1
|
Jiang Y, Cao K, Wang Q. Linear Radical Additions-Coupling Polymerization (LRAsCP): Model, Experiment and Application. Polymers (Basel) 2025; 17:741. [PMID: 40338283 PMCID: PMC11945175 DOI: 10.3390/polym17060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 05/09/2025] Open
Abstract
Exploring new polymerization strategies for currently available monomers is a challenge in polymer science. Herein, a bifunctional initiator (BFI) is introduced for the conventional radical polymerization of a vinyl monomer, resulting in linear radical additions-coupling polymerization (LRAsCP). In LRAsCP, the coupling reaction alongside the addition reaction of the radicals contributes to the construction of polymer chains, which leads to stepwise growth of the multiblock structure. Theoretical analysis of LRAsCP predicted variation of some structural parameters of the resulting multiblock polymer (MBP) with the extent of initiation of the BFI and the termination factor of the radicals. Simultaneous and cascade initiations of the BFI were compared. LRAsCP of styrene was conducted, and a kinetics study was carried out. The increment in Mn with polymerization time demonstrated the stepwise mechanism of the formation of the MBP. The variation of the structural parameters of MBP fitted well with the theoretical prediction. Two-step LRAsCP was conducted and multiblock copolymers (MBcP) were obtained either by in situ copolymerization of styrene and MMA or by a second copolymerization of styrene and BMA. The current results demonstrate that the introduction of a BFI to conventional radical polymerization generates a new polymerization strategy, leading to a new chain architecture, which can be extended to other radical polymerizable monomers.
Collapse
Affiliation(s)
- Yudian Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310058, China;
| | - Kun Cao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China;
| | - Qi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
2
|
Fu XY, Yue TJ, Guo XH, Lu XB, Ren WM. Synthesis of highly effective polyester/polyacrylate compatibilizers using switchable polymerization. Nat Commun 2025; 16:2154. [PMID: 40038273 DOI: 10.1038/s41467-025-57449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
Multiblock copolymers (MBCPs) comprising polyester and polyacrylate segments offer an efficient strategy for enhancing the performance of polyester and polyolefin blends but synthesis and structural modification of these MBCPs remains challenging. Here, we propose a method for synthesizing MBCPs via the switchable polymerization of epoxides, cyclic anhydrides, and acrylates using a dinuclear Co-complex, wherein the anhydride acts as a switcher. Detailed studies on the copolymerization process reveal that the successful synthesis of MBCPs is achieved by intramolecular bimetallic synergistic catalysis, producing MBCPs with controlled molecular weights and narrow dispersities. Owing to the high compatibility of the monomers, this method allows for producing MBCPs with diverse structures and block numbers. Moreover, the resulting MBCPs effectively enhance the performance of the polyester and polyacrylate blends, improving the toughness of polyesters. Studies on microphase separation show that MBCPs can effectively compatibilize immiscible blends, highlighting their potential as compatibilizers.
Collapse
Affiliation(s)
- Xiang-Yu Fu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China.
| | - Xiao-Hui Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, China.
| |
Collapse
|
3
|
Wu X, Yang T, Jiang X, Su W, Liu F, Wang J, Zhu J. New thermoplastic poly(ester-ether) elastomers with enhanced mechanical properties derived from long-chain dicarboxylic acid for medical device applications. J Mater Chem B 2025; 13:1731-1743. [PMID: 39704123 DOI: 10.1039/d4tb02183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Recent advances in medical plastics highlight the need for sustainable materials with desirable elastic properties. Traditional polyester elastomers have been used as alternatives to polyvinyl chloride (PVC) due to their biocompatibility and adjustable mechanical properties. However, these materials often lack the necessary stability and toughness for reliable medical applications. To address these issues, this study introduces renewable 1,12-dodecanedioic acid (DA) to create a copolymer with diols, resulting in a structure akin to polyolefins. This innovative approach significantly enhances toughness by regulating chain segment lengths and integrates high performance with sustainability. The resulting bio-based elastomer exhibits remarkable biocompatibility and elastic recovery (69.0%). This work represents a significant advancement in the development of eco-friendly materials suitable for medical device applications, with potential implications for tissue engineering and other healthcare technologies.
Collapse
Affiliation(s)
- Xiangwei Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Tao Yang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Xiaoqin Jiang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Wei Su
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Fei Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
4
|
Sun H, Wang X, Wang Z. Grafting of nonpolar polyisoprene as midblock and polar polylactide as outer block onto cellulose to produce bio-based thermoplastic elastomers. Carbohydr Polym 2025; 348:122777. [PMID: 39562058 DOI: 10.1016/j.carbpol.2024.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
Sustainable cellulose-graft-diblock copolymers (cellulose-graft-polyisoprene-block-polylactide, MCC-g-PI-b-PLLA, MCC was chemically-modified microcrystalline cellulose) were designed and delicately synthesized for the first time by a mild and facile procedure via combining ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization techniques, which conquered the difficulties in synthesis due to the distinct chemical properties among the MCC backbone, PI and PLLA blocks. Two separate glass transition temperatures were detected for MCC-g-PI-b-PLLA copolymers by differential scanning calorimetry, indicative of microphase separation, consistent with small-angle X-ray scattering and atomic force microscopy measurements. The α-form crystals of PLLA outer blocks were revealed by wide-angle X-ray diffraction measurement. The monotonic and step-cyclic tensile tests revealed that the mechanical property could be tuned by changing the molecular mass of PI midblock. The two ends of the soft PI midblock were anchored by rigid cellulose backbone and hard PLLA outer block, respectively, which served as physical crosslinking points. The rigid cellulose backbones brought the PI rubbery domains and PLLA hard domains together to form a whole hierarchical microstructure, endowing the copolymers with distinguished mechanical property. This work provided a feasible approach to producing environmental-friendly cellulose-based copolymers with fully biomass-derived feedstocks, having a profound impact on the development of sustainable polymer-based materials.
Collapse
Affiliation(s)
- Huanjuan Sun
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xuehui Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhigang Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
5
|
Cui S, Murphy EA, Santra S, Bates FS, Lodge TP. Mesoscopic Morphologies in Frustrated ABC Bottlebrush Block Terpolymers. ACS NANO 2025; 19:1211-1221. [PMID: 39760286 DOI: 10.1021/acsnano.4c13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals. However, the structures observed in AB diblock bottlebrushes are generally limited to simple lamellae and cylindrical phases, which restricts their use in many applications. In this study, we synthesized a library of 50 ABC bottlebrush triblock terpolymers, poly(DL-lactide)-b-poly(ethylene-alt-propylene)-b-polystyrene (PLA-PEP-PS), spanning a wide range of compositions using ring-opening metathesis polymerization (ROMP) of norbornene-functionalized macromonomers. This constitutes a frustrated system, in that the mandatory internal interfaces (PLA/PEP and PEP/PS) have larger interfacial energies than PLA/PS. We systematically explored phase behavior using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Morphological characterization revealed a series of intriguing mesoscopic structures, including layered microstructures, core-shell hexagonally packed cylinders (CSHEX, plane group p6mm), alternating tetragonally packed cylinders (ATET, plane group p4mm), and rectangular centered cylinders-in-undulating-lamellae (RCCUL, plane group c2mm). Adjustments in molecular weight resulted in a wide range of unit cell dimensions (exemplified by RCCUL), from 40 nm to over 130 nm. This work demonstrates that multiblock bottlebrushes offer promising opportunities for developing materials with diverse structures and a broad range of domain dimensions.
Collapse
Affiliation(s)
- Shuquan Cui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Subrata Santra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Chen S, Lin P, Yuan J. Enhancing strength and toughness simultaneously: Diblock-grafted cellulose nanofiber one-component nanocomposites. Int J Biol Macromol 2024; 281:136497. [PMID: 39423975 DOI: 10.1016/j.ijbiomac.2024.136497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
To overcome the drawbacks of homopolymer-grafted CNF one-component nanocomposites, a range of diblock-grafted cellulose nanofiber (CNF), CNF-g-(polybutyl acrylate-b-polymethyl methacrylate)s were synthesized through reversible-deactivation radical polymerization (RDRP) methods. The chemical structures and ratios between the two blocks were confirmed, with surface-grafted CNF observed as submicron particles. Both thermal and thermodynamic analysis revealed two glass transition temperatures (Tg) in the diblock-grafted CNF, and phase-separated morphology was observed in the nanocomposites. The densely grafted CNF displayed island structures, while sparsely grafted samples transitioned into continuous structure. Thermodynamic analysis showed that the diblock-grafted CNF nanocomposites maintained mechanical properties at high temperatures. These nanocomposites demonstrated robust strength and toughnes, with tensile strength reaching as high as 43.7 ± 1.6 MPa and elongation at break of 70.3 ± 16.2 %. Moreover, while densely grafted CNF exhibited higher modulus and strength, whereas sparsely grafted CNF displayed behavior more reminiscent of thermoplastic elastomers, indicated by lower modulus and higher elongation.
Collapse
Affiliation(s)
- Sikai Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Peng Lin
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jinglin Yuan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| |
Collapse
|
8
|
Xing Y, Wei Y, Ge C, Hu R, Zhang Y, Wang B, Wang Z, Jiang F. Sustainable chitin-derived elastomers via grafting strategy with tunable mechanical and adhesion properties. Int J Biol Macromol 2024; 279:135289. [PMID: 39236958 DOI: 10.1016/j.ijbiomac.2024.135289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
With increasing environmental awareness and the pursuit of sustainable development goals, environmentally friendly sustainable thermoplastic elastomers (TPEs) derived from natural resources are highly desired to replace traditional TPEs. However, preparing sustainable TPEs with high mechanical properties and multifunctionality from biobased feedstocks remains a significant challenge. In this work, a series of chitin-graft-poly(acrylamide-co-2-ethylhexyl acrylate) (Chitin-g-P(AM-co-EHA)) copolymers were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. The tensile strength of Chitin-g-P(AM-co-EHA) copolymers can be tuned over a wide range from 1.0 to 7.3 MPa by adjusting the chitin and PAM contents. Benefiting from the brush-like architecture, Chitin-g-P(AM-co-EHA) copolymer exhibits improved mechanical properties over its linear counterparts. Moreover, these Chitin-g-P(AM-co-EHA) copolymers show good adhesion performance on different substrates. The shear strength can achieve 7.5 MPa for Chitin0.8-PAM50, which is high enough for commercial applications. The combination of chitin and grafting strategy can promote the development of strong chitin-based sustainable elastomers. This approach can be further utilized to design novel high-performance biobased elastomers and adhesives derived from natural resources.
Collapse
Affiliation(s)
- Yuxian Xing
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi Wei
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chongxiao Ge
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Hu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yaqiong Zhang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Baoxia Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiqiang Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Feng Jiang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
9
|
Baskaran D, Behera US, Byun HS. Assessment of Solubility Behavior of a Copolymer in Supercritical CO 2 and Organic Solvents: Neural Network Prediction and Statistical Analysis. ACS OMEGA 2024; 9:40941-40955. [PMID: 39372018 PMCID: PMC11447862 DOI: 10.1021/acsomega.4c06212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
In the industrial sector, understanding the behavior of block copolymers in supercritical solvents is crucial. While qualitative agreement with polymer solubility curves has been evaluated using complex theoretical models in many cases, quantitative predictions remain challenging. This study aimed to create a rapid and accurate artificial neural network (ANN) model to predict the lower critical solubility and upper critical solubility space of an atypical block copolymer, poly(styrene-co-octafluoropentyl methacrylate) (PSOM), in different supercritical solvent systems over a wide range of temperatures (51.75-182.05 °C) and high pressure (3.28-200.86 MPa). The experimental data set used in this study included one copolymer, five supercritical solvents, one cosolvent, and one initiator. It consisted of seven unique copolymer-solvent combinations (252 cloud point pressures) used to predict the model quantitatively and qualitatively. To predict the PSOM-solvent interactions, the study considered two different input systems: a six-variable system, a five-variable system, and one target output. Initially, we used a three-layer feed-forward neural network to select the best learning algorithm (Levenberg-Marquardt) from 14 different algorithms, considering one sample PSOM-solvent system. Then, the network topology was optimized by varying hidden neuron numbers from 2 to 80 for all seven PSOM-solvent combination systems. The predicted cloud point pressures were in excellent agreement with the experimental cloud point pressures, confirming the model's accuracy. It is clear from the results of a minimum mean square error (≤1.90 × 10-27) and maximum linear regression R 2 (≥0.99) during training, validation, and testing of all the data sets. Further, the ANN model accuracy was tested by statistical analysis, confirming the model's ability to accurately capture the miscibility regions of polymers, enabling efficient processing of various polymer materials. This data-driven approach facilitates the prediction of coexistence curves for other polymers and complex macromolecular systems.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular
Engineering, Chonnam National University, Yeosu, Jeonnam 59626, S. Korea
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular
Engineering, Chonnam National University, Yeosu, Jeonnam 59626, S. Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular
Engineering, Chonnam National University, Yeosu, Jeonnam 59626, S. Korea
| |
Collapse
|
10
|
Zhao W, Du Y, Lv X, Luo K, Xu C, Liu M, Qian Y, Wang X, Wang M, Lai Y, Liu J, Cheng Y, Zhang R, Che R. Customized Pore Creation Strategies for Hyperelastic, Robust, Insulating Multifunctional MXene Aerogels for Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47832-47843. [PMID: 39192455 DOI: 10.1021/acsami.4c07502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The construction of heterogeneous microstructure and the selection of multicomponents have turned into a research hotspot in developing ultralight, multifunctional, high-efficiency electromagnetic wave absorbing (EMA) materials. Although aerogels are promising materials to fulfill the above requirements, the increase in functional fillers inevitably leads to the deterioration of intrinsic properties. Tuning the electromagnetic properties from the structural design point of view remains a difficult challenge. Herein, we design customized pore creation strategies via introducing sacrificial templates to optimize the conductive path and construct the discontinuous dielectric medium, increasing dielectric loss and achieving efficient microwave absorption properties. A 3D porous composite (MEM) was crafted, which encapsulated an EVA/FeCoNi (EVA/MNPs) framework with Ti3C2Tx MXene coating by employing a direct heated cross-linking and immersion method. Controllable adjustment of the conductive network inside the porous structure and regulation of the dielectric character are achieved by porosity variation. Eventually, the MEM-5 with a porosity of 66.67% realizes RLmin of -39.2 dB (2.2 mm) and can cover the entire X band. Moreover, through off-axis electronic holography and the calculation of conduction loss and polarization loss, the dielectric property is deeply investigated, and the inner mechanism of optimization is pointed out. Thanks to the inherent characteristic of EVA and the porous structure, MEM-5 showed excellent thermal insulating and superior compressibility, which can maintain 60 °C on a 90-100 °C continuous heating stage and reached a maximum compressive strength of 60.12 kPa at 50% strain. Conceivably, this work provides a facile method for the fabrication of highly efficient microwave absorbers applied under complex conditions.
Collapse
Affiliation(s)
- Wenxuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yiqian Du
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Kaicheng Luo
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yuetong Qian
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Xiangyu Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Min Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Yuxiang Lai
- Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou 570228, China
| | - Jiwei Liu
- Zhejiang Laboratory, Hangzhou 311100, China
| | | | | | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- College of Physics, Donghua University, Shanghai 201620, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
11
|
Ma K, An HY, Nam J, Reilly LT, Zhang YL, Chen EYX, Xu TQ. Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones. Nat Commun 2024; 15:7904. [PMID: 39256412 PMCID: PMC11387789 DOI: 10.1038/s41467-024-52229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
While a large number of chemically recyclable thermoplastics have been developed in recent years, technologically important thermoplastic elastomers (TPEs) that are not only bio-based and fully recyclable but also exhibit mechanical properties that can rival or even exceed those petroleum-based, non-recyclable polyolefin TPEs are critically lacking. The key challenge in developing chemically circular, bio-based, high-performance TPEs rests on the complexity of TPE's block copolymer (BCP) structure involving block segments of different suitable monomers required to induce self-assembled morphologies responsible for performance as well as the control and monomer compatibility in their synthesis and the selectivity in their depolymerization. Here we demonstrate the utilization of bio-sourced δ-valerolactone (δVL) and its simple α-alkyl-substituted derivatives to produce all δVL-based polyester tri-BCP TPEs, which exhibit not only complete (closed-loop) chemical recyclability but also excellent toughness that is 2.5-3.8 times higher than commercial polyolefin-based TPEs. The visualized cylindrical morphology formed via crystallization-driven self-assembly in the new all δVL tri-BCP is postulated to contribute to the excellent TPE property.
Collapse
Affiliation(s)
- Kai Ma
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hai-Yan An
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jiyun Nam
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Liam T Reilly
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Yi-Lin Zhang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Tie-Qi Xu
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
12
|
Lee MT. Functionalized Triblock Copolymers with Tapered Design for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2024; 16:2382. [PMID: 39204600 PMCID: PMC11359524 DOI: 10.3390/polym16162382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Triblock copolymers such as styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) have been widely used as an anion exchange membrane for fuel cells due to their phase separation properties. However, modifying the polymer architecture for optimized membrane properties is still challenging. This research develops a strategy to control the membrane morphology based on quaternized SEBS (SEBS-Q) by dual-tapering the interfacial block sequences. The structural and transport properties of SEBS-Q with various tapering styles at different hydration levels are systematically investigated by coarse-grained molecular simulations. The results show that the introduction of the tapered regions induces the formation of a bicontinuous water domain and promotes the diffusivity of the mobile components. The interplay between the solvation of the quaternary groups and the tapered fraction determines the conformation of polymer chains among the hydrophobic-hydrophilic subdomains. The strategy presented here provides a new path to fabricating fuel cell membranes with controlled microstructures.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
13
|
Raji IO, Dodo OJ, Saha NK, Eisenhart M, Miller KM, Whitfield R, Anastasaki A, Konkolewicz D. Network Polymer Properties Engineered Through Polymer Backbone Dispersity and Structure. Angew Chem Int Ed Engl 2024; 63:e202315200. [PMID: 38546541 DOI: 10.1002/anie.202315200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 04/24/2024]
Abstract
Dispersity (Ð or Mw/Mn) is an important parameter in material design and as such can significantly impact the properties of polymers. Here, polymer networks with independent control over the molecular weight and dispersity of the linear chains that form the material are developed. Using a RAFT polymerization approach, a library of polymers with dispersity ranging from 1.2-1.9 for backbone chain-length (DP) 100, and 1.4-3.1 for backbone chain-length 200 were developed and transformed to networks through post-polymerization crosslinking to form disulfide linkers. The tensile, swelling, and adhesive properties were explored, finding that both at DP 100 and DP 200 the swelling ratio, tensile strength, and extensibility were superior at intermediate dispersity (1.3-1.5 for DP 100 and 1.6-2.1 for DP 200) compared to materials with either substantially higher or lower dispersity. Furthermore, adhesive properties for materials with chains of intermediate dispersity at DP 200 revealed enhanced performance compared to the very low or high dispersity chains.
Collapse
Affiliation(s)
- Ibrahim O Raji
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Obed J Dodo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Mary Eisenhart
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| | - Kevin M Miller
- Department of Chemistry, Murray State University, Murray, KY 42071, USA
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH, Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH, Zurich, Vladimir-Prelog-Weg 5, Zurich, Switzerland
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, USA
| |
Collapse
|
14
|
Li T, Zhang M, He J, Ni P. Synthesis and Characterization of Graft Copolymers with Poly(ε-caprolactone) Side Chain Using Hydroxylated Poly(β-myrcene- co-α-methyl styrene). Molecules 2024; 29:2363. [PMID: 38792224 PMCID: PMC11124195 DOI: 10.3390/molecules29102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Graft copolymers have unique application scenarios in the field of high-performance thermoplastic elastomers, resins and rubbers. β-myrcene (My) is a biomass monomer derived from renewable plant resources, and its homopolymer has a low glass transition temperature and high elasticity. In this work, a series of tapered copolymers P(My-co-AMS)k (k = 1, 2, 3) were first synthesized in cyclohexane by one-pot anionic polymerization of My and α-methyl styrene (AMS) using sec-BuLi as the initiator. PAMS chain would fracture when heated at high temperature and could endow the copolymer with thermal degradation property. The effect of the incorporation of AMS unit on the thermal stability and glass transition temperature of polymyrcene main chain was studied. Subsequently, the double bonds in the linear copolymers were partially epoxidized and hydroxylated into hydroxyl groups to obtain hydroxylated copolymer, which was finally used to initiate the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) to synthesize the graft copolymer with PCL as the side chain. All these copolymers before and after modifications were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), thermogravimetry analysis (TGA), and differential scanning calorimeter (DSC).
Collapse
Affiliation(s)
| | | | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China; (T.L.); (M.Z.); (P.N.)
| | | |
Collapse
|
15
|
Li C, Zhao W, He J, Zhang Y. Topology Controlled All-(Meth)acrylic Thermoplastic Elastomers by Multi-Functional Lewis Pairs-Mediated Polymerization. Angew Chem Int Ed Engl 2024; 63:e202401265. [PMID: 38390752 DOI: 10.1002/anie.202401265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
It remains challenging to synthesize all-(meth)acrylic triblock thermoplastic elastomers (TPEs), due to the drastically different reactivities between the acrylates and methacrylates and inevitable occurrence of side reactions during polymerization of acrylates. By taking advantage of the easy structural modulation features of N-heterocyclic olefins (NHOs), we design and synthesize strong nucleophilic tetraphenylethylene-based NHOs varying in the number (i.e. mono-, dual- and tetra-) of initiating functional groups. Its combination with bulky organoaluminum [iBuAl(BHT)2] (BHT=bis(2,6-di-tBu-4-methylphenoxy)) constructs Lewis pair (LP) to realize the living polymerization of both acrylates and methacrylates, furnishing polyacrylates with ultrahigh molecular weight (Mn up to 2174 kg ⋅ mol-1) within 4 min. Moreover, these NHO-based LPs enable us to not only realize the control over the polymers' topology (i.e. linear and star), but also achieve triblock star copolymers in one-step manner. Mechanical studies reveal that the star triblock TPEs exhibit better mechanical properties (elongation at break up to 1863 % and tensile strength up to 19.1 MPa) in comparison with the linear analogs. Moreover, the presence of tetraphenylethylene group in the NHOs entitled the triblock TPEs with excellent AIE properties in both solution and solid state.
Collapse
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, China, 100013
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| |
Collapse
|
16
|
Schußmann MG, Kreutzer L, Hirschberg V. Fast and Scalable Synthetic Route to Densely Grafted, Branched Polystyrenes and Polydienes via Anionic Polymerization Utilizing P2VP as Branching Point. Macromol Rapid Commun 2024; 45:e2300674. [PMID: 38234077 DOI: 10.1002/marc.202300674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Defined, branched polymer architectures with low dispersity and architectural purity are of great interest to polymer science but are challenging to synthesize. Besides star and comb, especially the pom-pom topology is of interest as it is the simplest topology with exactly two branching points. Most synthetic approaches to a pom-pom topology reported a lack of full control and variability over one of the three topological parameters, the backbone or arm molecular weight and arm number. A new, elegant, fast, and scalable synthetic route without the need for post-polymerization modification (PPM) or purification steps during the synthesis to a pom-pom and a broad variety of topologies made from styrene and dienes is reported, with potential application to barbwire, bottlebrush, miktoarm star, Janus type polymers, or multi-graft copolymers. The key is to inset short poly(2-vinyl-pyridine) blocks (<2 mol% in the branched product) into the backbone as branching points. Carb anions can react at the C6 carbon of the pyridine ring, grafting the arms onto the backbone. Since the synthetic route to polystyrene pom-poms has only two steps and is free of PPM or purification, large amounts of up to 300 g of defined pom-pom structures can be synthesized in one batch.
Collapse
Affiliation(s)
- Max G Schußmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute for Technology, Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Lukas Kreutzer
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute for Technology, Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Valerian Hirschberg
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute for Technology, Engesserstraße 18, 76131, Karlsruhe, Germany
- Institute for Technical Chemistry, Technical University Clausthal, Arnold-Sommerfeld-Str. 4, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|
17
|
Cui S, Murphy EA, Zhang W, Zografos A, Shen L, Bates FS, Lodge TP. Cylinders-in-Undulating-Lamellae Morphology from ABC Bottlebrush Block Terpolymers. J Am Chem Soc 2024; 146:6796-6805. [PMID: 38421320 DOI: 10.1021/jacs.3c13543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Block polymer self-assembly affords a versatile bottom-up strategy to develop materials with the desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes. The absence of complex morphologies, such as networks, might originate from the intrinsically stiff backbone architecture. We experimentally investigated the morphologies of nonfrustrated ABC bottlebrush block terpolymers, based on two chemistries, poly(ethylene-alt-propylene)-b-polystyrene-b-poly(dl-lactic acid) (PEP-PS-PLA) and PEP-b-PS-b-poly(ethylene oxide) (PEP-PS-PEO), synthesized by ring-opening metathesis polymerization of norbornene-terminated macromonomers. Structural characterization based on small-angle X-ray scattering and transmission electron microscopy measurements revealed an unprecedented cylinders-in-undulating-lamellae (CUL) morphology with p2 symmetry for both systems. Additionally, automated liquid chromatography was employed to fractionate the PEP-PS-PLA bottlebrush polymer, leading to fractions with a spectrum of morphologies, including the CUL. These findings underscore the significance of macromolecular dispersity in nominally narrow dispersity bottlebrush polymers while demonstrating the power of this fractionation technique.
Collapse
Affiliation(s)
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | |
Collapse
|
18
|
Hahn C, Göttker-Schnetmann I, Tzourtzouklis I, Wagner M, Müller AHE, Floudas G, Mecking S, Frey H. Nopadiene: A Pinene-Derived Cyclic Diene as a Styrene Substitute for Fully Biobased Thermoplastic Elastomers. J Am Chem Soc 2023. [PMID: 38048399 DOI: 10.1021/jacs.3c08130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The bicyclic 1,2-substituted, 1,3-diene monomer nopadiene (1R,5S)-2-ethenyl-6,6-dimethylbicyclo[3.1.1]hept-2-ene was successfully polymerized by anionic and catalytic polymerization. Nopadiene is produced either through a facile one-step synthesis from myrtenal via Wittig-olefination or via a scalable two-step reaction from nopol (10-hydroxymethylene-2-pinene). Both terpenoids originate from the renewable β-pinene. The living anionic polymerization of nopadiene in apolar and polar solvents at 25 °C using organolithium initiators resulted in homopolymers with well-controlled molar masses in the range of 5.6-103.4 kg·mol-1 (SEC, PS calibration) and low dispersities (Đ) between 1.06 and 1.18. By means of catalytic polymerization with Me4CpSi(Me)2NtBuTiCl2 and (Flu)(Pyr)CH2Lu(CH2TMS)2(THF), the 1,4 and 3,4- microstructures of nopadiene are accessible in excellent selectivity. In pronounced contrast to other 1,3-dienes, the rigid polymers of the sterically demanding nopadiene showed an elevated glass temperature, Tg,∞ = 160 °C (in the limit of very high molar mass, Mn). ABA triblock copolymers with a central polymyrcene block and myrcene content of 60-75 mol %, with molar masses of 100-200 kg/mol were prepared by living anionic polymerization of the pinene-derivable monomers nopadiene and myrcene. This diene copolymerization resulted in thermoplastic elastomers displaying nanophase separation at different molar ratios (DSC, SAXS) and an upper service temperature about 30 K higher than that for traditional petroleum-derived styrenic thermoplastic elastomers due to the high glass temperature of polynopadiene. The materials showed good thermal stability at elevated temperatures under nitrogen (TGA), promising tensile strength and ultimate elongation of up to 1600%.
Collapse
Affiliation(s)
- Christoph Hahn
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
- Max-Planck Graduate Center, 55128 Mainz, Germany
| | - Inigo Göttker-Schnetmann
- Chair Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | - Manfred Wagner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Axel H E Müller
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Stefan Mecking
- Chair Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
19
|
Dong J, Peng Y, Zhang Y, Chai Y, Long J, Zhang Y, Zhao Y, Huang Y, Liu T. Superelastic Radiative Cooling Metafabric for Comfortable Epidermal Electrophysiological Monitoring. NANO-MICRO LETTERS 2023; 15:181. [PMID: 37439918 PMCID: PMC10344855 DOI: 10.1007/s40820-023-01156-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skin-attachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling (PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene-ethylene-butylene-styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet-visible-near-infrared light (maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17 °C cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yiting Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yujia Chai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Zhao
- College of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
20
|
Ullah R, Tuzen M, Hazer B. Novel silver-morphine-functionalized polypropylene (AgPP-mrp) nanocomposite for the degradation of dye removal by multivariate optimization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79904-79915. [PMID: 37286840 DOI: 10.1007/s11356-023-27959-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
As a novel adsorbent, an opioid silver-morphine-functionalized polypropylene was synthesized through a one-pot reaction at room temperature and successfully used for the simple one-pot photocatalytic degradation catalyst of methyl orange removal from wastewater. UV spectral analysis reveals a special reference to the excitation of surface plasmon resonance as the main characteristic of the polymer-Ag nanocomposite in toluene solution peak at 420 nm in AgPP-mrp catalyst. The 1H NMR spectrum showed no sign of Ag NP peaks revealing small size distribution in the channels of morphine-functionalized polypropylene polymer. The morphology of silver nanoparticle-doped polymer through scanning electron microscopy (SEM-EDX) reveals PP-mrp with continuous matrix and Ag NPs (0.87 wt%). Furthermore, photocatalytic degradation of methyl orange was investigated on AgPP-mrp catalyst spectrophotometrically under solar irradiation in waste effluent, demonstrating high degradation efficiency. According to experimental findings, silver nanoparticles (AgPP-mrp) achieved high degradation capacities of 139 mg/g equivalent to 97.4% of photodegradation in a little period of time (35 min), as associated with previously stated materials and follow pseudo-second-order kinetic degradation tail of a high regression coefficient (R2 = 0.992). The suggested techniques offer a linear reaction for MO over the pH range of 1.5 to 5 and a degradation temperature of 25 to 60 °C. Central composite design and response surface methodology statistics recommend pH of the reaction medium and time as important variables for methyl orange degradation on AgPP-mrp photocatalytic. AgPP-mrp on the photocatalytic phenomenon based on heterojunction catalytic design producing electron holes (e-), as well as superoxides for the successful degradation of methyl orange.
Collapse
Affiliation(s)
- Rooh Ullah
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey
- Department of Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
21
|
Tong L, Zhou M, Chen Y, Lu K, Zhang Z, Mu Y, He Z. A New Self-Healing Degradable Copolymer Based on Polylactide and Poly(p-dioxanone). Molecules 2023; 28:molecules28104021. [PMID: 37241762 DOI: 10.3390/molecules28104021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In this paper, the copolymerization of poly (p-dioxanone) (PPDO) and polylactide (PLA) was carried out via a Diels-Alder reaction to obtain a new biodegradable copolymer with self-healing abilities. By altering the molecular weights of PPDO and PLA precursors, a series of copolymers (DA2300, DA3200, DA4700 and DA5500) with various chain segment lengths were created. After verifying the structure and molecular weight by 1H NMR, FT-IR and GPC, the crystallization behavior, self-healing properties and degradation properties of the copolymers were evaluated by DSC, POM, XRD, rheological measurements and enzymatic degradation. The results show that copolymerization based on the DA reaction effectively avoids the phase separation of PPDO and PLA. Among the products, DA4700 showed a better crystallization performance than PLA, and the half-crystallization time was 2.8 min. Compared to PPDO, the heat resistance of the DA copolymers was improved and the Tm increased from 93 °C to 103 °C. Significantly, the rheological data also confirmed that the copolymer was self-healing and showed obvious self-repairing properties after simple tempering. In addition, an enzyme degradation experiment showed that the DA copolymer can be degraded by a certain amount, with the degradation rate lying between those of PPDO and PLA.
Collapse
Affiliation(s)
- Laifa Tong
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Mi Zhou
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yulong Chen
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Kai Lu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zhaohua Zhang
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Yuesong Mu
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| | - Zejian He
- Material Science and Engineering, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310000, China
| |
Collapse
|
22
|
Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Quo Vadis Carbanionic Polymerization? ACS POLYMERS AU 2023; 3:158-181. [PMID: 37065716 PMCID: PMC10103213 DOI: 10.1021/acspolymersau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.
Collapse
Affiliation(s)
- Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Li J, Zhang M, He J, Ni P. Exploring anionic homopolymerization and copolymerization of vinyl monomers in deep eutectic solvent. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
24
|
Study and Characterization of Regenerated Hard Foam Prepared by Polyol Hydrolysis of Waste Polyurethane. Polymers (Basel) 2023; 15:polym15061445. [PMID: 36987224 PMCID: PMC10054186 DOI: 10.3390/polym15061445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/17/2023] Open
Abstract
In this paper, four different kinds of diols were used for the alcoholysis of waste thermoplastic polyurethane elastomers. The recycled polyether polyols were used to prepare regenerated thermosetting polyurethane rigid foam through one-step foaming. We used four different kinds of alcoholysis agents, according to different proportions of the complex, and we combined them with an alkali metal catalyst (KOH) to trigger the catalytic cleavage of the carbamate bonds in the waste polyurethane elastomers. The effects of the different types and different chain lengths of the alcoholysis agents on the degradation of the waste polyurethane elastomers and the preparation of regenerated polyurethane rigid foam were studied. Based on the viscosity, GPC, FT-IR, foaming time and compression strength, water absorption, TG, apparent density, and thermal conductivity of the recycled polyurethane foam, eight groups of optimal components were selected and discussed. The results showed that the viscosity of the recovered biodegradable materials was between 485 and 1200 mPa·s. The hard foam of the regenerated polyurethane was prepared using biodegradable materials instead of commercially available polyether polyols, and its compressive strength was between 0.131 and 0.176 MPa. The water absorption rate ranged from 0.7265 to 1.9923%. The apparent density of the foam was between 0.0303 and 0.0403 kg/m3. The thermal conductivity ranged from 0.0151 to 0.0202 W/(m·K). A large number of experimental results showed that the degradation of the waste polyurethane elastomers by the alcoholysis agents was successful. The thermoplastic polyurethane elastomers can not only be reconstructed, but they can also be degraded by alcoholysis to produce regenerated polyurethane rigid foam.
Collapse
|
25
|
Gavrilov AA, Potemkin II. Copolymers with Nonblocky Sequences as Novel Materials with Finely Tuned Properties. J Phys Chem B 2023; 127:1479-1489. [PMID: 36790352 DOI: 10.1021/acs.jpcb.2c07689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The copolymer sequence can be considered as a new tool to shape the resulting system properties on demand. This perspective is devoted to copolymers with "partially segregated" (or nonblocky) sequences. Such copolymers include gradient copolymers and copolymers with random sequences as well as copolymers with precisely controlled sequences. We overview recent developments in the synthesis of these systems as well as new findings regarding their properties, in particular, self-assembly in solutions and in melts. An emphasis is put on how the microscopic behavior of polymer chains is influenced by the chain sequences. In addition to that, a novel class of approaches allowing one to efficiently tackle the problem of copolymer chain sequence design─data driven methods (artificial intelligence and machine learning)─is discussed.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
26
|
Plank M, Frieß FV, Bitsch CV, Pieschel J, Reitenbach J, Gallei M. Modular Synthesis of Functional Block Copolymers by Thiol–Maleimide “Click” Chemistry for Porous Membrane Formation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Martina Plank
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Florian Volker Frieß
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Carina Vera Bitsch
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jens Pieschel
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Julija Reitenbach
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
27
|
Jayapurna I, Ruan Z, Eres M, Jalagam P, Jenkins S, Xu T. Sequence Design of Random Heteropolymers as Protein Mimics. Biomacromolecules 2023; 24:652-660. [PMID: 36638823 PMCID: PMC9930114 DOI: 10.1021/acs.biomac.2c01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Random heteropolymers (RHPs) have been computationally designed and experimentally shown to recapitulate protein-like phase behavior and function. However, unlike proteins, RHP sequences are only statistically defined and cannot be sequenced. Recent developments in reversible-deactivation radical polymerization allowed simulated polymer sequences based on the well-established Mayo-Lewis equation to more accurately reflect ground-truth sequences that are experimentally synthesized. This led to opportunities to perform bioinformatics-inspired analysis on simulated sequences to guide the design, synthesis, and interpretation of RHPs. We compared batches on the order of 10000 simulated RHP sequences that vary by synthetically controllable and measurable RHP characteristics such as chemical heterogeneity and average degree of polymerization. Our analysis spans across 3 levels: segments along a single chain, sequences within a batch, and batch-averaged statistics. We discuss simulator fidelity and highlight the importance of robust segment definition. Examples are presented that demonstrate the use of simulated sequence analysis for in-silico iterative design to mimic protein hydrophobic/hydrophilic segment distributions in RHPs and compare RHP and protein sequence segments to explain experimental results of RHPs that mimic protein function. To facilitate the community use of this workflow, the simulator and analysis modules have been made available through an open source toolkit, the RHPapp.
Collapse
Affiliation(s)
- Ivan Jayapurna
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Ruan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Marco Eres
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Prajna Jalagam
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Spencer Jenkins
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Guo L, Xu J, Du B. Self-assembly of ABCBA Linear Pentablock Terpolymers. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2178008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Lei Guo
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Junting Xu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Wadgaonkar SP, Wagner M, Müller AHE, Frey H. Anionic Polymerization of 4-Allyldimethylsilylstyrene: Versatile Polymer Scaffolds for Post-Polymerization Modification. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shivani P. Wadgaonkar
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Axel H. E. Müller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
30
|
You H, Zhuo C, Yan S, Wang E, Cao H, Liu S, Wang X. CO 2 Deprotection-Mediated Switchable Polymerization for Precise Construction of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huai You
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Chunwei Zhuo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shuo Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
31
|
Aiswarya S, Awasthi P, Banerjee SS. Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Rational design of sustainable diblock copolymers toward strong adhesives and stretchable ionic conductive materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Bai H, Han L, Wang X, Yan H, Leng H, Chen S, Ma H. Anion Migrated Ring Opening and Rearrangement in Anionic Polymerization Induced C7 and C8 Polymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyuan Bai
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hong Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haitao Leng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Siwei Chen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
34
|
Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers. Polymers (Basel) 2022; 14:polym14194048. [PMID: 36235995 PMCID: PMC9572696 DOI: 10.3390/polym14194048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
1H spin-diffusion solid-state NMR was utilized to elucidate the domain size in multiblock-copolymers (BCPs) poly-(block poly(dimethylsiloxane)-block ladder-like poly(phenylsiloxane)) and poly-(block poly((3,3′,3″-trifluoropropyl-methyl)siloxane)-block ladder-like poly(phenylsiloxane). It was found that these BCPs form worm-like morphology with rigid cylinders dispersed in amorphous matrix. By using the combination of solid-state NMR techniques such as 13C CP/MAS, 13C direct-polarization MAS and 2D 1H EXSY, it was shown that the main factor which governs the diameter value of these rigid domains is the presence of interpenetrating segments of soft blocks. The presence of such interpenetrating chains leads to an increase of rigid domain diameter.
Collapse
|
35
|
Zheng C, Liu F, Xu K, Wu Y, Wang J. Preparation of ethyl cellulose–glycerol tribenzoate microcapsules in CO
2
/N
2
‐switchable hydrophilicity solvent and solvent recycling. J Appl Polym Sci 2022. [DOI: 10.1002/app.52788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cunchuan Zheng
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Fuchuan Liu
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Ke Xu
- PetroChina Research Institute of Petroleum Exploration & Development Beijing People's Republic of China
| | - Yang Wu
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Jinyu Wang
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| |
Collapse
|
36
|
Davletbaeva IM, Sazonov OO, Dzhabbarov IM, Zaripov II, Davletbaev RS, Mikhailova AV. Optically Transparent Polydimethylsiloxane-Ethylene Oxide-Propylene Oxide Multiblock Copolymers Crosslinked with Isocyanurates as Organic Compound Sorbents. Polymers (Basel) 2022; 14:polym14132678. [PMID: 35808721 PMCID: PMC9269152 DOI: 10.3390/polym14132678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
New crosslinked (polydimethylsiloxane-ethylene-propylene oxide)-polyisocyanurate multiblock copolymers (MBCs) were synthesized, and their supramolecular structure and sorption characteristics were studied. It was found that the interaction of PPEG and D4 leads to polyaddition of D4 initiated by potassium-alcoholate groups. The use of the amphiphilic silica derivatives associated in an oligomeric medium (ASiPs) leads to structuring of the MBC due to the transetherification reaction of the terminal silanol groups of the MBC with ASiPs. It was established that the supramolecular structure of an MBC is built according to the “core-shell” structure. The obtained polymers were tested as sorbents for the development of new methods for the concentration and determination of inorganic compounds. The efficiency of sorption of reagents increased with an increase in the “thickness” of the polydimethylsiloxane component of the “shell” and with a decrease in the size of the polyisocyanurate “core”. The use of the obtained polymers as adsorbents of organic reagents is promising for increasing the efficiency of field methods of chemical testing and inorganic analysis, including the determination of the elemental composition and the detection of traces of contamination.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
- Correspondence:
| | - Oleg O. Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ilgiz M. Dzhabbarov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ilnaz I. Zaripov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx St., Kazan 420015, Russia; (O.O.S.); (I.M.D.); (I.I.Z.)
| | - Ruslan S. Davletbaev
- Department of Materials Science, Welding and Industrial Safety, Kazan National Research Technical University Named after A.N. Tupolev, Kazan 420111, Russia;
| | - Alla V. Mikhailova
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
37
|
Norfarhana A, Ilyas R, Ngadi N, Sharma S, Sayed MM, El-Shafay A, Nordin A. Natural Fiber-Reinforced Thermoplastic ENR/PVC Composites as Potential Membrane Technology in Industrial Wastewater Treatment: A Review. Polymers (Basel) 2022; 14:2432. [PMID: 35746008 PMCID: PMC9228183 DOI: 10.3390/polym14122432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Membrane separation processes are prevalent in industrial wastewater treatment because they are more effective than conventional methods at addressing global water issues. Consequently, the ideal membranes with high mechanical strength, thermal characteristics, flux, permeability, porosity, and solute removal capacity must be prepared to aid in the separation process for wastewater treatment. Rubber-based membranes have shown the potential for high mechanical properties in water separation processes to date. In addition, the excellent sustainable practice of natural fibers has attracted great attention from industrial players and researchers for the exploitation of polymer composite membranes to improve the balance between the environment and social and economic concerns. The incorporation of natural fiber in thermoplastic elastomer (TPE) as filler and pore former agent enhances the mechanical properties, and high separation efficiency characteristics of membrane composites are discussed. Furthermore, recent advancements in the fabrication technique of porous membranes affected the membrane's structure, and the performance of wastewater treatment applications is reviewed.
Collapse
Affiliation(s)
- A.S. Norfarhana
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
- Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, Pagoh Muar 84600, Johor, Malaysia
| | - R.A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - N. Ngadi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India;
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Main Campus-Kapurthala, Kapurthala 144603, Punjab, India
| | - Mohamed Mahmoud Sayed
- Architectural Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11845, Egypt;
| | - A.S. El-Shafay
- Department of Mechanical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj 16273, Saudi Arabia
| | - A.H. Nordin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (A.N.); (N.N.); (A.N.)
| |
Collapse
|
38
|
Wadgaonkar SP, Schüttner S, Berger-Nicoletti E, Müller AHE, Frey H. Anionic Copolymerization of 4-Trimethylsilylstyrene: From Kinetics to Gradient and Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shivani P. Wadgaonkar
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Sandra Schüttner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Elena Berger-Nicoletti
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Axel H. E. Müller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
39
|
Solvothermal synthesis and crystal structures of two Holmium(III)-5-Hydroxyisophthalate entangled coordination polymers and theoretical studies on the importance of π•••π stacking interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Barent R, Wagner M, Frey H. Geometric Requirements for Living Anionic Polymerization: Polymerization of rotationally constrained 1,3-Dienes. Polym Chem 2022. [DOI: 10.1039/d2py00999d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The living anionic copolymerization of 1,3-dienes such as isoprene (I) or butadiene (B) can afford a variety of different polymer microstructures which determine the material’s properties. One decisive factor for...
Collapse
|
41
|
Wang Z, Lan Y, Liu P, Li X, Zhao Y. Rational design of a multi-in-one heterofunctional agent for versatile topological transformation of multisite multisegmented polystyrenes. Polym Chem 2022. [DOI: 10.1039/d2py00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “seven-in-one” initiating, coupling and stimuli-labile agent is designed to achieve topological transformations with reduced, similar and enhanced molar masses.
Collapse
Affiliation(s)
- Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjia Lan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
42
|
Wang C, Wu Y, Zhu Y, Ma H, Zhang M, Liu G, He J, Ni P. Investigation of eight-arm tapered star copolymers prepared by anionic copolymerization and coupling reaction. Polym Chem 2022. [DOI: 10.1039/d2py00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of eight-arm tapered star copolymers 8[P(I-co-S)x]-POSS were synthesized by the coupling reaction between octavinyl POSS and the tapered living copolymer chains obtained from statistical anionic copolymerization.
Collapse
Affiliation(s)
- Chengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yibo Wu
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Yihui Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongbing Ma
- Testing and Analysis Center, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - GengXin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|