1
|
Nateghi-Rostami M, Lipoldová M, Sohrabi Y. Improving reproducibility and translational potential of mouse models: lessons from studying leishmaniasis. Front Immunol 2025; 16:1559907. [PMID: 40330482 PMCID: PMC12052738 DOI: 10.3389/fimmu.2025.1559907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
Collapse
Affiliation(s)
| | - Marie Lipoldová
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Katebi A, Nouri M, Behrouzi A, Ajdary S, Riazi-Rad F. The pro-inflammatory responses of innate immune cells to Leishmania RNA virus 2-infected L. major support the survival and proliferation of the parasites. Biochimie 2025; 230:10-22. [PMID: 39455049 DOI: 10.1016/j.biochi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Infection of Leishmania by Leishmania RNA virus (LRV) has been proposed as a pathogenic factor that induces pro-inflammatory responses through the TLR3/TLR4 signaling pathway. We investigated the effect of L. major infection by LRV2 on innate immune cell responses (human neutrophil (HL-60) and macrophage (THP-1) cell lines). The expression levels of pro- and anti-inflammatory cytokine and chemokine genes as well as genes involved in the amino acid metabolism of arginine were then investigated by RT-qPCR. Moreover, the expression of TLR genes and their downstream signaling pathways were compared in THP-1 cells infected with the two isolates. Apoptosis was also evaluated in infected THP-1 and HL-60 cells using the PI/Annexin V flow cytometry assay. In both cell lines, the expression of pro-inflammatory cytokines increased in response to LRV2+ L. major (Lm+), and the expression of chemokines shifted toward macrophage recruitment. In contrast to LRV2- L. major (Lm-), Lm + infected THP-1 cells acquired the M2-like phenotype. The presence of LRV2 increased the gene expression of TLRs and their signaling pathways, especially TLR3 and TLR4, which was proportional to the increase in pro-inflammatory cytokines. In addition, Lm + increased the expression of IL-10 and IFN-β, which contribute to the survival and growth of the parasite in the phagolysosome. Altogether, our results showed that Lm + could stimulate pro-inflammatory responses that promote parasite replication and stabilization in the host.
Collapse
Affiliation(s)
- Asal Katebi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Matineh Nouri
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Ava Behrouzi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi-Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
de Souza JL, de Farias Guerra MV, de Mesquita TGR, Junior JDES, Sequera HDG, da Silva LS, da Silva LA, Moura FM, Menescal LSF, da Costa Torres J, Pinheiro SK, Kerr HKA, Ogusku MM, de Souza MLG, de Moura Neto JP, Sadahiro A, Ramasawmy R. Caspase-1 Variants and Plasma IL-1β in Patients with Leishmania guyanensis Cutaneous Leishmaniasis in the Amazonas. Int J Mol Sci 2024; 25:12438. [PMID: 39596502 PMCID: PMC11594320 DOI: 10.3390/ijms252212438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Leishmaniasis, a disease caused by protozoan Leishmania spp., exhibits a broad range of clinical manifestations. Host resistance or susceptibility to infections is often influenced by the genetic make-up associated with natural immunity. Caspase-1, a key component of the NLRP3 inflammasome, is critical for processing pro-IL-1β into its active form, IL-1β, while CARD8 functions as an NLRP3 inflammasome inhibitor. We conducted a case-control study comparing L. guyanensis-cutaneous leishmaniasis (Lg-CL) patients with healthy individuals (HCs) by analyzing the CASP1 genetic variants rs530537A>G, rs531542C>T, rs531604A>T and rs560880G>T. Additionally, a combined analysis of CARD8rs2043211A>T with CASP1rs530537 was performed. The genotype distribution for the four variants showed no significant differences between Lg-CL patients and HCs. However, the haplotype analysis of the four CASP1 variants identified the GTTT haplotype as associated with a 19% decreased likelihood of Lg-CL development, suggesting a protective effect against disease progression. The combined analysis of CARD8 with CASP1 variants indicated that individuals homozygous for both variants (GG/TT) exhibited a 38% reduced risk of developing Lg-CL (OR = 0.62 [95%CI:0.46-0.83]) in comparison to individuals with other genotype combinations. No correlation was found between the CASP1 variant genotypes and plasma IL-1β levels. CASP1 may act as a genetic modifier in Lg-CL.
Collapse
Affiliation(s)
- Josué Lacerda de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (J.L.d.S.); (L.S.d.S.)
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
| | - Marcus Vinitius de Farias Guerra
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Tirza Gabrielle Ramos de Mesquita
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - José do Espírito Santo Junior
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
| | - Hector David Graterol Sequera
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Lener Santos da Silva
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (J.L.d.S.); (L.S.d.S.)
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
| | - Larissa Almeida da Silva
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
| | - Filipe Menezes Moura
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Lizandra Stephanny Fernandes Menescal
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
| | - Júlia da Costa Torres
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
| | - Suzana Kanawati Pinheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Herllon Karllos Athaydes Kerr
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
| | - Mauricio Morishi Ogusku
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060001, Amazonas, Brazil;
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas—REGESAM, Manaus 69055038, Amazonas, Brazil
| | - Mara Lúcia Gomes de Souza
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040000, Amazonas, Brazil (L.A.d.S.); (J.d.C.T.); (M.L.G.d.S.)
| | - Jose Pereira de Moura Neto
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas—REGESAM, Manaus 69055038, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazonia Legal (Rede Bionorte), Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (J.L.d.S.); (L.S.d.S.)
- Faculdade de Medicina, Universidade Nilton Lins, Manaus 69058030, Amazonas, Brazil;
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69055038, Amazonas, Brazil; (T.G.R.d.M.); (H.D.G.S.); (F.M.M.); (S.K.P.); (H.K.A.K.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus 69060001, Amazonas, Brazil; (L.S.F.M.); (J.P.d.M.N.); (A.S.)
- Genomic Health Surveillance Network: Optimization of Assistance and Research in The State of Amazonas—REGESAM, Manaus 69055038, Amazonas, Brazil
| |
Collapse
|
4
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
5
|
Diotallevi A, Bruno F, Castelli G, Persico G, Buffi G, Ceccarelli M, Ligi D, Mannello F, Vitale F, Magnani M, Galluzzi L. Transcriptional signatures in human macrophage-like cells infected by Leishmania infantum, Leishmania major and Leishmania tropica. PLoS Negl Trop Dis 2024; 18:e0012085. [PMID: 38578804 PMCID: PMC11023634 DOI: 10.1371/journal.pntd.0012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/17/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.
Collapse
Affiliation(s)
- Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Giuseppe Persico
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Milan, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniela Ligi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.), OIE Leishmania Reference Laboratory, Istituto Zooprofilattico Sperimentale della Sicilia A Mirri, Palermo, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
6
|
Borlase A, Prada JM, Crellen T. Modelling morbidity for neglected tropical diseases: the long and winding road from cumulative exposure to long-term pathology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220279. [PMID: 37598702 PMCID: PMC10440174 DOI: 10.1098/rstb.2022.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Reducing the morbidities caused by neglected tropical diseases (NTDs) is a central aim of ongoing disease control programmes. The broad spectrum of pathogens under the umbrella of NTDs lead to a range of negative health outcomes, from malnutrition and anaemia to organ failure, blindness and carcinogenesis. For some NTDs, the most severe clinical manifestations develop over many years of chronic or repeated infection. For these diseases, the association between infection and risk of long-term pathology is generally complex, and the impact of multiple interacting factors, such as age, co-morbidities and host immune response, is often poorly quantified. Mathematical modelling has been used for many years to gain insights into the complex processes underlying the transmission dynamics of infectious diseases; however, long-term morbidities associated with chronic or cumulative exposure are generally not incorporated into dynamic models for NTDs. Here we consider the complexities and challenges for determining the relationship between cumulative pathogen exposure and morbidity at the individual and population levels, drawing on case studies for trachoma, schistosomiasis and foodborne trematodiasis. We explore potential frameworks for explicitly incorporating long-term morbidity into NTD transmission models, and consider the insights such frameworks may bring in terms of policy-relevant projections for the elimination era. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Anna Borlase
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Joaquin M. Prada
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Crellen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
- School of Biodiversity, One Health & Veterinary Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Wellcome Centre for Integrative Parasitology, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
7
|
Sarmadi M, Bagherian Z, Ahmadi-Soleimani SM, Rezaiemanesh MR, Khodamoradi F, Rahimi S, Azizi H. Environmental health risk factors and cutaneous leishmaniasis (CL): A case-control study in northeastern Iran. J Vector Borne Dis 2023; 60:372-381. [PMID: 38174514 DOI: 10.4103/0972-9062.374236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Background & objectives Cutaneous leishmaniasis (CL) is one of the main causes of vector-born diseases in younger population. To evaluate the association of environmental health factors on the odds of CL incidence, a case-control study was conducted in northeastern Iran. Methods This study was conducted within 2020-2021 based on individual and household data from a tertiary referral center. Cases were patients diagnosed with CL by PCR method; controls were selected among the patients' relatives, and information was obtained from a health registry system. Demographic and socioeconomic data of 1871 subjects, included age, sex, household information and environmental health factors. Multivariable models with environmental factors in various conditions and CL were separately fit by univariate and mixed multiple unconditional logistic regression. Results Participants included 617 cases (mean [SD] age, 13.62[13.72] years; 58.20% male) and 1264 controls (mean [SD] age, 16.45[15.44] years; 50.40% male). Results revealed that the use of well-water sources compared to surface water is significantly associated with CL (odds ratio [OR]=0.204; 95%CI, 0.13-0.33;P<0.001). Muddy houses, ruined buildings or wastelands and stagnant water, canals and rivers near the houses were also associated with CL (OR=3.85; 95%CI, 1.66-8.89; P=.002; OR=2.47; 95%CI, 1.76-3.47; P<.001). Besides, existence of pine tree was found to be a risk factor (OR=3.25; 95%CI, 2.12-4.99; P<.001) and similarly for the use of waste collection system (OR=4.43; 95%CI, 3.32-7.51; P<.001). Interpretation & conclusion Environmental factors related to houses were significantly associated with CL and may represent the modifiable risk factors of CL disease.
Collapse
Affiliation(s)
- Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Zahra Bagherian
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Health Sciences Research Center; Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Reza Rezaiemanesh
- Health Sciences Research Center; Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farzad Khodamoradi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hakim Azizi
- Department of Medical Parasitology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
8
|
Krayem I, Sohrabi Y, Havelková H, Gusareva ES, Strnad H, Čepičková M, Volkova V, Kurey I, Vojtíšková J, Svobodová M, Demant P, Lipoldová M. Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNγ level in addition to skin lesions. Front Immunol 2023; 14:1145269. [PMID: 37600780 PMCID: PMC10437074 DOI: 10.3389/fimmu.2023.1145269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/02/2023] [Indexed: 08/22/2023] Open
Abstract
Leishmaniasis, a disease caused by parasites of Leishmania spp., endangers more than 1 billion people living in endemic countries and has three clinical forms: cutaneous, mucocutaneous, and visceral. Understanding of individual differences in susceptibility to infection and heterogeneity of its pathology is largely lacking. Different mouse strains show a broad and heterogeneous range of disease manifestations such as skin lesions, splenomegaly, hepatomegaly, and increased serum levels of immunoglobulin E and several cytokines. Genome-wide mapping of these strain differences detected more than 30 quantitative trait loci (QTLs) that control the response to Leishmania major. Some control different combinations of disease manifestations, but the nature of this heterogeneity is not yet clear. In this study, we analyzed the L. major response locus Lmr15 originally mapped in the strain CcS-9 which carries 12.5% of the genome of the resistant strain STS on the genetic background of the susceptible strain BALB/c. For this analysis, we used the advanced intercross line K3FV between the strains BALB/c and STS. We confirmed the previously detected loci Lmr15, Lmr18, Lmr24, and Lmr27 and performed genetic dissection of the effects of Lmr15 on chromosome 11. We prepared the interval-specific recombinant strains 6232HS1 and 6229FUD, carrying two STS-derived segments comprising the peak linkage of Lmr15 whose lengths were 6.32 and 17.4 Mbp, respectively, and analyzed their response to L. major infection. These experiments revealed at least two linked but functionally distinct chromosomal regions controlling IFNγ response and IgE response, respectively, in addition to the control of skin lesions. Bioinformatics and expression analysis identified the potential candidate gene Top3a. This finding further clarifies the genetic organization of factors relevant to understanding the differences in the individual risk of disease.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Elena S. Gusareva
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of The Czech Academy of Sciences, Prague, Czechia
| | - Marie Čepičková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Valeryia Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Iryna Kurey
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Amni F, Maleki-Ravasan N, Nateghi-Rostami M, Hadighi R, Karimian F, Meamar AR, Badirzadeh A, Parvizi P. Co-infection of Phlebotomus papatasi (Diptera: Psychodidae) gut bacteria with Leishmania major exacerbates the pathological responses of BALB/c mice. Front Cell Infect Microbiol 2023; 13:1115542. [PMID: 36779192 PMCID: PMC9909354 DOI: 10.3389/fcimb.2023.1115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Clinical features and severity of the leishmaniasis is extremely intricate and depend on several factors, especially sand fly-derived products. Bacteria in the sand fly's gut are a perpetual companion of Leishmania parasites. However, consequences of the concomitance of these bacteria and Leishmania parasite outside the midgut environment have not been investigated in the infection process. Herein, a needle infection model was designed to mimic transmission by sand flies, to examine differences in the onset and progression of L. major infection initiated by inoculation with "low" or "high" doses of Enterobacter cloacae and Bacillus subtilis bacteria. The results showed an alteration in the local expression of pro- and anti-inflammatory cytokines in mice receiving different inoculations of bacteria. Simultaneous injection of two bacteria with Leishmania parasites in the low-dose group caused greater thickness of ear pinna and enhanced tissue chronic inflammatory cells, as well as resulted in multifold increase in the expression of IL-4 and IL-1β and a decrease in the iNOS expression, without changing the L. major burden. Despite advances in scientific breakthroughs, scant survey has investigated the interaction between micro and macro levels of organization of leishmaniasis that ranges from the cellular to macro ecosystem levels, giving rise to the spread and persistence of the disease in a region. Our findings provide new insight into using the potential of the vector-derived microbiota in modulating the vertebrate immune system for the benefit of the host or recommend the use of appropriate antibiotics along with antileishmanial medicines.
Collapse
Affiliation(s)
- Fariba Amni
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| | - Mahmoud Nateghi-Rostami
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| | - Ramtin Hadighi
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| | - Fateh Karimian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Reza Meamar
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Naseh Maleki-Ravasan, ; Mahmoud Nateghi-Rostami, ; Ramtin Hadighi, ; Parviz Parvizi,
| |
Collapse
|
10
|
Ornellas-Garcia U, Cuervo P, Ribeiro-Gomes FL. Malaria and leishmaniasis: Updates on co-infection. Front Immunol 2023; 14:1122411. [PMID: 36895563 PMCID: PMC9989157 DOI: 10.3389/fimmu.2023.1122411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Malaria and leishmaniasis are endemic parasitic diseases in tropical and subtropical countries. Although the overlap of these diseases in the same host is frequently described, co-infection remains a neglected issue in the medical and scientific community. The complex relationship of concomitant infections with Plasmodium spp. and Leishmania spp. is highlighted in studies of natural and experimental co-infections, showing how this "dual" infection can exacerbate or suppress an effective immune response to these protozoa. Thus, a Plasmodium infection preceding or following Leishmania infection can impact the clinical course, accurate diagnosis, and management of leishmaniasis, and vice versa. The concept that in nature we are affected by concomitant infections reinforces the need to address the theme and ensure its due importance. In this review we explore and describe the studies available in the literature on Plasmodium spp. and Leishmania spp. co-infection, the scenarios, and the factors that may influence the course of these diseases.
Collapse
Affiliation(s)
- Uyla Ornellas-Garcia
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Patricia Cuervo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Tano FT, Barbosa GR, de Rezende E, Souza ROO, Muxel SM, Silber AM, Palmisano G, Stolf BS. Proteome and morphological analysis show unexpected differences between promastigotes of Leishmania amazonensis PH8 and LV79 strains. PLoS One 2022; 17:e0271492. [PMID: 35998173 PMCID: PMC9398010 DOI: 10.1371/journal.pone.0271492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Leishmaniases are diseases caused by Leishmania protozoans that affect around 12 million people. Leishmania promastigotes are transmitted to vertebrates by female phlebotomine flies during their blood meal. Parasites attach to phagocytic cells, are phagocytosed and differentiate into amastigotes. We previously showed that PH8 and LV79 strains of Leishmania amazonensis have different virulence in mice and that their amastigotes differ in their proteomes. In this work, we compare promastigotes' infectivity in macrophages, their proteomes and morphologies. METHODS/PRINCIPAL FINDINGS Phagocytosis assays showed that promastigotes adhesion to and phagocytosis by macrophages is higher in PH8 than LV79. To identify proteins that differ between the two strains and that may eventually contribute for these differences we used a label-free proteomic approach to compare promastigote´s membrane-enriched fractions. Proteomic analysis enabled precise discrimination of PH8 and LV79 protein profiles and the identification of several differentially abundant proteins. The proteins more abundant in LV79 promastigotes participate mainly in translation and amino acid and nucleotide metabolism, while the more abundant in PH8 are involved in carbohydrate metabolism, cytoskeleton composition and vesicle/membrane trafficking. Interestingly, although the virulence factor GP63 was more abundant in the less virulent LV79 strain, zymography suggests a higher protease activity in PH8. Enolase, which may be related to virulence, was more abundant in PH8 promastigotes. Unexpectedly, flow cytometry and morphometric analysis indicate higher abundance of metacyclics in LV79. CONCLUSIONS/SIGNIFICANCE Proteome comparison of PH8 and LV79 promastigotes generated a list of differential proteins, some of which may be further prospected to affect the infectivity of promastigotes. Although proteomic profile of PH8 includes more proteins characteristic of metacyclics, flow cytometry and morphometric analysis indicate a higher abundance of metacyclics in LV79 cultures. These results shed light to the gaps in our knowledge of metacyclogenesis in L. amazonensis, and to proteins that should be studied in the context of infection by this species.
Collapse
Affiliation(s)
- Fabia Tomie Tano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo Rolim Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Sandra Marcia Muxel
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ariel Mariano Silber
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
12
|
Aljedaie MM. Epigenetic paradigms/exemplars of the macrophage: inflammasome axis in Leishmaniasis. Mol Cell Biochem 2022; 477:2553-2565. [PMID: 35595955 DOI: 10.1007/s11010-022-04460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
The infectious paradigms have recently led to the recognition interplay of complex phenomenon underpinning disease diagnosis and prognosis. Evidently, parasitic infection studies are depicting converging trends of the epigenetic, environmental, and microbiome contributions, assisting pathogen-directed modulations of host biological system. The molecular details of epigenetic variations and memory, along with the multi-omics data at the interface of the host-pathogen level becomes strong indicator of immune cell plasticity, differentiation, and pathogen survival. Despite being one of the most important aspects of the disease's etiopathology, the epigenetic regulation of host-pathogen interactions and evolutionary epigenetics have received little attention thus far. Recent evidence has focused on the growing need to link epigenetic and microbiome modulations on parasite phenotypic plasticity and pathogen-induced host phenotypic plasticity for designing futuristic therapeutic regimes. Leishmaniasis is a neglected tropical illness with varying degrees of disease severity that is linked to a trans-species and epigenetic heredity process, including the pathogen-induced host and strain-specific modulations. The review configures research findings aligning to the epigenetic epidemiology niche, involving co-evolutionary epigenetic inheritance and plasticity disease models. The epigenetic exemplars focus on the host-pathogen interactome expanse at the macrophage-inflammasome axis.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
13
|
Volpedo G, Huston RH, Holcomb EA, Pacheco-Fernandez T, Gannavaram S, Bhattacharya P, Nakhasi HL, Satoskar AR. From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection. Expert Rev Vaccines 2021; 20:1431-1446. [PMID: 34511000 DOI: 10.1080/14760584.2021.1969231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Leishmaniasis is a major public health problem and the second most lethal parasitic disease in the world due to the lack of effective treatments and vaccines. Even when not lethal, leishmaniasis significantly affects individuals and communities through life-long disabilities, psycho-sociological trauma, poverty, and gender disparity in treatment. AREAS COVERED This review discusses the most relevant and recent research available on Pubmed and GoogleScholar highlighting leishmaniasis' global impact, pathogenesis, treatment options, and lack of effective control strategies. An effective vaccine is necessary to prevent morbidity and mortality, lower health care costs, and reduce the economic burden of leishmaniasis for endemic low- and middle-income countries. Since there are several forms of leishmaniasis, a pan-Leishmania vaccine without geographical restrictions is needed. This review also focuses on recent advances and common challenges in developing prophylactic strategies against leishmaniasis. EXPERT OPINION Despite advances in pre-clinical vaccine research, approval of a human leishmaniasis vaccine still faces major challenges - including manufacturing of candidate vaccines under Good Manufacturing Practices, developing well-designed clinical trials suitable in endemic countries, and defined correlates of protection. In addition, there is a need to explore Challenge Human Infection Model to avoid large trials because of fluctuating incidence and prevalence of leishmanasis.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ryan H Huston
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Erin A Holcomb
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Mandal A, Kumar M, Kumar A, Sen A, Das P, Das S. TLR4 and TLR9 polymorphism: Probable role in susceptibility among the population of Bihar for Indian visceral leishmaniasis. Innate Immun 2021; 27:493-500. [PMID: 33910419 PMCID: PMC8504264 DOI: 10.1177/1753425920965658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic variations in the host TLRs genes play an important role in susceptibility and/or resistance to visceral leishmaniasis by altering the host-pathogen interaction. In this study, we investigated the association between polymorphisms of TLR4 (Asp299Gly, Thr399Ile) and TLR-9 (T-1237C), with susceptibility to visceral leishmaniasis. A bi-directional PCR amplification of specific alleles technique was used to characterize the distribution of TLR4 (Asp299Gly and Thr399Ile) and TLR9 (T-1237C) polymorphisms. A total of 60 samples were randomly selected from confirmed visceral leishmaniasis patients and 24 endemic healthy volunteers. The samples were genotyped and allele frequencies were determined. We observed that TLR4 Asp299Gly and Thr399Ile genotypes were more frequent in visceral leishmaniasis patients (10% and 15% respectively) compared to controls (4.2% and 8.3% respectively). However, the differences were not significant in TLR4 Asp299Gly and Thr399Ile alleles and genotypes. In the case of TLR9, we observed the frequency of T1237C genotype was higher in visceral leishmaniasis patients (43.3%) than in healthy controls (33.3%). Statistically significant differences were observed in TLR9 T1237C alleles and genotypes. We concluded that TLR9 T1237C, but not TLR4, gene polymorphisms can be regarded as contributors to visceral leishmaniasis susceptibility among the Indian population of Bihar state.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manish Kumar
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ashish Kumar
- Department of Biochemistry, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Abhik Sen
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Indian Council of Medical Research-Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
15
|
Passelli K, Billion O, Tacchini-Cottier F. The Impact of Neutrophil Recruitment to the Skin on the Pathology Induced by Leishmania Infection. Front Immunol 2021; 12:649348. [PMID: 33732265 PMCID: PMC7957080 DOI: 10.3389/fimmu.2021.649348] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 12/29/2022] Open
Abstract
Leishmania (L.) are obligate intracellular protozoan parasites that cause the leishmaniases, a spectrum of neglected infectious vector-borne diseases with a broad range of clinical manifestations ranging from local cutaneous, to visceral forms of the diseases. The parasites are deposited in the mammalian skin during the blood meal of an infected female phlebotomine sand fly. The skin is a complex organ acting as the first line of physical and immune defense against pathogens. Insults to skin integrity, such as that occurring during insect feeding, induces the local secretion of pro-inflammatory molecules generating the rapid recruitment of neutrophils. At the site of infection, skin keratinocytes play a first role in host defense contributing to the recruitment of inflammatory cells to the infected dermis, of which neutrophils are the first recruited cells. Although neutrophils efficiently kill various pathogens including Leishmania, several Leishmania species have developed mechanisms to survive in these cells. In addition, through their rapid release of cytokines, neutrophils modulate the skin microenvironment at the site of infection, a process shaping the subsequent development of the adaptive immune response. Neutrophils may also be recruited later on in unhealing forms of cutaneous leishmaniasis and to the spleen and liver in visceral forms of the disease. Here, we will review the mechanisms involved in neutrophil recruitment to the skin following Leishmania infection focusing on the role of keratinocytes in this process. We will also discuss the distinct involvement of neutrophils in the outcome of leishmaniasis.
Collapse
Affiliation(s)
- Katiuska Passelli
- Department of Biochemistry, WHO Collaborative Centre for Research and Training in Immunology, University of Lausanne, Lausanne, Switzerland
| | - Oaklyne Billion
- Department of Biochemistry, WHO Collaborative Centre for Research and Training in Immunology, University of Lausanne, Lausanne, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Collaborative Centre for Research and Training in Immunology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Samant M, Sahu U, Pandey SC, Khare P. Role of Cytokines in Experimental and Human Visceral Leishmaniasis. Front Cell Infect Microbiol 2021; 11:624009. [PMID: 33680991 PMCID: PMC7930837 DOI: 10.3389/fcimb.2021.624009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Visceral Leishmaniasis (VL) is the most fatal form of disease leishmaniasis. To date, there are no effective prophylactic measures and therapeutics available against VL. Recently, new immunotherapy-based approaches have been established for the management of VL. Cytokines, which are predominantly produced by helper T cells (Th) and macrophages, have received great attention that could be an effective immunotherapeutic approach for the treatment of human VL. Cytokines play a key role in forming the host immune response and in managing the formation of protective and non-protective immunities during infection. Furthermore, immune response mediated through different cytokines varies from different host or animal models. Various cytokines viz. IFN-γ, IL-2, IL-12, and TNF-α play an important role during protection, while some other cytokines viz. IL-10, IL-6, IL-17, TGF-β, and others are associated with disease progression. Therefore, comprehensive knowledge of cytokine response and their interaction with various immune cells is very crucial to determine appropriate immunotherapies for VL. Here, we have discussed the role of cytokines involved in VL disease progression or host protection in different animal models and humans that will determine the clinical outcome of VL and open the path for the development of rapid and accurate diagnostic tools as well as therapeutic interventions against VL.
Collapse
Affiliation(s)
- Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
17
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
18
|
Sarmah P, Bharali R, Khatonier R, Khan A. Polymorphism in Toll interacting protein (TOLLIP) gene and its association with Visceral Leishmaniasis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Banerjee S, Datta R. Leishmania infection triggers hepcidin-mediated proteasomal degradation of Nramp1 to increase phagolysosomal iron availability. Cell Microbiol 2020; 22:e13253. [PMID: 32827218 DOI: 10.1111/cmi.13253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Natural resistance-associated macrophage protein 1 (Nramp1) was originally discovered as a genetic determinant of resistance against multiple intracellular pathogens, including Leishmania. It encodes a transmembrane protein of the phago-endosomal compartments, where it functions as an iron transporter. But the mechanism by which Nramp1 controls host-pathogen dynamics and determines final outcome of an infection is yet to be fully deciphered. Whether the expression of Nramp1 is altered in response to a pathogen attack is also unknown. To address these, Nramp1 status was examined in Leishmania major-infected murine macrophages. We observed that at 12 hrs post infection, there was drastic lowering of Nramp1 level accompanied by increased phagolysosomal iron content and enhanced intracellular parasite growth. Leishmania infection-induced Nramp1 downregulation was caused by ubiquitin-proteasome degradation pathway, which in turn was found to be mediated by the iron-regulatory peptide hormone hepcidin. Blocking of Nramp1 degradation with proteasome inhibitor or transcriptional agonist of hepcidin resulted in depletion of phagolysosomal iron pool that led to significant reduction of intracellular parasite burden. Interestingly, Nramp1 level was restored to normalcy after 30 hrs of infection with a concomitant drop in phagolysosomal iron, which is suggestive of a host counteractive response to deprive the pathogen of this essential micronutrient. Taken together, our study implicates Nramp1 as a central player in the host-pathogen battle for phagolysosomal iron. We also report Nramp1 as a novel target for hepcidin, and this 'hepcidin-Nramp1' axis may have a broader role in regulating macrophage iron homeostasis.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| |
Collapse
|
20
|
Kirik FE, Ülger M, Tezcan Ülger S, Aslan G. Association of cytokine gene polymorphisms with susceptibility to cutaneous leishmaniasis in a Turkish population. Parasite Immunol 2020; 42:e12775. [PMID: 32656817 DOI: 10.1111/pim.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/08/2020] [Indexed: 01/29/2023]
Abstract
AIMS The objective of this study was to determine the association of TNF-α -308 G/A, IFN-γ +874 T/A, IL-12B + 1188 A/C, IL-10 -1082 G/A and IL-4 -590 C/T polymorphisms with susceptibility to CL. METHODS AND RESULTS A total of 55 CL patients and 110 controls from Sanlıurfa province of Turkey were included to this study. Polymorphisms were genotyped by 'polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)' and 'amplification refractory mutation system-PCR (ARMS-PCR)' methods. A statistically significant difference was noted in the allele (P < .001, P = .002) and genotype (P < .001, P = .001,) frequencies of TNF-α -308 G/A and IL-4 -590 C/T, respectively. TNF-α 308 GG versus GA genotype (OR = 19.556 [95% CI 8.310-46.019] P < .001), GG versus GA + AA genotype (OR = 20.444 [95% CI 8.707-48.004] P < .001) and G versus A allele (OR = 6.968 [95% CI 3.903-12.440] P < .001) revealed significant association with CL. IL-4 -590 CC versus TT + CT genotype (OR = 2.049 [95% CI 1.025-4.096], P = .041) and C versus T allele (OR = 2.441 [95% CI 1.355-4.396], P = .002) revealed significant association with CL. CONCLUSION Our study indicates that TNF-α 308 G/A and IL-4-590 C/T polymorphisms are significantly associated with susceptibility to CL. Individuals carrying A allele at TNF-α promoter -308 position and T allele at IL-4 promoter -590 position are at a higher risk for CL.
Collapse
Affiliation(s)
- Fatma Esin Kirik
- Department of Medical Microbiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Niğde, Turkey
| | - Mahmut Ülger
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seda Tezcan Ülger
- Department of Medical Microbiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gönül Aslan
- Department of Medical Microbiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
21
|
Sereno D, Akhoundi M, Sayehmri K, Mirzaei A, Holzmuller P, Lejon V, Waleckx E. Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:E1684. [PMID: 32121441 PMCID: PMC7084391 DOI: 10.3390/ijms21051684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.
Collapse
Affiliation(s)
- Denis Sereno
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR MIVEGEC IRD, CNRS, 34032 Montpellier, France
| | - Mohammad Akhoundi
- Parasitology-Mycology Department, Avicenne Hospital, AP-HP, 93000 Bobigny, France;
| | - Kourosh Sayehmri
- Psychosocial Injuries Research Center, Department of Biostatistics, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
| | - Asad Mirzaei
- Parasitology Department, Paramedical School, Ilam University of Medical Sciences, Ilam 6931851147, Iran;
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam 6931851147, Iran
| | - Philippe Holzmuller
- CIRAD, UMR ASTRE “Animal, Santé, Territoires, Risques et Ecosystèmes”, F-34398 Montpellier, France;
- ASTRE, CIRAD, INRAE, Université de Montpellier (I-MUSE), 34000 Montpellier, France
| | - Veerle Lejon
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
| | - Etienne Waleckx
- Institut de Recherche pour le Dévelopement, Université de Montpellier, UMR INTERTRYP IRD, CIRAD, 34032 Montpellier, France; (V.L.); (E.W.)
- Centro de Investigaciones Regionales «Dr Hideyo Noguchi», Universidad autònoma de yucatán, Merida, Yucatán 97000, Mexico
| |
Collapse
|
22
|
Nilsson P, Solbakken MH, Schmid BV, Orr RJS, Lv R, Cui Y, Song Y, Zhang Y, Baalsrud HT, Tørresen OK, Stenseth NC, Yang R, Jakobsen KS, Easterday WR, Jentoft S. The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene. Genome Biol Evol 2020; 12:3832-3849. [PMID: 31971556 PMCID: PMC7046166 DOI: 10.1093/gbe/evaa008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The great gerbil (Rhombomys opimus) is a social rodent living in permanent, complex burrow systems distributed throughout Central Asia, where it serves as the main host of several important vector-borne infectious pathogens including the well-known plague bacterium (Yersinia pestis). Here, we present a continuous annotated genome assembly of the great gerbil, covering over 96% of the estimated 2.47-Gb genome. Taking advantage of the recent genome assemblies of the sand rat (Psammomys obesus) and the Mongolian gerbil (Meriones unguiculatus), comparative immunogenomic analyses reveal shared gene losses within TLR gene families (i.e., TLR8, TLR10, and the entire TLR11-subfamily) for Gerbillinae, accompanied with signs of diversifying selection of TLR7 and TLR9. Most notably, we find a great gerbil-specific duplication of the MHCII DRB locus. In silico analyses suggest that the duplicated gene provides high peptide binding affinity for Yersiniae epitopes as well as Leishmania and Leptospira epitopes, putatively leading to increased capability to withstand infections by these pathogens. Our study demonstrates the power of whole-genome sequencing combined with comparative genomic analyses to gain deeper insight into the immunogenomic landscape of the great gerbil and its close relatives.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | | | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujiang Zhang
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Helle T Baalsrud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - William Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
23
|
de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, Silva ALN, da Silva PF, Frantz FG, Lorenzon LB, Souza MM, Almeida F, Cantanhêde LM, Ferreira RDGM, Cruz AK, Zamboni DS. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun 2019; 10:5273. [PMID: 31754185 PMCID: PMC6872735 DOI: 10.1038/s41467-019-13356-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmania RNA virus (LRV) is an important virulence factor associated with the development of mucocutaneous Leishmaniasis, a severe form of the disease. LRV-mediated disease exacerbation relies on TLR3 activation, but downstream mechanisms remain largely unexplored. Here, we combine human and mouse data to demonstrate that LRV triggers TLR3 and TRIF to induce type I IFN production, which induces autophagy. This process results in ATG5-mediated degradation of NLRP3 and ASC, thereby limiting NLRP3 inflammasome activation in macrophages. Consistent with the known restricting role of NLRP3 for Leishmania replication, the signaling pathway triggered by LRV results in increased parasite survival and disease progression. In support of this data, we find that lesions in patients infected with LRV+ Leishmania are associated with reduced inflammasome activation and the development of mucocutaneous disease. Our findings reveal the mechanisms triggered by LRV that contribute to the development of the debilitating mucocutaneous form of Leishmaniasis.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Djalma S Lima-Junior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcus Vinícius G da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marisa Dilucca
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamara S Rodrigues
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Catarina V Horta
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrick F da Silva
- Laboratório de Imunologia e Epigenética, Departamento de Análises Clínicas, Toxicológicas e Bromatologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiani G Frantz
- Laboratório de Imunologia e Epigenética, Departamento de Análises Clínicas, Toxicológicas e Bromatologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas B Lorenzon
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Michel Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Angela K Cruz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
24
|
Neppelenbroek KH, Honório HM, Garlet GP. To P or not to P, is that the question? Rethinking experimental design and data analysis to improve biological significance beyond the statistical significance. J Appl Oral Sci 2019; 27:e2019ed001. [PMID: 31596371 PMCID: PMC7700743 DOI: 10.1590/1678-7757-2019-ed001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Moradkhani MA, Spotin A, Mahami-Oskouei M, Ahmadpour E, Lotfinezhad M, Noori J, Alizadeh Z. A clinical association between Toll-like receptor 2 Arg753Gln polymorphism with recurrent cystic echinococcosis in postsurgery patients: A case control study. Comp Immunol Microbiol Infect Dis 2019; 66:101336. [PMID: 31437685 DOI: 10.1016/j.cimid.2019.101336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022]
Abstract
Recurrence of hydatid cysts in cystectomy patients has dramatically remained a serious concern within the surgical community. Predisposing factors for recurrence of hydatid cysts remained to be identified. Toll-like receptor (TLR) plays a pivotal role in bridging between acquired and innate immunity in cystic echinococcosis (CE) infection. 117 CE patients including 66 acute hydatidosis (AH; primary infection) and 51 recurrent hydatidosis (RH; chronic infection), and 117 ethnically matched healthy control (HC) were investigated from endemic regions of Iran in the period of 2015-2018. CE patients were definitely confirmed using histopathological and immunological assays. Genotyping of TLR2 Arg753Gln was carried out by restriction fragment length polymorphism and sequencing. The homozygous mutant-type TLR2 Gln/Gln (A/A) was represented to be associated with the occurrence of RH (P = 0.04) and conferred a 9 fold risk for susceptibility, while the heterozygous mutant-type TLR2 Arg/Gln (G/A) indicated a tendency to be associated with the occurrence of RH (P = 0.07). There was no discrepancy in the frequency of TLR2 Arg753Gln haplotypes between AH patients and HC individuals (P = 0.09). The mutant allele A was observed to be a risk factor for susceptibility to RH patients. Our results point to a clinical association between TLR2 Arg753Gln haplotypes with RH in postoperative patients. It can be inferred that allele G may lead to protection against the CE, while mutant allele A may be a diagnostic hallmark in the screening of RH susceptibility. Nevertheless, further studies with a larger sample size of different ethnic populations are required to authenticate this association.
Collapse
Affiliation(s)
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahmoud Mahami-Oskouei
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Lotfinezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Noori
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Alizadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Kobets T, Čepičková M, Volkova V, Sohrabi Y, Havelková H, Svobodová M, Demant P, Lipoldová M. Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania major, Their Interactions and Sex Influence. Front Immunol 2019; 10:1083. [PMID: 31231359 PMCID: PMC6566641 DOI: 10.3389/fimmu.2019.01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a serious health problem in many countries, and continues expanding to new geographic areas including Europe and USA. This disease, caused by parasites of Leishmania spp. and transmitted by phlebotomine sand flies, causes up to 1.3 million new cases each year and despite efforts toward its functional dissection and treatment it causes 20-50 thousands deaths annually. Dependence of susceptibility to leishmaniasis on sex and host's genes was observed in humans and in mouse models. Several laboratories defined in mice a number of Lmr (Leishmania major response) genetic loci that control functional and pathological components of the response to and outcome of L. major infection. However, the development of its most aggressive form, visceral leishmaniasis, which is lethal if untreated, is not yet understood. Visceral leishmaniasis is caused by infection and inflammation of internal organs. Therefore, we analyzed the genetics of parasite load, spread to internal organs, and ensuing visceral pathology. Using a new PCR-based method of quantification of parasites in tissues we describe a network-like set of interacting genetic loci that control parasite load in different organs. Quantification of Leishmania parasites in lymph nodes, spleen and liver from infected F2 hybrids between BALB/c and recombinant congenic strains CcS-9 and CcS-16 allowed us to map two novel parasite load controlling Leishmania major response loci, Lmr24 and Lmr27. We also detected parasite-controlling role of the previously described loci Lmr4, Lmr11, Lmr13, Lmr14, Lmr15, and Lmr25, and describe 8 genetic interactions between them. Lmr14, Lmr15, Lmr25, and Lmr27 controlled parasite load in liver and lymph nodes. In addition, Leishmania burden in lymph nodes but not liver was influenced by Lmr4 and Lmr24. In spleen, parasite load was controlled by Lmr11 and Lmr13. We detected a strong effect of sex on some of these genes. We also mapped additional genes controlling splenomegaly and hepatomegaly. This resulted in a systematized insight into genetic control of spread and load of Leishmania parasites and visceral pathology in the mammalian organism.
Collapse
Affiliation(s)
- Tatyana Kobets
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Marie Čepičková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | | | - Peter Demant
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
27
|
Henn IW, Alanis LRA, Modesto A, Vieira AR. The concept of exposure when selecting comparison groups for determining individual susceptibility to addiction to cigarette smoking. PLoS One 2019; 14:e0214946. [PMID: 30973902 PMCID: PMC6459592 DOI: 10.1371/journal.pone.0214946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/22/2019] [Indexed: 11/18/2022] Open
Abstract
Smoking is a leading cause of preventable death. The effect of tobacco is even more contundent in people with mental illness and, in general, cigarette smoking addiction is influenced by genetic factors. The opioid system is involved in the mesolimbic reward system, which is of great importance in addictive behaviors, such as smoking and is influenced by genes such as the OPRM1. The aim of this study was to evaluate if selecting a comparison group that include light smokers versus people that never smoked impacts the results of genetic association studies. In addition, to evaluate the genetic association in different groups of smokers by analyzing independent covariates such as mental illness and clinical dental data. All subjects were participants of the Dental Registry and DNA Repository project. Genotyping was carried out using TaqMan chemistry for two markers in OPRM1 (rs553202 and rs7755635). Logistic regression analyses were performed as implemented in PLINK. The established value for alpha was 5%, and the Hardy-Weinberg equilibrium was evaluated by the chi-square test with one degree of freedom for each marker. 1,897 patients were included, which were allocated to eight distinct groups, according to the frequency and quantity of cigarettes smoked and mental illness status. There was no significant association between the two markers in OPRM1 and smoking. When mental illness and dental clinical data (tooth loss, dental caries, and periodontitis) were used as covariates, there were associations between heavy smoking and OPRM1, when non-smokers were used as comparison. We did not have diet or microbiome data to consider for these dental analyses and suggest that these kinds of data should be always incorporated in the future. Significant results were found only when the covariables mental illness and oral clinical data were added to the analysis.
Collapse
Affiliation(s)
- Indiara W. Henn
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Luciana R. A. Alanis
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Adriana Modesto
- Departments of Oral Biology and Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alexandre R. Vieira
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
- Departments of Oral Biology and Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
Background Cutaneous and visceral forms of leishmaniasis are the most important protozoan infection in the Middle East and North Africa (MENA). Objectives Review the current knowledge on leishmaniasis in the MENA. Methods The data presented in this review are gathered primarily from WHO reports and from an extensive literature search on PubMed. Results There are four cycles of transmission of leishmaniasis: zoonotic cutaneous leishmaniasis (ZCL), induce by Leishmania (L.) major, transmitted by Phlebotomus (P.) papatasi, with rodent species of Psammomys obesus, Meriones libycus, Nesokia indica, and Rhombomys opimus are considered as host reservoirs. Zoonotic visceral leishmaniasis (ZVL) is inducing by L. infantum, transmitted by several Phlebotomus spp. of the sub-genus Larroussius and mainly P. perniciosus in more than one-half of the MENA countries and the dog species of Canis familiaris are considered as the main reservoirs. Anthroponotic cutaneous leishmaniasis (ACL), induce by L. tropica and transmitted by P. sergenti, without any non-human reservoir in most cases. Anthroponotic visceral leishmaniasis (AVL) induces by L. donovani spreads through P. alexandri, circulates exclusively in humans. Conclusion There are many challenges facing the successful control of leishmaniasis. However, there is continuing research into the treatment of leishmaniasis and potentially vaccinations for the disease.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Department of Hygiene and Environmental Protection, Ministry of Public Health, Tunis, Tunisia
| |
Collapse
|
29
|
Mohammadpour I, Hatam GR, Handjani F, Bozorg-Ghalati F, PourKamal D, Motazedian MH. Leishmania cytochrome b gene sequence polymorphisms in southern Iran: relationships with different cutaneous clinical manifestations. BMC Infect Dis 2019; 19:98. [PMID: 30696426 PMCID: PMC6352432 DOI: 10.1186/s12879-018-3667-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/28/2018] [Indexed: 01/04/2023] Open
Abstract
Background Cutaneous leishmaniasis (CL) caused by Leishmania species, is a geographically extensive disease that infects humans and animals. CL is endemic in half of the 31 provinces of Iran, with 29,201 incidence cases reported in Fars province from 2010 to 2015. CL is polymorphic and may result in lesions characterized by different clinical features. Parasite genetic diversity is proposed to be one of the factors affecting the clinical outcome and lesion characteristics in CL patients. However, there is still very limited data regarding the genetic variation of Leishmania spp. based on the sequencing of Cytochrome b (Cyt b) gene. Methods All patients originated from endemic regions in Fars province. The amplification of the Cyt b gene from isolates of 100 patients with disparate clinical forms of CL was accomplished using Nested-PCR. Sequence analysis of the amplified Cyt b was used to scrutinize the genetic variations among Leishmania isolates and connect the results with clinical pictures. The clinical demonstrations were basically of two types, typical and atypical lesions. Molecular phylogenetic tree was constructed using the Neighbor-Joining method, with species/strains from this study compared to species/strains from other geographical regions. Results Leishmania major was identified as the predominant infecting Leishmania spp. (86% of cases), with the remainder of cases being infected by Leishmania tropica. Clinical examination of patients revealed 12 different clinical CL forms. Among Leishmania samples analyzed, five distinct haplotypes were recognized: three in L. major and two in L. tropica. We found a correlation between clinical outcomes and Cyt b sequence variation of Leishmania spp. involved. Moreover, we observed a higher presence of polymorphisms in L. major compared with L. tropica. This difference may be due to the different eco-epidemiologies of both species, with L. tropica being an anthroponosis compared to L. major, which is a zoonosis. Conclusions The sequence analysis of Cyt b gene from 25 L. major and L. tropica strains demonstrated genetic variability of L. major and L. tropica causing CL in southern Iran, and a feasible connection amid the genetic heterogeneity of the parasite, geographical source and clinical appearance of the disease in human was detected.
Collapse
Affiliation(s)
- Iraj Mohammadpour
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholam Reza Hatam
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Handjani
- Molecular Dermatology Research Center, Department of Dermatology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Bozorg-Ghalati
- Department of Molecular Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Daniel PourKamal
- Fajr Health Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Motazedian
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Alcântara LM, Ferreira TCS, Gadelha FR, Miguel DC. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:430-439. [PMID: 30293058 PMCID: PMC6195035 DOI: 10.1016/j.ijpddr.2018.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/24/2023]
Abstract
Tritryps diseases are devastating parasitic neglected infections caused by Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei subspecies. Together, these parasites affect more than 30 million people worldwide and cause high mortality and morbidity. Leishmaniasis comprises a complex group of diseases with clinical manifestation ranging from cutaneous lesions to systemic visceral damage. Antimonials, the first-choice drugs used to treat leishmaniasis, lead to high toxicity and carry significant contraindications limiting its use. Drug-resistant parasite strains are also a matter for increasing concern, especially in areas with very limited resources. The current scenario calls for novel and/or improvement of existing therapeutics as key research priorities in the field. Although several studies have shown advances in drug discovery towards leishmaniasis in recent years, key knowledge gaps in drug discovery pipelines still need to be addressed. In this review we discuss not only scientific and non-scientific bottlenecks in drug development, but also the central role of public-private partnerships for a successful campaign for novel treatment options against this devastating disease. Treatment options targeting TriTryp diseases are limited. Scientific and non-scientific bottlenecks need to be unveiled for the development of new treatments. Private and public sector partnership is key to allow advances in bench-to-bedside science.
Collapse
Affiliation(s)
- Laura M Alcântara
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Thalita C S Ferreira
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
31
|
Management of Leishmaniases in the Era of Climate Change in Morocco. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071542. [PMID: 30037049 PMCID: PMC6068872 DOI: 10.3390/ijerph15071542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022]
Abstract
The proliferation of vector-borne diseases are predicted to increase in a changing climate and Leishmaniases, as a vector-borne diseases, are re-emerging diseases in several regions of the world. In Morocco, during the last decade, a sharp increase in cutaneous leishmaniases cases has been reported. Nevertheless, in Morocco, leishmaniases are a major public health problem, and little interest was given to climate change impacts on the distribution and spread of these diseases. As insect-borne diseases, the incidence and distribution of leishmaniases are influenced by environmental changes, but also by several socio-economic and cultural factors. From a biological point of view, environmental variables have effects on the survival of insect vectors and mammalian reservoirs, which, in turn, affects transmission. Here, we highlight the effects of climate change in Morocco and discuss its consequences on the epidemiology of leishmaniases to identify challenges and define targeted recommendations to fight this disease.
Collapse
|
32
|
Haouas N, Amer O, Alshammri FF, Al-Shammari S, Remadi L, Ashankyty I. Cutaneous leishmaniasis in northwestern Saudi Arabia: identification of sand fly fauna and parasites. Parasit Vectors 2017; 10:544. [PMID: 29096693 PMCID: PMC5668970 DOI: 10.1186/s13071-017-2497-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/25/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is a vector-borne disease transmitted by the bite of an infected sand fly. This disease is highly prevalent in Saudi Arabia where Leishmania major and L. tropica are the etiological agents. In the region of Hail, northwestern of Saudi Arabia, the incidence is about 183 cases/year. However, the epidemiology of the disease in this area is not well understood. Thus, an epidemiological survey was conducted in 2015-2016 to identify the circulating parasite and the sand fly fauna in the region of Hail. Skin lesion scrapings were collected from suspected patients with CL. METHODS The diagnosis was made by microscopic examination of Giemsa-stained smear and PCR. The parasite was identified by PCR and sequencing of the single copy putative translation initiation factor alpha subunit gene. Sand fly specimens were collected and identified morphologically. Total DNA was extracted from the abdomen of female specimens and Leishmania DNA was detected by PCR. RESULTS Among the 57 examined patients, 37 were positive for CL. The identification of the parasite has revealed the single species Leishmania major. The 384 sand flies were collected belonged to two genera (Phlebotomus and Sergentomyia), six sub-genera and six species. Phlebotomus papatasi, Ph. kazeruni and Sergentomyia clydei were the dominant species. Leishmania DNA was detected in two females of Ph. papatasi two of Ph. kazeruni and one specimen of Sergentomyia clydei. CONCLUSIONS Leishmania major is confirmed to be the etiological agent of cutaneous leishmaniasis in northwestern Saudi Arabia. The molecular detection of Leishmania DNA in Ph. papatasi and Ph. kazeruni supports the potential role of these two species in the transmission of Leishmania. Further epidemiological studies are needed to prove their role and to evaluate the burden of CL in the study region.
Collapse
Affiliation(s)
- Najoua Haouas
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie, Université de Monastir, Monastir, Tunisia
| | - Omar Amer
- College of Applied Medical Sciences, Clinical Laboratory Sciences Department, University of Hail, Hail, Kingdom of Saudi Arabia
| | | | - Shorooq Al-Shammari
- College of Applied Medical Sciences, Clinical Laboratory Sciences Department, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Latifa Remadi
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie, Université de Monastir, Monastir, Tunisia
| | - Ibrahim Ashankyty
- College of Applied Medical Sciences, Clinical Laboratory Sciences Department, University of Hail, Hail, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
de Vasconcelos TCB, Furtado MC, Belo VS, Morgado FN, Figueiredo FB. Canine susceptibility to visceral leishmaniasis: A systematic review upon genetic aspects, considering breed factors and immunological concepts. INFECTION GENETICS AND EVOLUTION 2017; 74:103293. [PMID: 28987807 DOI: 10.1016/j.meegid.2017.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023]
Abstract
Dogs have different susceptibility degrees to leishmaniasis; however, genetic research on this theme is scarce, manly on visceral form. The aims of this systematic review were to describe and discuss the existing scientific findings on genetic susceptibility to canine leishmaniasis, as well as to show the gaps of the existing knowledge. Twelve articles were selected, including breed immunological studies, genome wide associations or other gene polymorphism or gene sequencing studies, and transcription approaches. As main results of literature, there was a suggestion of genetic clinical resistance background for Ibizan Hound dogs, and alleles associated with protection or susceptibility to visceral leishmaniasis in Boxer dogs. Genetic markers can explain phenotypic variance in both pro- and anti-inflammatory cytokines and in cellular immune responses, including antigen presentation. Many gene segments are involved in canine visceral leishmaniasis phenotype, with Natural Resistance Associated Macrophage Protein 1 (NRAMP1) as the most studied. This was related to both protection and susceptibility. In comparison with murine and human genetic approaches, lack of knowledge in dogs is notorious, with many possibilities for new studies, revealing a wide field to be assessed on canine leishmaniasis susceptibility research.
Collapse
Affiliation(s)
- Tassia Cristina Bello de Vasconcelos
- Centro de Controle de Zoonoses, Vigilância em Saúde, Secretaria Municipal de Saúde, Prefeitura Municipal de Resende, Rua Euridices Paulina de Almeida, 300, Vicentina II, Resende, RJ 27500-000, Brazil.
| | - Marina Carvalho Furtado
- Fiocruz Mata Atlântica, Fundação Oswaldo Cruz, Estrada Rodrigues Caldas, 3400, Taquara, Rio de Janeiro, RJ 22713-375, Brazil
| | - Vinícius Silva Belo
- Universidade Federal de São João del-Rei, campus Centro Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, MG 35.501-296, Brazil
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Fabiano Borges Figueiredo
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Rua Professor Algacyr Munhoz Mader, 3.775, CIC, campus do Tecpar, bloco C, Curitiba, PR 81.350-010 Brazil
| |
Collapse
|
34
|
Marquet S, Bucheton B, Reymond C, Argiro L, El-Safi SH, Kheir MM, Desvignes JP, Béroud C, Mergani A, Hammad A, Dessein AJ. Exome Sequencing Identifies Two Variants of the Alkylglycerol Monooxygenase Gene as a Cause of Relapses in Visceral Leishmaniasis in Children, in Sudan. J Infect Dis 2017; 216:22-28. [PMID: 28586473 DOI: 10.1093/infdis/jix277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023] Open
Abstract
Background Visceral leishmaniasis (kala-azar, KA) is the most severe form of leishmaniasis, characterized by fever, weight loss, hepatosplenomegaly, and lymphadenopathy. During an outbreak of KA in Babar El Fugara (Sudan), 5.7% of cured patients displayed relapses, with familial clustering in half the cases. Methods We performed whole-exome sequencing on 10 relapsing individuals and 11 controls from 5 nuclear families. Results Rare homozygous and compound-heterozygous nonsense (c.1213C > T, rs139309795, p.Arg405*) and missense (c.701A > G, rs143439626, p.Lys234Arg) mutations of the alkylglycerol monooxygenase (AGMO) gene were associated with KA relapse in 3 families. Sequencing in additional family members confirmed the segregation of these mutations with relapse and revealed an autosomal dominant mode of transmission. These mutations were detected heterozygous in 2 subjects among 100 unrelated individuals with KA who never relapsed after cure, suggesting incomplete penetrance of AGMO deficiency. AGMO is expressed in hematopoietic cells, and is strongly expressed in the liver. AGMO modulates PAF production by mouse macrophages, suggesting that it may act through the PAF/PAF receptor pathway previously shown to have anti-Leishmania activity. Conclusions This is the first demonstration that relapses after a first episode of KA are due to differences in human genetic susceptibility and not to modifications of parasite pathogenicity.
Collapse
Affiliation(s)
- Sandrine Marquet
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Bruno Bucheton
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille.,Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Camille Reymond
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Laurent Argiro
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| | - Sayda Hassan El-Safi
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Musa Mohamed Kheir
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Christophe Béroud
- INSERM UMR910, GMGF, Aix-Marseille University.,AP-HM, Département de Génétique Médicale, Hôpital Timone Enfants, Marseille, France
| | - Adil Mergani
- College of Applied Medical Sciences, Taif University, Turabah, Saudi Arabia
| | - Awad Hammad
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Alain J Dessein
- INSERM UMR906, GIMP, Labex ParaFrap, Aix-Marseille University, Marseille
| |
Collapse
|
35
|
Abstract
The leishmaniases are diseases caused by pathogenic protozoan parasites of the genus Leishmania. Infections are initiated when a sand fly vector inoculates Leishmania parasites into the skin of a mammalian host. Leishmania causes a spectrum of inflammatory cutaneous disease manifestations. The type of cutaneous pathology is determined in part by the infecting Leishmania species, but also by a combination of inflammatory and anti-inflammatory host immune response factors resulting in different clinical outcomes. This review discusses the distinct cutaneous syndromes described in humans, and current knowledge of the inflammatory responses associated with divergent cutaneous pathologic responses to different Leishmania species. The contribution of key hematopoietic cells in experimental cutaneous leishmaniasis in mouse models are also reviewed and compared with those observed during human infection. We hypothesize that local skin events influence the ensuing adaptive immune response to Leishmania spp. infections, and that the balance between inflammatory and regulatory factors induced by infection are critical for determining cutaneous pathology and outcome of infection.
Collapse
|
36
|
Imaging visceral leishmaniasis in real time with golden hamster model: Monitoring the parasite burden and hamster transcripts to further characterize the immunological responses of the host. Parasitol Int 2017; 66:933-939. [DOI: 10.1016/j.parint.2016.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/30/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
|
37
|
Almeida L, Silva JA, Andrade VM, Machado P, Jamieson SE, Carvalho EM, Blackwell JM, Castellucci LC. Analysis of expression of FLI1 and MMP1 in American cutaneous leishmaniasis caused by Leishmania braziliensis infection. INFECTION GENETICS AND EVOLUTION 2017; 49:212-220. [PMID: 28119029 DOI: 10.1016/j.meegid.2017.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
Abstract
FLI1 (Friend leukemia virus integration 1) and IL6 (interleukin 6; IL-6) are associated with Leishmania braziliensis susceptibility. Cutaneous lesions show exaggerated matrix metalloproteinase 1 (MMP1). In other skin diseases, FLI1 promoter methylation reduces FLI1 expression, and low FLI1 down-regulates MMP1. IL-6 increases FLI1 expression. We hypothesized that epigenetic regulation of FLI1 in cutaneous leishmaniasis, together with IL-6, might determine MMP1 expression. While generally low (<10%), percent FLI1 promoter methylation was lower (P=0.001) in lesion biopsies than normal skin. Contrary to expectation, a strong positive correlation occurred between FLI1 methylation and gene expression in lesions (r=0.98, P=0.0005) and in IL-6-treated L. braziliensis-infected macrophages (r=0.99, P=0.0004). In silico analysis of the FLI1 promoter revealed co-occurring active H3K27ac and repressive DNA methylation marks to enhance gene expression. FLI1 expression was enhanced between 3 and 24hour post infection in untreated (P=0.0002) and IL-6-treated (P=0.028) macrophages. MMP1 was enhanced in lesion biopsies (P=0.0002), induced (P=0.007) in infected macrophages, but strongly inhibited by IL-6. No correlations occurred between FLI1 and MMP1 expression in lesions or infected macrophages (with/without IL-6). We conclude that MMP1 is regulated by factors other than FLI1, and that the influence of IL-6 on MMP1 was independent of its effect on FLI1.
Collapse
Affiliation(s)
- Lucas Almeida
- National Institute of Cience and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.,Program of Post-graduation in Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Juliana A Silva
- National Institute of Cience and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.,Program of Post-graduation in Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Viviane M Andrade
- National Institute of Cience and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.,Program of Post-graduation in Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Paulo Machado
- National Institute of Cience and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - Edgar M Carvalho
- National Institute of Cience and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia.,Department of Pathology and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Léa C Castellucci
- National Institute of Cience and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
38
|
Espiau B, Vilhena V, Cuvillier A, Barral A, Merlin G. Phenotypic diversity and selection maintain Leishmania amazonensis infectivity in BALB/c mouse model. Mem Inst Oswaldo Cruz 2017; 112:44-52. [PMID: 28076468 PMCID: PMC5225529 DOI: 10.1590/0074-02760160280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022] Open
Abstract
Leishmania are protozoan parasites that show remarkable diversity, as revealed by the various clinical forms of leishmaniasis, which can range from mild skin lesions to severe metastatic cutaneous/mucosal lesions. The exact nature and extent of Leishmania phenotypic diversity in establishing infection is not fully understood. In order to try to understand some aspects of this diversity, we subcutaneously infected BALB/c mice with first and second generation subclones of a L. amazonensis strain isolated from a patient (BA125) and examined in vivo lesion growth rate and antimony susceptibility. In vivo fast-, medium- and slow-growing subclones were obtained; moreover, fast-growing subclones could generate slow-growing subclones and inversely, revealing the continuous generation of diversity after passage into mice. No antimony-resistant subclone appeared, probably a rare occurrence. By tagging subclone cells with a L. amazonensis genomic cosmid library, we found that only a very small number of founding cells could produce lesions. Leishmania clones transfected with in vivo selected individual cosmids were also diverse in terms of lesion growth rate, revealing the cosmid-independent intrinsic characteristics of each clone. Our results suggest that only a few of the infecting parasites are able to grow and produce lesions; later, within the cell mixture of each lesion, there coexist several parasite populations with different potentialities to grow lesions during the next infection round. This may reflect a sort of programmed heterogeneity of individual parasites, favoring the survival of some individuals in various environmental conditions.
Collapse
Affiliation(s)
- Benoît Espiau
- Université de Bordeaux, Laboratoire de Génomique Fonctionnelle des Trypanosomatidés, Bordeaux, France.,LabEx Corail, Papetoai, Moorea, Polynésie Française
| | - Virginia Vilhena
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil.,Faculdade Anhanguera de Brasília, Brasília, DF, Brasil
| | - Armelle Cuvillier
- Université de Bordeaux, Laboratoire de Génomique Fonctionnelle des Trypanosomatidés, Bordeaux, France.,B Cell Design, Limoges, France
| | - Aldina Barral
- Fundação Oswaldo Cruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil.,Instituto de Investigação em Imunologia, Salvador, BA, Brasil
| | - Gilles Merlin
- Université de Bordeaux, Laboratoire de Génomique Fonctionnelle des Trypanosomatidés, Bordeaux, France.,Instituto de Investigação em Imunologia, Salvador, BA, Brasil
| |
Collapse
|
39
|
Comparative genomics of Tunisian Leishmania major isolates causing human cutaneous leishmaniasis with contrasting clinical severity. INFECTION GENETICS AND EVOLUTION 2016; 50:110-120. [PMID: 27818279 DOI: 10.1016/j.meegid.2016.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/27/2016] [Accepted: 10/29/2016] [Indexed: 12/23/2022]
Abstract
Zoonotic cutaneous leishmaniasis caused by Leishmania (L.) major parasites affects urban and suburban areas in the center and south of Tunisia where the disease is endemo-epidemic. Several cases were reported in human patients for which infection due to L. major induced lesions with a broad range of severity. However, very little is known about the mechanisms underlying this diversity. Our hypothesis is that parasite genomic variability could, in addition to the host immunological background, contribute to the intra-species clinical variability observed in patients and explain the lesion size differences observed in the experimental model. Based on several epidemiological, in vivo and in vitro experiments, we focused on two clinical isolates showing contrasted severity in patients and BALB/c experimental mice model. We used DNA-seq as a high-throughput technology to facilitate the identification of genetic variants with discriminating potential between both isolates. Our results demonstrate that various levels of heterogeneity could be found between both L. major isolates in terms of chromosome or gene copy number variation (CNV), and that the intra-species divergence could surprisingly be related to single nucleotide polymorphisms (SNPs) and Insertion/Deletion (InDels) events. Interestingly, we particularly focused here on genes affected by both types of variants and correlated them with the observed gene CNV. Whether these differences are sufficient to explain the severity in patients is obviously still open to debate, but we do believe that additional layers of -omic information is needed to complement the genomic screen in order to draw a more complete map of severity determinants.
Collapse
|
40
|
Lindoso JAL, Cunha MA, Queiroz IT, Moreira CHV. Leishmaniasis-HIV coinfection: current challenges. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2016; 8:147-156. [PMID: 27785103 PMCID: PMC5063600 DOI: 10.2147/hiv.s93789] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Leishmaniasis – human immunodeficiency virus (HIV) coinfection can manifest itself as tegumentary or visceral leishmaniasis. Almost 35 countries have reported autochthonous coinfections. Visceral leishmaniasis is more frequently described. However, usual and unusual manifestations of tegumentary leishmaniasis have been reported mainly in the Americas, but the real prevalence of Leishmania infection in HIV-infected patients is not clear. Regarding the clinical manifestations, there are some reports showing unusual manifestations in visceral leishmaniasis and tegumentary leishmaniasis in HIV-infected patients; yet, the usual manifestations are more frequent. Leishmaniasis diagnosis relies on clinical methods, but serological tests are used to diagnose visceral leishmaniasis despite them having a low sensitivity to tegumentary leishmaniasis. The search for the parasite is used to diagnose both visceral leishmaniasis and tegumentary leishmaniasis. Nevertheless, in HIV-infected patients, the sensitivity of serology is very low. Drugs available to treat leishmaniasis are more restricted and cause severe side effects. Furthermore, in HIV-infected patients, these side effects are more prominent and relapses and lethality are more recurrent. In this article, we discuss the current challenges of tegumentary leishmaniasis and visceral leishmaniasis–HIV infection, focusing mainly on the clinical manifestations, diagnosis, and treatment of leishmaniasis.
Collapse
Affiliation(s)
- José Angelo Lauletta Lindoso
- Laboratory of Soroepidemiology (LIM HC-FMUSP), São Paulo University, São Paulo; Instituto de Infectologia Emilio Ribas-SES, São Paulo
| | - Mirella Alves Cunha
- Department of Infectious Disease, Faculty of Medicine, São Paulo University, São Paulo
| | | | | |
Collapse
|
41
|
Samaranayake N, Fernando SD, Neththikumara NF, Rodrigo C, Karunaweera ND, Dissanayake VHW. Association of HLA class I and II genes with cutaneous leishmaniasis: a case control study from Sri Lanka and a systematic review. BMC Infect Dis 2016; 16:292. [PMID: 27301744 PMCID: PMC4908677 DOI: 10.1186/s12879-016-1626-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/07/2016] [Indexed: 12/21/2022] Open
Abstract
Background The outcome of leishmaniasis is an interplay between Leishamania and the host. Identifying contributory host genetic factors is complicated by the variability in phenotype, ethnicity and parasite species. Leishmaniasis is caused exclusively by L. donovani in Sri Lanka with localized cutaneous leishmaniasis (LCL) being the predominant form. We report here an association study of human leucocyte antigen (HLA) class I and II genes with LCL in Sri Lanka, the first on HLA associations in cutaneous leishmaniasis in a South Asian population. Methods An existing DNA repository of 200 each of patients and controls was typed for HLA-DQ by PCR-SSP. Next generation sequencing-based typing for HLA-A, HLA-B and HLA-DRB1 alleles was done in a subset of 280 samples. Association tests were performed on 28,489 genotyped and imputed SNPs spanning a region of 1.4 Mb across the HLA genes. To compare our results with similar studies, we carried out a systematic review to document all HLA associations reported to-date for cutaneous and muco-cutaneous leishmaniasis. Results DRB1*04 DQB1*02 (P = 0.03; Pc = 0.09), DRB1*07 DQB1*02 (P = 0.03; Pc = 0.09) haplotypes were absent in patients. B*07 (P = 0.007; Pc = 0.13; OR = 0.36; 95 % CI = 0.17–0.77) allele and DRB1*15 DQB1*06 (P = 0.00; Pc < 0.01; OR = 0.3; 95 % CI = 0.2–.0.6) haplotype were over represented in controls and DRB1*15 (P = 0.002; Pc = 0.01) allele was over represented in patients. Two SNPs (rs281864595/rs1050517) in the antigen recognition region of HLA-B, comprised a haplotype more frequent in controls (P = 0.04). The alleles identified by the systematic review to predispose or to protect from cutaneous/mucocutaneous leishmaniasis remained highly heterogeneous in different populations studied. Conclusions Our preliminary findings suggest a role for some class I and class II HLA genes in determining predisposition to LCL in this population which should be corroborated with further studies. The systematic review reiterates this need, as the purported susceptibility or protection gained by certain HLA alleles or haplotypes has rarely been independently verified. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1626-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, 271, Kynsey Road, Colombo, 008, Sri Lanka
| | - Sumadhya D Fernando
- Department of Parasitology, Faculty of Medicine, University of Colombo, 271, Kynsey Road, Colombo, 008, Sri Lanka.
| | | | - Chaturaka Rodrigo
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, 271, Kynsey Road, Colombo, 008, Sri Lanka
| | | |
Collapse
|
42
|
Ejghal R, Hida M, Bennani ML, Meziane M, Aurag R, Lemrani M. The TLR2 and TLR4 gene polymorphisms in Moroccan visceral leishmaniasis patients. Acta Trop 2016; 158:77-82. [PMID: 26943993 DOI: 10.1016/j.actatropica.2016.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/19/2016] [Accepted: 02/27/2016] [Indexed: 02/07/2023]
Abstract
Visceral leishmaniasis (VL) is endemic in the Mediterranean basin and leads to the most severe form of Leishmania infection, lethal if left untreated. However, most infections are sub-clinical or asymptomatic, reflecting the influence of host genetic background on disease outcome. This study aimed to investigate possible association of TLR4 Asp299Gly, TLR4 Thr399Ile and TLR2 Arg753Gln polymorphisms with VL in Moroccan children. We enrolled 119 children with VL caused by Leishmania infantum as well as 138 unrelated children, 95 asymptomatic subjects and 43 healthy individuals who had no evidence of present or past infection. Polymorphisms were genotyped by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system assay (ARMS-PCR). Results showed significant differences in genotype Thr399Ile and recessive model frequencies between VL and delayed-type hypersensitivity (DTH+) groups (p=0.018, OR=0.414CI 0.195-0.880; p=0.029, OR=0.448CI 0.214-0.938], respectively) by having the amino-acid threonine polymorphism as a reference in the VL group. Concerning the Asp299Gly there were a significant associations when comparing VL vs DTH+ (Asp299Gly genotype p=0.002, OR=0.326CI 0.158-0.671, allele frequencies p=0.033, OR=0.396CI 0.164-0.959, recessive model p=0.002, OR=0.343CI 0.172-0.681) and DTH+ vs DTH- groups (Asp299Gly genotype p=2.160E-4, OR=3.065CI 1.672-5.618, Gly299Gly genotype p=0.047, OR=0.368CI 0.299-0.452, allele frequencies p=1.406E-7, OR=29.571CI 3.907-223.8, recessive model p=4.370E-14, OR=36.965CI 8.629-158.3), by having the aspartic acid polymorphism as a reference these results suggest that the allele A (savage) confer protection against the clinical manifestations but not against the infection. Furthermore, there was a significant association regarding the Arg753Gln genotype (p=0.002, OR=0.326CI 0.158-0.671), allele frequencies (p=0.033, OR=0.396CI 0.164-0.959) and when applying a recessive model (p=0.002, OR=0.343CI 0.172-0.681) in the VL vs DTH+ groups. The same results was observed when comparing DTH+ vs DTH- groups (p=4.136E-6, OR=0.211CI 0.104-0.428), allele frequencies (p=0.008, OR=0.327CI 0.137-0.779) and recessive model (p=1.748E-5, OR=0.244CI 0.124-0.480). The results provide evidence that allele C in Thr399Ile and allele G in Arg753Gln polymorphisms may lead to protection against the clinical disease. Our data provide insights into the possible role of TLR2 and TLR4 variations in VL susceptibility.
Collapse
Affiliation(s)
- Rajaâ Ejghal
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratory of Genetic, Neuroendocrinology and Biotechnology, Faculty of Science, University Ibn Tofaïl, B.P 133, 14 000 Kénitra, Morocco
| | - Moustapha Hida
- Faculty of Medicine and Pharmacy, University Sidi Mohammed Ben Abdellah, Route de Sefrou, Fes, Morocco
| | | | | | - Rabia Aurag
- Hospital Ibn Al Khatib, Pediatric Department, Fes, Morocco
| | - Meryem Lemrani
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
43
|
Loeuillet C, Bañuls AL, Hide M. Study of Leishmania pathogenesis in mice: experimental considerations. Parasit Vectors 2016; 9:144. [PMID: 26969511 PMCID: PMC4788862 DOI: 10.1186/s13071-016-1413-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/26/2016] [Indexed: 11/17/2022] Open
Abstract
Although leishmaniases are endemic in 98 countries, they are still considered neglected tropical diseases. Leishmaniases are characterized by the emergence of new virulent and asymptomatic strains of Leishmania spp. and, as a consequence, by a very diverse clinical spectrum. To fight more efficiently these parasites, the mechanisms of host defense and of parasite virulence need to be thoroughly investigated. To this aim, animal models are widely used. However, the results obtained with these models are influenced by several experimental parameters, such as the mouse genetic background, parasite genotype, inoculation route/infection site, parasite dose and phlebotome saliva. In this review, we propose an update on their influence in the two main clinical forms of the disease: cutaneous and visceral leishmaniases.
Collapse
Affiliation(s)
- Corinne Loeuillet
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290, Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290, Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Mallorie Hide
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR IRD 224-CNRS 5290, Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France.
| |
Collapse
|
44
|
Karam MC, Merckbawi R, Salman S, Mobasheri A. Atenolol Reduces Leishmania major-Induced Hyperalgesia and TNF-α Without Affecting IL-1β or Keratinocyte Derived Chemokines (KC). Front Pharmacol 2016; 7:22. [PMID: 26913003 PMCID: PMC4753302 DOI: 10.3389/fphar.2016.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/25/2016] [Indexed: 01/29/2023] Open
Abstract
Infection with a high dose of the intracellular parasitic protozoan Leishmania major induces a sustained hyperalgesia in susceptible BALB/c mice accompanied by up-regulation of the pro-inflammatory cytokines IL-1β and IL-6. Interleukin-13 (IL-13) has been shown to reduce this hyperalgesia (despite increased levels of IL-6) and the levels of IL-1β during and after the treatment period. These findings favor the cytokine cascade leading to the production of sympathetic amines (involving TNF-α and KC) over prostaglandins (involving IL-lβ and IL-6) as the final mediators of hyperalgesia. The aim of this study was to investigate the effect of daily treatment with the β-blockers atenolol on L. major-induced inflammation in mice with respect to hyperalgesia as well as the levels of TNF-α and KC (the analog of IL-8 in mice). Our data demonstrates that atenolol is able to reduce the L. major induced sustained peripheral hyperalgesia, which does not seem to involve a direct role for neither IL-lβ nor KC. Moreover, our results show that TNF-α may play a pivotal and direct role in sensitizing the peripheral nerve endings (nociceptors) since its level was reduced during the period of atenolol treatment, which correlates well with the reduction of the observed peripheral, but not central, hyperalgesia. These findings contribute to a better understanding of the cytokine cascade leading to hyperalgesia and may lead to the development of new and more efficient medications for many types of pain.
Collapse
Affiliation(s)
- Marc C Karam
- Department of Biology, University of Balamand Kourah, Lebanon
| | - Rana Merckbawi
- Department of Biology, University of Balamand Kourah, Lebanon
| | - Sara Salman
- Department of Biology, University of Balamand Kourah, Lebanon
| | - Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of SurreyGuildford, UK; Center of Excellence in Genomic Medicine Research, King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
45
|
The effect of the phytol-rich fraction from Lacistema pubescens against Leishmania amazonensis is mediated by mitochondrial dysfunction. Exp Parasitol 2015; 159:143-50. [PMID: 26424529 DOI: 10.1016/j.exppara.2015.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
Leishmaniasis is a complex disease caused by protozoan parasite Leishmania and the treatment remains a serious problem since the available drugs exhibited high toxicity and side effects. Plant-derived natural products are promising leads for the development of novel chemotherapeutics. In this work the phytol-rich hexane fraction (PRF) from the leaves of Lacistema pubescens was obtained and identified by GC-MS analysis. When assayed for antileishmanial effects, PRF was active against promastigote and amastigote forms of Leishmania amazonensis (IC50 values of 44.0 and 25.8 μg/mL respectively). Furthermore, PRF did not show significant cytotoxicity on peritoneal macrophages being more destructive to the intracellular parasite than to mammalian cells. In addition, possible targets of PRF were investigated against L. amazonensis promastigotes. The results showed that PRF exerted its antipromastigote activity by marked depolarization of the mitochondrial membrane potential followed by the increase of ROS levels in L. amazonensis promastigotes. During these events, no rupture of the cell membrane integrity was observed. Our results indicated that PRF was effective and selective against L. amazonensis, and that this effect was mainly mediated by mitochondrial dysfunction associated to ROS production.
Collapse
|
46
|
Mishra A, Antony JS, Gai P, Sundaravadivel P, Van TH, Jha AN, Singh L, Velavan TP, Thangaraj K. Mannose-binding Lectin (MBL) as a susceptible host factor influencing Indian Visceral Leishmaniasis. Parasitol Int 2015; 64:591-6. [PMID: 26297290 DOI: 10.1016/j.parint.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/31/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Visceral Leishmaniasis (VL), caused by Leishmania donovani is endemic in the Indian sub-continent. Mannose-binding Lectin (MBL) is a complement lectin protein that binds to the surface of Leishmania promastigotes and results in activation of the complement lectin cascade. We utilized samples of 218 VL patients and 215 healthy controls from an Indian population. MBL2 functional variants were genotyped and the circulating MBL serum levels were measured. MBL serum levels were elevated in patients compared to the healthy controls (adjusted P=0.007). The MBL2 promoter variants -78C/T and +4P/Q were significantly associated with relative protection to VL (-78C/T, OR=0.7, 95% CI=0.5-0.96, adjusted P=0.026 and +4P/Q, OR=0.66, 95% CI=0.48-0.9, adjusted P=0.012). MBL2*LYQA haplotypes occurred frequently among controls (OR=0.69, 95% CI=0.5-0.97, adjusted P=0.034). MBL recognizes Leishmania and plays a relative role in establishing L. donovani infection and subsequent disease progression. In conclusion, MBL2 functional variants were associated with VL.
Collapse
Affiliation(s)
- Anshuman Mishra
- CSIR - Center for Cellular and Molecular Biology, Hyderabad, India
| | - Justin S Antony
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Prabhanjan Gai
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Tong Hoang Van
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Aditya Nath Jha
- CSIR - Center for Cellular and Molecular Biology, Hyderabad, India
| | - Lalji Singh
- CSIR - Center for Cellular and Molecular Biology, Hyderabad, India; Banaras Hindu University, Varanasi, India
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Fondation Congolaise pour la Recherche Medicale, Brazzaville, Congo.
| | | |
Collapse
|
47
|
Aluru S, Hide M, Michel G, Bañuls AL, Marty P, Pomares C. Multilocus microsatellite typing of Leishmania and clinical applications: a review. ACTA ACUST UNITED AC 2015; 22:16. [PMID: 25950900 PMCID: PMC4423940 DOI: 10.1051/parasite/2015016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/17/2015] [Indexed: 12/03/2022]
Abstract
Microsatellite markers have been used for Leishmania genetic studies worldwide, giving useful insight into leishmaniasis epidemiology. Understanding the geographic distribution, dynamics of Leishmania populations, and disease epidemiology improved markedly with this tool. In endemic foci, the origins of antimony-resistant strains and multidrug treatment failures were explored with multilocus microsatellite typing (MLMT). High genetic variability was detected but no association between parasite genotypes and drug resistance was established. An association between MLMT profiles and clinical disease manifestations was highlighted in only three studies and this data needs further confirmation. At the individual level, MLMT provided information on relapse and reinfection when multiple leishmaniasis episodes occurred. This information could improve knowledge of epidemiology and guide therapeutic choices for active chronic visceral leishmaniasis, the disease form in some HIV-positive patients.
Collapse
Affiliation(s)
- Srikanth Aluru
- Aix-Marseille Université, Marseille, France - INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France
| | - Mallorie Hide
- UMR MIVEGEC IRD 224-CNRS 5290, Universités Montpellier 1 et 2, Montpellier, France
| | - Gregory Michel
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Anne-Laure Bañuls
- UMR MIVEGEC IRD 224-CNRS 5290, Universités Montpellier 1 et 2, Montpellier, France
| | - Pierre Marty
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France - Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079, 06202 Nice Cedex 3, France
| | - Christelle Pomares
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France - Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079, 06202 Nice Cedex 3, France
| |
Collapse
|
48
|
Huang L, Hinchman M, Mendez S. Coinjection with TLR2 agonist Pam3CSK4 reduces the pathology of leishmanization in mice. PLoS Negl Trop Dis 2015; 9:e0003546. [PMID: 25738770 PMCID: PMC4354918 DOI: 10.1371/journal.pntd.0003546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
Cutaneous leishmaniasis caused by Leishmania major is an
emergent, uncontrolled public health problem and there is no vaccine. A
promising prophylactic approach has been immunotherapy with Toll-like receptor
(TLR) agonists to enhance parasite-specific immune responses. We have previously
reported that vaccination of C57BL/6 mice with live L.
major plus the TLR9 agonist CpG DNA prevents lesion
development and confers immunity to reinfection. Our current study aims to
investigate whether other TLR agonists can be used in leishmanization without
induction of lesion formation. We found that live L.
major plus the TLR2 agonist Pam3CSK4 reduced the pathology
in both genetically resistant (C57BL/6) and susceptible (BALB/c) mouse strains.
The addition of Pam3CSK4 activated dermal dendritic cells and macrophages to
produce greater amounts of proinflammatory cytokines in both mouse strains. Both
Th1 and Th17 responses were enhanced by leishmanization with L.
major plus Pam3CSK4 in C57BL/6 mice; however, Th17 cells
were unchanged in BALB/c mice. The production of IL-17 from neutrophils was
enhanced in both strains infected with L.
major plus Pam3CSK4. However, the sustained influx of
neutrophils in sites of infection was only observed in BALB/c mice. Our data
demonstrate that the mechanism behind leishmanization with TLR agonists may be
very different depending upon the immunological background of the host. This
needs to be taken into account for the rational development of successful
vaccines against the disease. Cutaneous leishmaniasis is a skin infection caused by a protozoan parasite
Leishmania major (L.
major). The only available treatment option is
chemotherapy, which is toxic and expensive. Currently, there is no vaccine.
Although inoculation of virulent L. major
(leishmanization) that provides effective protection in humans was widely
applied, it was discontinued due to safety concerns. To improve the safety of
leishmanization, we applied agonists of Toll-like receptor in the
leishmanization to induce parasite-specific immune responses. In particular, we
show here that inoculation with live L. major
plus a TLR2 agonist Pam3CSK4 in both resistant (C57BL/6) and susceptible
(BALB/c) mouse strains completely prevents the development of lesion and
decreases parasite burden. The improved pathology is associated with enhanced
production of IL-6 and IL-12 from dermal dendritic cells and macrophages. Both
Th1 and Th17 responses are enhanced in C57BL/6 mice. Although only the Th1
response was enhanced in BALB/c mice in the presence of Pam3CSK4, there is an
enhanced and sustained neutrophil influx at sites of infection. Overall, our
study reveals the clinical significance of TLR2 agonist in treating cutaneous
leishmaniasis. However, the protective mechanism may be quite different
depending upon the genetic background of the host.
Collapse
Affiliation(s)
- Lu Huang
- Baker Institute for Animal Health, College of Veterinary
Medicine, Cornell University, Ithaca, New York, United States of
America
- * E-mail:
| | - Meleana Hinchman
- Baker Institute for Animal Health, College of Veterinary
Medicine, Cornell University, Ithaca, New York, United States of
America
| | - Susana Mendez
- Baker Institute for Animal Health, College of Veterinary
Medicine, Cornell University, Ithaca, New York, United States of
America
| |
Collapse
|
49
|
Severity of old world cutaneous leishmaniasis is influenced by previous exposure to sandfly bites in Saudi Arabia. PLoS Negl Trop Dis 2015; 9:e0003449. [PMID: 25646796 PMCID: PMC4315490 DOI: 10.1371/journal.pntd.0003449] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The sandfly Phlebotomus papatasi is the vector of Leishmania major, the main causative agent of Old World cutaneous leishmaniasis (CL) in Saudi Arabia. Sandflies inject saliva while feeding and the salivary protein PpSP32 was previously shown to be a biomarker for bite exposure. Here we used recombinant PpSP32 to evaluate human exposure to Ph. papatasi bites, and study the association between antibody response to saliva and CL in endemic areas in Saudi Arabia. METHODOLOGY/PRINCIPAL FINDINGS In this observational study, anti-PpSP32 antibodies, as indicators of exposure to sandfly bites, were measured in sera from healthy individuals and patients from endemic regions in Saudi Arabia with active and cured CL. Ph. papatasi was identified as the primary CL vector in the study area. Anti-PpSP32 antibody levels were significantly higher in CL patients presenting active infections from all geographical regions compared to CL cured and healthy individuals. Furthermore, higher anti-PpSP32 antibody levels correlated with the prevalence and type of CL lesions (nodular vs. papular) observed in patients, especially non-local construction workers. CONCLUSIONS Our findings suggest a possible correlation between the type of immunity generated by the exposure to sandfly bites and disease outcome.
Collapse
|
50
|
Almeida L, Oliveira J, Guimarães LH, Carvalho EM, Blackwell JM, Castellucci L. Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil: role of COL1A1. INFECTION GENETICS AND EVOLUTION 2015; 30:225-229. [PMID: 25562121 DOI: 10.1016/j.meegid.2014.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 02/06/2023]
Abstract
Previous studies have demonstrated a role for wound healing genes in resolution of cutaneous lesions caused by Leishmania spp. in both mice and humans, including the gene FLI1 encoding Friend leukemia virus integration 1. Reduction of Fli1 expression in mice has been shown to result in up-regulation of collagen type I alpha 1 (Col1a1) and alpha 2 (Col1a2) genes and, conversely, in down-regulation of the matrix metalloproteinase 1 (Mmp1) gene, suggesting that Fli1 suppression is involved in activation of the profibrotic gene program. Here we examined single nucleotide polymorphisms (SNPs) in these genes as risk factors for cutaneous (CL) and mucosal leishmaniasis (ML), and leishmaniasis per se, caused by L. braziliensis in humans. SNPs were genotyped in 168 nuclear families (250 CL; 87 ML cases) and replicated in 157 families (402 CL; 39 ML cases). Family-based association tests (FBAT) showed the strongest association between SNPs rs1061237 (combined P=0.002) and rs2586488 (combined P=0.027) at COL1A1 and CL disease. This contributes to our further understanding of the role of wound healing in the resolution of CL disease, providing potential for therapies modulating COL1A1 via drugs acting on FLI1.
Collapse
Affiliation(s)
- Lucas Almeida
- National Institute of Science and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.
| | - Joyce Oliveira
- National Institute of Science and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.
| | - Luiz Henrique Guimarães
- National Institute of Science and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.
| | - Edgar M Carvalho
- National Institute of Science and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Léa Castellucci
- National Institute of Science and Technology in Tropical Diseases, Brazil and Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|