on biophysics, translational biology and psychoneuroendocrinoimmunology (PNEI) can support explanatory hypotheses about the link between emotional stresses and the origin and development of different types of tumor cells. Chronic stresses may cause perturbations of rhythms of the PNEI system, excessive activation of HPA axis and abnormal activation of calcium signals in somatic tissues, with deleterious effects on different parts of the body. The increasing of calcium signaling inside cells may lead to a deregulation of different pathways and epigenetic systems that promote the production of genomic mutations in a second phase. In particular, the hyperactivation of the transcription nuclear factor kappaB (NF-κB), if is not counterbalanced by the following activation of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2), increases the production of oxidative catabolites, as the advanced glycation end products (AGE), which play a key role in the progression of different types of cancer and other degenerative diseases. Cortisol binding to glucocorticoid receptor (GR) reduces the activity of both NF-κB and Nrf2 inside the cells but inhibits the cellular immunity and the anabolic processes of tissue regeneration. The tissue atrophy and the defective anti-ageing mechanisms promotes the tumoral cells growth and their escape from the immune-surveillance.
Collapse
Affiliation(s)
| | | | - Alfredo Pereira
- Institute of Biosciences, São Paulo State University, Brasil. E-mail:
| |
Collapse
|
29
|
Abstract
In this first issue of Neuroglia, it is highly appropriate that Professor Jorge A. Colombo at the Unit of Applied Neurobiology (UNA, CEMIC-CONICET) in Buenos Aires, Argentina, writes a perspective of idiosyncrasies of astrocytes in the human brain. Much of his work has been focused on the special case of interlaminar astrocytes, so-named because of their long straight processes that traverse the layers of the human cerebral cortex. Notably, interlaminar astrocytes are primate-specific and their evolutionary development is directly related to that of the columnar organization of the cerebral cortex in higher primates. The human brain also contains varicose projection astrocytes or polarized astrocytes which are absent in lower animals. In addition, classical protoplasmic astrocytes dwelling in the brains of humans are ≈15-times larger and immensely more complex than their rodent counterparts. Human astrocytes retain their peculiar morphology even after grafting into rodent brains; that is, they replace the host astrocytes and confer certain cognitive advantages into so-called ‘humanised’ chimeric mice. Recently, a number of innovative studies have highlighted the major differences between human and rodent astrocytes. Nonetheless, these differences are not widely recognized, and we hope that Jorge Colombo’s Perspective and our associated Commentary will help stimulate appreciation of human astrocytes by neuroscientists and glial cell biologists alike.
Collapse
|
30
|
Agnati LF, Marcoli M, Maura G, Woods A, Guidolin D. The brain as a "hyper-network": the key role of neural networks as main producers of the integrated brain actions especially via the "broadcasted" neuroconnectomics. J Neural Transm (Vienna) 2018; 125:883-897. [PMID: 29427068 DOI: 10.1007/s00702-018-1855-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/04/2018] [Indexed: 02/07/2023]
Abstract
Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses. It has also been surmised that global signalling via astrocytes networks and highly pervasive signals, such as electromagnetic fields (EMFs), allow the appropriate integration of the various networks especially at crucial nodes level, the tetra-partite synapses. As a matter of fact, it has been shown that astrocytes can form gap-junction-coupled syncytia allowing intercellular communication characterised by a rapid and possibly long-distance transfer of signals. As far as the EMFs are concerned, the concept of broadcasted neuroconnectomics (BNC) has been introduced to describe highly pervasive signals involved in resetting the information handling of brain networks at various miniaturisation levels. In other words, BNC creates, thanks to the EMFs, generated especially by neurons, different assemblages among the various networks forming the brain hyper-network. Thus, it is surmised that neuronal networks are the "core components" of the brain hyper-network that has as special "nodes" the multi-facet tetra-partite synapses. Furthermore, it is suggested that investigations on the functional plasticity of multi-partite synapses in response to BNC can be the background for a new understanding and perhaps a new modelling of brain morpho-functional organisation and integrative actions.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy. .,Centre of Excellence for Biomedical Research CEBR, University of Genova, Genoa, Italy.
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genoa, Italy
| | - Amina Woods
- Structural Biology Unit, National Institutes of Health, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, 21224, USA
| | - Diego Guidolin
- Department of Molecular Medicine, University of Padova, Padua, Italy
| |
Collapse
|
31
|
Guidolin D, Marcoli M, Maura G, Agnati LF. New dimensions of connectomics and network plasticity in the central nervous system. Rev Neurosci 2018; 28:113-132. [PMID: 28030363 DOI: 10.1515/revneuro-2016-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of 'transient changes of cell phenotype', that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.
Collapse
|
32
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
33
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
34
|
The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 2017; 157:230-246. [DOI: 10.1016/j.pneurobio.2015.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
|
35
|
Whitney R, AlMehmadi S, McCoy B, Yau I, Ochi A, Otsubo H, Weiss SK, Rutka J, Hazrati LN, Snead OC, Go C. The Fault in Their Stars-Accumulating Astrocytic Inclusions Associated With Clusters of Epileptic Spasms in Children With Global Developmental Delay. Pediatr Neurol 2017; 73:92-97.e3. [PMID: 28549652 DOI: 10.1016/j.pediatrneurol.2017.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/09/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND The presence of cerebral astrocytic inclusions recently has been described in a subset of children with early-onset refractory epilepsy, with or without structural brain malformations, and varying degrees of developmental delay. METHODS We describe two new individuals with epilepsy with astrocytic inclusions and suggest that in some children this disorder may represent a unique hemispheric epilepsy. We review previously reported individuals with epilepsy with astrocytic inclusions. RESULTS Two children with early onset epilepsy with astrocytic inclusions had refractory clusters of epileptic spasms, developmental delay, abnormal neuroimaging, and hemispheric or diffuse interictal epileptiform discharges. In both children, the initial focal resection of the putative epileptogenic zone was unsuccessful and pathology failed to show astrocytic inclusions. Subsequently, both children underwent functional hemispherectomy due to ongoing clusters of epileptic spasms, and the presence of multilobar astrocytic inclusions was demonstrated. Postoperatively, both children have remained seizure free in the short-term with improved development. CONCLUSIONS We highlight that functional hemispherectomy may be required for seizure control in a select subset of children with clusters of epileptic spasms, astrocytic inclusions, and global developmental delay. Given the small number of documented patients, however, ongoing collaboration is needed to better understand the pathophysiology of this condition and determine the optimal way to diagnose and manage these children.
Collapse
Affiliation(s)
- Robyn Whitney
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Sameer AlMehmadi
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bláthnaid McCoy
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ivanna Yau
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayako Ochi
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hiroshi Otsubo
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shelly K Weiss
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Rutka
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lili-Naz Hazrati
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - O Carter Snead
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cristina Go
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid. Int J Mol Sci 2017; 18:ijms18081669. [PMID: 28788104 PMCID: PMC5578059 DOI: 10.3390/ijms18081669] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.
Collapse
|
37
|
Dean M, Lassak A, Wilk A, Zapata A, Marrero L, Molina P, Reiss K. Acute Ethanol Increases IGF-I-Induced Phosphorylation of ERKs by Enhancing Recruitment of p52-Shc to the Grb2/Shc Complex. J Cell Physiol 2017; 232:1275-1286. [PMID: 27607558 PMCID: PMC5381968 DOI: 10.1002/jcp.25586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
Ethanol plays a detrimental role in the development of the brain. Multiple studies have shown that ethanol inhibits insulin-like growth factor I receptor (IGF-IR) function. Because the IGF-IR contributes to brain development by supporting neural growth, survival, and differentiation, we sought to determine the molecular mechanism(s) involved in ethanol's effects on this membrane-associated tyrosine kinase. Using multiple neuronal cell types, we performed Western blot, immunoprecipitation, and GST-pulldowns following acute (1-24 h) or chronic (3 weeks) treatment with ethanol. Surprisingly, exposure of multiple neuronal cell types to acute (up to 24 h) ethanol (50 mM) enhanced IGF-I-induced phosphorylation of extracellular regulated kinases (ERKs), without affecting IGF-IR tyrosine phosphorylation itself, or Akt phosphorylation. This acute increase in ERKs phosphorylation was followed by the expected inhibition of the IGF-IR signaling following 3-week ethanol exposure. We then expressed a GFP-tagged IGF-IR construct in PC12 cells and used them to perform fluorescence recovery after photobleaching (FRAP) analysis. Using these fluorescently labeled cells, we determined that 50 mM ethanol decreased the half-time of the IGF-IR-associated FRAP, which implied that cell membrane-associated signaling events could be affected. Indeed, co-immunoprecipitation and GST-pulldown studies demonstrated that the acute ethanol exposure increased the recruitment of p52-Shc to the Grb2-Shc complex, which is known to engage the Ras-Raf-ERKs pathway following IGF-1 stimulation. These experiments indicate that even a short and low-dose exposure to ethanol may dysregulate function of the receptor, which plays a critical role in brain development. J. Cell. Physiol. 232: 1275-1286, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Dean
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
- Department of Genetics, LSU Health New Orleans
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Adam Lassak
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Anna Wilk
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, 36604
| | | | - Luis Marrero
- Morphology and Imaging Core, LSU Health New Orleans
| | - Patricia Molina
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
| | | |
Collapse
|
38
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
39
|
Pereira A. Astroglial hydro-ionic waves guided by the extracellular matrix: An exploratory model. J Integr Neurosci 2017; 16:57-72. [DOI: 10.3233/jin-160003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alfredo Pereira
- Institute of Biosciences, São Paulo State University, Brazil. E-mail:
| |
Collapse
|
40
|
Xu H, Zhang H, Zhang J, Huang Q, Shen Z, Wu R. Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. Neurosci Biobehav Rev 2016; 71:563-577. [PMID: 27702600 DOI: 10.1016/j.neubiorev.2016.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) has been widely applied in human studies. There is now a large literature describing findings of brain MRS studies with mental disorder patients including schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. However, the findings are mixed and cannot be reconciled by any of the existing interpretations. Here we proposed the new theory of neuron-glia integrity to explain the findings of brain 1H-MRS stuies. It proposed the neurochemical correlates of neuron-astrocyte integrity and axon-myelin integrity on the basis of update of neurobiological knowledge about neuron-glia communication and of experimental MRS evidence for impairments in neuron-glia integrity from the authors and the other investigators. Following the neuron-glia integrity theories, this review collected evidence showing that glutamate/glutamine change is a good marker for impaired neuron-astrocyte integrity and that changes in N-acetylaspartate and lipid precursors reflect impaired myelination. Moreover, this new theory enables us to explain the differences between MRS findings in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, China.
| | - Handi Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Jie Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, China
| | - Zhiwei Shen
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| | - Renhua Wu
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| |
Collapse
|
41
|
Cervetto C, Venturini A, Passalacqua M, Guidolin D, Genedani S, Fuxe K, Borroto-Esquela DO, Cortelli P, Woods A, Maura G, Marcoli M, Agnati LF. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochem 2016; 140:268-279. [PMID: 27896809 DOI: 10.1111/jnc.13885] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 01/07/2023]
Abstract
Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chiara Cervetto
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Arianna Venturini
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, and Italian Institute of Biostructures and Biosystems, University of Genova, Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Susanna Genedani
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences DIBINEM, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Amina Woods
- Structural Biology Unit, National Institutes of Health, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Guido Maura
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Manuela Marcoli
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genova, Genova, Italy.,Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto, Genova, Italy
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci Rep 2016; 6:34325. [PMID: 27677466 PMCID: PMC5039625 DOI: 10.1038/srep34325] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022] Open
Abstract
Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy.
Collapse
|
43
|
Krencik R, van Asperen JV, Ullian EM. Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Res Bull 2016; 129:66-73. [PMID: 27570101 DOI: 10.1016/j.brainresbull.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 01/03/2023]
Abstract
Cellular components of synaptic circuits have been adjusted for increased human brain size, neural cell density, energy consumption and developmental duration. How does the human brain make these accommodations? There is evidence that astrocytes are one of the most divergent neural cell types in primate brain evolution and it is now becoming clear that they have critical roles in controlling synaptic development, function and plasticity. Yet, we still do not know how the precise developmental appearance of these cells and subsequent astrocyte-derived signals modulate diverse neuronal circuit subtypes. Here, we discuss what is currently known about the influence of glial factors on synaptic maturation and focus on unique features of human astrocytes including their potential roles in regenerative and translational medicine. Human astrocyte distinctiveness may be a major contributor to high level neuronal processing of the human brain and act in novel ways during various neuropathies ranging from autism spectrum disorders, viral infection, injury and neurodegenerative conditions.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States.
| | - Jessy V van Asperen
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| |
Collapse
|
44
|
Chang HF, Lee YS, Tang TK, Cheng JY. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells. PLoS One 2016; 11:e0158133. [PMID: 27352251 PMCID: PMC4924866 DOI: 10.1371/journal.pone.0158133] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/10/2016] [Indexed: 01/11/2023] Open
Abstract
We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.
Collapse
Affiliation(s)
- Hui-Fang Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ying-Shan Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tang K. Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
- Department of Mechanical and Mechantronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
45
|
Duchon A, Herault Y. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front Behav Neurosci 2016; 10:104. [PMID: 27375444 PMCID: PMC4891327 DOI: 10.3389/fnbeh.2016.00104] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS) is one of the leading causes of intellectual disability, and patients with DS face various health issues, including learning and memory deficits, congenital heart disease, Alzheimer's disease (AD), leukemia, and cancer, leading to huge medical and social costs. Remarkable advances on DS research have been made in improving cognitive function in mouse models for future therapeutic approaches in patients. Among the different approaches, DYRK1A inhibitors have emerged as promising therapeutics to reduce DS cognitive deficits. DYRK1A is a dual-specificity kinase that is overexpressed in DS and plays a key role in neurogenesis, outgrowth of axons and dendrites, neuronal trafficking and aging. Its pivotal role in the DS phenotype makes it a prime target for the development of therapeutics. Recently, disruption of DYRK1A has been found in Autosomal Dominant Mental Retardation 7 (MRD7), resulting in severe mental deficiency. Recent advances in the development of kinase inhibitors are expected, in the near future, to remove DS from the list of incurable diseases, providing certain conditions such as drug dosage and correct timing for the optimum long-term treatment. In addition the exact molecular and cellular mechanisms that are targeted by the inhibition of DYRK1A are still to be discovered.
Collapse
Affiliation(s)
- Arnaud Duchon
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France
| | - Yann Herault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France; PHENOMIN, Institut Clinique de la Souris, Groupement d'Intérêt Économique-Centre Européen de Recherche en Biologie et en Médecine, CNRS, INSERMIllkirch-Graffenstaden, France
| |
Collapse
|
46
|
Yang H, Wang Y, Zhang Y, Zhang Y, Xu MS, Yuan J, Yu T. Astrocytes contribute to the effects of etomidate on synaptic transmission in rat primary somatosensory cortex. Brain Res 2016; 1642:238-243. [PMID: 27045115 DOI: 10.1016/j.brainres.2016.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 11/27/2022]
Abstract
Little is known about the mechanisms of unconsciousness induced by general anesthetics. Previous studies have shown that the primary somatosensory cortex (S1) is a sensitive region to a variety of intravenous general anesthetics. Etomidate is a widely used intravenous anesthetic that can influence synaptic transmission. Recently, there are some evidences suggesting that astrocytes, a type of glia cell, also contribute to information transmission in the brain, and modulate synaptic function by releasing neuroactive substances. However, it is unknown whether astrocytes influence the effects of etomidate on information transmission in S1 pyramidal neurons. In the present study, the role of astrocytes in etomidate-induced unconsciousness was investigated by using the whole-cell patch clamp technique. We observed etomidate at clinically relevant concentrations inhibited the spontaneous postsynaptic currents (sPSCs) of rat S1 pyramidal neurons in a concentration-dependent manner, and the EC50 value of etomidate for inhibiting sPSCs from the concentration-effect curve was 6.9μM. Furthermore, in the presence of fluorocitrate, a glia-selective metabolism inhibitor that blocks the aconitase enzyme, both the amplitude and frequency of sPSCs in rat S1 pyramidal neurons were reduced, and the inhibitory effects of etomidate on sPSCs amplitude was strengthened without affecting the effects of etomidate on frequency. From these data, we deduce that etomidate suppresses synaptic activity via presynaptic and postsynaptic components. Furthermore, astrocytes participate in synaptic transmission and influence the effects of etomidate on postsynaptic receptors. This study provides new insight into the role of astrocytes in etomidate-induced unconsciousness.
Collapse
Affiliation(s)
- Hao Yang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China
| | - Yuan Wang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China; Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China; Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China
| | - You Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China
| | - Mao-Sheng Xu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China
| | - Jie Yuan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China; Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Dalian Road, 563003 Zunyi, Guizhou, China.
| |
Collapse
|
47
|
Dallérac G, Rouach N. Astrocytes as new targets to improve cognitive functions. Prog Neurobiol 2016; 144:48-67. [PMID: 26969413 DOI: 10.1016/j.pneurobio.2016.01.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are now viewed as key elements of brain wiring as well as neuronal communication. Indeed, they not only bridge the gap between metabolic supplies by blood vessels and neurons, but also allow fine control of neurotransmission by providing appropriate signaling molecules and insulation through a tight enwrapping of synapses. Recognition that astroglia is essential to neuronal communication is nevertheless fairly recent and the large body of evidence dissecting such role has focused on the synaptic level by identifying neuro- and gliotransmitters uptaken and released at synaptic or extrasynaptic sites. Yet, more integrated research deciphering the impact of astroglial functions on neuronal network activity have led to the reasonable assumption that the role of astrocytes in supervising synaptic activity translates in influencing neuronal processing and cognitive functions. Several investigations using recent genetic tools now support this notion by showing that inactivating or boosting astroglial function directly affects cognitive abilities. Accordingly, brain diseases resulting in impaired cognitive functions have seen their physiopathological mechanisms revisited in light of this primary protagonist of brain processing. We here provide a review of the current knowledge on the role of astrocytes in cognition and in several brain diseases including neurodegenerative disorders, psychiatric illnesses, as well as other conditions such as epilepsy. Potential astroglial therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
48
|
Fernandes de Lima VM, Pereira A. The Plastic Glial-Synaptic Dynamics within the Neuropil: A Self-Organizing System Composed of Polyelectrolytes in Phase Transition. Neural Plast 2016; 2016:7192427. [PMID: 26949548 PMCID: PMC4753343 DOI: 10.1155/2016/7192427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/27/2015] [Indexed: 11/17/2022] Open
Abstract
Several explanations have been proposed to account for the mechanisms of neuroglial interactions involved in neural plasticity. We review experimental results addressing plastic nonlinear interactions between glial membranes and synaptic terminals. These results indicate the necessity of elaborating on a model based on the dynamics of hydroionic waves within the neuropil. These waves have been detected in a small scale experimental model of the central nervous system, the in vitro retina. We suggest that the brain, as the heart and kidney, is a system for which the state of water is functional. The use of nonlinear thermodynamics supports experiments at convenient biological spatiotemporal scales, while an understanding of the properties of ions and their interactions with water requires explanations based on quantum theories. In our approach, neural plasticity is seen as part of a larger process that encompasses higher brain functions; in this regard, hydroionic waves within the neuropil are considered to carry both physiological and cognitive functions.
Collapse
Affiliation(s)
- Vera Maura Fernandes de Lima
- Centro de Biotecnologia, IPEN-CNEN/SP, Avenida Prof. Lineu Prestes 2242, Butantã, 05508-000 São Paulo, SP, Brazil
| | - Alfredo Pereira
- Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Campus Rubião Jr., 18618-970 Botucatu, SP, Brazil
| |
Collapse
|
49
|
Elsayed M, Magistretti PJ. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue. Front Cell Neurosci 2015; 9:468. [PMID: 26733803 PMCID: PMC4679853 DOI: 10.3389/fncel.2015.00468] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/16/2015] [Indexed: 12/27/2022] Open
Abstract
Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment.
Collapse
Affiliation(s)
- Maha Elsayed
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Pierre J Magistretti
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Department of Psychiatry, Center for Psychiatric Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
50
|
Emmons-Bell M, Durant F, Hammelman J, Bessonov N, Volpert V, Morokuma J, Pinet K, Adams DS, Pietak A, Lobo D, Levin M. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms. Int J Mol Sci 2015; 16:27865-96. [PMID: 26610482 PMCID: PMC4661923 DOI: 10.3390/ijms161126065] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Fallon Durant
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Jennifer Hammelman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Nicholas Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178, Russia;
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne 69622, France;
| | - Junji Morokuma
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Kaylinnette Pinet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | | | - Daniel Lobo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
- Correspondence: ; Tel.: +1-617-627-6161; Fax: +1-617-627-6121
| |
Collapse
|