1
|
Vigano M, Wang L, As'sadiq A, Samarani S, Ahmad A, Costiniuk CT. Impact of cannabinoids on cancer outcomes in patients receiving immune checkpoint inhibitor immunotherapy. Front Immunol 2025; 16:1497829. [PMID: 40109334 PMCID: PMC11919899 DOI: 10.3389/fimmu.2025.1497829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Cannabinoids relieve pain, nausea, anorexia and anxiety, and improve quality of life in several cancer patients. The immunotherapy with checkpoint inhibitors (ICIs), although very successful in a subset of patients, is accompanied by moderate to severe immune-related adverse events (ir-AE) that often necessitate its discontinuation. Because of their role in symptomatic relief, cannabinoids have been used in combination with immune checkpoint inhibitor (ICI) immunotherapy. A few studies strongly suggest that the use of medicinal cannabis in cancer patients attenuates many of the ir-AE associated with the use of ICI immunotherapy and increase its tolerability. However, no significant beneficial effects on overall survival, progression free survival or cancer relapses were observed; rather, some of the studies noted adverse effects of concurrent administration of cannabinoids with ICI immunotherapy on the clinical benefits of the latter. Because of cannabinoids' well documented immunosuppressive effects mediated through the cannabinoid recptor-2 (CB2), we propose considering this receptor as an inhibitory immune checkpoint per se. A simultaneous neutralization of CB2, concurrent with cannabinoid treatment, may lead to better clinical outcomes in cancer patients receiving ICI immunotherapy. In this regard, cannabinoids such as cannabidiol (CBD) and cannabigerol (CBG), with little agonism for CB2, may be better therapeutic choices. Additional strategies e.g., the use of monoacylglycerol lipase (MAGL) inhibitors that degrade some endocannabinoids as well as lipogenesis and formation of lipid bilayers in cancer cells may also be explored. Future studies should take into consideration gut microbiota, CYP450 polymorphism and haplotypes, cannabinoid-drug interactions as well as genetic and somatic variations occurring in the cannabinoid receptors and their signaling pathways in cancer cells for personalized cannabis-based therapies in cancer patients receiving ICIs. This may lead to rational knowledge-based regimens tailored to individual cancer patients.
Collapse
Affiliation(s)
- MariaLuisa Vigano
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lixing Wang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Alia As'sadiq
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ali Ahmad
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cecilia T Costiniuk
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
2
|
Schopohl B, Kohlhaas M, Nickel AG, Schiuma AF, Maas SL, van der Vorst EPC, Shia YX, Maack C, Steffens S, Puhl SL. Gpr55 deficiency crucially alters cardiomyocyte homeostasis and counteracts angiotensin II induced maladaption in female mice. Br J Pharmacol 2025; 182:670-691. [PMID: 39428581 DOI: 10.1111/bph.17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Cannabis stimulates several G-protein-coupled-receptors and causes bradycardia and hypotension upon sustained consumption. Moreover, in vitro studies suggest an interference of cannabinoid-signalling with cardiomyocyte contractility and hypertrophy. We aimed at revealing a functional contribution of the cannabinoid-sensitive receptor GPR55 to cardiomyocyte homeostasis and neurohumorally induced hypertrophy in vivo. EXPERIMENTAL APPROACH Gpr55-/- and wild-type (WT) mice were characterized after 28-day angiotensin II (AngII; 1·μg·kg-1 min-1) or vehicle infusion. In isolated adult Gpr55-/- and WT cardiomyocytes, mitochondrial function was assessed under naïve conditions, while cytosolic Ca2+ handling was additionally determined following application of the selective GPR55 antagonist CID16020046. KEY RESULTS Gpr55 deficiency did not affect angiotensin II (AngII) mediated hypertrophic growth, yet, especially in females, it alleviated maladaptive pro-hypertrophic and -inflammatory gene expression and improved inotropy and adrenergic responsiveness compared to WT. In-depth analyses implied increased cytosolic Ca2+ concentrations and transient amplitudes, and accelerated sarcomere contraction kinetics in Gpr55-/- myocytes, which could be mimicked by GPR55 blockade with CID16020046 in female WT cells. Moreover, Gpr55 deficiency up-regulated factors involved in glucose and fatty acid transport independent of the AngII challenge, accelerated basal mitochondrial respiration and reduced basal protein kinase (PK) A, G and C activity and phospholemman (PLM) phosphorylation. CONCLUSIONS AND IMPLICATIONS Our study suggests GPR55 as crucial regulator of cardiomyocyte hypertrophy and homeostasis presumably by regulating PKC/PKA-PLM and PKG signalling, and identifies the receptor as potential target to counteract maladaptation, adrenergic desensitization and metabolic shifts as unfavourable features of the hypertrophied heart in females.
Collapse
Affiliation(s)
- Brigitte Schopohl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Alexander G Nickel
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | | | - Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany
| | - Yi Xuan Shia
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- Medical Clinic I, University Clinic Würzburg, Würzburg, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sarah-Lena Puhl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Costa A, Lucarini E. Treating chronic stress and chronic pain by manipulating gut microbiota with diet: can we kill two birds with one stone? Nutr Neurosci 2025; 28:221-244. [PMID: 38889540 DOI: 10.1080/1028415x.2024.2365021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Background: Chronic stress and chronic pain are closely linked by the capacity to exacerbate each other, sharing common roots in the brain and in the gut. The strict intersection between these two neurological diseases makes important to have a therapeutic strategy aimed at preventing both to maintain mental health in patients. Diet is an modifiable lifestyle factor associated with gut-brain axis diseases and there is growing interest in its use as adjuvant to main therapies. Several evidence attest the impact of specific diets or nutrients on chronic stress-related disorders and pain with a good degree of certainty. A daily adequate intake of foods containing micronutrients such as amino acids, minerals and vitamins, as well as the reduction in the consumption of processed food products can have a positive impact on microbiota and gut health. Many nutrients are endowed of prebiotic, anti-inflammatory, immunomodulatory and neuroprotective potential which make them useful tools helping the management of chronic stress and pain in patients. Dietary regimes, as intermittent fasting or caloric restriction, are promising, although further studies are needed to optimize protocols according to patient's medical history, age and sex. Moreover, by supporting gut microbiota health with diet is possible to attenuate comorbidities such as obesity, gastrointestinal dysfunction and mood disorders, thus reducing healthcare costs related to chronic stress or pain.Objective: This review summarize the most recent evidence on the microbiota-mediated beneficial effects of macro- and micronutrients, dietary-related factors, specific nutritional regimens and dietary intervention on these pathological conditions.
Collapse
Affiliation(s)
- Alessia Costa
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
4
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
5
|
Ohtsuki Y, Nakamura E, Asakami M, Morikawa R, Tokumura A. Inhibitory Effects of Lysophospholipids on Survival and Interleukin-8 Secretion of HT-29, a Human Colon Cancer-Derived Epithelial Cell. Biol Pharm Bull 2025; 48:119-125. [PMID: 39956589 DOI: 10.1248/bpb.b24-00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Lysophpsphospholipids (LPLs) are lipid mediators involved in various physiological functions. In daily diets, people consume large amounts of various lipids, including LPLs. Exogenous dietary LPLs initially affect epithelial cells and, finally, the entire colon and may be linked to the onset and prevention of colonic diseases, including inflammatory bowel disease. However, the effects of exogenous LPLs on epithelial cells remain poorly understood. In this study, we used HT-29, a human colon cancer-derived epithelial cell, to evaluate the effects of LPLs on epithelial cells under normal and inflammatory states. In the absence of lipopolysaccharide (LPS), several LPLs decreased interleukin-8 (IL-8) secretion from HT-29 cells in the following order of potency based on the reduction ratio at the highest concentration: lysophosphatidylglycerol > lysophosphatidylcholine > lysophosphatidyletanolamine > lysophosphatidylserine. In the presence of LPS, only lysophosphatidylinositol (LPI) decreased the IL-8 secretion induced by LPS. Focusing on the G protein-coupled receptors (GPCRs) that LPI acts on, PSN375963 and AS1269574, GPR119 agonists, decreased the IL-8 secretion induced by LPS. It is speculated that IL-8 secretion was reduced by LPI via GPR119 signaling under non-inflammatory conditions. Although the detailed mechanism remains to be elucidated, the findings that LPLs, except for LPI, have inhibitory effects and that LPI has an inhibitory/anti-inflammatory effect on IL-8 secretion will help to elucidate the mechanism on the onset of colonic diseases and the planning of treatment methods in the future.
Collapse
Affiliation(s)
- Yuya Ohtsuki
- Department of Life Sciences, Graduate School of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Erena Nakamura
- Department of Life Sciences, Graduate School of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Moe Asakami
- Department of Life Sciences, Graduate School of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Rena Morikawa
- Department of Life Sciences, Graduate School of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Akira Tokumura
- Department of Life Sciences, Graduate School of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| |
Collapse
|
6
|
Drzazga A, Bernat P, Nowak A, Szustak M, Korkus E, Gendaszewska-Darmach E, Koziołkiewicz M. N-acyl glycines produced by commensal bacteria potentiate GLP-1 secretion as GPCR ligands. Biomed Pharmacother 2024; 180:117467. [PMID: 39362066 DOI: 10.1016/j.biopha.2024.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Commensal microbiota is crucial for nutrient digestion and production of biologically active molecules, many of which mimic endogenous ligands of human GPCRs. Bacteroides spp. are among the most abundant bacteria residing in the human gut and their absence has been positively correlated with metabolic disorders. In the present study, we focused on N-acylated glycines (NAGlys) as products of Bacteroides spp. and potential GPCR ligands modulating GLP-1 secretion. Representative strains of the most abundant commensal Bacteroides were cultured in either yeast- or animal-based nutrient broths. The broths post-culture were investigated in terms of the contents of NAGlys and stimulatory effects towards GLP-1 production in GLUTag and NCI-H716 cell lines. Pure preparations of the detected NAGlys were further studied to evaluate stimulation of GLP-1 production and related cellular signalling evoked. The most potent NAGlys were also tested as ligands of key lipid GPCRs involved in the regulation of carbohydrate metabolism: GPR40/FFAR1, GPR55, GPR119, and GPR120/FFAR4. We found that Bacteroides potentiate GLP-1 production, depending on the strain and provided nutrient mix. Long-chain unsaturated oleoyl and arachidonoyl glycines, produced by B. thetaiotaomicron and B. intestinalis in the animal-based broth, were particularly effective in stimulation of GLP-1 secretion. They served as agonists of all the receptors under study expressed in GLP-1-producing cells. The obtained results broaden the knowledge of microbial signalling molecules and their role in regulation of carbohydrate homeostasis. They also emphasise the importance of balanced diet as a source of building blocks for commensal bacteria to produce efficient agonists of lipid GPCRs.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland.
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha Street 12/16, Lodz 90-237, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska Street 171/173, Lodz 90-530, Poland
| | - Marcin Szustak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Eliza Korkus
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| | - Maria Koziołkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 2/22, Lodz 90-537, Poland
| |
Collapse
|
7
|
Didangelos T, Karlafti E, Kotzakioulafi E, Giannoulaki P, Kontoninas Z, Kontana A, Evripidou P, Savopoulos C, Birkenfeld AL, Kantartzis K. Efficacy and Safety of the Combination of Palmitoylethanolamide, Superoxide Dismutase, Alpha Lipoic Acid, Vitamins B12, B1, B6, E, Mg, Zn and Nicotinamide for 6 Months in People with Diabetic Neuropathy. Nutrients 2024; 16:3045. [PMID: 39339645 PMCID: PMC11434759 DOI: 10.3390/nu16183045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AIM To investigate the efficacy of Palmitoylethanolamide (PEA, 300 mg), Superoxide Dismutase (SOD, 70 UI), Alpha Lipoic Acid (ALA, 300 mg), vitamins B6 (1.5 mg), B1 (1.1 mg), B12 (2.5 mcg), E (7.5 mg), nicotinamide (9 mg), and minerals (Mg 30 mg, Zn 2.5 mg) in one tablet in people with Diabetic Neuropathy (DN). PATIENTS-METHODS In the present pilot study, 73 people (age 63.0 ± 9.9 years, 37 women) with type 2 Diabetes Mellitus (DMT2) (duration 17.5 ± 7.3 years) and DN were randomly assigned to receive either the combination of ten elements (2 tablets/24 h) in the active group (n = 36) or the placebo (n = 37) for 6 months. We used the Michigan Neuropathy Screening Instrument Questionnaire and Examination (MNSIQ and MNSIE), measured vibration perception threshold (VPT) with biothesiometer, and Cardiovascular Autonomic Reflex Tests (CARTs). Nerve function was assessed by DPN Check [sural nerve conduction velocity (SNCV) and amplitude (SNAP)]. Sudomotor function was assessed with SUDOSCAN, which measures electrochemical skin conductance in hands and feet (ESCH and ESCF). Pain score (PS) was assessed with Pain DETECT questionnaire. Quality of life was assessed by questionnaire. RESULTS In the active group, there was a large improvement of pain (PS from 20.9 to 13.9, p < 0.001). There was also a significant improvement of vitamin B12 (B12) levels, MNSIQ, SNCV, VPT, and ESCF (222.1 vs. 576.3 pg/ mL, p < 0.001; 6.1 vs. 5.9, p = 0.017; 28.8 vs. 30.4, p = 0.001; 32.1 vs. 26.7, p = 0.001; and 72.2 vs. 74.8, p < 0.001 respectively). In the placebo group, neither pain (21.6 vs. 21.7, p = 0.870) or any other aforementioned parameters changed significantly, and MNSIE worsened (2.9 vs. 3.4, p < 0.001). As a result, changes from baseline to follow-up in pain, B12 levels, VPT, and MNSIQ differed significantly between the two groups (p < 0.001, 0.025, 0.009, and <0.001, respectively). CARTs, SNAP, ESCH did not significantly change in either of the two groups. CONCLUSIONS The combination of the ten elements in one tablet for 6 months at a daily dose of two tablets in people with DN significantly improves pain, vibration perception threshold, and B12 levels.
Collapse
Affiliation(s)
- Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Eleni Karlafti
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Parthena Giannoulaki
- Department of Clinical Nutrition and Dietetics, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | - Zisis Kontoninas
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Anastasia Kontana
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Polykarpos Evripidou
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Christos Savopoulos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (Z.K.); (A.K.); (P.E.); (C.S.)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany; (A.L.B.); (K.K.)
- Institute for Diabetes Research and Metabolic Diseases (IDM), Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Konstantinos Kantartzis
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany; (A.L.B.); (K.K.)
- Institute for Diabetes Research and Metabolic Diseases (IDM), Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
8
|
Branković M, Gmizić T, Dukić M, Zdravković M, Daskalović B, Mrda D, Nikolić N, Brajković M, Gojgić M, Lalatović J, Kralj Đ, Pantić I, Vojnović M, Milovanović T, Đurašević S, Todorović Z. Therapeutic Potential of Palmitoylethanolamide in Gastrointestinal Disorders. Antioxidants (Basel) 2024; 13:600. [PMID: 38790705 PMCID: PMC11117950 DOI: 10.3390/antiox13050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Palmitoylethanolamide (PEA) is an endocannabinoid-like bioactive lipid mediator belonging to the family of N-acylethanolamines, most abundantly found in peanuts and egg yolk. When the gastrointestinal (GI) effects of PEA are discussed, it must be pointed out that it affects intestinal motility but also modulates gut microbiota. This is due to anti-inflammatory, antioxidant, analgesic, antimicrobial, and immunomodulatory features. Additionally, PEA has shown beneficial effects in several GI diseases, particularly irritable bowel syndrome and inflammatory bowel diseases, as various studies have shown, and it is important to emphasize its relative lack of toxicity, even at high dosages. Unfortunately, there is not enough endogenous PEA to treat disturbed gut homeostasis, even though it is produced in the GI tract in response to inflammatory stimuli, so exogenous intake is mandatory to achieve homeostasis. Intake of PEA could be through animal and/or vegetable food, but bearing in mind that a high dosage is needed to achieve a therapeutic effect, it must be compensated through dietary supplements. There are still open questions pending to be answered, so further studies investigating PEA's effects and mechanisms of action, especially in humans, are crucial to implementing PEA in everyday clinical practice.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | | | - Davor Mrda
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Gojgić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Jovana Lalatović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Đorđe Kralj
- University Hospital Medical Center Zvezdara, 11000 Belgrade, Serbia;
| | - Ivana Pantić
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Siniša Đurašević
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Zoran Todorović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
9
|
de Fátima Dos Santos Sampaio M, de Paiva YB, Sampaio TB, Pereira MG, Coimbra NC. Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson's disease and in comorbidity with psychiatric disorders. Basic Clin Pharmacol Toxicol 2024; 134:574-601. [PMID: 38477419 DOI: 10.1111/bcpt.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Tuane Bazanella Sampaio
- Pharmacology Post-Graduation Program, Health Sciences Centre, Santa Maria Federal University, Santa Maria, Brazil
| | - Messias Gonzaga Pereira
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Déciga-Campos M, Jaramillo-Morales OA, Espinosa-Juárez JV, Aguilera-Martínez ME, Ventura-Martínez R, López-Muñoz FJ. N-palmitoylethanolamide synergizes the antinociception of morphine and gabapentin in the formalin test in mice. J Pharm Pharmacol 2023; 75:1154-1162. [PMID: 36905375 DOI: 10.1093/jpp/rgad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/19/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE The antinociceptive pharmacological interaction between N-palmitoylethanolamide (PEA) and morphine (MOR), as well as gabapentin (GBP), was investigated to obtain synergistic antinociception at doses where side effects were minimal. In addition, the possible antinociceptive mechanism of PEA + MOR or PEA + GBP combinations was explored. METHODS Individual dose-response curves (DRCs) of PEA, MOR and GBP were evaluated in female mice in which intraplantar nociception was induced with 2% formalin. Isobolographic method was used to detect the pharmacological interaction in the combination of PEA + MOR or PEA + GBP. KEY FINDINGS The ED50 was calculated from the DRC; the order of potency was MOR > PEA > GBP. The isobolographic analysis was obtained at a 1:1 ratio to determine the pharmacological interaction. The experimental values of flinching (PEA + MOR, Zexp = 2.72 ± 0.2 μg/paw and PEA + GBP Zexp = 2.77 ± 0.19 μg/paw) were significantly lower than those calculated theoretically (PEA + MOR Zadd = 7.78 ± 1.07 and PEA + GBP Zadd = 24.05 ± 1.91 μg/paw), resulting in synergistic antinociception. Pretreatment with GW6471 and naloxone demonstrated that peroxisome proliferator-activated receptor alpha (PPARα) and opioid receptors are involved in both interactions. CONCLUSIONS These results suggest that MOR and GBP synergistically enhance PEA-induced antinociception through PPARα and opioid receptor mechanisms. Furthermore, the results suggest that combinations containing PEA with MOR or GBP could be of interest in aiding the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Myrna Déciga-Campos
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México
| | - Osmar Antonio Jaramillo-Morales
- Departamento de Enfermería y Obstetricia, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - María Elena Aguilera-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, México
| | - Rosa Ventura-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Delegación Coyoacán, México, México
| | | |
Collapse
|
12
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
13
|
Maliszewska K, Miniewska K, Godlewski A, Gosk W, Mojsak M, Kretowski A, Ciborowski M. Changes in plasma endocannabinoids concentrations correlate with 18F-FDG PET/MR uptake in brown adipocytes in humans. Front Mol Biosci 2023; 10:1073683. [PMID: 37564131 PMCID: PMC10411954 DOI: 10.3389/fmolb.2023.1073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction: Recent data suggest a possible role of endocannabinoids in the regulation of brown adipose tissue (BAT) activity. Those findings indicate potential treatment options for obesity. The aim of this study was to evaluate the relationship between plasma endocannabinoids concentrations and the presence of BAT in humans. Methods: The study group consisted of 25 subjects divided into two groups: BAT positive BAT(+), (n = 17, median age = 25 years) and BAT negative BAT(-), (n = 8, median age = 28 years). BAT was estimated using 18F-FDG PET/MR after 2 h of cold exposure. The level of plasma endocannabinoids was assessed at baseline, 60 min and 120 min of cold exposure. Results: In both groups, BAT(+) and BAT(-), during the cooling, we observed a decrease of the same endocannabinoids: arachidonoylethanolamide (AEA), eicosapentaenoyl ethanolamide (EPEA) and oleoyl ethanolamide (OEA) with a much more profound decline in BAT(+) subjects. Statistically significant fall of PEA (palmitoylethanolamide) and SEA (stearoylethanolamide) concentrations after 60 min (FC = 0.7, p = 0.007 and FC = 0.8, p = 0.03, respectively) and 120 min (FC = 0.81, p = 0.004, and FC = 0.9, p = 0.01, respectively) of cooling was observed only in individuals with BAT. Conclusion: We noticed the profound decline of endocannabinoids concentrations in subjects with increased 18F-FDG PET/MR uptake in BAT. Identification of a new molecules related to BAT activity may create a new target for obesity treatment.
Collapse
Affiliation(s)
- Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Miniewska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Wioleta Gosk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Bellocchio L, Patano A, Inchingolo AD, Inchingolo F, Dipalma G, Isacco CG, de Ruvo E, Rapone B, Mancini A, Lorusso F, Scarano A, Malcangi G, Inchingolo AM. Cannabidiol for Oral Health: A New Promising Therapeutical Tool in Dentistry. Int J Mol Sci 2023; 24:ijms24119693. [PMID: 37298644 DOI: 10.3390/ijms24119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The medical use of cannabis has a very long history. Although many substances called cannabinoids are present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) are the three main cannabinoids that are most present and described. CBD itself is not responsible for the psychotropic effects of cannabis, since it does not produce the typical behavioral effects associated with the consumption of this drug. CBD has recently gained growing attention in modern society and seems to be increasingly explored in dentistry. Several subjective findings suggest some therapeutic effects of CBD that are strongly supported by research evidence. However, there is a plethora of data regarding CBD's mechanism of action and therapeutic potential, which are in many cases contradictory. We will first provide an overview of the scientific evidence on the molecular mechanism of CBD's action. Furthermore, we will map the recent developments regarding the possible oral benefits of CBD. In summary, we will highlight CBD's promising biological features for its application in dentistry, despite exiting patents that suggest the current compositions for oral care as the main interest of the industry.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | |
Collapse
|
15
|
Sun Q, Li H, Chen X, Hao J, Deng H, Jiang H. Silver-Promoted Radical Cascade Aryldifluoromethylation/Cyclization of 2-Allyloxybenzaldehydes for the Synthesis of 3-Aryldifluoromethyl-Containing Chroman-4-one Derivatives. Molecules 2023; 28:molecules28083578. [PMID: 37110812 PMCID: PMC10142801 DOI: 10.3390/molecules28083578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A convenient silver-promoted radical cascade aryldifluoromethylation/cyclization of 2-allyloxybenzaldehydes has been developed. Experimental studies disclosed that the addition of aryldifluoromethyl radicals in situ produced from easily accessible gem-difluoroarylacetic acids to unactivated double bonds in 2-allyloxybenzaldehyde was an effective route to access a series of 3-aryldifluoromethyl-containing chroman-4-one derivatives in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Qianqian Sun
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Xingyu Chen
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hongmei Deng
- Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai 200444, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Fotio Y, Mabou Tagne A, Jung KM, Piomelli D. Fatty acid amide hydrolase inhibition alleviates anxiety-like symptoms in a rat model used to study post-traumatic stress disorder. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06358-y. [PMID: 37017699 DOI: 10.1007/s00213-023-06358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND AND AIM Post-traumatic stress disorder (PTSD), a chronic debilitating condition that affects nearly 5-10% of American adults, is treated with a handful of FDA-approved drugs that provide at best symptomatic relief and exert multiple side effects. Preclinical and clinical evidence shows that inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which deactivates the endocannabinoid anandamide, exhibit anxiolytic-like properties in animal models. In the present study, we investigated the effects of two novel brain-permeable FAAH inhibitors - the compounds ARN14633 and ARN14280 - in a rat model of predator stress-induced long-term anxiety used to study PTSD. METHODS We exposed male Sprague-Dawley rats to 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a volatile constituent of fox feces, and assessed anxiety-like behaviors in the elevated plus maze (EPM) test seven days later. We measured FAAH activity using a radiometric assay and brain levels of FAAH substrates by liquid chromatography/tandem mass spectrometry. RESULTS Rats challenged with TMT developed persistent (≥ 7 days) anxiety-like symptoms in the EPM test. Intraperitoneal administration of ARN14633 or ARN14280 1 h before testing suppressed TMT-induced anxiety-like behaviors with median effective doses (ED50) of 0.23 and 0.33 mg/kg, respectively. The effects were negatively correlated (ARN14663: R2 = 0.455; ARN14280: R2 = 0.655) with the inhibition of brain FAAH activity and were accompanied by increases in brain FAAH substrate levels. CONCLUSIONS The results support the hypothesis that FAAH-regulated lipid signaling serves important regulatory functions in the response to stress and confirm that FAAH inhibitors may be useful for the management of PTSD.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
17
|
Preteroti M, Wilson ET, Eidelman DH, Baglole CJ. Modulation of pulmonary immune function by inhaled cannabis products and consequences for lung disease. Respir Res 2023; 24:95. [PMID: 36978106 PMCID: PMC10043545 DOI: 10.1186/s12931-023-02399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The lungs, in addition to participating in gas exchange, represent the first line of defense against inhaled pathogens and respiratory toxicants. Cells lining the airways and alveoli include epithelial cells and alveolar macrophages, the latter being resident innate immune cells important in surfactant recycling, protection against bacterial invasion and modulation of lung immune homeostasis. Environmental exposure to toxicants found in cigarette smoke, air pollution and cannabis can alter the number and function of immune cells in the lungs. Cannabis (marijuana) is a plant-derived product that is typically inhaled in the form of smoke from a joint. However, alternative delivery methods such as vaping, which heats the plant without combustion, are becoming more common. Cannabis use has increased in recent years, coinciding with more countries legalizing cannabis for both recreational and medicinal purposes. Cannabis may have numerous health benefits owing to the presence of cannabinoids that dampen immune function and therefore tame inflammation that is associated with chronic diseases such as arthritis. The health effects that could come with cannabis use remain poorly understood, particularly inhaled cannabis products that may directly impact the pulmonary immune system. Herein, we first describe the bioactive phytochemicals present in cannabis, with an emphasis on cannabinoids and their ability to interact with the endocannabinoid system. We also review the current state-of-knowledge as to how inhaled cannabis/cannabinoids can shape immune response in the lungs and discuss the potential consequences of altered pulmonary immunity. Overall, more research is needed to understand how cannabis inhalation shapes the pulmonary immune response to balance physiological and beneficial responses with potential deleterious consequences on the lungs.
Collapse
Affiliation(s)
- Matthew Preteroti
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Emily T Wilson
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - David H Eidelman
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J Baglole
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Cannabis has been used since ancient times for medical and recreational research. This review article will document the validity of how medical cannabis can be utilized for chronic nonmalignant pain management. RECENT FINDINGS Current cannabis research has shown that medical cannabis is indicated for symptom management for many conditions not limited to cancer, chronic pain, headaches, migraines, and psychological disorders (anxiety and post-traumatic stress disorder). Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are active ingredients in cannabis that modulate a patient's symptoms. These compounds work to decrease nociception and symptom frequency via the endocannabinoid system. Research regarding pain management is limited within the USA as the Drug Enforcement Agency (DEA) classifies it as a schedule one drug. Few studies have found a limited relationship between chronic pain and medical cannabis use. A total of 77 articles were selected after a thorough screening process using PubMed and Google Scholar. This paper demonstrates that medical cannabis use provides adequate pain management. Patients suffering from chronic nonmalignant pain may benefit from medical cannabis due to its convenience and efficacy.
Collapse
|
19
|
Barchi M, Guida E, Dolci S, Rossi P, Grimaldi P. Endocannabinoid system and epigenetics in spermatogenesis and testicular cancer. VITAMINS AND HORMONES 2023; 122:75-106. [PMID: 36863802 DOI: 10.1016/bs.vh.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In mammals, male germ cell development starts during fetal life and is carried out in postnatal life with the formation of sperms. Spermatogenesis is the complex and highly orderly process during which a group of germ stem cells is set at birth, starts to differentiate at puberty. It proceeds through several stages: proliferation, differentiation, and morphogenesis and it is strictly regulated by a complex network of hormonal, autocrine and paracrine factors and it is associated with a unique epigenetic program. Altered epigenetic mechanisms or inability to respond to these factors can impair the correct process of germ development leading to reproductive disorders and/or testicular germ cell cancer. Among factors regulating spermatogenesis an emerging role is played by the endocannabinoid system (ECS). ECS is a complex system comprising endogenous cannabinoids (eCBs), their synthetic and degrading enzymes, and cannabinoid receptors. Mammalian male germ cells have a complete and active ECS which is modulated during spermatogenesis and that crucially regulates processes such as germ cell differentiation and sperm functions. Recently, cannabinoid receptor signaling has been reported to induce epigenetic modifications such as DNA methylation, histone modifications and miRNA expression. Epigenetic modifications may also affect the expression and function of ECS elements, highlighting the establishment of a complex mutual interaction. Here, we describe the developmental origin and differentiation of male germ cells and testicular germ cell tumors (TGCTs) focusing on the interplay between ECS and epigenetic mechanisms involved in these processes.
Collapse
Affiliation(s)
- Marco Barchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
20
|
Chu L, Shu Z, Gu X, Wu Y, Yang J, Deng H. The Endocannabinoid System as a Potential Therapeutic Target for HIV-1-Associated Neurocognitive Disorder. Cannabis Cannabinoid Res 2023. [PMID: 36745405 DOI: 10.1089/can.2022.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Despite the successful introduction of combined antiretroviral therapy, the prevalence of mild to moderate forms of HIV-associated neurocognitive disorders (HAND) remains high. It has been demonstrated that neuronal injury caused by HIV is excitotoxic and inflammatory, and it correlates with neurocognitive decline in HAND. Endocannabinoid system (ECS) protects the body from excitotoxicity and neuroinflammation on demand and presents a promising therapeutic target for treating HAND. Here, we firstly discuss the potential pathogenesis of HAND. We secondly discuss the structural and functional changes in the ECS that are currently known among HAND patients. We thirdly discuss current clinical and preclinical findings concerning the neuroprotective and anti-inflammatory properties of the ECS among HAND patients. Fourth, we will discuss the interactions between the ECS and neuroendocrine systems, including the hypothalamic-pituitary-adrenocortical (HPA) and hypothalamic-pituitary-gonadal (HPG) axes under the HAND conditions. Materials and Methods: We have carried out a review of the literature using PubMed to summarize the current state of knowledge on the association between ECS and HAND. Results: The ECS may be ideally suited for modulation of HAND pathophysiology. Direct activation of presynaptic cannabinoid receptor 1 or reduction of cannabinoid metabolism attenuates HAND excitotoxicity. Chronic neuroinflammation associated with HAND can be reduced by activating cannabinoid receptor 2 on immune cells. The sensitivity of the ECS to HIV may be enhanced by increased cannabinoid receptor expression in HAND. In addition, indirect regulation of the ECS through modulation of hormone-related receptors may be a potential strategy to influence the ECS and also alleviate the progression of HAND due to the reciprocal inhibition of the ECS by the HPA and HPG axes. Conclusions: Taken together, targeting the ECS may be a promising strategy to alleviate the inflammation and neurodegeneration caused by HIV-1 infection. Further studies are required to clarify the role of endocannabinoid signaling in HIV neurotoxicity. Strategies promoting endocannabinoid signaling may slow down cognitive decline of HAND are proposed.
Collapse
Affiliation(s)
- Liuxi Chu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Zheng Shu
- Clinical Nutrition Department, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yan Wu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Jin Yang
- Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China.,Department of Child and Adolescent Hygienics, School of Public Health, Southeast University, Nanjing, China
| | - Huihua Deng
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
22
|
Svobodova A, Vrkoslav V, Smeringaiova I, Jirsova K. Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes. PLoS One 2023; 18:e0279863. [PMID: 36638082 PMCID: PMC9838831 DOI: 10.1371/journal.pone.0279863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts. METHODS Seven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis. RESULTS N-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P < 0.001) was observed in AM when the tissues were decontaminated using antibiotic solution. The increase in decontaminated ACM was not statistically significant. CONCLUSIONS The presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect.
Collapse
Affiliation(s)
- Alzbeta Svobodova
- First Faculty of Medicine, 2 Department of Surgery–Department of Cardiovascular Surgery, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ingrida Smeringaiova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Jirsova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
23
|
Grabacka M, Płonka PM, Pierzchalska M. The PPARα Regulation of the Gut Physiology in Regard to Interaction with Microbiota, Intestinal Immunity, Metabolism, and Permeability. Int J Mol Sci 2022; 23:ijms232214156. [PMID: 36430628 PMCID: PMC9696208 DOI: 10.3390/ijms232214156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) is expressed throughout the mammalian gut: in epithelial cells, in the villi of enterocytes and in Paneth cells of intestinal crypts, as well as in some immune cells (e.g., lamina propria macrophages, dendritic cells) of the mucosa. This review examines the reciprocal interaction between PPARα activation and intestinal microbiota. We refer to the published data confirming that microbiota products can influence PPARα signaling and, on the other hand, PPARα activation is able to affect microbiota profile, viability, and diversity. PPARα impact on the broad spectrum of events connected to metabolism, signaling (e.g., NO production), immunological tolerance to dietary antigens, immunity and permeability of the gut are also discussed. We believe that the phenomena described here play a prominent role in gut homeostasis. Therefore, in conclusion we propose future directions for research, including the application of synthetic activators and natural endogenous ligands of PPARα (i.e., endocannabinoids) as therapeutics for intestinal pathologies and systemic diseases assumed to be related to gut dysbiosis.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
- Correspondence: ; Tel.: +48-12-662-4701
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
| |
Collapse
|
24
|
Roberts CJ, Hopp FA, Hogan QH, Dean C. Anandamide in the dorsal periaqueductal gray inhibits sensory input without a correlation to sympathoexcitation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100104. [PMID: 36531614 PMCID: PMC9755024 DOI: 10.1016/j.ynpai.2022.100104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
There is growing literature supporting cannabinoids as a potential therapeutic for pain conditions. The development of chronic pain has been associated with reduced concentrations of the endogenous cannabinoid anandamide (AEA) in the midbrain dorsal periaqueductal gray (dPAG), and microinjections of synthetic cannabinoids into the dPAG are antinociceptive. Therefore, the goal of this study was to examine the role of the dPAG in cannabinoid-mediated sensory inhibition. Given that cannabinoids in the dPAG also elicit sympathoexcitation, a secondary goal was to assess coordination between sympathetic and antinociceptive responses. AEA was microinjected into the dPAG while recording single unit activity of wide dynamic range (WDR) dorsal horn neurons (DHNs) evoked by high intensity mechanical stimulation of the hindpaw, concurrently with renal sympathetic nerve activity (RSNA), in anesthetized male rats. AEA microinjected into the dPAG decreased evoked DHN activity (n = 24 units), for half of which AEA also elicited sympathoexcitation. AEA actions were mediated by cannabinoid 1 receptors as confirmed by local pretreatment with the cannabinoid receptor antagonist AM281. dPAG microinjection of the synaptic excitant DL-homocysteic acid (DLH) also decreased evoked DHN activity (n = 27 units), but in all cases this was accompanied by sympathoexcitation. Thus, sensory inhibition elicited from the dPAG is not exclusively linked with sympathoexcitation, suggesting discrete neuronal circuits. The rostrocaudal location of sites may affect evoked responses as AEA produced sensory inhibition without sympathetic effects at 86 % of caudal compared to 25 % of rostral sites, supporting anatomically distinct neurocircuits. These data indicate that spatially selective manipulation of cannabinoid signaling could provide analgesia without potentially harmful autonomic activation.
Collapse
Key Words
- AEA, N-arachidonylethanolamine, anandamide
- Antinociception
- CB1R, cannabinoid type one receptor
- CV, cardiovascular
- Cannabinoid
- DHN, dorsal horn neuron
- DLH, DL-homocysteic acid
- Dorsal horn
- FAAH, fatty acid amide hydrolase
- GPCR, G protein-coupled receptor
- IML, intermediolateral cell column
- MAP, mean arterial pressure
- NTS, nucleus tractus solitarius
- PAG, periaqueductal gray
- PPAR, peroxisome proliferator activated receptor
- RSNA, renal sympathetic nerve activity
- RVLM, rostral ventrolateral medulla
- RVMM, rostral ventromedial medulla
- Rat
- SIA, stress-induced analgesia
- SNS, sympathetic nervous system
- Sympathetic nervous system
- TRPV1, transient receptor potential vanilloid type 1
- WDR, wide dynamic range
- dPAG, dorsal periaqueductal gray
- vPAG, ventral periaqueductal gray
Collapse
Affiliation(s)
- Christopher J. Roberts
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Francis A. Hopp
- Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA,Corresponding author at: Department of Anesthesiology, Research Service 151, Zablocki VA Medical Center, Milwaukee, WI 53295, USA.
| |
Collapse
|
25
|
Liu W, Zhang WD, Li T, Zhou Z, Luo M, Chen X, Cai Y, Zhu ZJ. Four-Dimensional Untargeted Profiling of N-Acylethanolamine Lipids in the Mouse Brain Using Ion Mobility–Mass Spectrometry. Anal Chem 2022; 94:12472-12480. [DOI: 10.1021/acs.analchem.2c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenbin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-dong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingdu Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xi Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Road, Pudong, Shanghai 201210, China
| |
Collapse
|
26
|
Zagzoog A, Cabecinha A, Abramovici H, Laprairie RB. Modulation of type 1 cannabinoid receptor activity by cannabinoid by-products from Cannabis sativa and non-cannabis phytomolecules. Front Pharmacol 2022; 13:956030. [PMID: 36091813 PMCID: PMC9458935 DOI: 10.3389/fphar.2022.956030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabis sativa contains more than 120 cannabinoids and 400 terpene compounds (i.e., phytomolecules) present in varying amounts. Cannabis is increasingly available for legal medicinal and non-medicinal use globally, and with increased access comes the need for a more comprehensive understanding of the pharmacology of phytomolecules. The main transducer of the intoxicating effects of Cannabis is the type 1 cannabinoid receptor (CB1R). ∆9-tetrahydrocannabinolic acid (∆9-THCa) is often the most abundant cannabinoid present in many cultivars of Cannabis. Decarboxylation converts ∆9-THCa to ∆9-THC, which is a CB1R partial agonist. Understanding the complex interplay of phytomolecules—often referred to as “the entourage effect”—has become a recent and major line of inquiry in cannabinoid research. Additionally, this interest is extending to other non-Cannabis phytomolecules, as the diversity of available Cannabis products grows. Here, we chose to focus on whether 10 phytomolecules (∆8-THC, ∆6a,10a-THC, 11-OH-∆9-THC, cannabinol, curcumin, epigallocatechin gallate, olivetol, palmitoylethanolamide, piperine, and quercetin) alter CB1R-dependent signaling with or without a co-treatment of ∆9-THC. Phytomolecules were screened for their binding to CB1R, inhibition of forskolin-stimulated cAMP accumulation, and βarrestin2 recruitment in Chinese hamster ovary cells stably expressing human CB1R. Select compounds were assessed further for cataleptic, hypothermic, and anti-nociceptive effects on male mice. Our data revealed partial agonist activity for the cannabinoids tested, as well as modulation of ∆9-THC-dependent binding and signaling properties of phytomolecules in vitro and in vivo. These data represent a first step in understanding the complex pharmacology of Cannabis- and non-Cannabis-derived phytomolecules at CB1R and determining whether these interactions may affect the physiological outcomes, adverse effects, and abuse liabilities associated with the use of these compounds.
Collapse
Affiliation(s)
- Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ashley Cabecinha
- Office of Cannabis Science and Surveillance, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| | - Hanan Abramovici
- Office of Cannabis Science and Surveillance, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Robert B. Laprairie,
| |
Collapse
|
27
|
Mabou Tagne A, Fotio Y, Uppal PS, Piomelli D. Synergistic antinociceptive effects of concomitant NAAA and peripheral FAAH inhibition. Exp Neurol 2022; 357:114194. [PMID: 35932800 DOI: 10.1016/j.expneurol.2022.114194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022]
Abstract
The intracellular lipid amidases, fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA), terminate the actions of anandamide and palmitoylethanolamide (PEA), two antinociceptive and anti-inflammatory lipid-derived mediators. Here we show, confirming prior research, that small-molecule inhibitors of peripheral FAAH (compound URB937) and systemic NAAA (compound ARN19702) individually attenuate, in male CD-1 mice, pain-related behaviors and paw inflammation in the formalin and carrageenan tests. More importantly, isobolographic analyses revealed that the combination of URB937 and ARN19702 produced substantial synergistic (greater than additive) antinociceptive effects in both models as well as additive anti-inflammatory effects in the carrageenan test. Together, the findings uncover a functional interplay between FAAH and NAAA substrates in the control of nociception, which might be exploited clinically to develop safe and effective pain management strategies.
Collapse
Affiliation(s)
- Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA.
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Parwinder Singh Uppal
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697-4625, USA; Department of Pharmaceutical Sciences, University of California Irvine, CA 92697-4625, USA.
| |
Collapse
|
28
|
The Use of Palmitoylethanolamide in the Treatment of Long COVID: A Real-Life Retrospective Cohort Study. Med Sci (Basel) 2022; 10:medsci10030037. [PMID: 35893119 PMCID: PMC9326613 DOI: 10.3390/medsci10030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 can cause symptoms that last weeks or months after the infection has gone, with a significant impairment of quality of life. Palmitoylethanolamide (PEA) is a naturally occurring lipid mediator that has an entourage effect on the endocannabinoid system mitigating the cytokine storm. The aim of this retrospective study is to evaluate the potential efficacy of PEA in the treatment of long COVID. Patients attending the Neurological Out Clinic of the IRCCS Centro Neurolesi Bonino-Pulejo (Messina, Italy) from August 2020 to September 2021 were screened for potential inclusion in the study. We included only long COVID patients who were treated with PEA 600 mg two times daily for about 3 months. All patients performed the post-COVID-19 Functional Status (PCFS) scale. Thirty-three patients (10 males, 43.5%, mean age 47.8 ± 12.4) were enrolled in the study. Patients were divided into two groups based on hospitalization or home care observation. A substantial difference in the PCFS score between the two groups at baseline and after treatment with PEA were found. We found that smoking was a risk factor with an odds ratio of 8.13 CI 95% [0.233, 1.167]. Our findings encourage the use of PEA as a potentially effective therapy in patients with long COVID.
Collapse
|
29
|
Johnson CM, Rosario R, Brito A, Agrawal K, Fanter R, Lietz G, Haskell M, Engle-Stone R, Newman JW, La Frano MR. Multi-assay nutritional metabolomics profiling of low vitamin A status versus adequacy is characterized by reduced plasma lipid mediators among lactating women in the Philippines: A pilot study. Nutr Res 2022; 104:118-127. [DOI: 10.1016/j.nutres.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
|
30
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|
31
|
Raciti L, Arcadi FA, Calabrò RS. Could Palmitoylethanolamide Be an Effective Treatment for Long-COVID-19? Hypothesis and Insights in Potential Mechanisms of Action and Clinical Applications. INNOVATIONS IN CLINICAL NEUROSCIENCE 2022; 19:19-25. [PMID: 35382075 PMCID: PMC8970234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
COVID-19 is highly transmissive and contagious disease with a wide spectrum of clinicopathological issues, including respiratory, vasculo-coagulative, and immune disorders. In some cases of COVID-19, patients can be characterized by clinical sequelae with mild-to-moderate symptoms that persist long after the resolution of the acute infection, known as long-COVID, potentially affecting their quality of life. The main symptoms of long-COVID include persistent dyspnea, fatigue and weakness (that are typically out of proportion, to the degree of ongoing lung damage and gas exchange impairment), persistence of anosmia and dysgeusia, neuropsychiatric symptoms, and cognitive dysfunctions (such as brain fog or memory lapses). The appropriate management and prevention of potential long-COVID sequelae is still lacking. It is also believed that long-term symptoms of COVID-19 are related to an immunity over-response, namely a cytokine storm, involving the release of pro-inflammatory interleukins, monocyte chemoattractant proteins, and tissue necrosis factors. Palmitoylethanolamide (PEA) shows affinity for vanilloid receptor 1 and for cannabinoid-like G protein-coupled receptors, enhancing anandamide activity by means of an entourage effect. Due to its anti-inflammatory properties, PEA has been recently used as an early add-on therapy for respiratory problems in patients with COVID-19. It is believed that PEA mitigates the cytokine storm modulating cell-mediated immunity, as well as counteracts pain and oxidative stress. In this article, we theorize that PEA could be a potentially effective nutraceutical to treat long-COVID, with regard to fatigue and myalgia, where a mythocondrial dysfunction is hypothesizable.
Collapse
Affiliation(s)
- Loredana Raciti
- Drs. Raciti, Arcadi, and Calabrò are with IRCCS Centro Neurolesi "Bonino Pulejo" in Messina, Italy
| | - Francesca Antonia Arcadi
- Drs. Raciti, Arcadi, and Calabrò are with IRCCS Centro Neurolesi "Bonino Pulejo" in Messina, Italy
| | - Rocco Salvatore Calabrò
- Drs. Raciti, Arcadi, and Calabrò are with IRCCS Centro Neurolesi "Bonino Pulejo" in Messina, Italy
| |
Collapse
|
32
|
Hryhorowicz S, Kaczmarek-Ryś M, Zielińska A, Scott RJ, Słomski R, Pławski A. Endocannabinoid System as a Promising Therapeutic Target in Inflammatory Bowel Disease - A Systematic Review. Front Immunol 2021; 12:790803. [PMID: 35003109 PMCID: PMC8727741 DOI: 10.3389/fimmu.2021.790803] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a general term used to describe a group of chronic inflammatory conditions of the gastrointestinal tract of unknown etiology, including two primary forms: Crohn's disease (CD) and ulcerative colitis (UC). The endocannabinoid system (ECS) plays an important role in modulating many physiological processes including intestinal homeostasis, modulation of gastrointestinal motility, visceral sensation, or immunomodulation of inflammation in IBD. It consists of cannabinoid receptors (CB1 and CB2), transporters for cellular uptake of endocannabinoid ligands, endogenous bioactive lipids (Anandamide and 2-arachidonoylglycerol), and the enzymes responsible for their synthesis and degradation (fatty acid amide hydrolase and monoacylglycerol lipase), the manipulation of which through agonists and antagonists of the system, shows a potential therapeutic role for ECS in inflammatory bowel disease. This review summarizes the role of ECS components on intestinal inflammation, suggesting the advantages of cannabinoid-based therapies in inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Crohn Disease/drug therapy
- Crohn Disease/immunology
- Crohn Disease/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Endocannabinoids/agonists
- Endocannabinoids/antagonists & inhibitors
- Endocannabinoids/metabolism
- Gastrointestinal Motility/drug effects
- Humans
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Randomized Controlled Trials as Topic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
| | | | | | - Rodney J. Scott
- Discipline of Medical Genetics and Centre for Information-Based Medicine, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, NSW, Australia
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
33
|
Valeri A, Mazzon E. Cannabinoids and Neurogenesis: The Promised Solution for Neurodegeneration? Molecules 2021; 26:molecules26206313. [PMID: 34684894 PMCID: PMC8541184 DOI: 10.3390/molecules26206313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of neurons as irreplaceable cells does not hold true today. Experiments and evidence of neurogenesis, also, in the adult brain give hope that some compounds or drugs can enhance this process, helping to reverse the outcomes of diseases or traumas that once were thought to be everlasting. Cannabinoids, both from natural and artificial origins, already proved to have several beneficial effects (e.g., anti-inflammatory, anti-oxidants and analgesic action), but also capacity to increase neuronal population, by replacing the cells that were lost and/or regenerate a damaged nerve cell. Neurogenesis is a process which is not highly represented in literature as neuroprotection, though it is as important as prevention of nervous system damage, because it can represent a possible solution when neuronal death is already present, such as in neurodegenerative diseases. The aim of this review is to resume the experimental evidence of phyto- and synthetic cannabinoids effects on neurogenesis, both in vitro and in vivo, in order to elucidate if they possess also neurogenetic and neurorepairing properties.
Collapse
|
34
|
Haddad M. The Impact of CB1 Receptor on Nuclear Receptors in Skeletal Muscle Cells. PATHOPHYSIOLOGY 2021; 28:457-470. [PMID: 35366244 PMCID: PMC8830471 DOI: 10.3390/pathophysiology28040029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022] Open
Abstract
Cannabinoids are abundant signaling compounds; their influence predominantly arises via engagement with the principal two G-protein-coupled cannabinoid receptors, CB1 and CB2. One suggested theory is that cannabinoids regulate a variety of physiological processes within the cells of skeletal muscle. Earlier publications have indicated that expression of CB1 receptor mRNA and protein has been recognized within myotubes and tissues of skeletal muscle from both murines and humans, thus representing a potentially significant pathway which plays a role in the control of skeletal muscular activities. The part played by CB1 receptor activation or inhibition with respect to these functions and relevant to targets in the periphery, especially skeletal muscle, is not fully delineated. Thus, the aim of the current research was to explore the influence of CB1 receptor stimulation and inhibition on downstream signaling of the nuclear receptor, NR4A, which regulates the immediate impacts of arachidonyl-2′-chloroethylamide (ACEA) and/or rimonabant in the cells of skeletal muscle. Murine L6 skeletal muscle cells were used in order to clarify additional possible molecular signaling pathways which contribute to alterations in the CB1 receptor. Skeletal muscle cells have often been used; it is well-documented that they express cannabinoid receptors. Quantitative real-time probe-based polymerase chain reaction (qRT-PCR) assays are deployed in order to assess the gene expression characteristics of CB1 receptor signaling. In the current work, it is demonstrated that skeletal muscle cells exhibit functional expression of CB1 receptors. This can be deduced from the qRT-PCR assays; triggering CB1 receptors amplifies both NR4A1 and NR4A3 mRNA gene expression. The impact of ACEA is inhibited by the selective CB1 receptor antagonist, rimonabant. The present research demonstrated that 10 nM of ACEA notably amplified mRNA gene expression of NR4A1 and NR4A3; this effect was suppressed by the addition of 100 nM rimonabant. Furthermore, the CB1 receptor antagonist led to the downregulation of mRNA gene expression of NR4A1, NR4A2 and NR4A3. In conclusion, in skeletal muscle, CB1 receptors were recognized to be important moderators of NR4A1 and NR4A3 mRNA gene expression; these actions may have possible clinical benefits. Thus, in skeletal muscle cells, a possible physiological expression of CB1 receptors was identified. It is as yet unknown whether these CB1 receptors contribute to pathways underlying skeletal muscle biological function and disease processes. Further research is required to fully delineate their role(s).
Collapse
Affiliation(s)
- Mansour Haddad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| |
Collapse
|
35
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
36
|
Fotio Y, Sasso O, Ciccocioppo R, Piomelli D. Antinociceptive Profile of ARN19702, (2-Ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone, a Novel Orally Active N-Acylethanolamine Acid Amidase Inhibitor, in Animal Models. J Pharmacol Exp Ther 2021; 378:70-76. [PMID: 33986036 DOI: 10.1124/jpet.121.000674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that stops the physiologic actions of palmitoylethanolamide, an endogenous lipid messenger that activates the transcription factor, peroxisome proliferator-activated receptor-α We have previously reported that the compound ARN19702 [(2-ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone] is an orally active, reversible NAAA inhibitor (IC50 on human NAAA = 230 nM) that produces remarkable protective effects against multiple sclerosis in mice. In the present study, we assessed the profile of ARN19702 in mouse and rat models of acute and neuropathic pain. Oral administration in male mice attenuated in a dose-dependent manner the spontaneous nocifensive response elicited by intraplantar formalin injection and the hypersensitivity caused by intraplantar carrageenan injection, paw incision, or sciatic nerve ligation. In male rats, ARN19702 reduced nociception associated with paclitaxel-induced neuropathy without development of subacute antinociceptive tolerance. Finally, ARN19702 (30 mg/kg, oral) did not produce place preference or alter exploratory motor behavior in male mice. The findings support the conclusion that NAAA is a suitable molecular target for the discovery of efficacious analgesic drugs devoid of rewarding potential. SIGNIFICANCE STATEMENT: This study evaluated the pharmacological profile of the orally bioavailable N-acylethanolamine acid amidase (NAAA) inhibitor (2-ethylsulfonylphenyl)-[(2S)-4-(6-fluoro-1,3-benzothiazol-2-yl)-2-methylpiperazin-1-yl]methanone (ARN19702) in mouse and rat models of neurogenic and inflammatory pain. The compound's potential rewarding and sedative effects were also examined. It is concluded that ARN19702 exhibits a broad analgesic profile that can be generalized across rodent species. The findings point to NAAA as a control node in the processing of neuropathic and inflammatory pain and to ARN19702 as a lead to uncover novel pain therapeutics devoid of addictive potential .
Collapse
Affiliation(s)
- Yannick Fotio
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| | - Oscar Sasso
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| | - Roberto Ciccocioppo
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology (Y.F., D.P.), Biological Chemistry (D.P.), and Pharmaceutical Sciences (D.P.), University of California, Irvine, California; Drug Discovery and Development, Istituto Italiano di Technologia, Genova, Italy (O.S.); and School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy (R.C.)
| |
Collapse
|
37
|
Zhao J, Zhao Y, Hu Y, Peng J. Targeting the GPR119/incretin axis: a promising new therapy for metabolic-associated fatty liver disease. Cell Mol Biol Lett 2021; 26:32. [PMID: 34233623 PMCID: PMC8265056 DOI: 10.1186/s11658-021-00276-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
In the past decade, G protein-coupled receptors have emerged as drug targets, and their physiological and pathological effects have been extensively studied. Among these receptors, GPR119 is expressed in multiple organs, including the liver. It can be activated by a variety of endogenous and exogenous ligands. After GPR119 is activated, the cell secretes a variety of incretins, including glucagon-like peptide-1 and glucagon-like peptide-2, which may attenuate the metabolic dysfunction associated with fatty liver disease, including improving glucose and lipid metabolism, inhibiting inflammation, reducing appetite, and regulating the intestinal microbial system. GPR119 has been a potential therapeutic target for diabetes mellitus type 2 for many years, but its role in metabolic dysfunction associated fatty liver disease deserves further attention. In this review, we discuss relevant research and current progress in the physiology and pharmacology of the GPR119/incretin axis and speculate on the potential therapeutic role of this axis in metabolic dysfunction associated with fatty liver disease, which provides guidance for transforming experimental research into clinical applications.
Collapse
Affiliation(s)
- Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yu Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
38
|
Rahman SMK, Uyama T, Hussain Z, Ueda N. Roles of Endocannabinoids and Endocannabinoid-like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr 2021; 41:177-202. [PMID: 34115519 DOI: 10.1146/annurev-nutr-043020-090216] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| |
Collapse
|
39
|
Roncati L, Lusenti B, Pellati F, Corsi L. Micronized / ultramicronized palmitoylethanolamide (PEA) as natural neuroprotector against COVID-19 inflammation. Prostaglandins Other Lipid Mediat 2021; 154:106540. [PMID: 33636368 PMCID: PMC8137339 DOI: 10.1016/j.prostaglandins.2021.106540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is upsetting the world and innovative therapeutic solutions are needed in an attempt to counter this new pandemic. Great hope lies in vaccines, but drugs to cure the infected patient are just as necessary. In the most severe forms of the disease, a cytokine storm with neuroinflammation occurs, putting the patient's life at serious risk, with sometimes long-lasting sequelae. Palmitoylethanolamide (PEA) is known to possess anti-inflammatory and neuroprotective properties, which make it an ideal candidate to be assumed in the earliest stage of the disease. Here, we provide a mini-review on the topic, pointing out phospholipids consumption in COVID-19, the possible development of an antiphospholipid syndrome secondary to SARS-CoV-2 infection, and reporting our preliminary single-case experience concerning to a 45-year-old COVID-19 female patient recently treated with success by micronized / ultramicronized PEA.
Collapse
Affiliation(s)
- Luca Roncati
- Department of Surgery, Medicine, Dentistry and Morphological Sciences With Interest in Transplantation, Oncology and Regenerative Medicine, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy.
| | - Beatrice Lusenti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences With Interest in Transplantation, Oncology and Regenerative Medicine, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
40
|
Gao Y, Li Y, Tan Y, Liu W, Ouaddi S, McCoy J, Kovacevic M, Situm M, Stanimirovic A, Li M, Wambier C, Goren A, Zou Y. Novel cannabidiol aspartame combination treatment (JW-100) significantly reduces ISGA score in atopic dermatitis: Results from a randomized double-blinded placebo-controlled interventional study. J Cosmet Dermatol 2021; 21:1647-1650. [PMID: 34056830 DOI: 10.1111/jocd.14263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common and chronic inflammatory skin disease that erupts periodically. Although the negative impact of the disorder on overall quality of life has been well established, new treatments for AD are still needed. Various studies have reported on cannabidiol's effectiveness in relieving pain and easing inflammation while not presenting major health risks. AIMS In this communication, we aim to demonstrate the effectiveness of a novel cannabidiol (CBD) and aspartame formulation, JW-100, in relieving signs and symptoms of AD. PATIENTS/METHODS We conducted a double-blinded placebo-controlled interventional study randomizing patients to one of three treatment groups: JW-100 (CBD plus aspartame), CBD only, or placebo topical formulations. The Investigator's Static Global Assessment (ISGA) score was used to document any changes in AD resulting from the applied interventions at 14 days. RESULTS Fifty-seven patients completed the trial and were included in the final analysis. The ISGA score of the patients at baseline was 2.56, 2.24, and 2.24, for the JW-100, CBD, and placebo groups, respectively. After two weeks of treatment, the ISGA score reduced by 1.28, 0.81, and 0.71, for the JW-100, CBD, and placebo groups, respectively. The JW-100 cohorts demonstrated statistically significant ISGA score reduction (p = 0.042). 50% of patients in the JW-100 group achieved ISGA score of clear or almost clear (0 or 1) with at least a 2-grade improvement from baseline after treatment (p = 0.028). Only 20% and 15% of patients in the CBD only and placebo groups reported ISGA score of clear or almost clear (0 or 1). CONCLUSIONS JW-100, a novel topical formulation containing CBD and aspartame, was demonstrated to produce statistically significant improvements in AD following 14 days of topical application.
Collapse
Affiliation(s)
- Yanrui Gao
- Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of medicine, Shanghai, China
| | - Yingfang Li
- Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of medicine, Shanghai, China
| | - Yimei Tan
- Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of medicine, Shanghai, China
| | - Wei Liu
- Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of medicine, Shanghai, China
| | - Sara Ouaddi
- Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Maja Kovacevic
- Department of Dermatology and Venereology, University Hospital Center "Sestre milosrdnice", Zagreb, Croatia
| | - Mirna Situm
- Department of Dermatology and Venereology, University Hospital Center "Sestre milosrdnice", Zagreb, Croatia
| | | | | | - Carlos Wambier
- Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Ying Zou
- Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of medicine, Shanghai, China
| |
Collapse
|
41
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
42
|
Pesce M, Seguella L, Cassarano S, Aurino L, Sanseverino W, Lu J, Corpetti C, Del Re A, Vincenzi M, Sarnelli G, Esposito G. Phytotherapics in COVID19: Why palmitoylethanolamide? Phytother Res 2021; 35:2514-2522. [PMID: 33296131 DOI: 10.1002/ptr.6978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
At present, googling the search terms "COVID-19" and "Functional foods" yields nearly 500,000,000 hits, witnessing the growing interest of the scientific community and the general public in the role of nutrition and nutraceuticals during the COVID-19 pandemic. Many compounds have been proposed as phytotherapics in the prevention and/or treatment of COVID-19. The extensive interest of the general public and the enormous social media coverage on this topic urges the scientific community to address the question of whether which nutraceuticals can actually be employed in preventing and treating this newly described coronavirus-related disease. Recently, the Canadian biotech pharma company "FSD Pharma" received the green light from the Food and Drug Administration to design a proof-of-concept study evaluating the effects of ultramicronized palmitoylethanolamide (PEA) in COVID-19 patients. The story of PEA as a nutraceutical to prevent and treat infectious diseases dates back to the 1970s where the molecule was branded under the name Impulsin and was used for its immunomodulatory properties in influenza virus infection. The present paper aims at analyzing the potential of PEA as a nutraceutical and the previous evidence suggesting its anti-inflammatory and immunomodulatory properties in infectious and respiratory diseases and how these could translate to COVID-19 care.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sara Cassarano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Laura Aurino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang City, China
| | - Chiara Corpetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Kurtz R, Anderman MF, Shepard BD. GPCRs get fatty: the role of G protein-coupled receptor signaling in the development and progression of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G304-G318. [PMID: 33205999 PMCID: PMC8202238 DOI: 10.1152/ajpgi.00275.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by the abnormal deposition of lipids within the liver not due to alcohol consumption, is a growing epidemic affecting over 30% of the United States population. Both simple fatty liver and its more severe counterpart, nonalcoholic steatohepatitis, represent one of the most common forms of liver disease. Recently, several G protein-coupled receptors have emerged as targets for therapeutic intervention for these disorders. These include those with known hepatic function as well as those involved in global metabolic regulation. In this review, we highlight these emerging therapeutic targets, focusing on several common themes including their activation by microbial metabolites, stimulatory effect on insulin and incretin secretion, and contribution to glucose tolerance. The overlap in ligands, localization, and downstream effects of activation indicate the interdependent nature of these receptors and highlight the importance of this signaling family in the development and prevention of NAFLD.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Meghan F. Anderman
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D. Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
44
|
Im DS. GPR119 and GPR55 as Receptors for Fatty Acid Ethanolamides, Oleoylethanolamide and Palmitoylethanolamide. Int J Mol Sci 2021; 22:ijms22031034. [PMID: 33494185 PMCID: PMC7864322 DOI: 10.3390/ijms22031034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Oleoylethanolamide and palmitoylethanolamide are members of the fatty acid ethanolamide family, also known as acylethanolamides. Their physiological effects, including glucose homeostasis, anti-inflammation, anti-anaphylactic, analgesia, and hypophagia, have been reported. They have affinity for different receptor proteins, including nuclear receptors such as PPARα, channels such as TRPV1, and membrane receptors such as GPR119 and GPR55. In the present review, the pathophysiological functions of fatty acid ethanolamides have been discussed from the perspective of receptor pharmacology and drug discovery.
Collapse
Affiliation(s)
- Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; ; Tel.: +82-2-961-9377; Fax: +82-2-961-9580
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
45
|
Murru E, Carta G, Manca C, Sogos V, Pistis M, Melis M, Banni S. Conjugated Linoleic Acid and Brain Metabolism: A Possible Anti-Neuroinflammatory Role Mediated by PPARα Activation. Front Pharmacol 2021; 11:587140. [PMID: 33505308 PMCID: PMC7832089 DOI: 10.3389/fphar.2020.587140] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and synthesized endogenously in non-ruminants and humans, has been shown to possess different nutritional properties associated with health benefits. Its ability to bind to peroxisome proliferator-activated receptor (PPAR) α, a nuclear receptor key regulator of fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects. CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of endogenous PPARα ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), likely through a positive feedback mechanism where PPARα activation sustains its own cellular effects through ligand biosynthesis. In addition to PPARα, PEA and OEA may as well bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory actions. Future studies are needed to investigate whether dietary CLA may exert anti-inflammatory activity, particularly in the setting of neurodegenerative diseases and neuropsychiatric disorders with a neuroinflammatory basis.
Collapse
Affiliation(s)
- Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.,Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
46
|
Depommier C, Flamand N, Pelicaen R, Maiter D, Thissen JP, Loumaye A, Hermans MP, Everard A, Delzenne NM, Di Marzo V, Cani PD. Linking the Endocannabinoidome with Specific Metabolic Parameters in an Overweight and Insulin-Resistant Population: From Multivariate Exploratory Analysis to Univariate Analysis and Construction of Predictive Models. Cells 2021; 10:cells10010071. [PMID: 33466285 PMCID: PMC7824762 DOI: 10.3390/cells10010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The global obesity epidemic continues to rise worldwide. In this context, unraveling new interconnections between biological systems involved in obesity etiology is highly relevant. Dysregulation of the endocannabinoidome (eCBome) is associated with metabolic complications in obesity. This study aims at deciphering new associations between circulating endogenous bioactive lipids belonging to the eCBome and metabolic parameters in a population of overweight or obese individuals with metabolic syndrome. To this aim, we combined different multivariate exploratory analysis methods: canonical correlation analysis and principal component analysis, revealed associations between eCBome subsets, and metabolic parameters such as leptin, lipopolysaccharide-binding protein, and non-esterified fatty acids (NEFA). Subsequent construction of predictive regression models according to the linear combination of selected endocannabinoids demonstrates good prediction performance for NEFA. Descriptive approaches reveal the importance of specific circulating endocannabinoids and key related congeners to explain variance in the metabolic parameters in our cohort. Analysis of quartiles confirmed that these bioactive lipids were significantly higher in individuals characterized by important levels for aforementioned metabolic variables. In conclusion, by proposing a methodology for the exploration of large-scale data, our study offers additional evidence of the existence of an interplay between eCBome related-entities and metabolic parameters known to be altered in obesity.
Collapse
Affiliation(s)
- Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Nicolas Flamand
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.F.); (V.D.M.)
| | - Rudy Pelicaen
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Dominique Maiter
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Jean-Paul Thissen
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Audrey Loumaye
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Michel P. Hermans
- Pôle EDIN, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium; (D.M.); (J.-P.T.); (A.L.); (M.P.H.)
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
| | - Vincenzo Di Marzo
- Quebec Heart and Lung Institute Research Centre, Université Laval, Quebec City, QC G1V 0A6, Canada; (N.F.); (V.D.M.)
- Centre NUTRISS, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Brussels, Belgium; (C.D.); (R.P.); (A.E.); (N.M.D.)
- Correspondence: ; Tel.: +32-2-764-73-97
| |
Collapse
|
47
|
Bandyopadhayaya S, Akimov MG, Verma R, Sharma A, Sharma D, Kundu GC, Gretskaya NM, Bezuglov VV, Mandal CC. N-arachidonoyl dopamine inhibits epithelial-mesenchymal transition of breast cancer cells through ERK signaling and decreasing the cellular cholesterol. J Biochem Mol Toxicol 2021; 35:e22693. [PMID: 33393692 DOI: 10.1002/jbt.22693] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
N-acyl dopamines (NADAs) are bioactive lipids of the endovanilloid family with known cytotoxicity for the cancer cells; however, the available data on the participation of the endovanilloids in epithelial-mesenchymal transition (EMT) and cancer stemness are controversial. This study unveils the inhibitory role of N-arachidonoyl dopamine (AA-DA), a typical representative of the NADA family, in breast cancer cell migration, EMT, and stemness. AA-DA treatment also led to a decrease in cholesterol biosynthesis gene expressions, and addition of exogenous cholesterol reverted these AA-DA-mediated inhibitory effects. Notably, AA-DA treatment inhibited the key regulatory gene of the cholesterol biosynthesis pathway, sterol regulatory element-binding protein 1 (SREBP1), with concurrent repression of the endoplasmic reticulum kinase 1/2 (ERK1/2) pathway. Furthermore, U0126, an ERK inhibitor, inhibited SREBP1 and decreased cellular cholesterol level, unwinding the molecular mechanism behind AA-DA-mediated anticancer activity. Thus, we, for the first time, revealed that AA-DA counteracts breast cancer EMT via inhibition of ERK signaling and cholesterol content.
Collapse
Affiliation(s)
- Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mikhail G Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Ranjeet Verma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Divya Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Gopal C Kundu
- School of Biotechnology, Institute of Eminence, KIIT Deemed to be University, Bhubaneswar, India
| | - Natalia M Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Vladimir V Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
48
|
N-acylethanolamine acid amidase (NAAA) inhibition decreases the motivation for alcohol in Marchigian Sardinian alcohol-preferring rats. Psychopharmacology (Berl) 2021; 238:249-258. [PMID: 33037452 PMCID: PMC7796956 DOI: 10.1007/s00213-020-05678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE N-acylethanolamine acid amidase (NAAA) is an intracellular cysteine hydrolase that terminates the biological actions of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), two endogenous lipid-derived agonists of the nuclear receptor, and peroxisome proliferator-activated receptor-α. OEA and PEA are important regulators of energy balance, pain, and inflammation, but recent evidence suggests that they might also contribute to the control of reward-related behaviors. OBJECTIVES AND METHODS In the present study, we investigated the effects of systemic and intracerebral NAAA inhibition in the two-bottle choice model of voluntary alcohol drinking and on operant alcohol self-administration. RESULTS Intraperitoneal injections of the systemically active NAAA inhibitor ARN19702 (3 and 10 mg/kg) lowered voluntary alcohol intake in a dose-dependent manner, achieving ≈ 47% reduction at the 10 mg/kg dose (p < 0.001). Water, food, or saccharin consumption was not affected by the inhibitor. Similarly, ARN19702 dose-dependently attenuated alcohol self-administration under both fixed ratio 1 (FR-1) and progressive ratio schedules of reinforcement. Furthermore, microinjection of ARN19702 (1, 3 and 10 μg/μl) or of two chemically different NAAA inhibitors, ARN077 and ARN726 (both at 3 and 10 μg/μl), into the midbrain ventral tegmental area produced dose-dependent decreases in alcohol self-administration under FR-1 schedule. Microinjection of ARN19702 into the nucleus accumbens had no such effect. CONCLUSION Collectively, the results point to NAAA as a possible molecular target for the treatment of alcohol use disorder.
Collapse
|
49
|
Maccarrone M, Rapino C, Francavilla F, Barbonetti A. Cannabinoid signalling and effects of cannabis on the male reproductive system. Nat Rev Urol 2020; 18:19-32. [PMID: 33214706 DOI: 10.1038/s41585-020-00391-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Marijuana is the most widely consumed recreational drug worldwide, which raises concerns for its potential effects on fertility. Many aspects of human male reproduction can be modulated by cannabis-derived extracts (cannabinoids) and their endogenous counterparts, known as endocannabinoids (eCBs). These latter molecules act as critical signals in a variety of physiological processes through receptors, enzymes and transporters collectively termed the endocannabinoid system (ECS). Increasing evidence suggests a role for eCBs, as well as cannabinoids, in various aspects of male sexual and reproductive health. Although preclinical studies have clearly shown that ECS is involved in negative modulation of testosterone secretion by acting both at central and testicular levels in animal models, the effect of in vivo exposure to cannabinoids on spermatogenesis remains a matter of debate. Furthermore, inconclusive clinical evidence does not seem to support the notion that plant-derived cannabinoids have harmful effects on human sexual and reproductive health. An improved understanding of the complex crosstalk between cannabinoids and eCBs is required before targeting of ECS for modulation of human fertility becomes a reality.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Cinzia Rapino
- School of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Felice Francavilla
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Arcangelo Barbonetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
50
|
Das G, Das T, Chowdhury N, Chatterjee D, Bagchi A, Ghosh Z. Repurposed drugs and nutraceuticals targeting envelope protein: A possible therapeutic strategy against COVID-19. Genomics 2020; 113:1129-1140. [PMID: 33189776 PMCID: PMC7661923 DOI: 10.1016/j.ygeno.2020.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023]
Abstract
COVID-19 pandemic caused by SARS-CoV-2 has already claimed millions of lives worldwide due to the absence of a suitable anti-viral therapy. The CoV envelope (E) protein, which has not received much attention so far, is a 75 amino acid long integral membrane protein involved in assembly and release of the virus inside the host. Here we have used artificial intelligence (AI) and pattern recognition techniques for initial screening of FDA approved pharmaceuticals and nutraceuticals to target this E protein. Subsequently, molecular docking simulations have been performed between the ligands and target protein to screen a set of 9 ligand molecules. Finally, we have provided detailed insight into their mechanisms of action related to the varied symptoms of infected patients.
Collapse
Affiliation(s)
- Gourab Das
- Division of Bioinformatics, Bose Institute, P-1/12, CIT Scheme VIIM, Kankurgachi, Kolkata 700 054, India.
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, P-1/12, CIT Scheme VIIM, Kankurgachi, Kolkata 700 054, India.
| | - Nilkanta Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India.
| | - Durbadal Chatterjee
- Division of Bioinformatics, Bose Institute, P-1/12, CIT Scheme VIIM, Kankurgachi, Kolkata 700 054, India.
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India.
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, P-1/12, CIT Scheme VIIM, Kankurgachi, Kolkata 700 054, India.
| |
Collapse
|