1
|
Jing QD, A JD, Liu LX, Fan HN. Current status of drug therapy for alveolar echinococcosis. World J Hepatol 2024; 16:1243-1254. [PMID: 39606163 PMCID: PMC11586754 DOI: 10.4254/wjh.v16.i11.1243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Alveolar echinococcosis (AE) is a chronic zoonotic parasitic disease caused by infection with Echinococcus multilocularis. AE is associated with a high mortality rate and poses a significant threat to human health. The primary treatment for AE is surgical resection of the lesions; however, owing to its long incubation period and insidious disease progression, many patients are diagnosed only after the onset of complications such as liver cirrhosis, jaundice, and portal hypertension, which preclude curative surgical intervention. For patients who are unwilling or unable to undergo surgery, lifelong administration of anti-AE medications is necessary. Benzimidazole compounds, such as albendazole and mebendazole, are the current mainstays of treatment, offering good efficacy. Nevertheless, these medications primarily inhibit parasite proliferation rather than eradicate the infection, and their long-term use can lead to significant drug-related toxic effects. Consequently, there is an urgent need to develop new therapeutic strategies that convey better efficacy and reduce the adverse effects associated with current treatments. Recent advancements in AE therapy include novel synthetic compounds such as antiviral agents, antibiotics, antineoplastic agents, immunosuppressants, and antiangiogenic agents, as well as natural compounds derived from traditional Chinese and Tibetan medicine. These new drugs show promising clinical potential because they interfere with parasitic metabolic pathways and cellular structures. This review aims to discuss recent research on AE drug therapy, including mechanisms of action, dosing regimens, signalling pathways, and therapeutic outcomes, with a goal of providing new insights and directions for the development of anti-AE drugs and summarizing current advancements in AE pharmacotherapy.
Collapse
Affiliation(s)
- Qin-Dong Jing
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810000, Qinghai Province, China
- School of Clinical Medicine, Qinghai University, Xining 810000, Qinghai Province, China
| | - Ji-De A
- Department of Hepatic Hydatidosis, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| | - Lin-Xun Liu
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810000, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China.
| |
Collapse
|
2
|
Blomstrand BM, Thamsborg SM, Steinshamn H, Enemark HL, Aasen IM, Mahnert KC, Sørheim KM, Shepherd F, Houdijk J, Athanasiadou S. Pinus sylvestris bark extract reduces the impact of Heligmosomoides bakeri infection on C57BL/6 but not on BALB/c mice ( Mus musculus). Parasitology 2024; 151:1449-1457. [PMID: 39865708 PMCID: PMC12052465 DOI: 10.1017/s0031182024001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 01/28/2025]
Abstract
Plant secondary metabolites (PSMs) may improve gastrointestinal health by exerting immunomodulatory, anti-inflammatory and/or antiparasitic effects. Bark extracts from coniferous tree species have previously been shown to reduce the burden of a range of parasite species in the gastrointestinal tract, with condensed tannins as the potential active compounds. In the present study, the impact of an acetone extract of pine bark (Pinus sylvestris) on the resistance, performance and tolerance of genetically diverse mice (Mus musculus) was assessed. Mice able to clear an infection quickly (fast responders, BALB/c) or slowly (slow responders, C57BL/6) were infected orally with 200 infective third-stage larvae (L3) of the parasitic nematode Heligmosomoides bakeri or remained uninfected (dosed with water only). Each infection group of mice was gavaged for 3 consecutive days from day 19 post-infection with either bark extract or dimethyl sulphoxide (5%) as vehicle control. Oral administration of pine bark extract did not have an impact on any of the measured parasitological parameter. It did, however, have a positive impact on the performance of infected, slow-responder mice, through an increase in body weight (BW) and carcase weight and reduced feed intake by BW ratio. Importantly, bark extract administration had a negative impact on the fast responders, by reducing their ability to mediate the impact of parasitism through reducing their performance and tolerance. The results indicate that the impact of PSMs on parasitized hosts is affected by host's genetic susceptibility, with susceptible hosts benefiting more from bark extract administration compared to resistant ones.
Collapse
Affiliation(s)
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Håvard Steinshamn
- Division of Food Production and Society, Grassland and Livestock, Norwegian Institute of Bioeconomy Research, Tingvoll, Norway
| | - Heidi Larsen Enemark
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Inga Marie Aasen
- SINTEF Industry, Biotechnology and Nanomedicine, Trondheim, Norway
| | | | | | - Francesca Shepherd
- Department of Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Jos Houdijk
- Department of Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Spiridoula Athanasiadou
- Department of Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| |
Collapse
|
3
|
Reda R, Khalil AA, Elhady M, Tayel SI, Ramadan EA. Anti-parasitic activity of garlic (Allium sativum) and onion (Allium cepa) extracts against Dactylogyrus spp. (Monogenean) in Nile tilapia (Oreochromis niloticus): Hematology, immune response, histopathological investigation, and inflammatory cytokine genes of gills. BMC Vet Res 2024; 20:334. [PMID: 39061083 PMCID: PMC11282636 DOI: 10.1186/s12917-024-04187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gills monogenean infestation causes significant mortalities in cultured fishes as a result of respiratory manifestation. Medicinal plants are currently being heavily emphasized in aquaculture due to their great nutritional, therapeutic, antimicrobial activities, and financial value. METHODS The current study is designed to assess the effect of garlic (Allium sativum) and onion (Allium cepa) extracts as a water treatment on the hematological profile, innate immunity, and immune cytokines expression besides histopathological features of gills of Nile tilapia (Oreochromis niloticus L.) infected with gills monogenetic trematodes (Dactylogyrus sp.). Firstly, the 96-hour lethal concentration 50 (96 h-LC50) of garlic extract (GE) and onion extract (OE) were estimated to be 0.4 g/ L and 3.54 g/ L for GE and OE, respectively. Moreover, the in-vitro anti-parasitic potential for (GE) was found between 0.02 and 0.18 mg/mL and 0.4 to 1.8 mg/mL for OE. For the therapeutic trial, fish (n = 120; body weight: 40-60 g) were randomly distributed into four groups in triplicates (30 fish/group, 10 fish/replicate) for 3 days. Group1 (G1) was not infected or treated and served as control. G2 was infected with Dactylogyrus spp. and not exposed to any treatment. G3, G4 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of OE, respectively. G5, G6 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of GE, respectively. RESULTS No apparent signs or behaviors were noted in the control group. Dactylogyrus spp. infected group suffered from clinical signs as Pale color and damaged tissue. Dactylogyrus spp. infection induced lowering of the hematological (HB, MCH, MCHC and WBCs), and immunological variables (lysozyme, nitric oxide, serum Anti- protease activities, and complement 3). the expression of cytokine genes IL-ß and TNF-α were modulated and improved by treatment with A. sativum and A. cepa extracts. The obtained histopathological alterations of the gills of fish infected with (Dactylogyrus spp.) were hyperplasia leading to fusion of the gill filament, lifting of epithelial tissue, aneurism and edema. The results indecated that G4 and G5 is more regenarated epithelium in compare with the control group. CONCLUSION A. sativum and A. cepa extracts enhance the blood profile and nonspecific immune parameters, and down-regulated the expression level of (IL-1β and TNF-α).
Collapse
Affiliation(s)
- Rasha Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Alshimaa A Khalil
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed Elhady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Safaa I Tayel
- National Institute of Oceanography and Fisheries (NIOF), Al Qanater Al Khairia, 13723, Egypt
| | - Enas A Ramadan
- National Institute of Oceanography and Fisheries (NIOF), Al Qanater Al Khairia, 13723, Egypt
| |
Collapse
|
4
|
Haldar T, Sardar SK, Ghosal A, Prasad A, Nakano YS, Dutta S, Nozaki T, Ganguly S. Andrographolide induced cytotoxicity and cell cycle arrest in Giardia trophozoites. Exp Parasitol 2024; 262:108773. [PMID: 38723845 DOI: 10.1016/j.exppara.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 μM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.
Collapse
Affiliation(s)
- Tapas Haldar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Sanjib K Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Akash Prasad
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Yumiko Saito Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India.
| |
Collapse
|
5
|
Allahyari M, Malekifard F, Yakhchali M. Anthelmintic effects of some medicinal plants on different life stages of Fasciola hepatica: Evidence on oxidative stress biomarkers, and DNA damage. PLoS Negl Trop Dis 2024; 18:e0012251. [PMID: 38885188 PMCID: PMC11182539 DOI: 10.1371/journal.pntd.0012251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Fasciolosis caused by Fasciola hepatica is a major public health and economic problem worldwide. Due to the lack of a successful vaccine and emerging resistance to the drug triclabendazole, alternative phytotherapeutic approaches are being investigated. This study investigated the in vitro anthelmintic activity of Lavender (Lavandula angustifolia) and carob (Ceratonia siliqua L.) essential oils (EOs) against F. hepatica. The in vitro study was based on an egg hatch assay (EHA), adult motility inhibition assays, DNA damage, reactive oxygen species (ROS) level along with several oxidative stress biomarkers including glutathione peroxidase (GSH), and glutathione-S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). To this end, different concentrations of L. angustifolia and C. siliqua EOs (1, 5, 10, 25 and 50 mg/mL) were used to assess anthelmintic effects on different life stages including egg, and adults of F. hepatica for 24 hrs. The results indicated that these EOs play a significant role as anthelminthics, and the effect was dependent on time and concentration. The in vitro treatment of F. hepatica worms with both L. angustifolia and C. siliqua EOs increased DNA damage, ROS production and induction of oxidative stress (decreased SOD, GST and GSH, and increased MDA), significantly compared to control. Therefore, it can be concluded that L. angustifolia and C. siliqua EOs have the potential to be used as novel agents for the control and treatment of F. hepatica infections. Further studies are required to investigate their pharmacological potential and effectiveness in vivo for the treatment of parasitic infections.
Collapse
Affiliation(s)
- Mohaddeseh Allahyari
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Farnaz Malekifard
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohammad Yakhchali
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Ximenes LF, Pinheiro HN, Filho JVDA, André WPP, Abreu FOMDS, Cardial MRL, Castelo-Branco DDSCM, Melo ACFL, Lopes FFDS, de Morais SM, de Oliveira LMB, Bevilaqua CML. Effect of the Combination of Synthetic Anthelmintics with Carvacryl Acetate in Emulsions with and without a Sodium Alginate Matrix on Haemonchus contortus. Animals (Basel) 2024; 14:1007. [PMID: 38612246 PMCID: PMC11011019 DOI: 10.3390/ani14071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
The present study aimed to evaluate the effect of nanoemulsions using combined synthetic anthelmintics, thiabendazole (TBZ), levamisole (LEV), and ivermectin (IVM), with carvacryl acetate (CA) against Haemonchus contortus, and also tested the presence and absence of alginate (ALG). The anthelmintic effect of the CA/TBZ nanoemulsion was evaluated in the egg hatch test (EHT). The effects of CA/IVM and CA/LEV nanoemulsions were evaluated in the larval development test (LDT). The emulsions CA/TBZ/ALG and CA/TBZ showed a multimodal profile, with most particles on the nanometric scale. The encapsulation efficiency in CA/TBZ/ALG was 80.25%, and that in CA/LEV/ALG was 89.73%. In the EHT, CA/TBZ and CA/TBZ/ALG showed mean combination indices (CIs) of 0.55 and 0.36, respectively, demonstrating synergism in both. In LDT, CA/IVM had an average CI of 0.75, and CA/LEV and CA/LEV/ALG showed CI values of 0.4 and 0.93, respectively. It was concluded that CA/TBZ showed a synergistic interaction, and CA/TBZ/ALG showed an enhanced effect. In addition, the matrix brought stability to the product, encouraging its improvement to obtain higher efficacy.
Collapse
Affiliation(s)
- Livia Furtado Ximenes
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Henety Nascimento Pinheiro
- Laboratório de Química Analítica e Ambiental, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (H.N.P.); (F.O.M.d.S.A.); (M.R.L.C.)
| | - José Vilemar de Araújo Filho
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Weibson Paz Pinheiro André
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Flávia Oliveira Monteiro da Silva Abreu
- Laboratório de Química Analítica e Ambiental, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (H.N.P.); (F.O.M.d.S.A.); (M.R.L.C.)
| | - Mayrla Rocha Lima Cardial
- Laboratório de Química Analítica e Ambiental, Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (H.N.P.); (F.O.M.d.S.A.); (M.R.L.C.)
| | | | - Ana Carolina Fonseca Lindoso Melo
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza 60714-903, Ceará, Brazil; (D.d.S.C.M.C.-B.); (A.C.F.L.M.)
| | - Francisco Flávio da Silva Lopes
- Laboratório de Química de Produtos Naturais, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (F.F.d.S.L.); (S.M.d.M.)
| | - Selene Maia de Morais
- Laboratório de Química de Produtos Naturais, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (F.F.d.S.L.); (S.M.d.M.)
| | - Lorena Mayana Beserra de Oliveira
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| | - Claudia Maria Leal Bevilaqua
- Laboratório de Doenças Parasitárias, Programa de Pós-Graduação em Ciências Veterinárias, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza 60714-903, Ceará, Brazil; (L.F.X.); (J.V.d.A.F.); (W.P.P.A.); (L.M.B.d.O.)
| |
Collapse
|
7
|
Mohamed HI, Arafa WM, Ahmed OM, El-Dakhly KM. Ovicidal, larvicidal and adulticidal activity of black pepper ( Piper nigrum L.) essential oil and tea tree oil ( Melaleuca alternifolia) against Haemonchus contortus. J Parasit Dis 2024; 48:117-133. [PMID: 38440752 PMCID: PMC10908739 DOI: 10.1007/s12639-024-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/14/2024] [Indexed: 03/06/2024] Open
Abstract
Haemonchosis is a worldwide helminthic disease affecting ruminants. The anthelminthic resistance has become raised. Medicinal plants are safely used as synthetic anthelmintics. Currently, the efficacy of black pepper essential oil (BPO) and tea tree oil (TTO) were in vitro evaluated against Haemonchus contortus adults, eggs and larvae at concentrations of 1.25, 2.5 and 5 mg/ml in addition to the commercially used albendazole at a concentration of 10 μg/ml. Oils were used in both normal and nanoparticles-loaded forms. Oxidative stress enzymes of worms were estimated. Scanning electron microscopy (SEM) for treated worms was done. Both normal and nanoemulsion forms of both BPO and TTO stopped the adult motility [BPO 2.5 h (hrs), NBPO 1.5 h, TTO 3 h, NTTO 1.5 h] and induced a marked decrease in the oviposition. Post treatment, the egg development and hatching were significantly (P ≤ 0.05) reduced. The damage of the egg shell, embryonal cessation and destruction of larvae occurred. Noticeable elevated antioxidant enzymes (catalase CAT, glutathione transferase GST and glutathione GSH) were found, while oxidative enzymes (lipid peroxidation LPO and nitric oxide synthase NOS) decreased. Scanning electron microscopy (SEM) for both oil-treated worms revealed anterior ends damage and several cuts associated with cuticular pores. The use of albendazole induced more or less anthelmintic and enzymatic activities with less morphological alterations of adults revealed by SEM. This study proved the marked anthelmintic potency of the BPO and TTO and their nanoemulsion forms against H. contortus rather than the widely used anthelmintic drugs.
Collapse
Affiliation(s)
- Hend Ibrahim Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Waleed M. Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Sciences, Beni-Suef University, P.O. Box 63521, Beni-Suef, Egypt
| | - Khaled Mohamed El-Dakhly
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511 Egypt
| |
Collapse
|
8
|
Hashimoto T, Yoshioka S, Iwanaga S, Kanazawa K. Anti-Malarial Activity of Allyl Isothiocyanate and N-acetyl-S-(N-allylthiocarbamoyl)-l-Cysteine. Mol Nutr Food Res 2023; 67:e2300185. [PMID: 37706619 DOI: 10.1002/mnfr.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
SCOPE Malaria remains one of the most important infectious diseases in the world. Allyl isothiocyanate (AITC) is a main ingredient of traditional spice Wasabia japonica, which is reported to have anti-bacterial and antiparasitic activities. However, there is no information on effects of AITC against malaria. The present study investigates the anti-malarial activity of dietary AITC in vivo and that of AITC metabolites in vitro. METHODS AND RESULTS The ad libitum administration of 35, 175, or 350 µM AITC-containing drinking water to ICR mice significantly inhibit the parasitemia induced after infection with Plasmodium berghei. On the other hand, after single oral administration of AITC (20 mg kg-1 body weight), N-acetyl-S-(N-allylthiocarbamoyl)-l-cysteine (NAC-AITC) as one of the AITC metabolites displays a serum Cmax of 11.4 µM at a Tmax of 0.5 h, but AITC is not detected at any time point. Moreover, NAC-AITC shows anti-malarial activity against Plasmodium falciparum in vitro, and its 50% inhibitory concentration (IC50 ) against parasitemia is 12.6 µM. CONCLUSIONS These results indicate that orally administered AITC is metabolized to NAC-AITC and exerts anti-malarial activity against malaria parasites in blood, suggesting that the consumption of AITC-containing food stuffs such as cruciferous plants may prevent malaria.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shoji Yoshioka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kanazawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
9
|
Hassanzadeh E, Khademvatan S, Jafari B, Jafari A, Yousefi E. In vitro and in silico scolicidal effect of sanguinarine on the hydatid cyst protoscoleces. PLoS One 2023; 18:e0290947. [PMID: 37878663 PMCID: PMC10599545 DOI: 10.1371/journal.pone.0290947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/20/2023] [Indexed: 10/27/2023] Open
Abstract
We aimed to investigate the scolicidal effects of sanguinarine on hydatid cyst protoscoleces (PSCs) in vitro and in silico. Different targets were docked into the active sites of sanguinarine. Molecular docking processes and visualization of interactions were performed using AutoDock Vina and Discovery Studio Visualizer. Binding energy was calculated and compared (kcal/mol). PSCs were aspirated from the hydatid cysts and washed. The sediments of PSCs were then exposed to various concentrations (50, 25, 12, 6, 3, and 1 μg/mL) of sanguinarine. The viability test was finally evaluated by the Trypan blue solution 4%. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPX), and catalase were analyzed to assess the level of oxidative stress-treated PSCs. Caspase-3 activity rate was determined to evaluate cell apoptosis in treated PSCs. Among the receptors, acetylcholinesterase was identified as the excellent target, with Vina score of -11.8. Sanguinarine showed high scolicidal effects after 12, 24, and 48 h. Also, in the first hour of exposure to the drug, caspase-3 activity and MDA level significantly increased, but the levels of GSH and GPx had a significant reduction after 12, 24, and 48 h (P < 0.05). The findings of this study revealed that sanguinarine have potent scolicidal effects in vitro and in silico and could be considered an opportunity for the introduction of a novel and safe therapeutic agent for the treatment of cystic echinococcosis. However, supplementary studies will be desired to prove the current findings by examining sanguinarine in a clinical setting.
Collapse
Affiliation(s)
- Elham Hassanzadeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, School of Pharmacy Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Cytotoxic, Scolicidal, and Insecticidal Activities of Lavandula stoechas Essential Oil. SEPARATIONS 2023. [DOI: 10.3390/separations10020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) have recently attracted more interest due to their insecticidal activities, low harmfulness, and rapid degradation in the environment. Therefore, Lavandula steochas (L. steochas) essential oil was assessed for its chemical constituents, in vitro cytotoxicity, and scolicidal, acaricidal, and insecticidal activities. Using spectrometry and gas chromatography, the components of L. steochas EOs were detected. Additionally, different oil concentrations were tested for their anticancer activities when applied to human embryonic kidney cells (HEK-293 cells) and the human breast cancer cell line MCF-7. The oil’s scolicidal activity against protoscolices of hydatid cysts was evaluated at various concentrations and exposure times. The oil’s adulticidal, larvicidal, and repelling effects on R. annulatus ticks were also investigated at various concentrations, ranging from 0.625 to 10%. Likewise, the larvicidal and pupicidal activities of L. steochas against Musca domestica were estimated at different concentrations. The analyses of L. steochas oil identified camphor as the predominant compound (58.38%). L. steochas oil showed significant cytotoxicity against cancer cells. All of the tested oil concentrations demonstrated significant scolicidal activities against the protoscoleces of hydatid cysts. L. steochas EO (essential oil) showed 100% adulticidal activity against R. annulatus at a 10% concentration with an LC50 of 2.34%, whereas the larvicidal activity was 86.67% and the LC50 was 9.11%. On the other hand, the oil showed no repellent activity against this tick’s larva. Furthermore, L. steochas EO achieved 100% larvicidal and pupicidal effects against M. domestica at a 10% concentration with LC50 values of 1.79% and 1.51%, respectively. In conclusion, the current work suggests that L. steochas EO could serve as a potential source of scolicidal, acaricidal, insecticidal, and anticancer agents.
Collapse
|
11
|
Leite-Andrade MC, de Araújo Neto LN, Buonafina-Paz MDS, de Assis Graciano dos Santos F, da Silva Alves AI, de Castro MCAB, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Kowalska G, Kowalski R, Baj T, Neves RP. Antifungal Effect and Inhibition of the Virulence Mechanism of D-Limonene against Candida parapsilosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248884. [PMID: 36558017 PMCID: PMC9788451 DOI: 10.3390/molecules27248884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Yeasts from the Candida parapsilosis complex are clinically relevant due to their high virulence and pathogenicity potential, such as adherence to epithelial cells and emission of filamentous structures, as well as their low susceptibility to antifungals. D-limonene, a natural compound, emerges as a promising alternative with previously described antibacterial, antiparasitic, and antifungal activity; however, its mechanisms of action and antivirulence activity against C. parapsilosis complex species have not been elucidated. Therefore, in the present study, we aimed to evaluate the antifungal and antivirulence action, as well as the mechanism of action of D-limonene against isolates from this complex. D-limonene exhibited relevant antifungal activity against C. parapsilosis complex yeasts, as well as excellent antivirulence activity by inhibiting yeast morphogenesis and adherence to the human epithelium. Furthermore, the apoptotic mechanism induced by this compound, which is not induced by oxidative stress, represents an important target for the development of new antifungal drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carolina Accioly Brelaz de Castro
- Laboratório de Parasitologia e Laboratório de Imunologia IAM, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Edna Mori
- Faculdade CECAPE College, São José, Juazeiro do Norte 63024-015, CE, Brazil
| | | | - Isaac Moura Araújo
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri, Crato 63105-010, CE, Brazil
- Correspondence: (H.D.M.C.); (T.B.)
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
- Correspondence: (H.D.M.C.); (T.B.)
| | - Rejane Pereira Neves
- Departamento de Micologia, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil
| |
Collapse
|
12
|
Palmer-Young EC, Markowitz LM, Grubbs K, Zhang Y, Corona M, Schwarz R, Chen Y, Evans JD. Antiparasitic effects of three floral volatiles on trypanosomatid infection in honey bees. J Invertebr Pathol 2022; 194:107830. [PMID: 36174749 DOI: 10.1016/j.jip.2022.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/07/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Trypanosomatid gut parasites are common in pollinators and costly for social bees. The recently described honey bee trypanosomatid Lotmaria passim is widespread, abundant, and correlated with colony losses in some studies. The potential for amelioration of infection by antimicrobial plant compounds has been thoroughly studied for closely related trypanosomatids of humans and is an area of active research in bumble bees, but remains relatively unexplored in honey bees. We recently identified several floral volatiles that inhibited growth of L. passim in vitro. Here, we tested the dose-dependent effects of four such compounds on infection, mortality, and food consumption in parasite-inoculated honey bees. We found that diets containing the monoterpenoid carvacrol and the phenylpropanoids cinnamaldehyde and eugenol at >10-fold the inhibitory concentrations for cell cultures reduced infection, with parasite numbers decreased by >90% for carvacrol and cinnamaldehyde and >99% for eugenol; effects of the carvacrol isomer thymol were non-significant. However, both carvacrol and eugenol also reduced bee survival, whereas parasite inoculation did not, indicating costs of phytochemical exposure that could exceed those of infection itself. To our knowledge, this is the first controlled screening of phytochemicals for effects on honey bee trypanosomatid infection, identifying potential treatments for managed bees afflicted with a newly characterized, cosmopolitan intestinal parasite.
Collapse
Affiliation(s)
| | - Lindsey M Markowitz
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA; Department of Biology, University of Maryland, College Park, MD, USA
| | - Kyle Grubbs
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Yi Zhang
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Miguel Corona
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Ryan Schwarz
- Department of Biology, Fort Lewis College, Durango, CO, USA
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| |
Collapse
|
13
|
Bouabdallah S, Cianfaglione K, Azzouz M, Batiha GES, Alkhuriji AF, Al-Megrin WAI, Ben-Attia M, Eldahshan OA. Sustainable Extraction, Chemical Profile, Cytotoxic and Antileishmanial Activities In-Vitro of Some Citrus Species Leaves Essential Oils. Pharmaceuticals (Basel) 2022; 15:1163. [PMID: 36145384 PMCID: PMC9501829 DOI: 10.3390/ph15091163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-leishmanial drugs extracted from natural sources have not been sufficiently explored in the literature. Until now, leishmaniasis treatments have been limited to synthetic and expensive drugs. This study investigated, for the first time, the anti-leishmanial efficacy of essential oils (EOs) from the leaves of Citrus species (C. sinensis, C. limon, and C. clementina). Essential oils were extracted from three species by solvent free microwave extraction (SFME); in addition, lemon oil was also isolated by hydro-distillation (HD). These were investigated using gas chromatography coupled with mass spectrometry (GC-MS) and evaluated against Leishmania species, namely Leishmania major and Leishmania infantum, using a mitochondrial tetrazolium test (MTT) assay. The chemical compositions of Citrus limon EOs obtained by HD and SFME showed some differences. The identified peaks of C. limon (SFME) represented 93.96%, where linalool was the major peak (44.21%), followed by sabinene (14.22%) and ocimene (6.09%). While the hydro-distilled oil of C. limon contained geranial (30.08%), limonene (27.09%), and neral (22.87%) in the identified peaks (96.67%). The identified components of C. clementina leaves oil (68.54%) showed twenty-six compounds, where the predominant compound was geranial (42.40%), followed by neral (26.79%) and limonene (14.48%). However, 89.82% C. sinensis oil was identified, where the major peaks were for neral (27.52%), linalool (25.83%), and geranial (23.44%). HD oil of lemon showed the highest activity against L. major, with moderate toxicity on murine macrophage (RAW 264.7) cells, and possessed the best selectivity index on both Leishmanial species (SI: 3.68; 6.38), followed by C. clementina oil and C. limon using SFME (0.9 ± 0.29, 1.03 ± 0.27, and 1.13 ± 0.3), respectively. C. clementina oil induced the greatest activity on Leishmania infantum, followed by HD lemon and SFME lemon oils (0.32 ± 0.18, 0.52 ± 0.15, and 0.57 ± 0.09, respectively) when compared to Amphotericin B (0.80 ± 0.18 and 0.23 ± 0.13) as a positive control, on both species, respectively. Our study suggests a potent anti-leishmanial activity of lemon oil (HD) on L. major, followed by C. clementina. With the same potency on L. infantum shown by C. clementina oil, followed by HD lemon oil. This effect could be attributed to the major compounds of limonene, citral, and neral, as well as the synergistic effect of other different compounds. These observations could be a starting point for the building of new anti-leishmanial drugs from natural origins, and which combine different EOs containing Citrus cultivars.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Environmental Biomonitoring Laboratory LBE (LR01/ES14), Faculty of Sciences Bizerta, Carthage University, Zarzouna 7021, Tunisia
| | | | - Myriam Azzouz
- Department of Mathematics Computer Science, Paris Dauphine University, F-75016 Paris, France
- Multiverse Computing 170, 20014 Donostia-San Sebastian, Spain
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Afrah Fahad Alkhuriji
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mossadok Ben-Attia
- Environmental Biomonitoring Laboratory LBE (LR01/ES14), Faculty of Sciences Bizerta, Carthage University, Zarzouna 7021, Tunisia
| | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
14
|
A meta-analysis to evaluate the effects of garlic supplementation on performance and blood lipids profile of broiler chickens. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Chacón-Vargas KF, Sánchez-Torres LE, Chávez-González ML, Adame-Gallegos JR, Nevárez-Moorillón GV. Mexican Oregano (Lippia berlandieri Schauer and Poliomintha longiflora Gray) Essential Oils Induce Cell Death by Apoptosis in Leishmania (Leishmania) mexicana Promastigotes. Molecules 2022; 27:molecules27165183. [PMID: 36014423 PMCID: PMC9416784 DOI: 10.3390/molecules27165183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is a neglected vector-borne disease; there are different manifestations of the diseases and species involved, and cutaneous leishmaniasis caused by Leishmania (L.) mexicana is the most prevalent in Mexico. Currently, the drugs available for the treatment of leishmaniasis are toxic, expensive, and often ineffective; therefore, it is imperative to carry out research and development of new therapeutic alternatives, with natural products being an attractive option. In particular, oregano is a plant with worldwide distribution; in Mexico, two species: Lippia berlandieri Schauer and Poliomintha longiflora Gray are endemic. Both essential oils (EO’s) have been reported to have antimicrobial activity attributed to their main components, thymol and carvacrol. In this research, the leishmanicidal effect and mechanism of cell death induced by L. berlandieri EO, P. longiflora EO, thymol, and carvacrol in L. mexicana promastigotes were determined in vitro. Additionally, the cytotoxic activity in mammalian cells was evaluated. L. berlandieri EO presented higher leishmanicidal activity (IC50 = 41.78 µg/mL) than P. longiflora EO (IC50 = 77.90 µg/mL). Thymol and carvacrol were the major components of both Mexican oregano EO’s. Thymol presented higher leishmanial inhibitory activity (IC50 = 22.39 µg/mL), above that of carvacrol (IC50 = 61.52 µg/mL). All the EO’s and compounds evaluated presented lower cytotoxic activity than the reference drug; thymol was the compound with the best selectivity index (SI). In all cases, apoptosis was identified as the main mechanism of death induced in the parasites. The leishmanicidal capacity of the Mexican oregano EO is an accessible and affordable alternative that can be further explored.
Collapse
Affiliation(s)
- Karla Fabiola Chacón-Vargas
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | - Luvia Enid Sánchez-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
- Correspondence: (L.E.S.-T.); (G.V.N.-M.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico
| | - Jaime R. Adame-Gallegos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | - Guadalupe Virginia Nevárez-Moorillón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Chihuahua 31125, Mexico
- Correspondence: (L.E.S.-T.); (G.V.N.-M.)
| |
Collapse
|
16
|
Abou Hussien N, Faheem M, Sweed E, Ibrahim A. Ultrastructural tegumental changes of Trichinella spiralis adult and larval stages after in vitro exposure to Allium sativum. Exp Parasitol 2022; 239:108314. [PMID: 35752343 DOI: 10.1016/j.exppara.2022.108314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023]
Abstract
Albendazole (ALB) is the most used therapeutic drug for trichinellosis treatment, but it has many drawbacks. Hence, the search for alternative natural compounds is a goal for researchers. The present work aimed to test the in vitro anthelmintic effect of Tomex (Allium sativum) against adult and muscular larva of Trichinella spiralis (T. spiralis). We incubated adult forms and muscular larvae of T. spiralis with Tomex at concentrations 10, 50, and 100 μg/mL to evaluate the changes that happened on the cuticle using a scanning electron microscopy (SEM). Although ALB was very effective, Tomex also affected motility and the tegumental structure of T. spiralis, which was in proportion to its concentration and incubation time, as Tomex started the mortality of muscular larvae and adult stages after 4 h at 50 μg/mL, and after 6 h at10 μg/mL. A 50% mortality rate of muscular larvae was recorded after 6 h at 100 μg/mL. However, a 50% mortality rate was recorded after 12 h at 10 μg/mL for the adult stage. Adult worms and muscular larvae of T. spiralis incubated with 100 μg/mL of Tomex displayed loss of normal annulations and creases of the cuticle, multiple vesicles, widening of longitudinal furrow space, and multiple minor loss blebs. Our results suggested that Tomex can be a therapeutic agent against adults and larvae stages of T. spiralis.
Collapse
Affiliation(s)
- Noha Abou Hussien
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Shebin el Kom, 32511, Menoufia, Egypt.
| | - Mona Faheem
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Shebin el Kom, 32511, Menoufia, Egypt; Medical Parasitology, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Eman Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin el Kom, 32511, Menoufia, Egypt.
| | - Asmaa Ibrahim
- Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin Elkom, Menoufia, Egypt.
| |
Collapse
|
17
|
Antiparasitic Activity of Tea Tree Oil (TTO) and Its Components against Medically Important Ectoparasites: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14081587. [PMID: 36015213 PMCID: PMC9416580 DOI: 10.3390/pharmaceutics14081587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Ectoparasites are pathogens that can infect the skin and cause immense pain, discomfort, and disease. They are typically managed with insecticides. However, the fast-emerging antimicrobial resistance and the slow rate of development of new bio-actives combined with environmental and health concerns over the continued use of neurotoxic insecticides warrant newer and alternative methods of control. Tea tree oil (TTO), as an alternative agent, has shown remarkable promise against ectoparasites in recent studies. To our knowledge, this is the first systematic review to assess preclinical and clinical studies exploring the antiparasitic activity of TTO and its components against clinically significant ectoparasites, such as Demodex mites, scabies mites, house dust mites, lice, fleas, chiggers, and bed bugs. We systematically searched databases, including PubMed, MEDLINE (EBSCOhost), Embase (Scopus), CENTRAL, Cochrane Library, CINAHL, ScienceDirect, Web of Science, SciELO, and LILACS in any language from inception to 4 April 2022. Studies exploring the therapeutic activity of TTO and its components against the ectoparasites were eligible. We used the ToxRTool (Toxicological data reliability assessment) tool, the Joanna Briggs Institute (JBI) critical appraisal tools, and the Jadad scale to assess the methodological qualities of preclinical (in vitro and in vivo) studies, non-randomised controlled trials (including cohort, case series, and case studies), and randomised controlled trials, respectively. Of 497 identified records, 71 studies were included in this systematic review, and most (66%) had high methodological quality. The findings of this review revealed the promising efficacy of TTO and its components against ectoparasites of medical importance. Most importantly, the compelling in vitro activity of TTO against ectoparasites noted in this review seems to have translated well into the clinical environment. The promising outcomes observed in clinical studies provide enough evidence to justify the use of TTO in the pharmacotherapy of ectoparasitic infections.
Collapse
|
18
|
Mange in Rabbits: An Ectoparasitic Disease with a Zoonotic Potential. Vet Med Int 2022; 2022:5506272. [PMID: 35880196 PMCID: PMC9308540 DOI: 10.1155/2022/5506272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Mange in rabbits is a very important parasitic disease causing high losses. The disease is caused mainly by Sarcoptes scabiei, Psoroptes cuniculi, Cheyletiella parasitovorax, and Notoedres cati. Body mange and ear mange are the most common forms of this disease in rabbits. Animals can get mite infestation through direct contact with infected animals or contaminated fomites. This infestation is characterized by zoonotic nature and public health burden. The skin affection is characterized by pruritus, alopecia, severe cachexia, and sometimes death. Infestation is diagnosed mainly by skin scraping and microscopic examination. Control measures mainly depend on the use of different types of systemic and topical acaricides and the use of natural products and supportive elements. Vaccine is not commercially available and is still under investigation. Accordingly, this review article was designed to shed the light on the mange disease in rabbits in terms of mite's infestation and susceptibility, clinical manifestations, zoonosis, diagnosis, and control strategies.
Collapse
|
19
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Can floral nectars reduce transmission of Leishmania? PLoS Negl Trop Dis 2022; 16:e0010373. [PMID: 35551517 PMCID: PMC9098005 DOI: 10.1371/journal.pntd.0010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background Insect-vectored Leishmania are responsible for loss of more disability-adjusted life years than any parasite besides malaria. Elucidation of the environmental factors that affect parasite transmission by vectors is essential to develop sustainable methods of parasite control that do not have off-target effects on beneficial insects or environmental health. Many phytochemicals that inhibit growth of sand fly-vectored Leishmania—which have been exhaustively studied in the search for phytochemical-based drugs—are abundant in nectars, which provide sugar-based meals to infected sand flies. Principle findings In a quantitative meta-analysis, we compare inhibitory phytochemical concentrations for Leishmania to concentrations present in floral nectar and pollen. We show that nectar concentrations of several flowering plant species exceed those that inhibit growth of Leishmania cell cultures, suggesting an unexplored, landscape ecology-based approach to reduce Leishmania transmission. Significance If nectar compounds are as effective against parasites in the sand fly gut as predicted from experiments in vitro, strategic planting of antiparasitic phytochemical-rich floral resources or phytochemically enriched baits could reduce Leishmania loads in vectors. Such interventions could provide an environmentally friendly complement to existing means of disease control. Leishmania parasites infect over a million people each year—including over 200,000 infections with deadly visceral leishmaniasis—resulting in a greater health burden than any human parasite besides malaria. Leishmania infections of humans are transmitted by blood-feeding sand flies, which also consume floral nectar. Nectar contains many chemicals that inhibit Leishmania growth and are candidate treatments for infection of humans. However, these same compounds could also reduce infection in nectar-consuming sand flies. By combining existing data on the chemistry of nectar and sensitivity of Leishmania to plant compounds, we show that some floral nectars contain sufficient chemical concentrations to inhibit growth of insect-stage Leishmania. Our results suggest that consumption of these nectars could reduce parasite loads in sand flies and transmission of parasites to new human hosts. In contrast to insecticide-based methods of sand fly control, incorporation of antiparasitic nectar sources into landscapes and domestic settings could benefit public health without threatening beneficial insects. These findings suggest an unexplored, landscape-based approach to reduce transmission of a major neglected tropical disease worldwide.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- * E-mail: ,
| | - Ryan S. Schwarz
- Department of Biology, Fort Lewis College, Durango, Colorado, United States of America
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
20
|
Blomstrand BM, Enemark HL, Steinshamn H, Aasen IM, Johanssen JRE, Athanasiadou S, Thamsborg SM, Sørheim KM. Administration of spruce bark (Picea abies) extracts in young lambs exhibits anticoccidial effects but reduces milk intake and body weight gain. Acta Vet Scand 2022; 64:10. [PMID: 35461282 PMCID: PMC9034609 DOI: 10.1186/s13028-022-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Abstract
Background Eimeria spp. are widespread apicomplexan parasites known to cause coccidiosis in livestock, resulting in reduced animal welfare and productivity, particularly in sheep. The treatment options are limited, and there is an emerging development of resistance against registered pharmaceuticals. Spruce bark is rich in plant secondary metabolites (PSM), such as condensed tannins, which are bioactive compounds previously shown to have antiparasitic activity. Here, we examined the anticoccidial properties of bark extract of Norway spruce (Picea abies) against a field isolate of ovine Eimeria spp. by treating Eimeria-infected pre-ruminant lambs with water-extracted bark daily for 12 days. We hypothesised that the bark extract would reduce the faecal oocyst excretion and, consequently, the severity of diarrhoea. Results Oral administration of spruce bark extract significantly reduced the excretion of Eimeria oocysts in milk-fed lambs post treatment till the end of the trial 22 days post infection. This difference in oocyst excretion between the treated and the untreated infected animals increased with time. Compared to the untreated and the sham-infected control group, the group treated with bark extract had softer faeces and reduced milk intake during the treatment period. After discontinuing the treatment, the treated animals got a more solid and formed faeces compared to that of the untreated control group, and the milk intake increased to the level of the sham-infected, untreated control group. The bark extract treated animals had a lower body weight and a lower mean daily body weight gain throughout the whole duration of the experiment. Conclusions Bark extract from Norway spruce showed marked anticoccidial properties by reducing the faecal oocyst count and associated diarrhoea in young lambs. Simultaneously we experienced detrimental effects of the treatment, displayed as reduced feed intake and daily body weight gain. Therefore, we suggest conducting similar studies with lower bark extract dosage to explore the possibilities of a better trade-off to reduce the negative impact while maintaining the antiparasitic effect. Supplementary Information The online version contains supplementary material available at 10.1186/s13028-022-00629-y.
Collapse
|
21
|
Oliveira CVB, da Silva PAG, Tintino SR, Coronel CC, Gomez MCV, Rolón M, da Cunha FAB, Morais-Braga MFB, Coutinho HDM, Siyadatpanah A, Wilairatana P, Kamdem JP, Barros LM, Duarte AE, Pereira PS. A Potential New Source of Therapeutic Agents for the Treatment of Mucocutaneous Leishmaniasis: The Essential Oil of Rhaphiodon echinus. Molecules 2022; 27:2169. [PMID: 35408565 PMCID: PMC9000529 DOI: 10.3390/molecules27072169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Weeds are an important source of natural products; with promising biological activity. This study investigated the anti-kinetoplastida potential (in vitro) to evaluate the cytotoxicity (in vitro) and antioxidant capacity of the essential oil of Rhaphiodon echinus (EORe), which is an infesting plant species. The essential oil was analyzed by GC/MS. The antioxidant capacity was evaluated by reduction of the DPPH radical and Fe3+ ion. The clone Trypanosoma cruzi CL-B5 was used to search for anti-epimastigote activity. Antileishmanial activity was determined using promastigotes of Leishmania braziliensis (MHOM/CW/88/UA301). NCTC 929 fibroblasts were used for the cytotoxicity test. The results showed that the main constituent of the essential oil was γ-elemene. No relevant effect was observed concerning the ability to reduce the DPPH radical; only at the concentration of 480 μg/mL did the essential oil demonstrate a high reduction of Fe3+ power. The oil was active against L. brasiliensis promastigotes; but not against the epimastigote form of T. cruzi. Cytotoxicity for mammalian cells was low at the active concentration capable of killing more than 70% of promastigote forms. The results revealed that the essential oil of R. echinus showed activity against L. brasiliensis; positioning itself as a promising agent for antileishmanial therapies.
Collapse
Affiliation(s)
- Carlos Vinicius Barros Oliveira
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Patric Anderson Gomes da Silva
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Cathia Cecília Coronel
- Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Dıáz Gill, Manduvira 635, Asunción CP. 1255, Paraguay; (C.C.C.); (M.C.V.G.); (M.R.)
| | - Maria Celeste Vega Gomez
- Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Dıáz Gill, Manduvira 635, Asunción CP. 1255, Paraguay; (C.C.C.); (M.C.V.G.); (M.R.)
| | - Mírian Rolón
- Centro Para El Desarrollo De La Investigación Científica (CEDIC), Fundación Moisés Bertoni/Laboratorios Dıáz Gill, Manduvira 635, Asunción CP. 1255, Paraguay; (C.C.C.); (M.C.V.G.); (M.R.)
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (S.R.T.); (F.A.B.d.C.); (M.F.B.M.-B.)
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jean Paul Kamdem
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Luiz Marivando Barros
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Antonia Eliene Duarte
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| | - Pedro Silvino Pereira
- Microscopy Laboratory, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Crato 63105-000, CE, Brazil; (C.V.B.O.); (P.A.G.d.S.); (J.P.K.); (L.M.B.); (A.E.D.)
| |
Collapse
|
22
|
Liu C, Fan H, Guan L, Ma L, Ge RL. Evaluation of Allicin Against Alveolar Echinococcosis In Vitro and in a Mouse Model. Acta Parasitol 2022; 67:79-93. [PMID: 34143400 PMCID: PMC8938363 DOI: 10.1007/s11686-021-00434-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Purpose At present, the chemotherapy for alveolar echinococcosis (AE) is mainly based on albendazole (ABZ). However, more than 20% of patients fail chemotherapy. Therefore, new and more effective treatments are urgently needed. Allicin has been reported to have antibacterial and antiparasitic effects. The objectives of the present study were to investigate the in vivo and in vitro efficacy of allicin against Echinococcus multilocularis (E. multilocularis). Methods The effects of allicin on protoscolex survival and structural changes were evaluated in vitro. The 4-week-old BALB/c male mice used for in vivo modelling underwent inoculation of E. multilocularis protoscoleces by intraperitoneal injection, followed by intragastric administration of allicin for 6 weeks. Then, the effects of allicin on lymphocyte subsets, metacestode growth and host tissue matrix metalloproteinase 2 (MMP2)/MMP9 expression around metacestodes in mice were evaluated. The toxicity of allicin was further evaluated in vivo and in vitro. Results Att 40 μg/mL, allicin showed a killing effect on protoscoleces in vitro and treatment resulted in the destruction of protoscolex structure. Molecular docking showed that allicin could form hydrogen bonds with E. multilocularis cysteine enzymes. After 6 weeks of in vivo allicin treatment, the spleen index of mice was increased and the weight of metacestodes was reduced. Allicin increased the proportion of CD4+ T cells and decreased the proportion of CD8+ T cells in the peripheral blood and spleen. Pathological analysis of the metacestodes showed structural disruption of the germinal and laminated layers after allicin treatment. In addition, allicin inhibited the expression of MMP2 and MMP9 in metacestode-surrounding host tissues. At 160 μg/mL, allicin had no significant toxicity to normal hepatocytes but could inhibit hepatoma cell proliferation. At 30 mg/kg, allicin had no significant hepatorenal toxicity in vivo. Conclusion These results suggest that allicin exerts anti-E. multilocularis effects in vitro and in vivo and can enhance immune function in mice, with the potential to be developed as a lead compound against echinococcosis.
Collapse
Affiliation(s)
- Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Haining Fan
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Lu Guan
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China.
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China.
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China.
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China.
| |
Collapse
|
23
|
Asadi N, Yousefi E, Tappeh KH, Khademvatan S. Anti-toxoplasma and Cytotoxic Activities of Holothuria leucospilota Extract and TiO 2NPs In vitro and In vivo. Infect Disord Drug Targets 2022; 22:e170122200295. [PMID: 35078399 DOI: 10.2174/1871526522666220117120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND An impressive treatment for toxoplasmosis is the combinatory use of sulfadiazine and pyrimethamine. However, both the drugs involve significant side effects and toxicity for the host. Therefore, the discovery of new anti-toxoplasma medications with high efficacy and less to no side effects is urgently needed. OBJECTIVE This study aimed to evaluate the anti-toxoplasmic effects of Holothuria leucospilota (H. leucospilota) extract and TiO2NPs on the cell death of Toxoplasma gondii (T. gondii) tachyzoites in vitro and serum liver enzymes (AST, ALT, and ALP), and also to evaluate the immune response and production of IL-5, IFN-γ, and TNF-α in a mouse model. MATERIALS AND METHODS The cytotoxicity of TiO2NPs and H. leucospilota extract against the tachyzoite of T. gondii was evaluated by the methyl thiazolyl tetrazolium (MTT) assay. The levels of serum TNF-α, IFN-γ, IL-5, and liver enzymes were measured, as well. All the groups were subjected to T. gondii, and the survival rate of experimental mice was evaluated. RESULTS Our findings suggested in vivo and in vitro anti-toxoplasmic activity of TiO2NPs and H. leucospilota extract by inhibiting the proliferation and invasion of T. gondii tachyzoite. In addition, a significant increase in IFN-γ and TNF-α production was observed in mice treated with high doses of TiO2NPs and H. leucospilota extract. However, IL-5 levels decreased in TiO2NPs and H. leucospilota extract-treated mice. Our results also showed a highly significant increase (P < 0.05) in the levels of ALT, AST, and ALP in the groups injected with TiO2NPs and H. leucospilota extract, but not the control group. CONCLUSION TiO2NPs and H. leucospilota extract have greater anti-toxoplasma effects in vitro and in vivo. These two compounds could be considered as a candidate for use against toxoplasmosis, both therapeutically and prophylactically.
Collapse
Affiliation(s)
- Negar Asadi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Khosrow Hazrati Tappeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
24
|
Phytochemical Analysis and In Vitro Cytotoxic Activity against Colorectal Adenocarcinoma Cells of Hippophae rhamnodies L., Cymbopogon citratus (D.C.) Stapf, and Ocimum basilicum L. Essential Oils. PLANTS 2021; 10:plants10122752. [PMID: 34961223 PMCID: PMC8704097 DOI: 10.3390/plants10122752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Colorectal carcinoma (CRC) is one of the most frequently diagnosed cancer types with current deficient and aggressive treatment options, but various studied alternative therapies are able to efficiently contribute to its management. Essential oils (EOs) contain valuable compounds, with antibacterial, anti-inflammatory, and anticancer properties, which might serve as effective solutions in CRC prophylaxis or treatment. The aim of the present work was to evaluate the phytochemical composition and in vitro biological activity of essential oils derived from Hippophae rhamnoides (Hr_EO), Cymbopogon citratus (Cc_EO), and Ocimum basilicum (Ob_EO) species on HT-29 and Caco-2 human colorectal adenocarcinoma cell lines. The main compounds identified by GC-MS analysis were estragole (Hr_EO, Ob_EO), alpha- and beta-citral (Cc_EO). All tested EOs exerted a dose-dependent cytotoxicity on both cell lines by reducing the cell viability, especially in the case of Cc_EO, where at 75 µg/mL the viability percentages reached the values of 62.69% (Caco-2) and 64.09% (HT-29), respectively. The nuclear morphology evaluation highlighted significant dysmorphologies on both lines after their treatment with EOs at 75 µg/mL.
Collapse
|
25
|
Valenzuela-Gutiérrez R, Lago-Lestón A, Vargas-Albores F, Cicala F, Martínez-Porchas M. Exploring the garlic (Allium sativum) properties for fish aquaculture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1179-1198. [PMID: 34164770 DOI: 10.1007/s10695-021-00952-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
The aquaculture industry's rapid growth to meet commercial demand can trigger an outbreak of infectious diseases due to high-density farming. Antibiotic overuse and misuse in fish farming and its global health consequences have led to searching for more natural alternatives such as medicinal plants. In this sense, garlic (Allium sativum) has different bioactive compounds with biological properties for animal health. Among them are the ajoene, alliin, and allicin, which confer biological properties such as growth promotion, antimicrobial, antiviral, antioxidant, and antiparasitic. Ways to use garlic in aquaculture include oil, fresh mash, aqueous extract, and garlic powder. The powder presentation is the most used in aquaculture; it is generally applied by oral administration, adding to the feed, and the dose used ranges from 0.05 to 40 g/kg of feed. Garlic has been used in the aquaculture of different species such as rainbow trout (Oncorhynchus mykiss), spotted grouper (Epinephelus coioides), catfish (Clarias gariepinus), tilapia (Oreochromis niloticus), guppy fish (Poecilia reticulata), goldfish (Carassius auratus), and barramundi (Lates calcarifer). In addition to its properties, garlic's usage became popular, thanks to its low cost, easy incorporation into food, and little environmental impact. Therefore, its application can be an effective solution to combat diseases, improve organisms' health using natural supplies, and as an alternative to antibiotics. This review reports and discusses plant-derived products' beneficial properties, emphasizing garlic and its usages in fish aquaculture.
Collapse
Affiliation(s)
- Rocío Valenzuela-Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México
| | - Asunción Lago-Lestón
- Innovación Biomédica, Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México
| | - Francesco Cicala
- Innovación Biomédica, Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México.
| |
Collapse
|
26
|
Blomstrand BM, Enemark HL, Øines Ø, Steinshamn H, Aasen IM, Mahnert KC, Sørheim KM, Athanasiadou S, Thamsborg SM, Woolsey ID. Extracts of pine bark (Pinus sylvestris) inhibit Cryptosporidium parvum growth in cell culture. Parasitol Res 2021; 120:2919-2927. [PMID: 34269871 PMCID: PMC8370916 DOI: 10.1007/s00436-021-07220-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023]
Abstract
The widespread apicomplexan parasite Cryptosporidium parvum is responsible for severe gastrointestinal disease in humans and animals. The treatment options are limited, and the efficacy of available drugs is low. Bark contains condensed tannins (CT), which are bioactive compounds previously shown to inhibit parasite development. Here, we examined the anti-cryptosporidial properties of bark extract of Scots pine (Pinus sylvestris) against C. parvum by means of an in vitro growth inhibition test. We hypothesised that bark extracts would have dose-dependent inhibitory effects on the development of C. parvum in cell culture. Bark extracts from Scots pine extracted with acetone, methanol, and water as solvents were investigated using human colorectal adenocarcinoma cells infected with C. parvum. Oocysts were inoculated onto the cell monolayer and bark extract was added at seven different concentrations. Parasite growth inhibition was quantified by qPCR. The acetone and methanol extracts demonstrated a sigmoid dose-dependent inhibition of C. parvum. The IC50 values were 244.6 and 279.1 µg dry matter extract/mL, and 25.4 and 24.1 µg CT/mL, for acetone and methanol extracts, respectively. The IC50 for both extracts were similar, both with regard to the dry matter concentration of each extract and to CT concentrations. Given the limited treatment options available for Cryptosporidium spp., the evidence generated in our study encourages further investigation into the in vitro and in vivo effects of pine bark extracts against C. parvum.
Collapse
Affiliation(s)
| | - Heidi Larsen Enemark
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Øivind Øines
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Håvard Steinshamn
- Division of Food Production and Society, Grassland and Livestock, Norwegian Institute of Bioeconomy Research, Tingvoll, Norway
| | - Inga Marie Aasen
- SINTEF Industry, Biotechnology and Nanomedicine, Trondheim, Norway
| | | | | | | | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ian David Woolsey
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway.
| |
Collapse
|
27
|
Firmino JP, Galindo-Villegas J, Reyes-López FE, Gisbert E. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front Immunol 2021; 12:695973. [PMID: 34220858 PMCID: PMC8252966 DOI: 10.3389/fimmu.2021.695973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics' mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.
Collapse
Affiliation(s)
- Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
- R&D Technical Department, TECNOVIT – FARMFAES, S.L., Alforja, Spain
| | | | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
28
|
Pharmacokinetics and antimalarial activities of reduction-responsive releasing dihydroartemisinin prodrug self-assembled nanoparticles in rodents. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Trailovic SM, Rajkovic M, Marjanovic DS, Neveu C, Charvet CL. Action of Carvacrol on Parascaris sp. and Antagonistic Effect on Nicotinic Acetylcholine Receptors. Pharmaceuticals (Basel) 2021; 14:ph14060505. [PMID: 34073197 PMCID: PMC8226574 DOI: 10.3390/ph14060505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Parascaris sp. is the only ascarid parasitic nematode in equids and one of the most threatening infectious organisms in horses. Only a limited number of compounds are available for treatment of horse helminthiasis, and Parascaris sp. worms have developed resistance to the three major anthelmintic families. In order to overcome the appearance of resistance, there is an urgent need for new therapeutic strategies. The active ingredients of herbal essential oils are potentially effective antiparasitic drugs. Carvacrol is one of the principal chemicals of essential oil from Origanum, Thymus, Coridothymus, Thymbra, Satureja and Lippia herbs. However, the antiparasitic mode of action of carvacrol is poorly understood. Here, the objective of the work was to characterize the activity of carvacrol on Parascaris sp. nicotinic acetylcholine receptor (nAChR) function both in vivo with the use of worm neuromuscular flap preparations and in vitro with two-electrode voltage-clamp electrophysiology on nAChRs expressed in Xenopus oocytes. We developed a neuromuscular contraction assay for Parascaris body flaps and obtained acetylcholine concentration-dependent contraction responses. Strikingly, we observed that 300 µM carvacrol fully and irreversibly abolished Parascaris sp. muscle contractions elicited by acetylcholine. Similarly, carvacrol antagonized acetylcholine-induced currents from both the nicotine-sensitive AChR and the morantel-sensitive AChR subtypes. Thus, we show for the first time that body muscle flap preparation is a tractable approach to investigating the pharmacology of Parascaris sp. neuromuscular system. Our results suggest an intriguing mode of action for carvacrol, being a potent antagonist of muscle nAChRs of Parascaris sp. worms, which may account for its antiparasitic potency.
Collapse
Affiliation(s)
- Sasa M. Trailovic
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.T.); (M.R.); (D.S.M.)
| | - Milan Rajkovic
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.T.); (M.R.); (D.S.M.)
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Djordje S. Marjanovic
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.T.); (M.R.); (D.S.M.)
| | - Cédric Neveu
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France;
| | - Claude L. Charvet
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France;
- Correspondence:
| |
Collapse
|
30
|
Dominguez-Uscanga A, Aycart DF, Li K, Witola WH, Andrade Laborde JE. Anti-protozoal activity of Thymol and a Thymol ester against Cryptosporidium parvum in cell culture. Int J Parasitol Drugs Drug Resist 2021; 15:126-133. [PMID: 33647675 PMCID: PMC7932911 DOI: 10.1016/j.ijpddr.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
Cryptosporidium parvum is a protozoan parasite that infects intestinal epithelial cells causing malabsorption and severe diarrhea. The monoterpene thymol has been reported to have antifungal and antibacterial properties but less is known about the antiparasitic effect of this compound. Terpenes are sometimes unsuitable for therapeutic and food applications because of their instability. Esterification of terpenes eliminates this disadvantage. The present study evaluates the effects of thymol (Th) and a thymol ester, thymol octanoate (TO), against C. parvum infectivity in vitro. The cytotoxicity IC50 value for TO after 24 h of treatment was 309.6 μg/mL, significantly higher than that of Th (122.5 μg/mL) in a human adenocarcinoma cell line (HCT-8). In the same way, following 48 h of treatment, the cytotoxicity IC50 value for TO was significantly higher (139 μg/mL) than that of Th (75.5 μg/mL). These results indicate that esterification significantly reduces Th cytotoxicity. Dose-dependent effects were observed for TO and Th when both parasite invasion and parasite growth assays were evaluated. When evaluated for their activity against C. parvum growth cultured in vitro in HCT-8 cells, the anti-cryptosporidial IC50 values were 35.5 and 7.5 μg/mL, for TO and Th, respectively. Together, these findings indicate that esterified thymol has anti-cryptosporidial effect comparable with its parental compound thymol, but with improved safety margins in mammalian cells and better physicochemical properties that could make it more suitable for diverse applications as an antiparasitic agent.
Collapse
Affiliation(s)
- Astrid Dominguez-Uscanga
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Danielle Francesca Aycart
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Kun Li
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 61801, USA
| | - William H Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 61801, USA
| | - Juan E Andrade Laborde
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
31
|
Salleh WMNHW. A systematic review of botany, phytochemicals and pharmacological properties of " Hoja sant a" ( Piper auritum Kunth). Z NATURFORSCH C 2021; 76:93-102. [PMID: 32960783 DOI: 10.1515/znc-2020-0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 11/15/2022]
Abstract
Hoja santa (Piper auritum) refers to an important presence in Mexican cuisine. The information of this review article was gathered from several electronic sources such as Scopus, Medline, Scielo, ScienceDirect, SciFinder, Web of Science, Google Scholar and Lilacs. Phytochemical studies have revealed the presence of benzoic acid derivatives, phenylpropanoids and triterpenoids, while the essential oils have shown its richness in safrole, hence it has several activities, such as antioxidant, toxicity, insecticidal, anti-diabetic and cytotoxic properties. This review is expected to draw the attention of medical professionals and the general public towards P. auritum as well as to open the door for detailed research in the future.
Collapse
Affiliation(s)
- Wan Mohd Nuzul Hakimi Wan Salleh
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris (UPSI), 35900Tanjung Malim, Perak, Malaysia
| |
Collapse
|
32
|
Sulistyowaty MI, Uyen NH, Suganuma K, Chitama BYA, Yahata K, Kaneko O, Sugimoto S, Yamano Y, Kawakami S, Otsuka H, Matsunami K. Six New Phenylpropanoid Derivatives from Chemically Converted Extract of Alpinia galanga (L.) and Their Antiparasitic Activities. Molecules 2021; 26:1756. [PMID: 33801067 PMCID: PMC8004034 DOI: 10.3390/molecules26061756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
Chemical conversion of the extract of natural resources is a very attractive way to expand the chemical space to discover bioactive compounds. In order to search for new medicines to treat parasitic diseases that cause high morbidity and mortality in affected countries in the world, the ethyl acetate extract from the rhizome of Alpinia galanga (L.) has been chemically converted by epoxidation using dioxirane generated in situ. The biological activity of chemically converted extract (CCE) of A. galanga (L.) significantly increased the activity against Leishmania major up to 82.6 ± 6.2 % at 25 μg/mL (whereas 2.7 ± 0.8% for the original extract). By bioassay-guided fractionation, new phenylpropanoids (1-6) and four known compounds, hydroquinone (7), 4-hydroxy(4-hydroxyphenyl)methoxy)benzaldehyde (8), isocoumarin cis 4-hydroxymelein (9), and (2S,3S,6R,7R,9S,10S)-humulene triepoxide (10) were isolated from CCE. The structures of isolated compounds were determined by spectroscopic analyses of 1D and 2D NMR, IR, and MS spectra. The most active compound was hydroquinone (7) with IC50 = 0.37 ± 1.37 μg/mL as a substantial active principle of CCE. In addition, the new phenylpropanoid 2 (IC50 = 27.8 ± 0.34 μg/mL) also showed significant activity against L. major compared to the positive control miltefosine (IC50 = 7.47 ± 0.3 μg/mL). The activities of the isolated compounds were also evaluated against Plasmodium falciparum, Trypanosoma brucei gambisense and Trypanosoma brucei rhodeisense. Interestingly, compound 2 was selectively active against trypanosomes with potent activity. To the best of our knowledge, this is the first report on the bioactive "unnatural" natural products from the crude extract of A. galanga (L.) by chemical conversion and on its activities against causal pathogens of leishmaniasis, trypanosomiasis, and malaria.
Collapse
Affiliation(s)
- Melanny Ika Sulistyowaty
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (M.I.S.); (N.H.U.); (S.S.); (Y.Y.)
- Faculty of Pharmacy, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Nguyen Hoang Uyen
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (M.I.S.); (N.H.U.); (S.S.); (Y.Y.)
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan;
| | - Ben-Yeddy Abel Chitama
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (B.-Y.A.C.); (K.Y.); (O.K.)
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (B.-Y.A.C.); (K.Y.); (O.K.)
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (B.-Y.A.C.); (K.Y.); (O.K.)
| | - Sachiko Sugimoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (M.I.S.); (N.H.U.); (S.S.); (Y.Y.)
| | - Yoshi Yamano
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (M.I.S.); (N.H.U.); (S.S.); (Y.Y.)
| | - Susumu Kawakami
- Department of Natural Products Chemistry, Faculty of Pharmacy, Yasuda Women’s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan; (S.K.); (H.O.)
| | - Hideaki Otsuka
- Department of Natural Products Chemistry, Faculty of Pharmacy, Yasuda Women’s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan; (S.K.); (H.O.)
| | - Katsuyoshi Matsunami
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (M.I.S.); (N.H.U.); (S.S.); (Y.Y.)
| |
Collapse
|
33
|
Maaroufi Z, Cojean S, Loiseau PM, Yahyaoui M, Agnely F, Abderraba M, Mekhloufi G. In vitro antileishmanial potentialities of essential oils from Citrus limon and Pistacia lentiscus harvested in Tunisia. Parasitol Res 2021; 120:1455-1469. [PMID: 33426571 DOI: 10.1007/s00436-020-06952-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
Leishmaniasis is a tropical parasitic disease that affects up to 12 million people worldwide. Current chemotherapies have limitations such as toxicity, high cost, and parasite resistance. This work aims to select an essential oil (EssOil) isolated from the Tunisian flora as a new antileishmanial candidate. Two plants were chosen for their antileishmanial potential: Citrus limon (Citrus) and Pistacia lentiscus (Pistacia). Each of these plants was harvested from two different sites (area 1 and area 2). Extracted EssOils were characterized using GC-MS. Their antiparasitic activity against axenic and intracellular Leishmania major amastigotes and their cytotoxicity were assessed. Citrus EssOil from area 1 displayed an interesting activity against L. major intramacrophage amastigotes with IC50 value at 4.2 ± 1.3 μg/mL. Interestingly, this activity was close to that of miltefosine. Moderate activities against intracellular amastigote were observed for Pistacia EssOil from area 1 and Citrus EssOil from area 2. However, low cytotoxicity with high selectivity index was proved only for Citrus EssOil from area 1, revealing its safety for macrophages. This study also demonstrated for the first time the antileishmanial activity of EssOil extracted from Citrus limon leaves. The EssOil interesting activity could be related to the lipophilic properties of terpenes that were shown in literature to contribute to the disruption of parasite intracellular metabolic pathways.
Collapse
Affiliation(s)
- Zeineb Maaroufi
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296, Châtenay-Malabry, France.,Laboratoire Matériaux Molécules et applications, Institut préparatoire des études scientifiques et techniques (IPEST), Univ. de Carthage, La Marsa, Tunisia
| | - Sandrine Cojean
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | | | - Marwa Yahyaoui
- Laboratoire Matériaux Molécules et applications, Institut préparatoire des études scientifiques et techniques (IPEST), Univ. de Carthage, La Marsa, Tunisia
| | - Florence Agnely
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Manef Abderraba
- Laboratoire Matériaux Molécules et applications, Institut préparatoire des études scientifiques et techniques (IPEST), Univ. de Carthage, La Marsa, Tunisia
| | - Ghozlene Mekhloufi
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
34
|
Norouzi R, Hejazy M, Azizi D, Ataei A. Effect of Taxus baccata L. Extract on Hydatid Cyst Protoscolices In vitro. ARCHIVES OF RAZI INSTITUTE 2021; 75:473-480. [PMID: 33403842 DOI: 10.22092/ari.2019.125573.1310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/22/2019] [Indexed: 09/30/2022]
Abstract
Hydatidosis is the most important global parasitic infectious disease both in humans and animals, which can lodge at different organs of the host, such as liver, lung (even heart), and brain which may lead to death. Surgery is the main method for the treatment of hydatidosis. In surgical therapy of hydatidosis, the use of sporicidal agents is very important since these agents inactivate live protoscolices and prevent recurrence of infection. Presently, numerous scolicidal chemical agents have been administrated to inactivate the hydatid cyst contents. Recently, there has been a high tendency among researchers to evaluate and present herbal plants as alternative option due to inexpensiveness, availability, low side effects, and toxicity. This study aimed to evaluate the scolicidal effect of hydro alcoholic Taxus baccata L. extract in vitro for the first time. The scolicidal activities of the extract were tested in concentrations of 50, 100, and 150 mg/ml following 10, 30, and 60 min of incubation, and the experiments were performed in triplicate. Viability of protoscolices was confirmed by 0.1% eosin vital staining. The data were analyzed in SAS software (version 9.4). The results showed that the hydroalcoholic extract of Taxus baccata L. at the concentration of 150 mg/ml led to killing 66.6% of protoscolices at 60 min. according to the results of this investigation, it is recommended to use this plant as a scolicidal plant. The findings of the present study showed that Taxus baccata L. had potent scolicidal effects. However, further studies are required to evaluate the efficacy of Taxus baccata L. in vivo.
Collapse
Affiliation(s)
- R Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.,Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - M Hejazy
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - D Azizi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - A Ataei
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
35
|
Shang XF, Dai LX, Yang CJ, Guo X, Liu YQ, Miao XL, Zhang JY. A value-added application of eugenol as acaricidal agent: The mechanism of action and the safety evaluation. J Adv Res 2020; 34:149-158. [PMID: 35024187 PMCID: PMC8655235 DOI: 10.1016/j.jare.2020.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Eugenol is a major component of essential oils of several plants, it exhibits significant antiparasitic and acaricidal activities, yet its molecular targets remain unknown. Objectives We aimed to systematically investigate the mechanism of action and the potential targets of eugenol against P. cuniculi, and evaluate the safety for laying the theoretical foundation for clinical application as an acaricide. Methods Using RNA-Seq analysis, surface plasmon resonance analysis and RNA interference assay, the mode of action of eugenol against Psoroptes cuniculi was investigated. The effect on the mitochondrial membrane potential and complex I of PC12 cells and C6/36 cells was assayed to investigate the species specificity of eugenol in insects and mammals. Finally, a safety evaluation of eugenol in vivo was performed. Results Eugenol inhibited complex I activity of the mitochondrial respiratory chain in the oxidative phosphorylation pathway by binding to NADH dehydrogenase chain 2 and resulted in the death of mites. The inhibition rates were 37.89% for 50 μg/mL and 60.26% for 100 μg/mL, respectively. Further experiments indicated that the difference in the complex I sequence between insects and mammals led to the different affinity of eugenol to specific peptide, resulting in species specificity. Eugenol exhibited significant inhibitory effects against the mitochondrial membrane potential and complex I in Aedes albopictus C6/36 cells but was not active in rat PC12 cells. Insect cells were particularly sensitive to eugenol. In contrast to the known inhibitor rotenone, eugenol had better safety and did not result in Parkinson's disease or other diseases in rats. Conclusion This is the first report on acaricidal eugenol targeting complex I of the mitochondrial respiratory chain. This work lays the foundation for the development of eugenol as an environmentally alternative acaricidal agent.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China.,School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Li-Xia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center, Qinghai University, Xining 810016, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Lou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Ji-Yu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| |
Collapse
|
36
|
Jahani R, Mojab F, Mahboubi A, Nasiri A, Tahamtani A, Faizi M. An In-Vivo Study on Anticonvulsant, Anxiolytic, and Sedative-Hypnotic Effects of the Polyphenol-Rich Thymus Kotschyanus Extract; Evidence for the Involvement of GABA A Receptors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1456-1465. [PMID: 32641954 PMCID: PMC6934950 DOI: 10.22037/ijpr.2019.15579.13194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antidepressant-like activity of T. kotschyanus has been recently reported by scientists but insufficient attention has been so far devoted to T. kotschyanus, and there is a lack of information on the other neurobehavioral effects and side effects of this species. In the current study, the anticonvulsant, anxiolytic, and sedative-hypnotic, effects of Thymus kotschyanus extract on male NMRI mice were evaluated using pentylenetetrazole, maximal electroshock, elevated plus maze, and pentobarbital-induced sleeping tests. Since phenolic compounds and flavonoids have main roles in pharmacological effects of most plant extracts, the phenolic and flavonoid contents of the extract were measured with Folin-Ciocalteu and AlCl3 reagents. Acute toxicity, passive avoidance, and open field tests were carried out to assess the toxicity of the extract. To find out the possible mechanism of action, flumazenil as the specific GABAA receptor antagonist was used. Anticonvulsant and hypnotic effects of the extract were observed at 400 and 600 mg/kg. The extract at the dose of 200 mg/kg revealed significant anxiolytic effects, but it did not show any adverse effects on learning and memory at all the tested doses. Results of this study indicate that Thymus kotschyanus extract has anticonvulsant, anxiolytic, and hypnotic effects, which are likely related to the ability of some phenolic compounds to activate α1-containing GABAA receptors but more experiments still need to be carried out in order to find the exact mechanism, active component, and the toxicity of the Thymus kotschyanus extract.
Collapse
Affiliation(s)
- Reza Jahani
- Student Research Committee, Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Mojab
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Food Safty Research Center Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Tahamtani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Cho TJ, Park SM, Yu H, Seo GH, Kim HW, Kim SA, Rhee MS. Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules 2020; 25:molecules25071752. [PMID: 32290228 PMCID: PMC7181228 DOI: 10.3390/molecules25071752] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Although antibacterial spectrum of essential oils (EOs) has been analyzed along with consumers’ needs on natural biocides, singular treatments generally require high concentration of EOs and long-term exposures to eliminate target bacteria. To overcome these limitations, antibacterial complex has been developed and this review analyzed previous reports regarding the combined antibacterial effects of EOs. Since unexpectable combined effects (synergism or antagonism) can be derived from the treatment of antibacterial complex, synergistic and antagonistic combinations have been identified to improve the treatment efficiency and to avoid the overestimation of bactericidal efficacy, respectively. Although antibacterial mechanism of EOs is not yet clearly revealed, mode of action regarding synergistic effects especially for the elimination of pathogens by using low quantity of EOs with short-term exposure was reported. Whereas comprehensive analysis on previous literatures for EO-based disinfectant products implies that the composition of constituents in antibacterial complexes is variable and thus analyzing the impact of constituting substances (e.g., surfactant, emulsifier) on antibacterial effects is further needed. This review provides practical information regarding advances in the EO-based combined treatment technologies and highlights the importance of following researches on the interaction of constituents in antibacterial complex to clarify the mechanisms of antibacterial synergism and/or antagonism.
Collapse
Affiliation(s)
- Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Korea;
| | - Sun Min Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Hary Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Go Hun Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Hye Won Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Sun Ae Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
- Correspondence: ; Tel.: +82-2-3290-3058
| |
Collapse
|
38
|
Li G, Tan F, Zhang Q, Tan A, Cheng Y, Zhou Q, Liu M, Tan X, Huang L, Rouseff R, Wu H, Zhao X, Liang G, Zhao X. Protective effects of polymethoxyflavone-rich cold-pressed orange peel oil against ultraviolet B-induced photoaging on mouse skin. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Pintong AR, Ruangsittichai J, Ampawong S, Thima K, Sriwichai P, Komalamisra N, Popruk S. Efficacy of Ageratum conyzoides extracts against Giardia duodenalis trophozoites: an experimental study. BMC Complement Med Ther 2020; 20:63. [PMID: 32111225 PMCID: PMC7076862 DOI: 10.1186/s12906-020-2860-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/20/2020] [Indexed: 12/04/2022] Open
Abstract
Background Giardia duodenalis causes giardiasis in humans, particularly in developing countries. Despite the availability of treatments, resistance to some of the commercial anti-Giardia drugs has been reported in addition to their harmful side effects. Therefore, novel treatments for giardiasis are required. In this study, we aimed to assess the in vitro activity of crude extracts of Ageratum conyzoides against G. duodenalis trophozoites. Methods Plants were classified into three groups based on their flower colors: white (W), purple (P), and white–purple (W–P). Plants were separately cut into leaf (L) and flower (F) parts. Changes in internal organelle morphology of trophozoites following exposure to crude extracts were assessed using transmission electron microscopy (TEM). In subsequent experiments, efficacy of the most active essential oils from crude extracts [half maximal inhibitory concentrations (IC50) ≤ 100 μg/mL] against G. duodenalis trophozoites was tested. In vitro anti-Giardia assays using essential oils were performed in the same way as those performed using crude extracts. Results LW–P and FP extracts showed high activity (IC50 ≤ 100 μg/mL) against G. duodenalis trophozoites, with IC50 ± SD values of 45.67 ± 0.51 and 96.00 ± 0.46 μg/mL, respectively. In subsequent experiments, IC50 ± SD values of LW–P and FP essential oils were 35.00 ± 0.50 and 89.33 ± 0.41 μg/mL, respectively. TEM revealed the degeneration of flagella and ventral discs of G. duodenalis trophozoites following exposure to crude extracts. Conclusion Crude LW–P and FP extracts of A. conyzoides showed the highest activity against G. duodenalis. Exposure to crude extract induced changes in the flagella and ventral discs of G. duodenalis trophozoites, which play important roles in attachment to the surface of mucosal cells. Our results suggest that the tested extracts warrant further research in terms of their efficacy and safety as giardiasis treatment.
Collapse
Affiliation(s)
- Ai-Rada Pintong
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Kanthinich Thima
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Narumon Komalamisra
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Supaluk Popruk
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
40
|
Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr Res Rev 2020; 33:218-234. [PMID: 32100670 DOI: 10.1017/s0954422420000013] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the current post-antibiotic era, botanicals represent one of the most employed nutritional strategies to sustain antibiotic-free and no-antibiotic-ever production. Botanicals can be classified either as plant extracts, meaning the direct products derived by extraction from the raw plant materials (essential oils (EO) and oleoresins (OR)), or as nature-identical compounds (NIC), such as the chemically synthesised counterparts of the pure bioactive compounds of EO/OR. In the literature, differences between the use of EO/OR or NIC are often unclear, so it is difficult to attribute certain effects to specific bioactive compounds. The aim of the present review was to provide an overview of the effects exerted by botanicals on the health status and growth performance of poultry and pigs, focusing attention on those studies where only NIC were employed or those where the composition of the EO/OR was defined. In particular, phenolic compounds (apigenin, quercetin, curcumin and resveratrol), organosulfur compounds (allicin), terpenes (eugenol, thymol, carvacrol, capsaicin and artemisinin) and aldehydes (cinnamaldehyde and vanillin) were considered. These molecules have different properties such as antimicrobial (including antibacterial, antifungal, antiviral and antiprotozoal), anti-inflammatory, antioxidant, immunomodulatory, as well as the improvement of intestinal morphology and integrity of the intestinal mucosa. The use of NIC allows us to properly combine pure compounds, according to the target to achieve. Thus, they represent a promising non-antibiotic tool to allow better intestinal health and a general health status, thereby leading to improved growth performance.
Collapse
|
41
|
Norouzi R, Ataei A, Hejazy M, Noreddin A, El Zowalaty ME. Scolicidal Effects of Nanoparticles Against Hydatid Cyst Protoscolices in vitro. Int J Nanomedicine 2020; 15:1095-1100. [PMID: 32110009 PMCID: PMC7034968 DOI: 10.2147/ijn.s228538] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Echinococcus granulosus is causative agent of cystic echinococcosis (CE), which has a cosmopolitan distribution. The current methods for the treatment of human CE include surgery. Therefore, the development of new scolicidal agents with low side effects and more efficacies is an urgent need. Purpose The present study aimed to compare the scolicidal efficacies of silver, iron, copper, silica and zinc oxide nanoparticles (NPs) against hydatid cyst protoscolices in vitro. Methods Hydatid cysts of sheep liver and lung were collected. The cyst fluid containing protoscolices was aspirated aseptically. The scolicidal activities of the silver, iron, copper, silica and zinc nanoparticles (Ag-NP, Fe-NP, Cu-NP, Si-NP and Zn-NP) were tested at different concentrations of 0.25, 0.5 and 1 mg/mL following 10, 30 and 60 min of incubation in triplicate. Viability of protoscolices was confirmed by 0.1% eosin staining. Results Results showed that Ag-NPs at all concentrations tested had the highest scolicidal effect. Ag-NPs at 1 mg/mL concentration after 60 min of exposure time showed 80% mortality rate. Si-NPs had the high scolicidal activity at 1 mg/mL concentration (52.33%), Cu-NPs at 0.5 mg/mL concentration (41%), Fe-NPs at 1mg/mL concentration (28%) and Zn-NPs at concentration of 1mg/mL after 60 mins (15.67%). Conclusion The findings of the present study showed that Ag-NPs, Fe-NPs, Cu-NPs, Si-NPs and Zn-NPs had potent scolicidal effects and that Ag-NPs are recommended as effective scolicidal agents. However, further in vivo studies are required to evaluate the efficacy of these nanoparticles.
Collapse
Affiliation(s)
- Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amin Ataei
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzie Hejazy
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ayman Noreddin
- Infectious Diseases and Anti-Infective Therapy Research Group, Sharjah Medical Research Institute and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | | |
Collapse
|
42
|
Rehman A, Ullah R, Gupta D, Khan MH, Rehman L, Beg MA, Khan AU, Abidi S. Generation of oxidative stress and induction of apoptotic like events in curcumin and thymoquinone treated adult Fasciola gigantica worms. Exp Parasitol 2020; 209:107810. [DOI: 10.1016/j.exppara.2019.107810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
|
43
|
Huang Y, Lin M, Jia M, Hu J, Zhu L. Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. PEST MANAGEMENT SCIENCE 2020; 76:534-542. [PMID: 31270930 DOI: 10.1002/ps.5542] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Dengue fever is caused by the spread of dengue virus by Aedes mosquito vectors. Currently, the most effective way to control dengue is by preventing mosquitoes from spreading the disease. Arisaema fargesii is a Chinese herbal medicine commonly used to repel mosquitoes. In our laboratory, anti-mosquito chemical components were extracted from A. fargesii, and the effects of these substances on mosquito larvae were examined. RESULTS In total, 48 compounds corresponding to 98.79% of the total oil were identified and the major compounds identified were linalool (12.38%), carvacrol (8.27%), eugenol (5.21%), and β-selinene (5.36%). Essential oil had larvicidal activity against Ae. aegypti and Ae. albopictus with LC50 values of 40.49 mg/L, 47.01 mg/L, respectively. The LC50 values of carvacrol, eugenol, linalool and β-selinene were 32.78, 56.34, 70.56, 136.03 mg/L against Ae. aegypti larvae, and 39.08, 52.07, 82.34, 151.74 mg/L, respectively, against Ae. albopictus larvae. Biochemical assays of Aedes larvae showed that the activities of acetylcholinesterase (AChE), monooxygenases (MO), glutathione-S-transferase (GST), p-Nitrophenyl acetate (p-NPA) esterase, α-esterase and β-esterase were significantly affected by carvacrol. Essential oil induced the detoxification mechanism for the action of GST and MO. CONCLUSION The result indicates that essential oil of A. fargesii and its isolated constituent have good inhibitory effects on the defense enzymes of Aedes mosquito larvae. A. fargesii essential oil can be used to control Aedes mosquito larvae to prevent the spread of dengue fever. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Huang
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Mengya Lin
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Mengmeng Jia
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Junpeng Hu
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Liang Zhu
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
44
|
Montazeri M, Mirzaee F, Daryani A, Naeimayi R, Moradi Karimabad S, Khalilzadeh Arjmandi H, Esmaealzadeh N, Shahani S. Anti- Toxoplasma Activities of the Hydroalcoholic Extract of Some Brassicaceae Species. Adv Biomed Res 2020; 9:5. [PMID: 32055539 PMCID: PMC7003551 DOI: 10.4103/abr.abr_206_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 11/06/2022] Open
Abstract
Background: Toxoplasma gondii (T. gondii) is a protozoan parasite that infects a wide range of warm-blooded animals and humans. The conventional anti-Toxoplasma treatments cause significant toxicity. Brassicaceae family contains several medicinal plants with anti-inflammatory, chemopreventive, insecticide, antibacterial, antiviral, and antiparasitic effects. In this study, the hydroalcoholic extract of some Brassicaceae species was investigated against T. gondiiin vitro. Materials and Methods: Seeds of Alyssum homolocarpum, Lepidium perfoliatum, Lepidium sativum, and aerial parts of Nasturtium officinale and Capsellabursa-pastoris were extracted by maceration method using 80% ethanol. Vero cells were treated with different concentrations (5–600 μg/mL) of the extracts and pyrimethamine (as positive control), and the cellular viability was verified. Next, Vero cells were infected by T. gondii tachyzoites (RH strain), and the viability of the infected cells was measured by a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: The 50% inhibitory concentration values were 5.1, 14.67, 32.49, 37.31, 71.35, and 2.63 μg/mL, and the selectivity indices were 8.06, 2.59, 0.74, 0.78, 0.65 (P < 0.05 compared with positive control), and 3.03 for L. sativum, L. perfoliatum, N. officinale, A. homolocarpum, C. bursa-pastoris, and pyrimethamine, respectively. Conclusion: The results of this study demonstrated that the hydroalcoholic extracts of L. sativum and L. perfoliatum have the promising anti-Toxoplasma activity by growth inhibition of T. gondii tachyzoites in infected cells.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Mirzaee
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Raheleh Naeimayi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shohre Moradi Karimabad
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadiseh Khalilzadeh Arjmandi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niusha Esmaealzadeh
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Somayeh Shahani
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
45
|
Antiprotozoal Activity of Turkish Origanum onites Essential Oil and Its Components. Molecules 2019; 24:molecules24234421. [PMID: 31817023 PMCID: PMC6930659 DOI: 10.3390/molecules24234421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 11/18/2022] Open
Abstract
Essential oil of Origanum species is well known for antimicrobial activity, but only a few have been evaluated in narrow spectrum antiprotozoal assays. Herein, we assessed the antiprotozoal potential of Turkish Origanum onites L. oil and its major constituents against a panel of parasitic protozoa. The essential oil was obtained by hydrodistillation from the dried herbal parts of O. onites and analyzed by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography coupled with Mass Spectrometry (GC-MS). The in vitro activity of the oil and its major components were evaluated against Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. The main component of the oil was identified as carvacrol (70.6%), followed by linalool (9.7%), p-cymene (7%), γ-terpinene (2.1%), and thymol (1.8%). The oil showed significant in vitro activity against T. b. rhodesiense (IC50 180 ng/mL), and moderate antileishmanial and antiplasmodial effects, without toxicity to mammalian cells. Carvacrol, thymol, and 10 additional abundant oil constituents were tested against the same panel; carvacrol and thymol retained the oil’s in vitro antiparasitic potency. In the T. b. brucei mouse model, thymol, but not carvacrol, extended the mean survival of animals. This study indicates the potential of the essential oil of O. onites and its constituents in the treatment of protozoal infections.
Collapse
|
46
|
Efficacy of Ivermectin, Liquid Paraffin, and Carbaryl against Mange of Farmed Rabbits in Central Kenya. J Trop Med 2019; 2019:5092845. [PMID: 31885634 PMCID: PMC6900945 DOI: 10.1155/2019/5092845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
Mange is a common disease of rabbits globally, and knowledge of efficacy of drugs used in its treatment is critical for effective disease control. The current study evaluated the efficacy of three commonly used therapeutic agents in Kenya against mange. In a controlled laboratory trial, 20 adult rabbits were recruited for the study (16 of which were infested with mange, while 4 were mange-free). The 16 mange-infested rabbits were randomly allocated into 4 treatment groups each consisting of 4 rabbits, while 4 mange-free rabbits formed the negative control group. Treatments were administered as follows: group 1 (G1) received two ivermectin injections at an interval of 14 days, group 2 (G2) was treated with a combination of carbaryl and liquid paraffin applied every other day up to the end of the experiment, group 3 (G3) was treated with liquid paraffin droplets applied daily until the lesion cleared, while group 4 (G4, infected-untreated) received distilled water applied topically on their ears and group 5 (G5, uninfected-untreated negative control) was not treated with any preparation. The lesions were scored and sampled daily to check the viability of the mites. A field efficacy trial of the test compounds was performed using 105 mange-infested rabbits. The results revealed that all the test agents: ivermectin, liquid paraffin, carbaryl-water, and carbaryl-liquid paraffin combination were effective against mange, recording the lesion score of zero for psoroptic mange by day 21 in the laboratory and field trials. Lesion scores in the treated groups were significantly reduced (p < 0.05) at the termination of study compared with those of the positive control group in the laboratory trial. A point-biserial correlation revealed a strong association (rpb = 0.79, p < 0.05) between the presence of viable mites and degree of psoroptic lesions in the field trial.
Collapse
|
47
|
Kothari D, Lee WD, Niu KM, Kim SK. The Genus Allium as Poultry Feed Additive: A Review. Animals (Basel) 2019; 9:E1032. [PMID: 31779230 PMCID: PMC6940947 DOI: 10.3390/ani9121032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
The genus Allium, belonging to the family Amaryllidaceae has been known since ancient times for their therapeutic potentials. As the number of multi-drug resistant infections has increased due to in-feed antibiotic usage in poultry, the relevance of alliums as feed additives has been critically assessed. Garlic and the other Allium species, such as onions, leek, shallot, scallion, and chives, have been characterized to contain a plethora of bioactive compounds such as organosulfur compounds, polyphenols, saponins, fructans, and fructo-oligosaccharides. Consequently, alliums have been validated to confer antioxidant, antibacterial, antiviral, immunostimulatory, gut homeostasis, and lipid- as well as cholesterol-lowering properties in poultry. This review intends to summarize recent progress on the use of edible alliums as poultry feed additives, their beneficial effects, and the underlying mechanisms of their involvement in poultry nutrition. Perspectives for future research and limitations are also briefly discussed.
Collapse
Affiliation(s)
- Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Woo-Do Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Kai-Min Niu
- Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
48
|
|
49
|
Moreira RRD, Santos AGD, Carvalho FA, Perego CH, Crevelin EJ, Crotti AEM, Cogo J, Cardoso MLC, Nakamura CV. Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Rev Inst Med Trop Sao Paulo 2019; 61:e33. [PMID: 31269109 PMCID: PMC6609133 DOI: 10.1590/s1678-9946201961033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/07/2018] [Indexed: 11/22/2022] Open
Abstract
Leishmaniasis is a disease that affects millions of people and it is an important public health problem. The drugs currently used for the treatment of leishmaniasis present undesirable side effects and low efficacy. In this study, we evaluated the in vitro activity of Melampodium divaricatum (MD-EO) and Casearia sylvestris (CS-EO) essential oils (EO) against promastigote and amastigote forms of Leishmania amazonensis. Sesquiterpenes E-caryophyllene (56.0%), germacrene D (12.7%) and bicyclogermacrene (9.2%) were identified as the main components of MD-EO, whereas E-caryophyllene (22.2%), germacrene D (19.6%) and bicyclogermacrene (12.2%) were the main constituents of CS-EO. CS-EO and E-caryophyllene were active against promastigote forms of L. amazonensis (IC50 24.2, 29.8 and 49.9 µg/mL, respectively). However, MD-EO, CS-EO and E-caryophyllene were more active against amastigote forms, with IC50 values of 10.7, 14.0, and 10.7 µg/mL, respectively. E-caryophyllene presented lower cytotoxicity against macrophages J774-A1 (CC50 of 62.1 µg/mL) than the EO. The EOs and E-caryophyllene should be further studied for the development of new antileishmanial drugs.
Collapse
Affiliation(s)
| | - André Gonzaga Dos Santos
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara, São Paulo, Brazil
| | - Flavio Alexandre Carvalho
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara, São Paulo, Brazil
| | - Caio Humberto Perego
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara, São Paulo, Brazil
| | - Eduardo José Crevelin
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, Ribeirão Preto, São Paulo, Brazil
| | - Antônio Eduardo Miller Crotti
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cogo
- Universidade Estadual de Maringá, Centro de Ciências da Saúde, Departamento de Ciências Básicas da Saúde, Maringá, Paraná, Brazil
| | - Mara Lane Carvalho Cardoso
- Universidade Estadual de Maringá, Centro de Ciências da Saúde, Departamento de Farmácia e Farmacologia, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Universidade Estadual de Maringá, Centro de Ciências da Saúde, Departamento de Ciências Básicas da Saúde, Maringá, Paraná, Brazil
| |
Collapse
|
50
|
Macedo ITF, Oliveira LMBD, André WPP, Araújo Filho JVD, Santos JMLD, Rondon FCM, Ribeiro WLC, Camurça-Vasconcelos ALF, Oliveira EFD, Paula HCBD, Bevilaqua CML. Anthelmintic effect of Cymbopogon citratus essential oil and its nanoemulsion on sheep gastrointestinal nematodes. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2019; 28:522-527. [DOI: 10.1590/s1984-29612019065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 11/21/2022]
Abstract
Abstract The anthelmintic resistance stimulated the search for strategies for controlling gastrointestinal nematodes, including the use of free essential oils or its nanoemulsion. This study evaluated the anthelmintic efficacy of Cymbopogon citratus essential oil (CcEO) and C. citratus essential oil nanoemulsion (CcEOn). Pysicochemical analyses were performed. The in vitro effect was determined using the egg hatch test (EHT) on Haemonchus contortus and in vivo effect was evaluated in sheep infected with gastrointestinal nematodes. The animals were treated with CcEO (500 mg/kg) or CcEOn (450 mg/kg) for the fecal egg count (FEC) and the determination of worm burden. The main component of CcEO was citral. The CcEO content in the nanoemulsion was 20% (v/v), and the mean particle size was 248 nm. In EHT, CcEO and CcEOn (1.25 mg/mL) inhibited larval hatching by 98.4 and 97.1%, respectively. Three animals treated with CcEO died whereas in the group treated with CcEOn one animal died. The FEC and total worm burden of the treated groups did not differ from the negative control (p>0.05). The CcEOn showed efficacy only on H. contortus (p<0.05). In conclusion, nanoencapsulation reduced toxicity and increased efficacy on H. contortus.
Collapse
|