1
|
Kirazoğlu M, Benli B. Enhanced Vitamin D 3 Adsorption Through Novel Hydrophobic Halloysite-Alginate Biopolymer Composites. Polymers (Basel) 2025; 17:1083. [PMID: 40284348 PMCID: PMC12030027 DOI: 10.3390/polym17081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
This study presents a sustainable strategy to enhance polymer encapsulation, adsorption, and functional properties by chemically modifying sodium alginate with hydrophobic groups. Hydrophobic alginate derivatives were synthesized via a solvent-free method using hexadecyl trimethylammonium bromide, resulting in nanoparticles capable of effectively capturing non-polar compounds. To further improve compatibility within alginate-based biocomposites, halloysite nanotubes were modified through ball milling and surfactant-assisted treatments. The resulting nanocomposites (MBHA and MHHA) exhibited significantly enhanced adsorption and controlled release behavior, as confirmed by FTIR analysis of hexadecyl alginate ester conjugation. Vitamin D3 adsorption followed the Langmuir isotherm, with high correlation coefficients (R2 = 0.998 for MBHA and R2 = 0.991 for MHHA), indicating monolayer adsorption on a homogenous surface. Kinetic modeling revealed that the adsorption process adhered to a pseudo-second-order model (R2 = 0.9969 for MBHA and R2 = 0.999 for MHHA), suggesting that chemisorption was the dominant rate-controlling mechanism. These results demonstrate the critical role of surface modification in designing nano-engineered biopolymers with superior adsorption, stability, and release profiles, offering sustainable applications in medicine, agriculture, and environmental remediation.
Collapse
Affiliation(s)
- Mervenur Kirazoğlu
- Nano Science, and Nano Engineering M.Sc. Program 1, Graduate School, Istanbul Technical University, 34467 Istanbul, Türkiye;
| | - Birgül Benli
- Nano Science, and Nano Engineering M.Sc. Program 1, Graduate School, Istanbul Technical University, 34467 Istanbul, Türkiye;
- Department of Mineral Processing Engineering 2, Faculty of Mines, Istanbul Technical University, 34467 Istanbul, Türkiye
| |
Collapse
|
2
|
Xing H, Liu X, He Q, Wang W. Progress and Prospects of Polymer/One-Dimensional Nanoclay Superabsorbent Composites. Polymers (Basel) 2025; 17:669. [PMID: 40076161 PMCID: PMC11902377 DOI: 10.3390/polym17050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Superabsorbent materials (SAMs), featuring a three-dimensional (3D) hydrophilic polymer network, can absorb and retain water up to thousands of times their own weight, even under pressure. This makes them indispensable in various fields, including hygiene products and agriculture. The water absorption capacity of SAMs is influenced by the presence of hydrophilic groups and a swellable network structure. To optimize performance, one must adjust the types and concentrations of functional groups. Additionally, changes in the density and regularity of the polymer network are necessary. Significant performance improvements are limited by inherent challenges in modifying polymer chains or networks. To enhance performance, researchers focus on manipulating the components and structure of the polymer network. Effective water retention requires the network to fully expand while maintaining its strength. Incorporating nanoparticles, especially one-dimensional (1D) nanoclays, minimizes chain entanglement and prevents network collapse during drying. This approach effectively addresses the above challenges. Upon swelling, these nanoparticles improve hydrogen bonding within the polymer network, significantly boosting the performance of SAMs. Nanoclays are abundant natural silicates found in various nanostructures like nanorods, nanofibers, and nanotubes. These nanoclays contain reactive silanol groups that form strong hydrogen bonds with polymer chains. This aids in network formation and reduces costs. Advances in synthesis and structural control have facilitated the development of versatile 1D nanoclay-based SAMs. This paper reviews the structure, characteristics, and applications of such materials and proposes future research directions aimed at developing higher-performance clay-based SAMs.
Collapse
Affiliation(s)
- Haifeng Xing
- College of Resources and Environmental Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010030, China; (X.L.); (Q.H.)
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010030, China; (X.L.); (Q.H.)
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010030, China; (X.L.); (Q.H.)
| |
Collapse
|
3
|
Rajoo A, Siva SP, Sia CS, Chan ES, Tey BT, Low LE. Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals. Eur J Pharm Biopharm 2024; 205:114572. [PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Collapse
Affiliation(s)
- Akashni Rajoo
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sangeetaprivya P Siva
- Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment and IT, SEGi University, 47810 Petaling Jaya, Malaysia
| | - Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Medical Engineering and Technology (MET) Hub, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Liu Y, Shi Z, Zhang Y, Li Z, Xu M. Cataluminescence Sensor Based on Halloysite Nanotubes/MgO Nanocomposite for Rapid Detection of Ether. LUMINESCENCE 2024; 39:e70069. [PMID: 39722542 DOI: 10.1002/bio.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
MgO surface makes it easy to introduce a certain amount of oxygen vacancy and can enhance catalytic reaction activity. Besides, as a silicoaluminate mineral material, halloysite nanotube (HNT) has a unique tubular structure. In this paper, the HNTs@MgO composite was successfully synthesized based on natural clay material HNTs as a carrier, and the CTL sensor based on HNTs@MgO was successfully developed for the rapid determination of ether in air. The HNTs@MgO material was characterized by a series of means such as SEM, XPS, and XRD, which clearly confirmed that MgO successfully combined with HNTs. And the sensor showed good sensitivity and selectivity, with a good linear relationship between CTL intensity and ether concentration in the range of 0.5-190.0 mg/L (R2 = 0.9942), and the limit of detection (LOD) was 0.18 mg/L (S/N = 3). The RSD values of the results of 11 consecutive measurements by the same sensor and 7 days of consecutive measurements were 1.96% (n = 11) and 3.42% (n = 7), showing good repeatability and reproducibility. At last, the CTL sensor was used to detect air samples, the recoveries ranged from 91.6% to 109.6%. Thus, it was concluded that HNTs@MgO composite is a cost-effective and promising material with potential application in atmospheric detection.
Collapse
Affiliation(s)
- Yilu Liu
- School of Chemistry, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Zhaoxia Shi
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, China
| | - Zhaohui Li
- School of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
5
|
Shan X, Zou Z, Mi Z, Tong K, Hou C. Preparation of Smart Self-Healing Coatings on Zinc Surfaces Using Halloysite Nanotubes Loaded with Corrosion Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25236-25249. [PMID: 39531671 DOI: 10.1021/acs.langmuir.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work presents the development of a novel nanotube (S12HNTS-T-P) that is coated with polyethylenimine (PEI) and internally loaded with a corrosion inhibitor (thiourea) utilizing vacuum negative pressure and electrostatic adsorption methods. A smart self-healing coating with self-repairing properties was fabricated on the basis of S12HNTS-T-P. Bis[3-(triethoxysilyl)propyl]tetrasulfide (Si69), a widely used organosilane coupling agent, provides stability and corrosion resistance. The integration of S12HNTS-T-P into Si69 significantly enhances the coating's corrosion resistance and self-healing capabilities. To further evaluate the performance of the smart self-healing coating, a control group comprising Si69 coatings without S12HNTS-T-P was established. Electrochemical tests revealed that the coating with 3 wt % S12HNTS-T-P exhibited markedly superior corrosion resistance compared to those with 0, 1, and 5 wt % S12HNTS-T-P. In comparison to the control group, the coating with 3 wt % S12HNTS-T-P demonstrated a 99.4% increase in corrosion inhibition efficiency after 72 h of immersion in a 3.5 wt % NaCl solution. Scanning electron microscopy (SEM) and immersion tests further corroborated that the smart self-healing coating exhibited self-repairing behavior when subjected to external scratching stimuli. Simulation results indicated that thiourea released from the nanotubes can adsorb and form a protective film at the scratch sites, effectively repairing the coating's defects. The exceptional corrosion resistance and high healing rates of the smart self-healing coating suggest that S12HNTS-T-P plays a pivotal role in enhancing the corrosion protection of zinc.
Collapse
Affiliation(s)
- Xichang Shan
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhongli Zou
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhijuan Mi
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Kunmin Tong
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Chunping Hou
- School of Material Science & Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
6
|
Yue T, Zhao H, Qu J, Zhang L, Liu J. Fatigue Behavior of Polymer Nanocomposites under Low-Strain Cyclic Loading: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23816-23824. [PMID: 39492630 DOI: 10.1021/acs.langmuir.4c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Understanding the structural evolution and bond-breaking behavior under cyclic loading is crucial for designing polymer nanocomposites (PNCs) with superior fatigue resistance. Coarse-grained models of PNCs filled with spherical carbon black nanoparticles (NPs) at varying filling fractions of φ were successfully constructed using molecular dynamics simulations. Structural and dynamic simulation results reveal that higher φ leads to increased aggregation of NPs and markedly restricts the relaxation behavior of the polymer matrix. Subsequently, fatigue testing of PNCs was conducted under low-strain cyclic tensile deformation, and the real-time bond-breaking behavior was tracked. The decay behavior of the bond number autocorrelation function was found to be accurately described by the KWW equation, enabling precise determination of the characteristic lifetime τf. With increasing φ, the dominant factor influencing bond-breaking behavior gradually shifts from the polymer network, including entanglements and cross-linking networks, to the filler network. This suggests the presence of a critical filling fraction φc where τf is maximized. For low-strain failure mechanisms, temperature field observations at varying cycles reveal that localized temperature rise emerges as the predominant factor. Furthermore, the mobility of both polymers and NPs increases with cycles. Specifically, the diffusion coefficient of polymer monomers shows a clear power-law relationship with the bond-breaking rate, characterized by D ∼ f broken 1.5 . Finally, the stiffness of polymer chains significantly influences the fatigue behavior, evidenced by an initial increase followed by a decrease in the τf with increasing bending energy k. This behavior is attributed to the competitive relationship between high entanglement density at low k and enhanced preorientation at high k. In summary, this study provides a general paradigm for describing failure behavior under cyclic deformation and offers insights into fatigue mechanisms at the molecular level, thereby guiding the development of improved fatigue-resistant PNCs.
Collapse
Affiliation(s)
- Tongkui Yue
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hengheng Zhao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajun Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Hosseini SMR, Heydari P, Namnabat M, Nasr Azadani R, Azimi Gharibdousti F, Mousavi Rizi E, Khosravi A, Zarepour A, Zarrabi A. Carboxymethyl cellulose/sodium alginate hydrogel with anti-inflammatory capabilities for accelerated wound healing; In vitro and in vivo study. Eur J Pharmacol 2024; 976:176671. [PMID: 38797311 DOI: 10.1016/j.ejphar.2024.176671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Recently, managing the chronic skin wounds has become increasingly challenging for healthcare professionals due to the intricate orchestration of cellular and molecular processes involved that lead to the uncontrollable inflammatory reactions which hinder the healing process. Therefore, different types of wound dressings with immunomodulatory properties have been developed in recent years to effectively regulate the immune responses, enhance angiogenesis, promote re-epithelialization, and accelerate the wound healing process. This study aims to develop a new type of immunomodulatory wound dressing utilizing carboxymethyl cellulose (CMC)/sodium alginate (Alg)-simvastatin (SIM) to simultaneously enhance the inflammatory responses and the wound healing ratio. The CMC/Alg-SIM hydrogels exhibited appropriate swelling ratio, water vapor transmission rate, and desirable degradation rate, depending on the SIM content. The fabricated dressing showed sustained release of SIM (during 5 days) that improved the proliferation of skin cells. According to the in vitro findings, the CMC/Alg-SIM hydrogel exhibited controlled pro-inflammatory responses (decreased 2.5- and 1.6-times IL-6 and TNF-α, respectively) and improved secretion of anti-inflammatory cytokines (increased 1.5- and 1.3-times IL-10 and TGF-β, respectively) in comparison with CMC/Alg. Furthermore, the CMC/Alg-SIM hydrogel facilitated rapid wound healing in the rat model with a full-thickness skin defect. After 14 days post-surgery, the wound healing ratio in the CMC/Alg hydrogel group (∼93%) was significantly greater than the control group (∼58%). Therefore, the engineered CMC/Alg-SIM hydrogel with desired immunomodulatory properties possesses the potential to enhance and accelerate skin regeneration for the management of chronic wound healing.
Collapse
Affiliation(s)
| | - Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran; Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahtab Namnabat
- Department of Biomedical Engineering, Faculty of Interdisciplinary Sciences & Technologies, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Nasr Azadani
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biotechnology Department. Asu Vanda Gene Industrial Research Company, Tehran, Iran
| | | | | | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, 34396, Istanbul, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan.
| |
Collapse
|
8
|
Feng Y, Chen X, He RR, Liu Z, Lvov YM, Liu M. The Horizons of Medical Mineralogy: Structure-Bioactivity Relationship and Biomedical Applications of Halloysite Nanoclay. ACS NANO 2024. [PMID: 39016265 DOI: 10.1021/acsnano.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiangyu Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuri M Lvov
- Institute for Micromanufacturing and Biomedical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| |
Collapse
|
9
|
Zhao X, Zou D, Liu Y, Xia Y, Tao J, Zeng Q, Hou Y, Liu M. Electrospun polylactic acid nanofibers membrane with copper ion-loaded clay nanotubes for fresh-keeping packaging. Int J Biol Macromol 2024; 267:131651. [PMID: 38636746 DOI: 10.1016/j.ijbiomac.2024.131651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The plastics derived from fossil fuels for food packaging results in serious environmental problems. Developing environment-friendly materials for food packaging is urgent and essential. In this study, polylactic acid (PLA) composite nanofibers membranes were prepared with good biocompatibility and antibacterial property. Cu2+ loaded in the natural halloysite nanotubes (HNTs) was used for the antibacterial agent. Cu2+ was loaded in the HNTs and was confirmed by the X-ray photoelectron spectroscopy (XPS). PLA nanofibers with different HNTs-Cu content were continuous nanofibers with the nanoscale range. HNTs-Cu entered into the nanofiber successfully. Thermal analysis results showed composite nanofibers had good thermal stability. Composite nanofiber membranes had the good hydrophobic property. HNTs-Cu improved the mechanical property of composite nanofibers than pure PLA nanofibers. Tensile strength and elasticity modulus of composite nanofibers with 4 % HNTs-Cu content were the most outstanding. L929 cells were cultured on the nanofiber membranes for biocompatibility evaluation. Cell viability of nanofiber membranes was above the 90 %. Cell live/dead staining results showed L929 cells was seldom dead on the nanofiber membranes. PLA/HNTs-Cu nanofiber membranes exhibited excellent antibacterial effects on S. aureus and E. coli. The inhibitory rates against S. aureus and E. coli were 98.31 % and 97.80 % respectively. The fresh-keeping effects of nanofiber membranes were evaluated by the strawberry preservation. Strawberries covered by nanofiber membranes exhibited better appearance, lower weight loss and higher firmness than control, PLA and PLA/HNTs groups. It promised that PLA/HNTs-Cu composite nanofiber membranes have the significant potential application for active food packaging.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Donghong Zou
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Yunfei Liu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Ye Xia
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Jiahui Tao
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, China
| | - Qin Zeng
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Yu Hou
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai 519040, China.
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Yu X, He L, Zhang X, Bao G, Zhang R, Jin X, Qin D. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe 3+ complex. Int J Biol Macromol 2024; 265:130894. [PMID: 38490388 DOI: 10.1016/j.ijbiomac.2024.130894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Bamboo fibers (BF), as an important sustainable natural material, are becoming a hot alternative to synthetic fibers for the reinforcement of polypropylene (PP)-based composites. However, the weak interfacial compatibility between BF and PP as matrix and their inherent flammability limit the practical application of BF/PP composites (BPC). Here, a fire-safe BPC was fabricated by constructing flame-retardant interfacial layers containing tannic acid (TA)-Fe3+ complex and halloysite nanotubes (HNTs) on the fiber matrix followed by a hot-pressing process. The results showed that the interfacial chelating of TA with Fe3+ improved the dispersion of HNTs on the fibers and the interfacial interactions within the fiber matrix, resulting in the as-fabricated composite with significantly improved mechanical properties and water resistance. In addition, the flame-retardant composite exhibited higher thermal stability and enhanced residual char content. Moreover, the composite possessed significant flame-retardant performances with a reduction of 23.75 % in the total heat release and 32.44 % in the total smoke production, respectively, owing to the flame retarding in gaseous phase and condensed phase of TA-Fe3+@HNTs layers. This work offers a green and eco-friendly strategy to address the inherent problems of BPC material in terms of fire safety and interfacial compatibility, thus broadening their applications in the automotive interior and construction industries.
Collapse
Affiliation(s)
- Xi Yu
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Lu He
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xiaofeng Zhang
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Gege Bao
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Rong Zhang
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xiaobei Jin
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| | - Daochun Qin
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya 572022, China
| |
Collapse
|
11
|
Liu M, Fakhrullin R, Stavitskaya A, Vinokurov V, Lama N, Lvov Y. Micropatterning of biologically derived surfaces with functional clay nanotubes. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2327276. [PMID: 38532983 PMCID: PMC10964834 DOI: 10.1080/14686996.2024.2327276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
Micropatterning of biological surfaces performed via assembly of nano-blocks is an efficient design method for functional materials with complex organic-inorganic architecture. Halloysite clay nanotubes with high aspect ratios and empty lumens have attracted widespread interest for aligned biocompatible composite production. Here, we give our vision of advances in interfacial self-assembly techniques for these natural nanotubes. Highly ordered micropatterns of halloysite, such as coffee rings, regular strips, and concentric circles, can be obtained through high-temperature evaporation-induced self-assembly in a confined space and shear-force brush-induced orientation. Assembly of these clay nanotubes on biological surfaces, including the coating of human or animal hair, wool, and cotton, was generalized with the indication of common features. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, medical hemostasis, and flame-retardant tissue applications. An interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its core-shell structure (functionalization with quantum dots) was described in comparison with microfiber nanoclay coatings. In addition to being abundantly available in nature, halloysite is also biosafe, which makes its spontaneous surface micropatterning prospective for high-performance materials, and it is a promising technique with potential for an industrial scale-up.
Collapse
Affiliation(s)
- Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation
| | - Nisha Lama
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| |
Collapse
|
12
|
Yu M, Feng L, Gan Z, Hua Y, Wu H, Ganss B, Yang H. Tubular Nanoclay-Enhanced Calcium Phosphate Mineralization and Assembly to Impart High Stiffness and Antimicrobial Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9190-9200. [PMID: 38349042 DOI: 10.1021/acsami.3c19424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Achieving superior mechanical properties of composite materials in artificially engineered materials is a great challenge due to technical bottlenecks in the size and morphological modulation of inorganic nanominerals. Hence, a "bioprocess-inspired fabrication" is proposed to create multilayered organic-inorganic columnar structures. The sequential assembly of halloysite nanotubes (HNTs), polyelectrolytes (PAAs), and calcium phosphates (CaPs) results in organic-inorganic structures. PAA plays a crucial role in controlling the formation of CaP, guiding it into amorphous particles with smaller nanosizes. The introduction of HNT induces the assembly and maturation of CaP-PAA, leading to the formation of a highly crystalline hydroxyapatite. Poly(vinyl alcohol) was then woven into HNT-encapsulated hydroxyapatite nanorods, resulting in composite materials with basic hierarchical structures across multiple scales. The fabricated composite exhibits exceptional hardness (4.27 ± 0.33 GPa) and flexural strength (101.25 ± 1.72 MPa), surpassing those of most previously developed biological hard tissue materials. Additionally, the composite demonstrates effective antibacterial properties and corrosion resistance, attributed to the dense crystalline phase of CaP. This innovative approach showcases the potential of clay minerals, particularly HNT, in the advancement of biomaterial design. The outstanding mechanical and antimicrobial properties of clay-based composites make them a promising candidate for applications in hard tissue repair, offering versatility in biomedicine and engineering.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Li Feng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Zongle Gan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Yicheng Hua
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Haiyan Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Bernhard Ganss
- Faculty of Dentistry and Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Timbó ICG, Oliveira MSCS, Lima RA, Chaves AV, Pereira VDA, Fechine PBA, Regis RR. Microbiological, physicomechanical, and surface evaluation of an experimental self-curing acrylic resin containing halloysite nanotubes doped with chlorhexidine. Dent Mater 2024; 40:348-358. [PMID: 38142145 DOI: 10.1016/j.dental.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE The objective was to synthesize halloysite nanotubes loaded with chlorhexidine (HNT/CHX) and evaluate the antimicrobial activity, microhardness, color change, and surface characteristics of an experimental self-curing acrylic resin containing varying concentrations of the synthesized nanomaterial. METHODS The characterization of HNT/CHX was carried out by calculating incorporation efficiency, morphological and compositional, chemical and thermal evaluations. SAR disks were made containing 0 %, 3 %, 5 %, and 10 % of HNT/CHX. Specimens (n = 3) were immersed in distilled water and spectral measurements were carried out using UV/Vis spectroscopy to evaluate the release of CHX for up to 50 days. The antimicrobial activity of the composite against Candida albicans and Streptococcus mutans was evaluated by disk-diffusion test. Microhardness, color analyses (ΔE), and surface roughness (Ra) (n = 9) were performed before and after 30 days of immersion. Data were analyzed using ANOVA/Bonferroni. {Results.} The incorporation efficiency of CHX into HNT was of 8.15 %. All test groups showed controlled and cumulative CHX release up to 30 or 50 days. Significant antimicrobial activity was verified against both microorganisms (p < 0.001). After the 30-day immersion period, the 10 % HNT/CHX group showed a significant increase in hardness (p < 0.05) and a progressive color change (p < 0.001). At T0, the 5 % and 10 % groups exhibited Ra values similar to the control group (p > 0.05), while at T30, all groups showed similar roughness values (p > 0.05). {Significance.} The modification of a SAR with HNT/CHX provides antimicrobial effect and controlled release of CHX, however, the immediate surface roughness in the 3 % group was compromised when compared to the control group.
Collapse
Affiliation(s)
- Isabelle C G Timbó
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Mayara S C S Oliveira
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Ramille A Lima
- Department of Dentistry, Unichristus, Fortaleza, CE, Brazil
| | - Anderson V Chaves
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Vanessa de A Pereira
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Romulo R Regis
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Verma D, Okhawilai M, Senthilkumar N, Subramani K, Incharoensakdi A, Raja GG, Uyama H. Augmentin loaded functionalized halloysite nanotubes: A sustainable emerging nanocarriers for biomedical applications. ENVIRONMENTAL RESEARCH 2024; 242:117811. [PMID: 38043896 DOI: 10.1016/j.envres.2023.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Clay minerals such as Halloysite nanotubes (HNTs), abundantly available green nanomaterial, exhibit a significant advantage in biomedical applications such as drug delivery, antibacterial and antimicrobials, tissue engineering or regeneration, etc. Because of the mesoporous structure and high absorbability, HNTs exhibit great potential as a nanocarrier in drug delivery applications. The sulfuric acid treatment enhances the surface area of the HNTs and thereby improves their drug-loading capacity by enlarging their lumen space/inner diameter. In the present investigation, based on the literature that supports the efficacy of drug loading after acid treatment, a dual treatment was performed to functionalize the HNTs surface. First, the HNTs were etched and functionalized using sulfuric acid. The acid-functionalized HNTs underwent another treatment using (3-aminopropyl) triethoxysilane (APTES) to better interact the drug molecules with the HNTs surfaces for efficient drug loading. Augmentin, a potential drug molecule of the penicillin group, was used for HNTs loading, and their antibacterial properties, cytotoxicity, and cumulative drug release (%) were evaluated. Different characterization techniques, such as X-ray diffractometer (XRD) and Fourier Transform Infra-Red (FT-IR), confirm the loading of Augmentin to the APTES@Acid HNTs. TEM images confirm the effective loading of the drug molecule with the HNTs. The drug encapsulation efficiency shows 40.89%, as confirmed by the Thermogravimetric Analysis (TGA). Also, the Augmentin-loaded APTES@Acid HNTs exhibited good antibacterial properties against E. coli and S. aureus and low cytotoxicity, as confirmed by the MTT assay. The drug release studies confirmed the sustainable release of Augmentin from the APTES@Acid HNTs. Hence, the treated HNTs can be considered as a potential nanocarrier for effectively delivering Augmentin and promoting enhanced therapeutic benefits.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Karthik Subramani
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - G Ganesh Raja
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Xu X, Chao Y, Ma X, Zhang H, Chen J, Zhu J, Chen J. A photothermally antibacterial Au@Halloysite nanotubes/lignin composite hydrogel for promoting wound healing. Int J Biol Macromol 2024; 258:128704. [PMID: 38103668 DOI: 10.1016/j.ijbiomac.2023.128704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The construction of an effective antibacterial micro-environment to prevent infection and biofilm formation is critically important for the design of wound dressings. Herein, a novel hydrogel wound dressing was fabricated by embedding Au nanoparticles-decorated halloysite nanotubes (Au@HNTs) into the lignin-based hydrogel matrix containing polyvinyl alcohol and chitosan. The resulting composite hydrogel, noted as LPC-Au@HNTs, exhibited an excellent photothermal antibacterial activity owing to the embedded Au@HNTs in which Au nanoparticles were generously filled into the lumen of Halloysite nanotubes. The typical sample containing 4 wt% of Au@HNTs in the composite hydrogel (LPC-Au@HNTs4) had good mechanical and photothermal properties. The surface temperature of as-prepared hydrogel increased to 57.59 °C after 5 min upon NIR light irradiation (808 nm) at 1.0 W/cm2. The photothermal effect endowed the hydrogel dressing with excellent antibacterial activity, with significantly enhanced inhibition rates of Escherichia coli (99.00 %) and Staphylococcus aureus (98.88 %). Experiments in a mouse full-thickness skin defect wound model also showed that the hydrogel dressing had a facilitative effect on the repair of traumatic surfaces. This study provides a broadly appliable wound dressing for treating bacteria-infected wounds, greatly contributing to the design of photothermal antibacterial biomedical materials for wound healing.
Collapse
Affiliation(s)
- Xiaobo Xu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yeyan Chao
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China; School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Hua Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital & Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, PR China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Zhejiang, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China.
| |
Collapse
|
16
|
Ahmad Shah SN, Zulfiqar S, Ruipérez F, Rafique M, Iqbal M, Forrester MJ, Sarwar Late MI, Cochran EW. An integrated experimental and theoretical approach to probe Cr(vi) uptake using decorated halloysite nanotubes for efficient water treatment. RSC Adv 2024; 14:2947-2960. [PMID: 38239454 PMCID: PMC10794904 DOI: 10.1039/d3ra07675j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Halloysite nanotubes (HNTs) were surface functionalized using four distinct chemical moieties (amidoxime, hydrazone, ethylenediamine (EDA), and diethylenetriamine (DETA)), producing modified HNTs (H1-H4) capable of binding with Cr(vi) ions. Advanced techniques like FTIR, XRD, SEM, and EDX provided evidence of the successful functionalization of these HNTs. Notably, the functionalization occurred on the surface of HNTs, rather than within the interlayer or lumen. These decorated HNTs were effective in capturing Cr(vi) ions at optimized sorption parameters, with adsorption rates ranging between 58-94%, as confirmed by atomic absorption spectroscopy (AAS). The mechanism of adsorption was further scrutinized through the Freundlich and Langmuir isotherms. Langmuir isotherms revealed the nearest fit to the data suggesting the monolayer adsorption of Cr(vi) ions onto the nanotubes, indicating a favorable adsorption process. It was hypothesized that Cr(vi) ions are primarily attracted to the amine groups on the modified nanotubes. Quantum chemical calculations further revealed that HNTs functionalized with hydrazone structures (H2) demonstrated a higher affinity (interaction energy -26.33 kcal mol-1) for the Cr(vi) ions. This can be explained by the formation of stronger hydrogen bonds with the NH moieties of the hydrazone moiety, than those established by the OH of oxime (H1) and longer amine chains (H3 and H4), respectively. Overall, the findings suggest that these decorated HNTs could serve as an effective and cost-efficient solution for treating water pollution.
Collapse
Affiliation(s)
- Syed Nadeem Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| | - Fernando Ruipérez
- POLYMAT, Physical Chemistry Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU 01006 Vitoria-Gasteiz Spain
| | - Muhammad Rafique
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Michael J Forrester
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| | | | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| |
Collapse
|
17
|
Vasco G, Arima V, Boudjelida S, Carraro M, Bianco M, Zizzari A, Perrone E, Galiano F, Figoli A, Cesaria M. Polymeric Membranes Doped with Halloysite Nanotubes Imaged using Proton Microbeam Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2970. [PMID: 37999324 PMCID: PMC10674683 DOI: 10.3390/nano13222970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Polymeric membranes are useful tools for water filtration processes, with their performance strongly dependent on the presence of hydrophilic dopants. In this study, polyaniline (PANI)-capped aluminosilicate (halloysite) nanotubes (HNTs) are dispersed into polyether sulfone (PES), with concentrations ranging from 0.5 to 1.5 wt%, to modify the properties of the PES membrane. Both undoped and HNT-doped PES membranes are investigated in terms of wettability (static and time-dependent contact angle), permeance, mechanical resistance, and morphology (using scanning electron microscopy (SEM)). The higher water permeance observed for the PES membranes incorporating PANI-capped HNTs is, finally, assessed and discussed vis-à-vis the real distribution of HNTs. Indeed, the imaging and characterization in terms of composition, spatial arrangement, and counting of HNTs embedded within the polymeric matrix are demonstrated using non-destructive Micro Particle Induced X-ray Emission (µ-PIXE) and Scanning Transmission Ion Microscopy (STIM) techniques. This approach not only exhibits the unique ability to detect/highlight the distribution of HNTs incorporated throughout the whole thickness of polymer membranes and provide volumetric morphological information consistent with SEM imaging, but also overcomes the limits of the most common analytical techniques exploiting electron probes. These aspects are comprehensively discussed in terms of practical analysis advantages.
Collapse
Affiliation(s)
- Giovanna Vasco
- CEDAD—Center of Applied Physics, Dating and Diagnostics, Cittadella della Ricerca, University of Salento, SS. 7, Km. 7300, 72100 Brindisi, Italy;
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Soufiane Boudjelida
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Department of Material Sciences, University Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj 34030, Algeria
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Institute on Membrane Technology (CNR-ITM), University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Monica Bianco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Alessandra Zizzari
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Elisabetta Perrone
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Francesco Galiano
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Maura Cesaria
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
18
|
Husain T, Shoaib MH, Ahmed FR, Yousuf RI, Siddiqui F, Saleem MT, Farooqi S, Jabeen S. Halloysite nanotubes-cellulose ether based biocomposite matrix, a potential sustained release system for BCS class I drug verapamil hydrochloride: Compression characterization, in-vitro release kinetics, and in-vivo mechanistic physiologically based pharmacokinetic modeling studies. Int J Biol Macromol 2023; 251:126409. [PMID: 37598820 DOI: 10.1016/j.ijbiomac.2023.126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study investigated the ability of natural nanotubular clay mineral (Halloysite) and cellulose ether based biocomposite matrix as a controlled release agent for Verapamil HCl (BCS Class-I). Drug-loaded halloysite was prepared and tablet formulations were designed by varying amount of hydroxy propyl methyl cellulose (HPMC K4M). Physical characterization was carried out using SEM, FTIR, and DSC. Tabletability profiles were evaluated using USP1062 guidelines. Drug release kinetics were studied, and physiologically based pharmacokinetic (PBPK) modeling was performed. Compressed tablets possess satisfactory yield pressure of 625 MPa with adequate hardness and disintegration within 30 min. The initial release of the drug was due to surface drug on tablets, while the prolonged release at later time points (around 80 % drug release at 12 h) were due to halloysite loading. The FTIR spectra exhibited electrostatic attraction between the positively charged drug and the negatively charged Si-O-Si functional group of halloysite, while the thermogram showed Verapamil HCl melting point at ~146 °C with enthalpy change of -126.82 J/g. PBPK modeling exhibited PK parameters of optimized matrix formulation (VER-HNT3%) comparable to in vivo data. The study effectively demonstrated the potential of prepared biocomposite matrix as a commercially viable oral release modifying agent for highly soluble drugs.
Collapse
Affiliation(s)
- Tazeen Husain
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics & Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sadaf Farooqi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sabahat Jabeen
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
19
|
Sharma A, Mohapatra H, Arora K, Babbar R, Arora R, Arora P, Kumar P, Algın Yapar E, Rani K, Meenu M, Babu MA, Kaur M, Sindhu RK. Bioactive Compound-Loaded Nanocarriers for Hair Growth Promotion: Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:3739. [PMID: 37960095 PMCID: PMC10649697 DOI: 10.3390/plants12213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
Hair loss (alopecia) has a multitude of causes, and the problem is still poorly defined. For curing alopecia, therapies are available in both natural and synthetic forms; however, natural remedies are gaining popularity due to the multiple effects of complex phytoconstituents on the scalp with fewer side effects. Evidence-based hair growth promotion by some plants has been reported for both traditional and advanced treatment approaches. Nanoarchitectonics may have the ability to evolve in the field of hair- and scalp-altering products and treatments, giving new qualities to hair that can be an effective protective layer or a technique to recover lost hair. This review will provide insights into several plant and herbal formulations that have been reported for the prevention of hair loss and stimulation of new hair growth. This review also focuses on the molecular mechanisms of hair growth/loss, several isolated phytoconstituents with hair growth-promoting properties, patents, in vivo evaluation of hair growth-promoting activity, and recent nanoarchitectonic technologies that have been explored for hair growth.
Collapse
Affiliation(s)
- Arvind Sharma
- School of Pharmaceutical and Health Sciences, Bhoranj (Tikker–Kharwarian), Hamirpur 176041, India;
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Türkiye;
| | - Kailash Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Maninder Meenu
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute, Mohali 143005, India;
| | | | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Rakesh K. Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201306, India
| |
Collapse
|
20
|
Maximov P, Dasi E, Kalinina N, Ruban A, Pokidko B, Rudmin M. Zinc-Intercalated Halloysite Nanotubes as Potential Nanocomposite Fertilizers with Targeted Delivery of Micronutrients. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6729. [PMID: 37895713 PMCID: PMC10608737 DOI: 10.3390/ma16206729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
This study reports on the development of nanocomposites utilizing a mineral inhibitor and a micronutrient filler. The objective was to produce a slow release fertilizer, with zinc sulfate as the filler and halloysite nanotubes as the inhibitor. The study seeks to chemically activate the intercalation of zinc into the macro-, meso-, and micropores of the halloysite nanotubes to enhance their performance. As a result, we obtained three nanocomposites in zinc sulfate solution with concentrations of 2%, 20%, and 40%, respectively, which we named Hly-7Å-Zn2, Hly-7Å-Zn20, and Hly-7Å-Zn40. We investigated the encapsulation of zinc sulfate in halloysite nanotubes using X-ray diffraction analysis, transmission electron spectroscopy, infrared spectroscopy (FTIR), and scanning electron microscopy with an energy-dispersive spectrometer. No significant changes were observed in the initial mineral parameters when exposed to a zinc solution with a concentration of 2 mol%. It was proven that zinc was weakly intercalated in the micropore space of the halloysite through the increase in its interlayer distance from 7.2 to 7.4. With an increase in the concentration of the reacted solution, the average diameter of the nanotubes increased from 96 nm to 129 nm, indicating that the macropore space of the nanotubes, also known as the "site", was filled. The activated nanocomposites exhibit a maximum fixed content of adsorbed zinc on the nanotube surface of 1.4 wt%. The TEM images reveal an opaque appearance in the middle section of the nanotubes. S SEM images revealed strong adhesion of halloysite nanotubes to plant tissues. This property guarantees prolonged retention of the fertilizer on the plant surface and its resistance to leaching through irrigation or rainwater. Surface spraying of halloysite nanotubes offers accurate delivery of zinc to plants and prevents soil and groundwater contamination, rendering this fertilizer ecologically sound. The suggested approach of activating halloysite with a zinc solution appears to be a possible route forward, with potential for the production of tailored fertilizers in the days ahead.
Collapse
Affiliation(s)
- Prokopiy Maximov
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Evan Dasi
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Natalia Kalinina
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Alexey Ruban
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Boris Pokidko
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS (IGEM RAS), 119017 Moscow, Russia
| | - Maxim Rudmin
- Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia
| |
Collapse
|
21
|
Mokrane N, Kaci M, Lopez-Cuesta JM, Dehouche N. Combined Effect of Poly(lactic acid)-Grafted Maleic Anhydride Compatibilizer and Halloysite Nanotubes on Morphology and Properties of Polylactide/Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Blends. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6438. [PMID: 37834577 PMCID: PMC10573863 DOI: 10.3390/ma16196438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, this study aims to investigate the morphology and properties of poly(lactic acid) (PLA)/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) (at a ratio of 75/25 (w/w)) blends reinforced with halloysite nanotubes (HNTs) and compatibilized with poly(lactic acid)-grafted maleic anhydride (PLA-g-MA). HNTs and PLA-g-MA were added to the polymer blend at 5 and 10 wt.%, respectively, and everything was processed via melt compounding. A scanning electron microscopy (SEM) analysis shows that HNTs are preferentially localized in PHBHHx nodules rather than in the PLA matrix due to its higher wettability. When HNTs are combined with PLA-g-MA, a finer and a more homogeneous morphology is observed, resulting in a reduction in the size of PHBHHx nodules. The presence of HNTs in the polymer blend improves the impact strength from 12.7 to 20.9 kJ/mm2. Further, with the addition of PLA-g-MA to PLA/PHBHHX/HNT nanocomposites, the tensile strength, elongation at break, and impact strength all improve significantly, rising from roughly 42 MPa, 14.5%, and 20.9 kJ/mm2 to nearly 46 MPa, 18.2%, and 31.2 kJ/mm2, respectively. This is consistent with the data obtained via dynamic mechanical analysis (DMA). The thermal stability of the compatibilized blend reinforced with HNTs is also improved compared to the non-compatibilized one. Overall, this study highlights the effectiveness of combining HNTs and PLA-g-AM for the properties enhancement of PLA/PHBHHx blends.
Collapse
Affiliation(s)
- Nawel Mokrane
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
- Polymères Composites et Hybrides (PCH), IMT Mines Ales, 6, Avenue de Clavières, 30319 Alès, France
| | - Mustapha Kaci
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
| | - José-Marie Lopez-Cuesta
- Polymères Composites et Hybrides (PCH), IMT Mines Ales, 6, Avenue de Clavières, 30319 Alès, France
| | - Nadjet Dehouche
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
| |
Collapse
|
22
|
Zhang L, Zhu Y, Shi Y, Wang Y, Li J, Cui B. Activation of persulfate by heterogeneous nano zero-valent iron/halloysite nanotubes: reaction behavior, mechanism, and implication for tetracycline hydrochloride degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85822-85834. [PMID: 37393592 DOI: 10.1007/s11356-023-28354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
A novel composite (nZVI/HNTs) was prepared via incorporating nano zero-valent iron (nZVI) on halloysite nanotubes (HNTs) for degrading tetracycline hydrochloride (TCH) with existence of persulfate (PS). The adsorption process of nZVI/HNTs to TCH conformed to the Freundlich isotherm model and pseudo-second-order kinetic model, and its maximum adsorption capacity was 76.62 mg·g-1. Furthermore, the nZVI/HNTs + PS system exhibited satisfactory degradation efficiency (84.21%) for TCH, and stable nZVI/HNTs (Fe leaching < 0.001 mg·L-1) could be reused. When nZVI/HNTs dosage, PS dosage and temperature increased, TCH degradation could be enhanced. After four cycling, nZVI/HNTs + PS system had still 65.8% degradation for TCH. The quenching tests and EPR analysis evidenced that SO4•- was predominant instead of •OH in such system. Three possible pathways of TCH degradation were provided through the liquid chromatograph-mass spectrometer (LC-MS) determination. Meanwhile, the biological toxicity prediction analysis indicated that the nZVI/HNTs + PS system would be an environment friendly treatment method toward TCH pollution.
Collapse
Affiliation(s)
- Liangbo Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan, China
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Yunhong Zhu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan, China.
- Institute for Carbon Neutrality, Henan University of Technology, Zhengzhou, 450001, Henan, China.
| | - Yanqi Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jingyi Li
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Baohui Cui
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
23
|
Bryaskova R, Georgiev N, Philipova N, Bakov V, Anichina K, Argirova M, Apostolova S, Georgieva I, Tzoneva R. Novel Fluorescent Benzimidazole-Hydrazone-Loaded Micellar Carriers for Controlled Release: Impact on Cell Toxicity, Nuclear and Microtubule Alterations in Breast Cancer Cells. Pharmaceutics 2023; 15:1753. [PMID: 37376201 DOI: 10.3390/pharmaceutics15061753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Fluorescent micellar carriers with controlled release of a novel anticancer drug were developed to enable intracellular imaging and cancer treatment simultaneously. The nanosized fluorescent micellar systems were embedded with a novel anticancer drug via the self-assembling behavior of well-defined block copolymers based on amphiphilic poly(acrylic acid)-block-poly(n-butyl acrylate) (PAA-b-PnBA) copolymer obtained by Atom Transfer Radical Polymerization (ATRP) and hydrophobic anticancer benzimidazole-hydrazone drug (BzH). Through this method, well-defined nanosized fluorescent micelles were obtained consisting of a hydrophilic PAA shell and a hydrophobic PnBA core embedded with the BzH drug due to the hydrophobic interactions, thus reaching very high encapsulation efficiency. The size, morphology, and fluorescent properties of blank and drug-loaded micelles were investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescent spectroscopy, respectively. Additionally, after 72 h of incubation, drug-loaded micelles released 3.25 μM of BzH, which was spectrophotometrically determined. The BzH drug-loaded micelles were found to exhibit enhanced antiproliferative and cytotoxic effects on MDA-MB-231 cells, with long-lasting effects on microtubule organization, with apoptotic alterations and preferential localization in the perinuclear space of cancer cells. In contrast, the antitumor effect of BzH alone or incorporated in micelles on non-cancerous cells MCF-10A was relatively weak.
Collapse
Affiliation(s)
- Rayna Bryaskova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Nikolai Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Nikoleta Philipova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Ventsislav Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Maria Argirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
24
|
Yanamadala Y, Saleh MY, Williams AA, Lvov Y, Murray TA. Clay Nanotubes Loaded with Diazepam or Xylazine Permeate the Brain through Intranasal Administration in Mice. Int J Mol Sci 2023; 24:ijms24119648. [PMID: 37298599 DOI: 10.3390/ijms24119648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The blood-brain barrier (BBB) is an obstacle to the permeation of most therapeutic drugs into the brain, limiting treatments for neurological disorders. Drugs loaded within nanocarriers that pass through the BBB can overcome this limitation. Halloysite consists of naturally occurring biocompatible clay nanotubes of 50 nm diameter and 15 nm lumen, allowing the loading and sustained release of loaded drugs. These have demonstrated the ability to transport loaded molecules into cells and organs. We propose to use halloysite nanotubes as a "nano-torpedo" for drug delivery through the BBB due to their needle-like shape. To determine if they can cross the BBB using a non-invasive, clinically translatable route of administration, we loaded halloysite with either diazepam or xylazine and delivered these intranasally to mice daily over six days. The sedative effects of these drugs were observed in vestibulomotor tests conducted at two, five, and seven days after the initial administration. Behavioral tests were conducted 3.5 h after administration to show that the effects were from halloysite/delivered drugs and not from the drug alone. As expected, the treated mice performed more poorly than the sham, drug alone, and halloysite-vehicle-treated mice. These results confirm that halloysite permeates the BBB to deliver drugs when administered intranasally.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Rustom, LA 71270, USA
| | - Mahdi Y Saleh
- Institute for Micromanufacturing, Louisiana Tech University, Rustom, LA 71270, USA
| | - Afrika A Williams
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Rustom, LA 71270, USA
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Rustom, LA 71270, USA
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Rustom, LA 71270, USA
| |
Collapse
|
25
|
Abid M, Ben Haj Amara A, Bechelany M. Halloysite-TiO 2 Nanocomposites for Water Treatment: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091578. [PMID: 37177123 PMCID: PMC10181021 DOI: 10.3390/nano13091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Halloysite nanotubes (HNTs) are clay minerals with a tubular structure that can be used for many different applications in place of carbon nanotubes. Indeed, HNTs display low/non-toxicity, are biocompatible, and can be easily prepared. Moreover, the aluminum and silica groups present on HNTs' inner and outer surfaces facilitate the interaction with various functional agents, such as alkalis, organosilanes, polymers, surfactants, and nanomaterials. This allows the deposition of different materials, for instance, metal and non-metal oxides, on different substrate types. This review article first briefly presents HNTs' general structure and the various applications described in the last 20 years (e.g., drug delivery, medical implants, and energy storage). Then, it discusses in detail HNT applications for water purification (inorganic and organic pollutants). It focuses particularly on HNT-TiO2 composites that are considered very promising photocatalysts due to their high specific surface area and adsorption capacity, large pore volume, good stability, and mechanical features.
Collapse
Affiliation(s)
- Mahmoud Abid
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Laboratory of Resources, Materials & Ecosystem (RME), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Abdesslem Ben Haj Amara
- Laboratory of Resources, Materials & Ecosystem (RME), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Gulf University for Science and Technology, GUST, West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
26
|
Zhang L, Xu X, Jiang S, Wei L, Xi K, Lei Y, Cheng X, Yin J, Gao Y. Halloysite nanotubes modified poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer-in-salt electrolyte to achieve high-performance Li metal batteries. J Colloid Interface Sci 2023; 645:45-54. [PMID: 37146378 DOI: 10.1016/j.jcis.2023.04.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Solid-state Li metal batteries (SSLMBs) are one of the most promising energy storage devices, as they offer high energy density and improved safety compared to conventional Li-ion batteries. However, the large-scale application of SSLMBs at room temperature is restricted by the main challenges such as low ionic conductivity and poor cyclic performance. Herein, a composed polymer-in-salt electrolyte (CPISE) is fabricated, which is composed of polyvinylidene vinylidene hexafluoropropene (PVDF-HFP) and high-concentration Li bis(trifluoromethanesulphonyl)imide (LiTFSI), reinforced with natural halloysite nanotubes (HNTs). The High concentration of LiTFSI and introduced HNTs synergized with PVDF-HFP to provide more various Li+ transport pathways. Additionally, the backbones of the uniform dispersion of HNTs in the CPISE effectively boosts the physicochemical nature of the CPISE. As a result, the prepared CPISE achieves excellent mechanical strength, high ionic conductivity (1.23*10-3 S cm-1) and high Li+ transference number (0.57) at room temperature. Consequently, in existence of the CPISE, the Li symmetric cell cycles stably beyond 800 h at 0.15 mA cm-2 and the LiFePO4/Li cell displays impressive cyclic performance with capacity retention of 79% after 1000 cycles at 30 °C. Furthermore, the superiority and the functional mechanism of the CPISE are discovered in detail. This work provides a promising strategy for the development of high-performance SSMLBs at room temperature.
Collapse
Affiliation(s)
- Linghao Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sen Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lai Wei
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kang Xi
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Lei
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang Cheng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junying Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, China.
| | - Yunfang Gao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Seo JH, Kim KM, Kwon JS. Antibacterial and Physicochemical Properties of Orthodontic Resin Cement Containing ZnO-Loaded Halloysite Nanotubes. Polymers (Basel) 2023; 15:polym15092045. [PMID: 37177192 PMCID: PMC10180918 DOI: 10.3390/polym15092045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Demineralized white lesions are a common problem when using orthodontic resin cement, which can be prevented with the addition of antibacterial substances. However, the addition of antibacterial substances such as zinc oxide alone may result in the deterioration of the resin cement's functions. Halloysite nanotubes (HNTs) are known to be biocompatible without adversely affecting the mechanical properties of the material while having the ability to load different substances. The purpose of this study was to prepare orthodontic resin cement containing HNT fillers loaded with ZnO (ZnO/HNTs) and to investigate its mechanical, physical, chemical, and antibacterial properties. A group without filler was used as a control. Three groups containing 5 wt.% of HNTs, ZnO, and ZnO/HNTs were prepared. TEM and EDS measurements were carried out to confirm the morphological structure of the HNTs and the successful loading of ZnO onto the HNTs. The mechanical, physical, chemical, and antibacterial properties of the prepared orthodontic resin cement were considered. The ZnO group had high flexural strength and water absorption but a low depth of cure (p < 0.05). The ZnO/HNTs group showed the highest shear bond strength and film thickness (p < 0.05). In the antibacterial test, the ZnO/HNTs group resulted in a significant decrease in the biofilm's metabolic activity compared to the other groups (p < 0.05). ZnO/HNTs did not affect cell viability. In addition, ZnO was cytotoxic at a concentration of 100% in the extract. The nanocomposite developed in this study exhibited antimicrobial activity against S. mutans while maintaining the mechanical, physical, and chemical properties of orthodontic resin cement. Therefore, it has the potential to be used as an orthodontic resin cement that can prevent DWLs.
Collapse
Affiliation(s)
- Jeong-Hye Seo
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Jeziorska R, Szadkowska A, Studzinski M, Chmielarek M, Spasowka E. Morphology and Selected Properties of Modified Potato Thermoplastic Starch. Polymers (Basel) 2023; 15:polym15071762. [PMID: 37050376 PMCID: PMC10097106 DOI: 10.3390/polym15071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Potato thermoplastic starch (TPS) containing 1 wt.% of pure halloysite (HNT), glycerol-modified halloysite (G-HNT) or polyester plasticizer-modified halloysite (PP-HNT) was prepared by melt-extrusion. Halloysites were characterized by FTIR, SEM, TGA, and DSC. Interactions between TPS and halloysites were studied by FTIR, SEM, and DMTA. The Vicat softening temperature, tensile, and flexural properties were also determined. FTIR proved the interactions between halloysite and the organic compound as well as between starch, plasticizers and halloysites. Pure HNT had the best thermal stability, but PP-HNT showed better thermal stability than G-HNT. The addition of HNT and G-HNT improved the TPS’s thermal stability, as evidenced by significantly higher T5%. Modified TPS showed higher a Vicat softening point, suggesting better hot water resistance. Halloysite improved TPS stiffness due to higher storage modulus. However, TPS/PP-HNT had the lowest stiffness, and TPS/HNT the highest. Halloysite increased Tα and lowered Tβ due to its simultaneous reinforcing and plasticizing effect. TPS/HNT showed an additional β-relaxation peak, suggesting the formation of a new crystalline phase. The mechanical properties of TPS were also improved in the presence of both pure and modified halloysites.
Collapse
Affiliation(s)
- Regina Jeziorska
- Łukasiewicz Network-Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland
| | - Agnieszka Szadkowska
- Łukasiewicz Network-Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland
| | - Maciej Studzinski
- Łukasiewicz Network-Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland
| | - Michal Chmielarek
- Department of High-Energetic Materials, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewa Spasowka
- Łukasiewicz Network-Industrial Chemistry Institute, Rydygiera 8, 01-793 Warsaw, Poland
| |
Collapse
|
29
|
Evaluation of the effects of halloysite nanotube on polyhydroxybutyrate - chitosan electrospun scaffolds for cartilage tissue engineering applications. Int J Biol Macromol 2023; 233:123651. [PMID: 36775228 DOI: 10.1016/j.ijbiomac.2023.123651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Scaffolding method and material that mimic the extracellular matrix (ECM) of host tissue is an integral part of cartilage tissue engineering. This study aims to enhance the properties of electrospun scaffolds made of polyhydroxybutyrate (PHB) - Chitosan (Cs) by adding 1, 3, and 5 wt% halloysite nanotubes (HNT). The morphological, mechanical, and hydrophilicity evaluations expressed that the scaffold containing 3 wt% HNT exhibits the most appropriate features. The FTIR and Raman analysis confirmed hydrogen bond formation between the HNT and PHB-Cs blend. 3 wt% of HNT incorporation decreased the mean fibers' diameter from 965.189 to 745.16 nm and enhanced tensile strength by 169.4 %. By the addition of 3 wt% HNT, surface contact angle decreased from 61.45° ± 3.3 to 46.65 ± 1.8° and surface roughness increased from 684.69 to 747.62 nm. Our findings indicated that biodegradation had been slowed by incorporating HNT into the PHB-Cs matrix. Also, MTT test results demonstrated a significant increase in cell viability of chondrocytes on the PHB-Cs/3 wt% HNT (PC-3H) scaffold after 7 days of cell culture. Accordingly, the PC-3H scaffold can be considered a potential candidate for cartilage tissue engineering.
Collapse
|
30
|
Lin X, Feng Y, He Y, Ding S, Liu M. Engineering design of asymmetric halloysite/chitosan/collagen sponge with hydrophobic coating for high-performance hemostasis dressing. Int J Biol Macromol 2023; 237:124148. [PMID: 36958442 DOI: 10.1016/j.ijbiomac.2023.124148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Uncontrolled massive hemorrhage is a crucial cause of death, and developing efficient hemostatic materials are of great medical importance. Herein, we prepared a halloysite-chitosan-collagen composite sponge by directional freeze-drying method and coating the sponge by hydrophobic polydimethylsiloxane coating for rapid and effective hemostasis. The aligned channel structure of the sponge with a pore size of ~30 μm was beneficial for the transport of blood. Morphology and spectrum results suggested that chitosan and collagen are capable of adsorbing on the outer surface of HNTs due to the hydrogen bonding and electrostatic attractions. The directional freeze-dried sponge absorbed the majority of the blood within 10 s, and that process essentially completed in 30 s, which are faster than its non-directional counterpart. The composite sponges exhibited high antibacterial properties towards E. coli and S. aureus, and they are non-cytotoxic towards mouse fibroblasts and have high hemocompatibility. The hemostatic dressing avoided unnecessary blood loss because of excessive blood absorption. In vivo experiments of rats also confirmed the ability of the asymmetric sponges to rapidly clot and reduce reducing blood loss. This work developed a high-performance and hemostatic dressing by material design and processing technique, which shows a promising application in wound healing.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
31
|
Wang Y, Guo F, Liao X, Li S, Yan Z, Zou F, Peng Q, Li G. High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO 2. Int J Biol Macromol 2023; 236:123961. [PMID: 36898452 DOI: 10.1016/j.ijbiomac.2023.123961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
It has been a great challenge to prepare high-expansion-ratio polylactide (PLA) foam with eminent thermal insulation and compression performance in packaging field. Herein, a naturally formed nanofiller halloysite nanotube (HNT) and stereocomplex (SC) crystallites were introduced into PLA with a supercritical CO2 foaming method to improve foaming behavior and physical properties. The compressive performance and thermal insulation properties of the obtained poly(L-lactic acid) (PLLA)/poly(D-lactic acid) (PDLA)/HNT composite foams were successfully investigated. At a HNT content of 1 wt%, the PLLA/PDLA/HNT blend foam with an expansion ratio of 36.7 folds showed a thermal conductivity as low as 30.60 mW/(m·K). Meanwhile, the compressive modulus of PLLA/PDLA/HNT foam was 115% higher than that of PLLA/PDLA foam without HNT. Moreover, the crystallinity of PLLA/PDLA/HNT foam was dramatically improved after annealing, thus the results showed that compressive modulus of the annealed foam increased by as high as 72%, while it still maintained good heat insulation with the thermal conductivity of 32.63 mW/(m·K). This work provides a green method for the preparation of biodegradable PLA foams with admirable heat resistance and mechanical performance.
Collapse
Affiliation(s)
- Yao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fumin Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xia Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Shaojie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhihui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fangfang Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qianyun Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
32
|
Zagni C, Scamporrino AA, Riccobene PM, Floresta G, Patamia V, Rescifina A, Carroccio SC. Portable Nanocomposite System for Wound Healing in Space. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:741. [PMID: 36839109 PMCID: PMC9961582 DOI: 10.3390/nano13040741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical-physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material's ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space.
Collapse
Affiliation(s)
- Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | | | - Paolo Maria Riccobene
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Sabrina Carola Carroccio
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
33
|
Comparative study on mechanical, thermal, and morphological properties of nanocomposites based on polyetherimide (PEI)/silicone rubber reinforced with different nanofillers. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Gezmis-Yavuz E, Ergon-Can T, Cansoy CE, Koseoglu-Imer DY. Fabrication and Application of Halloysite Nanotube-Embedded Photocatalytic Nanofibers with Antibacterial Properties. ACS OMEGA 2023; 8:1453-1465. [PMID: 36643546 PMCID: PMC9835798 DOI: 10.1021/acsomega.2c06880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
With decreasing indoor air quality, increased time spent at indoors, and especially with the COVID-19 pandemic, the development of new materials for bacteria and viruses has become even more important. Less material consumption due to the electrospinning process, the easy availability/affordability of the halloysite nanotube (HNT), and the antibacterial effect of both TiO2 and ZnO nanoparticles make the study even more interesting. HNTs have attracted research attention in recent years due to their low cost, high mechanical strength, natural and environmentally friendly structure, and non-toxicity to human health and ecosystem. In this study, HNT-embedded composite nanofiber filters were fabricated as filter materials using the electrospinning method. Photocatalysts (TiO2 and ZnO) were incorporated into the composite nanofibers by the electrospraying method. The results showed that the combination of both HNT/TiO2 and HNT/ZnO additives was successfully integrated into the filter structure. The effect of embedding the HNT and spraying photocatalysts enables the fabrication of composite filters with lower pressure drop, high filtration efficiency, improved mechanical properties, and high antibacterial properties against Escherichia coli, making the nanofibers suitable and promising for face masks and air filter materials.
Collapse
Affiliation(s)
- Elifnur Gezmis-Yavuz
- Department
of Environmental Engineering, Istanbul Technical
University, Maslak Campus, Istanbul 34469, Turkey
| | - Tulay Ergon-Can
- Department
of Environmental Engineering, Istanbul Technical
University, Maslak Campus, Istanbul 34469, Turkey
| | - C. Elif Cansoy
- Department
of Maritime Transportation Management Engineering, Piri Reis University, Istanbul 34940, Turkey
| | - Derya Y. Koseoglu-Imer
- Department
of Environmental Engineering, Istanbul Technical
University, Maslak Campus, Istanbul 34469, Turkey
| |
Collapse
|
35
|
Zhang Y, Li Y, Bi H, Zhou S, Chen J, Zhang S, Huang Y, Chang F, Zhang H, Wågberg T, Hu G. Nanomanganese cobaltate-decorated halloysite nanotubes for the complete degradation of ornidazole via peroxymonosulfate activation. J Colloid Interface Sci 2023; 630:855-866. [DOI: 10.1016/j.jcis.2022.10.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
36
|
Sun Y, Su J, Ali A, Huang T, Zhang S, Min Y. Enhanced nitrate and cadmium removal performance at low carbon to nitrogen ratio through immobilized redox mediator granules and functional strains in a bioreactor. CHEMOSPHERE 2023; 312:137255. [PMID: 36402354 DOI: 10.1016/j.chemosphere.2022.137255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of multiple pollutants and lack of carbon sources are challenges for the biological treatment of wastewater. To achieve simultaneous removal of nitrate (NO3--N) and cadmium (Cd2+) at low carbon to nitrogen (C/N) ratios, 2-hydroxy-1,4-naphthoquinone (HNQ) was selected from three redox mediators as an accelerator for denitrification of heterotrophic strain Pseudomonas stutzeri sp. GF2 and autotrophic strain Zoogloea sp. FY6. Then, halloysite nanotubes immobilized with 2-hydroxy-1,4-naphthoquinone (HNTs-HNQ) were prepared and a bioreactor was constructed with immobilized redox mediator granules (IRMG) as the carrier, which was immobilized with HNTs-HNQ and inoculated with the two strains. The immobilized HNQ and the inoculated strains jointly improved the removal ability of NO3--N and Cd2+ and the removal efficiency of NO3--N (25.0 mg L-1) and Cd2+ (5.0 mg L-1) were 92.81% and 93.94% at C/N = 1.5 and hydraulic retention time (HRT) = 4 h. The Cd2+ was removed by adsorption of iron oxides (FeO(OH) and Fe3O4) and IRMG. The electron transport system activity (ETSA) of bacteria was improved and the composition of dissolved organic matter in the effluent was not affected by HNQ. The HNQ promoted the production of FeO(OH) and up-regulated the proportion of Zoogloea (54.75% in the microbial community), indicating that Zoogloea sp. FY6 was dominant in the microbial community. In addition, HNQ influenced the metabolic pathways and improved the relative abundance of some genes involved in nitrogen metabolism and the iron redox cycle.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
37
|
Alipour S, Mostafapour A, Laieghi H, Marzec A. Manufacturing and Joining PP/NBR Blends in the Presence of Dual Compatibilizer and Halloysite Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:49. [PMID: 36615958 PMCID: PMC9823872 DOI: 10.3390/nano13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Polypropylene (PP)/acrylonitrile butadiene rubber (NBR) composite plates reinforced with halloysite nanotubes (HNTs) were manufactured in the presence of dual compatibilizers: PP-grafted maleic anhydride (PP-g-MA) and styrene ethylene butylene styrene-grafted maleic anhydride (SEBS-g-MA). The mechanical characteristics and microstructure of the PP/NBR/HNT nanocomposites were investigated as a function of NBR content (10, 20, and 30 wt.%) and HNTs content (3, 5, and 7 wt.%). The results demonstrated that the rubber particles were well dispersed over the PP matrix and that the HNTs were partly agglomerated at contents above 5%. Friction stir welding (FSW) was used to join the nanocomposite plates. A significant reduction in scattered NBR droplet size was seen in the FS-welded specimens containing 80/20 (wt/wt) PP/NBR composites in the presence of a dual compatibilizer. Considerable improvement in particle dispersion was observed in the case of PP/NBR blends filled 80/20 (wt/wt) with HNTs joined using FSW, leading to enhanced mechanical properties in the joints. This was due to the stirring action of the FSW tool. Suitable agreement between anticipated and confirmed values was observed in experiments.
Collapse
Affiliation(s)
- Sina Alipour
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Amir Mostafapour
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Hossein Laieghi
- Department of Mechanical Engineering, Gazi University, Ankara 06570, Türkiye
- Additive Manufacturing Technologies Research and Application Center-EKTAM, Gazi University, Ankara 06560, Türkiye
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
38
|
Cecílio DM, Cerrada M, Pérez E, Fernandes A, Paulo Lourenço J, McKenna TF, Rosário Ribeiro M. A novel approach for preparation of nanocomposites with an excellent rigidity/deformability balance based on reinforced HDPE with halloysite. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
40
|
Bao Q, He R, Liu Y, Wang Q, Zhang C. Functionalized halloysite nanotubes endowing epoxy resin with simultaneously enhanced flame retardancy and mechanical properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Shi Z, Tian Y, Liu J, Wu W, Gao S, Zhang H. Zeolitic imidazolate framework-8 modified magnetic halloysite nanotube-based solid phase extraction for the analysis of carbamate pesticides by ultra-high performance liquid chromatography tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4659-4668. [PMID: 36342027 DOI: 10.1039/d2ay01228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zeolitic imidazolate framework-8 modified magnetic halloysite nanotube (MHNTs@ZIF-8) composites were synthesized and evaluated for the first time as an efficient sorbent for the magnetic solid-phase extraction (mSPE) of carbamate pesticides (CPs) from water samples. MHNTs were prepared by coprecipitation, and MHNTs@ZIF-8 composites were assembled in situ at room temperature. After characterization, MHNTs@ZIF-8 was used to extract pirimicarb, propoxur, carbaryl, isoprocarb and fenobucarb via π-π stacking interaction and hydrophobic interaction between the imidazole skeleton of ZIF-8 and benzene rings or benzene-like rings in CPs, as well as the hydrogen bond formed between O in CPs and H in ZIF-8. The effects of the amount of sorbent, ionic strength, type and volume of desorption solvent and adsorption/desorption time were investigated. Under optimum conditions, good linearity was obtained for the analysis of CPs by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with R2 ≥ 0.9992. The limits of quantification range from 3 to 40 ng L-1 in water. Relative standard deviations (RSDs) were <7%, n = 5, within a batch and <9% among batches. The spiked recoveries were between 81 and 104%. The proposed method has been successfully applied to the determination of CPs in various water samples.
Collapse
Affiliation(s)
- Zhihong Shi
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Yuehong Tian
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Junjie Liu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Wenwen Wu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Sifan Gao
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| | - Hongyi Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China.
| |
Collapse
|
42
|
Tomaszewska J, Wieczorek M, Skórczewska K, Klapiszewska I, Lewandowski K, Klapiszewski Ł. Preparation, Characterization and Tailoring Properties of Poly(Vinyl Chloride) Composites with the Addition of Functional Halloysite-Lignin Hybrid Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8102. [PMID: 36431589 PMCID: PMC9693884 DOI: 10.3390/ma15228102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In this article, halloysite-lignin hybrid materials (HL) were designed and obtained. The weak hydrogen bonds found between the components were determined based on Fourier transform infrared spectroscopy (FTIR), proving the achievement of class I hybrid systems. The HL systems were characterized by very good thermal stability and relatively good homogeneity, which increased as the proportion of the inorganic part increased. This was confirmed by analyzing scanning electron microscope (SEM) images and assessing particle size distributions and polydispersity indexes. Processing rigid poly(vinyl chloride) (PVC) with HL systems with a content of up to 10 wt% in a Brabender torque rheometer allowed us to obtain composites with a relatively homogeneous structure confirmed by SEM observations; simultaneously, a reduction in the fusion time was noted. An improvement in PVC thermal stability of approximately 40 °C for composites with HL with a ratio of 1:5 wt/wt was noted. Regardless of the concentration of the HL system, PVC composites exhibited inconsiderably higher Young's modulus, but the incorporation of 2.5 wt% of fillers increased Charpy impact strength by 5-8 kJ/m2 and doubled elongation at break. This study demonstrated that favorable mechanical properties of PVC composites can be achieved, especially with an HL system with a ratio of 5:1 wt/wt.
Collapse
Affiliation(s)
- Jolanta Tomaszewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Martina Wieczorek
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Katarzyna Skórczewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Izabela Klapiszewska
- Faculty of Civil and Transport Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
| | - Krzysztof Lewandowski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, PL-85326 Bydgoszcz, Poland
| | - Łukasz Klapiszewski
- Faculty of Chemical Technology, Poznan University of Technology, PL-60965 Poznan, Poland
| |
Collapse
|
43
|
Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application. Polymers (Basel) 2022; 14:polym14214733. [PMID: 36365726 PMCID: PMC9655120 DOI: 10.3390/polym14214733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Although polymers are very important and vastly used materials, their physical properties are limited. Therefore, they are reinforced with fillers to relieve diverse restrictions and expand their application areas. The exceptional properties of graphene make it an interesting material with huge potential for application in various industries and devices. The interfacial interaction between graphene and the polymer matrix improved the uniform graphene dispersion in the polymer matrix, enhancing the general nanocomposite performance. Therefore, graphene functionalization is essential to enhance the interfacial interaction, maintain excellent properties, and obstruct graphene agglomeration. Many studies have reported that graphene/polymer nanocomposites have exceptional properties that enable diverse applications. The use of graphene/polymer nanocomposites is expected to increase sustainably and to transform from a basic to an advanced material to offer optimum solutions to industry and consumers.
Collapse
|
44
|
Baheri B, Lindenberger AL, Sharma S, Lee S. Characterization of linear low‐density polyethylene and halloysite nanotube (
LLDPE
/
HNT
) composites based on two‐roll calendering melt fabrication. J Appl Polym Sci 2022. [DOI: 10.1002/app.53259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bahareh Baheri
- Sustainable Energy and Advanced Materials (SEAM) Laboratory Ohio University Athens Ohio USA
- Department of Chemical and Biomolecular Engineering Ohio University Athens Ohio USA
| | - Amy L. Lindenberger
- Sustainable Energy and Advanced Materials (SEAM) Laboratory Ohio University Athens Ohio USA
- Department of Chemical and Biomolecular Engineering Ohio University Athens Ohio USA
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering Ohio University Athens Ohio USA
| | - Sunggyu Lee
- Sustainable Energy and Advanced Materials (SEAM) Laboratory Ohio University Athens Ohio USA
- Chemtech Innovators LLC Athens Ohio USA
| |
Collapse
|
45
|
Wan Ikhsan SN, Yusof N, Aziz F, Ismail AF, Shamsuddin N, Jaafar J, Salleh WNW, Goh PS, Lau WJ, Misdan N. Synthesis and Optimization of Superhydrophilic-Superoleophobic Chitosan-Silica/HNT Nanocomposite Coating for Oil-Water Separation Using Response Surface Methodology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203673. [PMID: 36296863 PMCID: PMC9607117 DOI: 10.3390/nano12203673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
In this current study, facile, one-pot synthesis of functionalised nanocomposite coating with simultaneous hydrophilic and oleophobic properties was successfully achieved via the sol-gel technique. The synthesis of this nanocomposite coating aims to develop a highly efficient, simultaneously oleophobic-hydrophilic coating intended for polymer membranes to spontaneously separate oil-in-water emulsions, therefore, mitigating the fouling issue posed by an unmodified polymer membrane. The simultaneous hydrophilicity-oleophobicity of the nanocoating can be applied onto an existing membrane to improve their capability to spontaneously separate oil-in-water substances in the treatment of oily wastewater using little to no energy and being environmentally friendly. The synthesis of hybrid chitosan-silica (CTS-Si)/halloysite nanotube (HNT) nanocomposite coating using the sol-gel method was presented, and the resultant coating was characterised using FTIR, XPS, XRD, NMR, BET, Zeta Potential, and TGA. The wettability of the nanocomposite coating was evaluated in terms of water and oil contact angle, in which it was coated onto a polymer substrate. The coating was optimised in terms of oil and water contact angle using Response Surface Modification (RSM) with Central Composite Design (CCD) theory. The XPS results revealed the successful grafting of organosilanes groups of HNT onto the CTS-Si denoted by a wide band between 102.6-103.7 eV at Si2p. FTIR spectrum presented significant peaks at 3621 cm-1; 1013 cm-1 was attributed to chitosan, and 787 cm-1 signified the stretching of Si-O-Si on HNT. 29Si, 27Al, and 13H NMR spectroscopy confirmed the extensive modification of the particle's shells with chitosan-silica hybrid covalently linked to the halloysite nanotube domains. The morphological analysis via FESEM resulted in the surface morphology that indicates improved wettability of the nanocomposite. The resultant colloids have a high colloid stability of 19.3 mV and electrophoretic mobility of 0.1904 µmcm/Vs. The coating recorded high hydrophilicity with amplified oleophobic properties depicted by a low water contact angle (WCA) of 11° and high oil contact angle (OCA) of 171.3°. The optimisation results via RSM suggested that the optimised sol pH and nanoparticle loadings were pH 7.0 and 1.05 wt%, respectively, yielding 95% desirability for high oil contact angle and low water contact angle.
Collapse
Affiliation(s)
- Syarifah Nazirah Wan Ikhsan
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Wan Norharyati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Nurasyikin Misdan
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat 86400, Johor, Malaysia
| |
Collapse
|
46
|
Zhong L, Li T, Zhang J, Wang J, Zhang D. Simultaneously improving the flame retardancy and toughness of epoxy composites with hyperbranched phosphorus-containing polysiloxane functionalized halloysite nanotubes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
47
|
Wang Q, Liu H, Zhai P, Sun F, Chen T, Chu Z, Chen D, Zou X. Utilization of methylene blue-adsorbed halloysite after carbonization to activate peroxymonosulfate degrading phenol: Performance and mechanism. CHEMOSPHERE 2022; 305:135326. [PMID: 35709846 DOI: 10.1016/j.chemosphere.2022.135326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, a new low-cost carbon-based material was prepared via the carbonization of methylene blue adsorbed halloysite (CMH) at different temperatures in a nitrogen atmosphere, which was named CMH-T (T-Temperature). The performance of CMH-T was explored and the effects of initial pH values, catalyst dosage, phenol (PE) concentrations, peroxymonosulfate (PMS) concentrations, and water background compounds on PE degradation were investigated systematically. The results indicated that CMH800 exhibited the best performance to activate PMS for degrading PE. Specifically, 92% PE was degraded within 30 min with a constant rate (kobs) of 0.1186 min-1 in the CMH800/PMS system. Furthermore, CMH800 was efficient over a wide pH range (pH 3-9) and showed a slight inhibition to inorganic anions. Quenching experiments, electron spin resonance (ESR) analysis, and electrochemical analysis confirmed that PE was degraded through non-radical pathways dominated by single oxygen (1O2) and mediated electron transfer processes in the CMH800/PMS system. In addition, the predicted toxicity of intermediates through ECOSAR software based on QSAR (Quantitative Structure - Activity Relationship) model indicated that most of the intermediates had a low risk to water environment. Therefore, the CMH800 has a good potential for wastewater treatment applications.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Peixun Zhai
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fuwei Sun
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ziyang Chu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
48
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Aydın K, Sevim H, Can HK. Insight into the fabrication, characterization, and in vitro cytotoxicity studies approaches of halloysite-based functional anhydride containing polymer nanocomposites. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Kübra Aydın
- Division of Polymer Chemistry, Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Handan Sevim
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Hatice Kaplan Can
- Division of Polymer Chemistry, Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
50
|
Mamytbekov G, Zhakanbaev E, Nurtazin E, Glushenko V. Synthesis, structure and features of formation of biphasic hybrid polymer compositions based on bentonite. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2022. [DOI: 10.15328/cb1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The synthesis, structure and features of the formation of biphasic hybrid polymer compositions based on natural ionite (bentonite – BT), its intercalated complex (ICC) with a solid solution of copper ferrocyanide K4-хCux[Fe(CN)6] and a synthetic rare cross-linked acrylamide-acrylic acid copolymer were studied. The mechanism of formation of biphasic intercalated and percolated structures was analyzed by means of X-ray diffraction, X-ray fluorescence analysis, IR-Fourier spectroscopy and stress-strain curves. It is shown that the impregnation of the mineral bentonite filler into the polymer matrix, including its intercalated complex {BT:K4-xCux[Fe(CN)6]} is accompanied by an increase of non-uniformity of the structure of the hybrid composite material. It has been established that the main factor characterizing the deformation stability of the composite is the adhesive strength at the interface between the mineral filler and the polymer matrix. Under uniaxial tension of the P[AA-AA]{BT} composition and the percolated complex P[AA-AA]{BT:K4-xCux[Fe(CN)6]} their internal structure is rearranged resulting in stretching of agglomerates of solid fillers along polymer chains, which is determined by the adhesion force between polymer chains and mineral particles at the phase boundary. It is proposed to consider such biphasic hybrid composite materials as a promising class of interpenetrating networks with valuable applied properties.
Collapse
|