1
|
Zhou Z, Xu D, Huang L, Cui Y, Chen H, Tang J. Farnesoid X Receptor Regulated Sepsis-Induced Abnormal Bile Acid Metabolism via the Fibroblast Growth Factor 15/Fibroblast Growth Factor Receptor 4 Pathway. Immun Inflamm Dis 2025; 13:e70155. [PMID: 40192065 PMCID: PMC11973727 DOI: 10.1002/iid3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE The study aims to investigate the mechanism of Farnesoid X receptor (FXR) activation in sepsis-induced abnormal bile acid metabolism and the metabolism status of each bile acid type. METHODS The sepsis mouse model was developed via lipopolysaccharide intraperitoneal injection and confirmed via hematoxylin and eosin (H&E) staining. FXR agonist activated the FXR/fibroblast growth factor (FGF)15/FGFR pathway via quantitative real-time polymerase chain reaction and Western blot. Consequently, metabolomics and bioinformatics analysis were conducted to identify the alterations in each kind of bile acid content following FXR agonist/inhibitor intervention. RESULTS The H&E staining indicated that FXR activation alleviates the liver injury of the sepsis mouse model. The increased FGF15 and FXFR expression levels and decreased CYP7A1 demonstrated FXR/FGF15/FGFR pathway activation following FXR agonist treatment. Furthermore, total bile acid, interleukin (IL)-6, and tumor necrosis factor-α concentrations were downregulated after FXR activation, whereas IL-10 concentration was upregulated, indicating the alleviated effect of FXR agonist in sepsis. Consequently, metabolomics and bioinformatics analysis determined that T-a-MCA were downregulated in both FXR agonist and inhibitor groups, whereas six bile acid types were altered in the control group. CONCLUSION FXR activation was crucial in alleviating sepsis-induced hepatic injury and cholestasis through the FGF15/FGFR signaling pathway, and FXR may act as a potential preventive and intervention target of sepsis.
Collapse
Affiliation(s)
- Ziyang Zhou
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Dan Xu
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Liou Huang
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Yuhui Cui
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Hui Chen
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life ScienceEast China Normal UniversityShanghaiChina
| | - Jianguo Tang
- Trauma‐Emergency & Critical Care Medicine CenterShanghai Fifth People's Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
2
|
Cui Y, Bai M, Gao S, Zhao H, Mei X. Zinc ions facilitate metabolic bioenergetic recovery post spinal cord injury by activating microglial mitophagy through the STAT3-FOXO3a-SOD2 pathway. Free Radic Biol Med 2025; 227:64-79. [PMID: 39613048 DOI: 10.1016/j.freeradbiomed.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition of the central nervous system (CNS) with high global rates of disability and mortality, and no effective cure currently available. Microglia play a critical role in the progression of SCI, and enhancing their metabolic function may facilitate tissue repair and recovery. Mitochondrial dysfunction is a key feature of metabolic impairment, with the regulation of autophagy being essential for maintaining mitochondrial homeostasis and cell survival. The transcription factor Forkhead box O3a (FOXO3a) is integral to cellular metabolism, mitochondrial dysfunction, and oxidative stress responses, yet its role in post-SCI microglial metabolism remains underexplored. In this study, single-cell RNA sequencing reveals the crucial involvement of the FOXO signaling pathway in zinc ion-mediated enhancement of microglial metabolism. Mechanistically, oxidative stress-induced reactive oxygen species (ROS) accumulation exacerbates metabolic dysfunction by promoting excessive mitochondrial fission and impairing mitophagy. Importantly, zinc ions induce the nuclear translocation of FOXO3a, leading to its activation as a transcription factor. This activation enhances mitochondrial autophagy and fusion processes, thereby restoring microglial metabolic capacity. Our findings suggest that the zinc ion regulation of the STAT3-FOXO3a-SOD2 axis is pivotal in modulating mitochondrial gene expression, which governs microglial energy homeostasis and improves the spinal cord microenvironment, potentially enhancing neuronal survival. These insights highlight a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Yang Cui
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Mingyu Bai
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China
| | - Shuang Gao
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou, Liaoning Province, 121000, China
| | - Haosen Zhao
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Clinical Research Center for Bone Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou, Liaoning Province, 121000, China.
| | - Xifan Mei
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Clinical Research Center for Bone Tissue Engineering, Jinzhou, Liaoning Province, 121000, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou, Liaoning Province, 121000, China.
| |
Collapse
|
3
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Fattahi AS, Khalili A, Hashemi SA, Najafizadeh P, Mazloom R, Khodayar S, Bayat G. A trend over time study of hepatic Farnesoid-X-activated receptor and its downstream targets modulation by valproic acid in mice. Toxicol Mech Methods 2024; 34:920-925. [PMID: 39319528 DOI: 10.1080/15376516.2024.2364192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 09/26/2024]
Abstract
Valproic acid (VA) is a broad-spectrum anticonvulsant agent that acts through several molecular mechanisms to control different types of seizures. The main concern of the drug is its liver toxicity. Considering the regulatory roles of the Farnesoid nuclear receptors and the nuclear transcription factor Nrf2 in modifying and neutralizing the harmful effects of oxidative damage, the present study was designed to evaluate the role of FXR-Nrf2 and some downstream target gene alterations in hepatotoxicity induced by VA. Thirty-five eight-week-old male albino mice were randomly divided into five groups, including a control group, and four groups were assigned to receive VA (300 mg/kg/day; oral) for 3, 7, 10, and 14 days. Serum levels of ALT, AST, ALP, and total and direct bilirubin (TB, DB) were measured. Liver histology and the expression of FXR, Nrf2, α-GST, SOD, and TNF-α were assessed using H&E staining and real-time RT-PCR techniques. Maximum extent of biochemical and histopathological damage was observed on the 14th day, but changes in the expression of FXR, Nrf2, α-GST, and SOD were seen at three points: a significant upregulation on the 3rd day, a remarkable downregulation on the 10th day, and a second-time upregulation on the 14th day. In conclusion, considering the observed dysregulation in FXR-Nrf2 cascade expression during VA administration, it seems that downregulation in this pathway and consequently its downstream detoxification and antioxidant genes may play a role in liver toxicity.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Khalili
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Ali Hashemi
- Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parvaneh Najafizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roham Mazloom
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sara Khodayar
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Feng S, Xie X, Li J, Xu X, Chen C, Zou G, Lin G, Huang T, Hu R, Ran T, Han L, Zhang Q, Li Y, Zhao X. Bile acids induce liver fibrosis through the NLRP3 inflammasome pathway and the mechanism of FXR inhibition of NLRP3 activation. Hepatol Int 2024; 18:1040-1052. [PMID: 38172440 PMCID: PMC11126483 DOI: 10.1007/s12072-023-10610-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Altered patterns of bile acids (BAs) are frequently present in liver fibrosis, and BAs function as signaling molecules to initiate inflammatory responses. Therefore, this study was conducted to uncover the notably altered components of BAs and to explore the pathway of altered BA induced inflammation in the development of liver fibrosis. METHODS Bile acids were quantified by ultraperformance liquid chromatography coupled to mass spectrometry (UPLC‒MS/MS). Cell Counting Kit-8 assays were used to determine the proliferative capacity of HSCs. Transwell assays and wound healing assays were used to determine the migratory capacity of LX2 cells. Protein expression was evaluated by western blotting. RESULTS Plasma bile acid analysis showed higher levels of GCDCA, TCDCA, GCA and TCA in patients with liver fibrosis than in normal controls. The AUC of GCDCA was the highest. Western blotting showed that GCDCA treatment increased the expression of NLRP3-related proteins and collagen1 in vitro and significantly increased LX2 cells proliferation and migration. Furthermore, knockdown of NLRP3 or overexpression of FXR in LX2 cells decreased the expression of the above proteins, and FXR inhibited NLRP3 (ser 295) phosphorylation in vitro and vivo. In vivo, HE, Masson's trichrome, and Sirius Red staining showed that GCDCA increased collagen fibers in the mouse liver, and the expression of NLRP3-related proteins, collagen 1, and α-SMA in the liver increased significantly. However, the knockout of NLRP3 reversed these patterns. CONCLUSION (1) Primary conjugated bile acids increased in patients with liver fibrosis; (2) GCDCA induce hepatic fibrosis via the NLRP3 inflammasome pathway; (3) FXR inhibits NLRP3 activity by restraining its phosphorylation; (4) knockdown or knockout of NLRP3 may relieve the onset of hepatic fibrosis.
Collapse
Affiliation(s)
- Shu Feng
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Xingming Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - Jianchao Li
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Xu Xu
- Laboratory of Hepatology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Chaochun Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Gaoliang Zou
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Guoyuan Lin
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Tao Huang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Ruihan Hu
- Department of Cardiovascular Medicine, Guiqian International General Hospital, Guiyang, 550018, Guizhou, China
| | - Tao Ran
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Lu Han
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Qingxiu Zhang
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Yuanqingxiao Li
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
6
|
Luyao X, Wenhai G, Jiaying D, Ya C, Yun C, Wei L, Jiean X, Wen S, Xiaodong Z, Changjun W, Hongzhi Y, Jinwen X, Yaxing Z. Hydrogen gas alleviates acute ethanol-induced hepatotoxicity in mice via modulating TLR4/9 innate immune signaling and pyroptosis. Int Immunopharmacol 2024; 127:111399. [PMID: 38142641 DOI: 10.1016/j.intimp.2023.111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Alcoholic liver disease (ALD), which is induced by chronic heavy alcohol consumption, accompanies complicated pathological mechanisms, including oxidative stress, inflammation, cell death, epigenetic changes and acetaldehyde-mediated toxicity. Hydrogen (H2) is the lightest gas with multiple biological effects such as high selective anti-oxidation, anti-inflammation and anti-apoptosis. However, the dose effects and innate immune mechanisms of intraperitoneal injection of H2 on ALD are limited. Here, we used acute ethanol-induced hepatotoxicity mice models to estimate the actions of intraperitoneal injection of H2 on ALD. The effects of H2 on acute ethanol-induced liver damage were examined by hepatic oil red O staining, quantitative PCR (qPCR) for lipid metabolic genes, hepatic triglyceride (TG) and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Hepatic mitochondrial superoxide (MitoSOX), 3-nitrotyrosine (3-NT), malondialdehyde (MDA), and glutathione (GSH) levels were examined to evaluate oxidative stress. Immunoblot, and immunofluorescence staining were used to further confirm the innate immune molecular targets of H2. Our results showed that intraperitoneal injection of H2 improved acute ethanol-induced liver injury in mice in a dose dependent manner, as indicated by decreasing serum ALT and AST levels, hepatic TG levels, and increasing lipid export genes (Mttp and Apob) mRNA levels and reducing fatty acid uptake gene (CD36) mRNA levels. Mechanistically, H2 inhibited hepatic oxidative stress as indicated by reducing reactive oxygen species (ROS), 3-NT, and MDA levels in the liver, while increasing hepatic GSH levels; inhibited the overactived TLR4/9-NF-κB-TNF-α/IL-1β/IL-18 innate immune signaling; suppressed the canonical Caspase-1-GSDMD pyroptosis signaling, and the non-canonical pyroptosis signaling, such as Caspase-11-GSDMD, Caspase-8-GSDMD and Caspase-3-GSDME signaling. Therefore, our study highlights that intraperitoneal injection of H2 may represent a novel therapeutic and safe strategy for ALD via modulating oxidative stress, innate immunity and pyroptosis.
Collapse
Affiliation(s)
- Xu Luyao
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guo Wenhai
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute), Guangzhou, Guangdong 510080, China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Dai Jiaying
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Cheng Ya
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chen Yun
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Liu Wei
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xu Jiean
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Su Wen
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhang Xiaodong
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wang Changjun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute), Guangzhou, Guangdong 510080, China
| | - Yang Hongzhi
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Xu Jinwen
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhang Yaxing
- Research Centre of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
7
|
Yang X, Ding W, Chen Z, Lai K, Liu Y. The role of autophagy in insulin resistance and glucolipid metabolism and potential use of autophagy modulating natural products in the treatment of type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3762. [PMID: 38287719 DOI: 10.1002/dmrr.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe, long-term condition characterised by disruptions in glucolipid and energy metabolism. Autophagy, a fundamental cellular process, serves as a guardian of cellular health by recycling and renewing cellular components. To gain a comprehensive understanding of the vital role that autophagy plays in T2DM, we conducted an extensive search for high-quality publications across databases such as Web of Science, PubMed, Google Scholar, and SciFinder and used keywords like 'autophagy', 'insulin resistance', and 'type 2 diabetes mellitus', both individually and in combinations. A large body of evidence underscores the significance of activating autophagy in alleviating T2DM symptoms. An enhanced autophagic activity, either by activating the adenosine monophosphate-activated protein kinase and sirtuin-1 signalling pathways or inhibiting the mechanistic target of rapamycin complex 1 signalling pathway, can effectively improve insulin resistance and balance glucolipid metabolism in key tissues like the hypothalamus, skeletal muscle, liver, and adipose tissue. Furthermore, autophagy can increase β-cell mass and functionality in the pancreas. This review provides a narrative summary of autophagy regulation with an emphasis on the intricate connection between autophagy and T2DM symptoms. It also discusses the therapeutic potentials of natural products with autophagy activation properties for the treatment of T2DM conditions. Our findings suggest that autophagy activation represents an innovative approach of treating T2DM.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Chamoli M, Rane A, Foulger A, Chinta SJ, Shahmirzadi AA, Kumsta C, Nambiar DK, Hall D, Holcom A, Angeli S, Schmidt M, Pitteri S, Hansen M, Lithgow GJ, Andersen JK. A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. NATURE AGING 2023; 3:1529-1543. [PMID: 37957360 PMCID: PMC10797806 DOI: 10.1038/s43587-023-00524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.
Collapse
Affiliation(s)
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, Vallejo, CA, USA
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - David Hall
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angelina Holcom
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Minna Schmidt
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Malene Hansen
- Buck Institute for Research on Aging, Novato, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
9
|
Grander C, Meyer M, Steinacher D, Claudel T, Hausmann B, Pjevac P, Grabherr F, Oberhuber G, Grander M, Brigo N, Jukic A, Schwärzler J, Weiss G, Adolph TE, Trauner M, Tilg H. 24-Norursodeoxycholic acid ameliorates experimental alcohol-related liver disease and activates hepatic PPARγ. JHEP Rep 2023; 5:100872. [PMID: 37818230 PMCID: PMC10561126 DOI: 10.1016/j.jhepr.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 10/12/2023] Open
Abstract
Background & Aims Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber-DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1β, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Daniel Steinacher
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna, The University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna, The University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Tirol-Kliniken University Hospital Innsbruck, Innsbruck, Austria
| | - Manuel Grander
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Almeqdadi M, Gordon FD. Farnesoid X Receptor Agonists: A Promising Therapeutic Strategy for Gastrointestinal Diseases. GASTRO HEP ADVANCES 2023; 3:344-352. [PMID: 39131134 PMCID: PMC11308038 DOI: 10.1016/j.gastha.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 08/13/2024]
Abstract
Farnesoid X receptor (FXR) agonists have emerged as a promising therapeutic strategy for the management of various gastrointestinal (GI) diseases, including primary biliary cholangitis, nonalcoholic fatty liver disease, inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. In this review, we discuss the mechanisms of action of FXR agonists, including their metabolic and immunomodulatory effects, and provide an overview of the clinical evidence supporting their use in the treatment of GI diseases. We also highlight the safety, adverse effects, and potential drug interactions associated with FXR agonists. While these agents have demonstrated efficacy in improving liver function, reducing hepatic steatosis, and improving histological endpoints in primary biliary cholangitis and nonalcoholic fatty liver disease, further research is needed to determine their long-term safety and effectiveness in other GI diseases, such as inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. Additionally, the development of next-generation FXR agonists with improved potency and reduced side effects could further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Mohammad Almeqdadi
- Division of Transplantation and Hepatobiliary Diseases, Lahey Hospital & Medical Center, Burlington, Massachusetts
| | - Fredric D. Gordon
- Abdominal Transplant Institute, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
11
|
Li Y, Kong MW, Jiang N, Ye C, Yao XW, Zou XJ, Hu HM, Liu HT. Vine tea extract ameliorated acute liver injury by inhibiting hepatic autophagy and reversing abnormal bile acid metabolism. Heliyon 2023; 9:e20145. [PMID: 37809393 PMCID: PMC10559920 DOI: 10.1016/j.heliyon.2023.e20145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Gut microbiota disturbance, autophagy dysregulation, and accumulation of hepatic bile acids (BAs) are essential features of liver injury. Therefore, regulating autophagy and BA metabolism are potential strategies for treating liver diseases. Vine tea has been seen beyond a pleasant tea in food science. Our previous study found that vine tea extract (VTE) intervention alleviated acute liver injury (ALI) by restoring gut microbiota dysbiosis. In this study, we aim to investigate the effect of VTE on carbon tetrachloride (CCl4)-induced hepatic autophagy and BA metabolism disorder in mice. The results showed that VTE effectively suppressed CCl4-induced liver fibrosis and hepatic autophagy. LC-MS/MS assay suggested that VTE affected fecal BA production by reducing the fecal BA levels and improving cholestasis in ALI mice. Besides, VTE inhibited BA synthesis, promoted BA transport in the liver, and enhanced BA reabsorption in the ileum through the farnesoid X receptor (FXR)-related signaling pathway. The hepatic expressions of Fxr and Abca1 were elevated by VTE. Finally, the depletion of gut microbiota in ALI mice had a negative impact on abnormal autophagy and BA metabolism. It was also noted that the administration of VTE did not provide any additional improvement in this regard. Overall, VTE ameliorated ALI by reversing hepatic autophagy and abnormal BA metabolism, and the beneficial effects of VTE on liver injury depended on the existence of gut microbiota.
Collapse
Affiliation(s)
- Ying Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Ming-Wang Kong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Chen Ye
- Wuhan Customs Technology Center, Qintai Avenue 588, Wuhan 430050, PR China
| | - Xiao-Wei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xiao-Juan Zou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hai-Ming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hong-Tao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| |
Collapse
|
12
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Zhong S, Chen W, Wang B, Gao C, Liu X, Song Y, Qi H, Liu H, Wu T, Wang R, Chen B. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox Biol 2023; 63:102760. [PMID: 37267686 DOI: 10.1016/j.redox.2023.102760] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Cancer cells and ischemic diseases exhibit unique metabolic responses and adaptations to energy stress. Forkhead box O 3a (FoxO3a) is a transcription factor that plays an important role in cell metabolism, mitochondrial dysfunction and oxidative stress response. Although the AMP-activated protein kinase (AMPK)/FoxO3a signaling pathway plays a pivotal role in maintaining energy homeostasis under conditions of energy stress, the role of AMPK/FoxO3a signaling in mitochondria-associated ferroptosis has not yet been fully elucidated. We show that glucose starvation induced AMPK/FoxO3a activation and inhibited ferroptosis induced by erastin. Inhibition of AMPK or loss of FoxO3a in cancer cells under the glucose starvation condition can sensitize these cells to ferroptosis. Glucose deprivation inhibited mitochondria-related gene expression, reduced mitochondrial DNA(mtDNA) copy number, decreased expression of mitochondrial proteins and lowered the levels of respiratory complexes by inducing FoxO3a. Loss of FoxO3a promoted mitochondrial membrane potential hyperpolarization, oxygen consumption, lipid peroxide accumulation and abolished the protective effects of energy stress on ferroptosis in vitro. In addition, we identified a FDA-approved antipsychotic agent, the potent FoxO3a agonist trifluoperazine, which largely reduced ferroptosis-associated cerebral ischemia-reperfusion (CIR) injuries in rats through AMPK/FoxO3a/HIF-1α signaling and mitochondria-dependent mechanisms. We found that FoxO3a binds to the promoters of SLC7A11 and reduces CIR-mediated glutamate excitotoxicity through inhibiting the expression of SLC7A11. Collectively, these results suggest that energy stress modulation of AMPK/FoxO3a signaling regulates mitochondrial activity and alters the ferroptosis response. The regulation of FoxO3a by AMPK may play a crucial role in mitochondrial gene expression that controls energy balance and confers resistance to mitochondria-associated ferroptosis and CIR injuries.
Collapse
Affiliation(s)
- Sufang Zhong
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bocheng Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chao Gao
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiamin Liu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders); Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hui Qi
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongbing Liu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Tao Wu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| | - Rikang Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
14
|
Morel C, Chowdhary V, Nagesh PT, Ribeiro M, Hawryluk D, Catalano D, Adorini L, Szabo G. Altered ethanol metabolism and increased oxidative stress enhance alcohol-associated liver injury in farnesoid X receptor-deficient mice. Liver Int 2023; 43:100-114. [PMID: 35869657 PMCID: PMC10501031 DOI: 10.1111/liv.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Pharmacological activation of farnesoid X receptor (FXR) ameliorates liver injury, steatosis and inflammation in mouse models of alcoholic liver disease (ALD), but the underlying mechanisms of the protective effect of FXR against ALD remain unclear. METHODS To investigate the role of FXR in ALD, we used the NIAAA model of chronic plus binge ethanol feeding in FXR-deficient knockout (FXR KO) mice. RESULTS Ethanol-mediated liver injury and steatosis were increased in FXR KO mice, while both WT and FXR KO mice consumed the same amount of alcohol. Ethanol feeding induced liver inflammation and neutrophil infiltration that were further increased in FXR KO mice. In addition, collagen accumulation and expression of profibrotic genes were markedly elevated in the liver of alcohol-fed FXR KO compared to wild-type mice, suggesting that ethanol-induced liver fibrosis is enhanced in the absence of FXR. Surprisingly, FXR KO mice showed reduced blood alcohol levels post-binge, while CYP2E1 and ALDH1A1 were upregulated compared to WT mice, suggesting that alcohol metabolism is altered in FXR KO mice. Notably, exacerbated liver injury in FXR KO mice was associated with increased oxidative stress. ALDH1A1 activity was upregulated in FXR-deficient mouse primary hepatocytes, contributing to reactive oxygen species (ROS) generation, in vitro. Finally, using an ALDH1A1 inhibitor, we showed that ALDH1A1 activity is a key contributor to alcohol-induced ROS generation in FXR-deficient hepatocytes, in vitro. CONCLUSION ALD pathogenesis in FXR KO mice correlates with altered ethanol metabolism and increased oxidative stress, providing new insights into the protective function of FXR in ALD.
Collapse
Affiliation(s)
- Caroline Morel
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Chowdhary
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Prashanth Thevkar Nagesh
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle Ribeiro
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Danielle Hawryluk
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Gyongyi Szabo
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Role of FOXO3a Transcription Factor in the Regulation of Liver Oxidative Injury. Antioxidants (Basel) 2022; 11:antiox11122478. [PMID: 36552685 PMCID: PMC9774119 DOI: 10.3390/antiox11122478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been identified as a key mechanism in liver damage caused by various chemicals. The transcription factor FOXO3a has emerged as a critical regulator of redox imbalance. Multiple post-translational changes and epigenetic processes closely regulate the activity of FOXO3a, resulting in synergistic or competing impacts on its subcellular localization, stability, protein-protein interactions, DNA binding affinity, and transcriptional programs. Depending on the chemical nature and subcellular context, the oxidative-stress-mediated activation of FOXO3a can induce multiple transcriptional programs that play crucial roles in oxidative injury to the liver by chemicals. Here, we mainly review the role of FOXO3a in coordinating programs of genes that are essential for cellular homeostasis, with an emphasis on exploring the regulatory mechanisms and potential application of FOXO3a as a therapeutic target to prevent and treat liver oxidative injury.
Collapse
|
16
|
Kim YS, Ko B, Kim DJ, Tak J, Han CY, Cho JY, Kim W, Kim SG. Induction of the hepatic aryl hydrocarbon receptor by alcohol dysregulates autophagy and phospholipid metabolism via PPP2R2D. Nat Commun 2022; 13:6080. [PMID: 36241614 PMCID: PMC9568535 DOI: 10.1038/s41467-022-33749-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Disturbed lipid metabolism precedes alcoholic liver injury. Whether and how AhR alters degradation of lipids, particularly phospho-/sphingo-lipids during alcohol exposure, was not explored. Here, we show that alcohol consumption in mice results in induction and activation of aryl hydrocarbon receptor (AhR) in the liver, and changes the hepatic phospho-/sphingo-lipids content. The levels of kynurenine, an endogenous AhR ligand, are elevated with increased hepatic tryptophan metabolic enzymes in alcohol-fed mice. Either alcohol or kynurenine treatment promotes AhR activation with autophagy dysregulation via AMPK. Protein Phosphatase 2 Regulatory Subunit-Bdelta (Ppp2r2d) is identified as a transcriptional target of AhR. Consequently, PPP2R2D-dependent AMPKα dephosphorylation causes autophagy inhibition and mitochondrial dysfunction. Hepatocyte-specific AhR ablation attenuates steatosis, which is associated with recovery of phospho-/sphingo-lipids content. Changes of AhR targets are corroborated using patient specimens. Overall, AhR induction by alcohol inhibits autophagy in hepatocytes through AMPKα, which is mediated by Ppp2r2d gene transactivation, revealing an AhR-dependent metabolism of phospho-/sphingo-lipids.
Collapse
Affiliation(s)
- Yun Seok Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bongsub Ko
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Da Jung Kim
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.412484.f0000 0001 0302 820XMetabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03082 Korea
| | - Jihoon Tak
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| | - Chang Yeob Han
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, Republic of Korea ,grid.411545.00000 0004 0470 4320School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Korea
| | - Joo-Youn Cho
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Won Kim
- grid.31501.360000 0004 0470 5905Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sang Geon Kim
- grid.255168.d0000 0001 0671 5021College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Kyeonggi-do 10326 Republic of Korea
| |
Collapse
|
17
|
Chao X, Williams SN, Ding WX. Role of mechanistic target of rapamycin in autophagy and alcohol-associated liver disease. Am J Physiol Cell Physiol 2022; 323:C1100-C1111. [PMID: 36062877 PMCID: PMC9550572 DOI: 10.1152/ajpcell.00281.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase and a cellular sensor for nutrient and energy status, which is critical in regulating cell metabolism and growth by governing the anabolic (protein and lipid synthesis) and catabolic process (autophagy). Alcohol-associated liver disease (ALD) is a major chronic liver disease worldwide that carries a huge financial burden. The spectrum of the pathogenesis of ALD includes steatosis, fibrosis, inflammation, ductular reaction, and eventual hepatocellular carcinoma, which is closely associated with metabolic changes that are regulated by mTOR. In this review, we summarized recent progress of alcohol consumption on the changes of mTORC1 and mTORC2 activity, the potential mechanisms and possible impact of the mTORC1 changes on autophagy in ALD. We also discussed the potential beneficial effects and limitations of targeting mTORC1 against ALD.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Sha Neisha Williams
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
18
|
MEK1/2 inhibitors induce class I alcohol dehydrogenase (ADH1) expression by regulating farnesoid X receptor in hepatic cell lines and C57BL/6J mouse. Mol Biol Rep 2022; 49:5843-5852. [PMID: 35338439 DOI: 10.1007/s11033-022-07361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Alcohol is mainly catabolized by class I alcohol dehydrogenase (ADH1) in liver. ADH deficiency can aggravate ethanol-induced tissue injury. Extracellular signal-regulated kinases 1/2 (ERK1/2) is involved in alcohol metabolism. However, the relationship between ERK1/2 and ADH1 remains unclear. METHODS AND RESULTS To inhibit ERK1/2, HepG2 and BNL cells were treated with mitogen-activated protein kinases 1/2 (MEK1/2) inhibitors (U0126 and PD98059), and C57BL/6J mice were fed U0126. After treatment, the protein and mRNA expression of ADH1 were determined by Western blot and quantitative real time-PCR. The activity of ADH1 promoter was detected using luciferase assay. The results showed MEK1/2 inhibitors significantly increased ADH1 protein expression by inducing its transcription activity. Then we demonstrated a farnesoid X receptor (FXR) response element (FXRE) in ADH1 promoter by ChIP assay. To test whether FXR mediates the induction of MEK1/2 inhibitors on ADH1, HepG2 cells were transfected with FXR siRNA or ADH1 promoters with FXRE mutation. We found both FXR siRNA and FXRE mutation in ADH1 promoter abolished MEK1/2 inhibitors-induced ADH1 expression, indicating the activation of MEK1/2 inhibitors on ADH1 depends on FXR. CONCLUSIONS Our findings revealed inhibition of ERK1/2 can significantly increase ADH1 expression, indicating MEK1/2 inhibitors may possess potential application in alcohol-related diseases.
Collapse
|
19
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|
20
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
21
|
OUP accepted manuscript. Carcinogenesis 2022; 43:504-516. [DOI: 10.1093/carcin/bgac013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
|
22
|
The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 2021; 18:335-347. [PMID: 33568795 DOI: 10.1038/s41575-020-00404-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR) is a ligand-activated transcription factor involved in the control of bile acid (BA) synthesis and enterohepatic circulation. FXR can influence glucose and lipid homeostasis. Hepatic FXR activation by obeticholic acid is currently used to treat primary biliary cholangitis. Late-stage clinical trials investigating the use of obeticholic acid in the treatment of nonalcoholic steatohepatitis are underway. Mouse models of metabolic disease have demonstrated that inhibition of intestinal FXR signalling reduces obesity, insulin resistance and fatty liver disease by modulation of hepatic and gut bacteria-mediated BA metabolism, and intestinal ceramide synthesis. FXR also has a role in the pathogenesis of gastrointestinal and liver cancers. Studies using tissue-specific and global Fxr-null mice have revealed that FXR acts as a suppressor of hepatocellular carcinoma, mainly through regulating BA homeostasis. Loss of whole-body FXR potentiates progression of spontaneous colorectal cancer, and obesity-induced BA imbalance promotes intestinal stem cell proliferation by suppressing intestinal FXR in Apcmin/+ mice. Owing to altered gut microbiota and FXR signalling, changes in overall BA levels and specific BA metabolites probably contribute to enterohepatic tumorigenesis. Modulating intestinal FXR signalling and altering BA metabolites are potential strategies for gastrointestinal and liver cancer prevention and treatment. In this Review, studies on the role of FXR in metabolic diseases and gastrointestinal and liver cancer are discussed, and the potential for development of targeted drugs are summarized.
Collapse
|
23
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|
24
|
Enhanced alcoholic liver disease in mice with intestine-specific farnesoid X receptor deficiency. J Transl Med 2020; 100:1158-1168. [PMID: 32404932 PMCID: PMC8487140 DOI: 10.1038/s41374-020-0439-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Alcoholic fatty liver disease (AFLD) is one of the major causes of liver morbidity and mortality worldwide. We have previously shown that whole-body, but not hepatocyte-specific, deficiency of farnesoid X receptor (FXR) in mice worsens AFLD, suggesting that extrahepatic FXR deficiency is critical for AFLD development. Intestinal FXR is critical in suppressing hepatic bile acid (BA) synthesis by inducing fibroblast growth factor 15 (FGF15) in mice and FGF19 in humans. We hypothesized that intestinal FXR is critical for reducing AFLD development in mice. To test this hypothesis, we compared the AFLD severity in wild type (WT) and intestine-specific Fxr knockout (FXRInt-/-) mice following treatment with control or ethanol-containing diet. We found that FXRInt-/- mice were more susceptible to ethanol-induced liver steatosis and inflammation, compared with WT mice. Ethanol treatment altered the expression of hepatic genes involved in lipid and BA homeostasis, and ethanol detoxification. Gut FXR deficiency increased intestinal permeability, likely due to reduced mucosal integrity, as revealed by decreased secretion of Mucin 2 protein and lower levels of E-cadherin protein. In summary, intestinal FXR may protect AFLD development by maintaining gut integrity.
Collapse
|
25
|
Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020; 9:152-169. [PMID: 32355674 PMCID: PMC7188552 DOI: 10.21037/hbsn.2019.09.03] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized from cholesterol only in hepatocytes. Bile acids circulating in the enterohepatic system act as physiological detergent molecules to help solubilize biliary cholesterol and emulsify dietary lipids and fat-soluble vitamins in small intestine. Bile acids are signaling molecules that activate nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor TGR5. FXR critically regulates bile acid homeostasis by mediating bile acid feedback inhibition of hepatic bile acid synthesis. In addition, bile acid-activated cellular signaling pathways regulate metabolic homeostasis, immunity, and cell proliferation in various metabolically active organs. In the small and large intestine, gut bacterial enzymes modify primary bile acids to generate secondary bile acids to help shape the bile acid pool composition and subsequent biological effects. In turn, bile acids exhibit anti-microbial properties and modulate gut microbiota to influence host metabolism and immunity. Currently, bile acid-based therapies including systemic and intestine-restricted FXR agonists, TGR5 agonists, fibroblast growth factor 19 analogue, intestine FXR antagonists, and intestine apical sodium-bile acid transporter (ASBT) inhibitors have been developed as promising treatments for non-alcoholic steatohepatitis (NASH). These pharmacological agents improved metabolic and inflammatory disorders via distinct mechanisms of action that are subjects of extensive research interest. More recently, human and experimental alcoholic liver disease (ALD) has been associated with disrupted bile acid homeostasis. In additional, new findings showed that targeting bile acid metabolism and signaling may be promising therapeutic approaches for treating ALD.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
26
|
Ma X, McKeen T, Zhang J, Ding WX. Role and Mechanisms of Mitophagy in Liver Diseases. Cells 2020; 9:cells9040837. [PMID: 32244304 PMCID: PMC7226762 DOI: 10.3390/cells9040837] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion is an organelle that plays a vital role in the regulation of hepatic cellular redox, lipid metabolism, and cell death. Mitochondrial dysfunction is associated with both acute and chronic liver diseases with emerging evidence indicating that mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role in the liver’s physiology and pathophysiology. This review will focus on mitochondrial dynamics, mitophagy regulation, and their roles in various liver diseases (alcoholic liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, and cancer) with the hope that a better understanding of the molecular events and signaling pathways in mitophagy regulation will help identify promising targets for the future treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Tara McKeen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA;
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
- Correspondence: ; Tel.: +1-913-588-9813
| |
Collapse
|
27
|
Dusabimana T, Kim SR, Kim HJ, Park SW, Kim H. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis. Exp Mol Med 2019; 51:1-16. [PMID: 31028246 PMCID: PMC6486618 DOI: 10.1038/s12276-019-0245-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/23/2023] Open
Abstract
Hepatic ischemia and reperfusion injury are characterized by impaired autophagy, mitochondrial dysfunction, and subsequent compromise of cellular homeostasis following hepatic surgery or transplantation. Nobiletin, a natural flavonoid, is a beneficial antioxidant that possesses anti-inflammatory and anti-cancer activities. We investigated the effect of nobiletin on hepatic IR injury and described the underlying mechanisms. C57BL/6 mice were subjected to 60 min of partial hepatic ischemia, treated with nobiletin (5 mg/kg) or vehicle at the start of reperfusion, and killed at 5 h of reperfusion. Hepatic ischemia and reperfusion increased hepatocellular oxidative damage, inflammation, and cell death, but these changes were alleviated upon nobiletin treatment. Nobiletin increased the expression of proteins that control autophagy, mitochondrial dynamics, and biogenesis. Specifically, the SIRT-1/FOXO3a and PGC-1α pathways were activated by nobiletin. IR-induced AKT activation was associated with FOXO3a phosphorylation, which resulted in a significant reduction in the nuclear FOXO3a levels and potentially attenuated autophagy-regulatory gene expression. Nobiletin increased FOXO3a expression and its nuclear translocation via the inhibition of AKT. Specific inhibition of SIRT-1 abolished the protective effect of nobiletin, causing decreased FOXO3a expression, followed by autophagy induction and decreased PGC-1α expression and mitochondrial dynamics. Taken together, our data indicate that SIRT-1 directly mediates the protective effect of nobiletin against hepatic ischemia and reperfusion injury. The activation of autophagy and mitochondrial function through the SIRT-1/FOXO3a and PGC-1α pathways indicate that nobiletin could have therapeutic potential for treating hepatic ischemia and reperfusion injury. Nobiletin, an antioxidant found in citrus peel, may protect the liver from reperfusion injury, damage following blood flow interruption. When blood flow is restricted and then restored, as in transplant, surgery, or shock, cells are injured, largely due to damage to the cellular powerhouses, the mitochondria. Nobiletin is known to have many benefits, including anti-cancer and anti-inflammatory activities, but its mechanism of action is not well understood. Sang Won Park and Hwajin Kim, at the Gyeongsang National University School of Medicine, in Jinju, South Korea, and co-workers, investigated how nobiletin might protect the liver against interruption of blood flow. They found that nobiletin triggered cells to dismantle damaged mitochondria and produce new, functioning mitochondria, greatly reducing liver damage. These results illuminate how nobiletin works and may lead to better treatments for liver reperfusion injury.
Collapse
Affiliation(s)
- Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea. .,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea.
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
28
|
Feng S, Dai Z, Liu AB, Huang J, Narsipur N, Guo G, Kong B, Reuhl K, Lu W, Luo Z, Yang CS. Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1274-1284. [PMID: 30305244 DOI: 10.1016/j.bbalip.2018.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/28/2018] [Accepted: 08/04/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate and compare the effects of two common dietary phytosterols, stigmasterol and β-sitosterol, in altering lipid metabolism and attenuating nonalcoholic fatty liver disease (NAFLD). METHODS Stigmasterol and β-sitosterol were administered to mice at 0.4% in a high-fat western-style diet (HFWD) for 17 weeks. RESULTS Stigmasterol and β-sitosterol significantly ameliorated HFWD-induced fatty liver and metabolic abnormalities, including elevated levels of hepatic total lipids, triacylglycerols, cholesterol and liver histopathology. Both phytosterols decreased the levels of intestinal bile acids, accompanied by markedly increased fecal lipid levels. In addition, they altered the expression of genes involved in lipid metabolism. β-Sitosterol was less effective in affecting most of these parameters. Lipidomic analysis of liver and serum samples showed that stigmasterol prevented the HFWD-induced elevation of some di- and triacylglycerol species and lowering of some phospholipid species. Stigmasterol also decreased serum levels of ceramides. CONCLUSION Stigmasterol and β-sitosterol, at a dose corresponding to that suggested for humans by the FDA for lowering cholesterol levels, are shown to alleviate HFWD-induced NAFLD. Stigmasterol was more effective than β-sitosterol, possibly because of its suppression of hepatic lipogenic gene expression and modulation of circulating ceramide levels.
Collapse
Affiliation(s)
- Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhuqing Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Anna B Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinbao Huang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; State Key Laboratory of Tea Plant Biology and Utilization School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | - Nihal Narsipur
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenyun Lu
- Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zisheng Luo
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Update on FXR Biology: Promising Therapeutic Target? Int J Mol Sci 2018; 19:ijms19072069. [PMID: 30013008 PMCID: PMC6073382 DOI: 10.3390/ijms19072069] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut–liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.
Collapse
|
30
|
Dong L, Han X, Tao X, Xu L, Xu Y, Fang L, Yin L, Qi Y, Li H, Peng J. Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling. Foods 2018; 7:88. [PMID: 29890650 PMCID: PMC6025249 DOI: 10.3390/foods7060088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
We previously reported the effects of the total flavonoids (TFs) from Rosa laevigata Michx fruit against carbon tetrachloride-induced liver damage, non-alcoholic fatty liver disease, and liver ischemia-reperfusion injury. However, there have been no papers reporting the role of R. laevigata TFs against lipopolysaccharide (LPS)-induced liver injury. In this paper, liver injury in mice was induced by LPS, and R. Laevigata extract was intragastrically administered to the mice for 7 days. Biochemical parameters in serum and liver tissue were examined, and pathological changes were observed by transmission electron microscopy, hematoxylin and eosin (H&E) and Oil Red O staining. The results showed that the TFs markedly reduced serum ALT (alanine transferase), AST (aspartate transaminase), TG (total triglyceride), and TC (total cholesterol) levels and relative liver weights and improved liver pathological changes. In addition, the TFs markedly decreased tissue MDA (malondialdehyde) level and increased the levels of SOD (superoxide dismutase) and GSH-Px (glutathione peroxidase). A mechanistic study showed that the TFs significantly increased the expression levels of Nrf2 (nuclear erythroid factor2-related factor 2), HO-1 (heme oxygenase-1), NQO1 (NAD(P)H dehydrogenase (quinone 1), GCLC (glutamate-cysteine ligase catalytic subunit), and GCLM (glutamate-cysteine ligase regulatory subunit) and decreased Keap1 (Kelch-like ECH-associated protein 1) level by activating FXR (farnesoid X receptor) against oxidative stress. Furthermore, the TFs markedly suppressed the nuclear translocation of NF-κB (nuclear factor-kappa B) and subsequently decreased the expression levels of IL (interleukin)-1β, IL-6, HMGB-1 (high -mobility group box 1), and COX-2 (cyclooxygenase-2) by activating FXR and FOXO3a (forkhead box O3) against inflammation. Besides, the TFs obviously reduced the expression levels of SREBP-1c (sterol regulatory element-binding proteins-1c), ACC1 (acetyl-CoA carboxylase-1), FASN (fatty acid synthase), and SCD1 (stearoyl-coenzyme A desaturase 1), and improved CPT1 (carnitine palmitoyltransferase 1) level by activating FXR to regulate lipid metabolism. Our results suggest that TFs exhibited protective effect against LPS-induced liver injury by altering FXR-mediated oxidative stress, inflammation, and lipid metabolism, and should be developed as an effective food and healthcare product for the therapy of liver injury in the future.
Collapse
Affiliation(s)
- Lile Dong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Linlin Fang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
31
|
Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, Wang L, Alnouti Y, Fouts DE, Stärkel P, Loomba R, Coulter S, Liddle C, Yu RT, Ling L, Rossi SJ, DePaoli AM, Downes M, Evans RM, Brenner DA, Schnabl B. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67:2150-2166. [PMID: 29159825 PMCID: PMC5962369 DOI: 10.1002/hep.29676] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 10/28/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Alcoholic liver disease (ALD) is associated with changes in the intestinal microbiota. Functional consequences of alcohol-associated dysbiosis are largely unknown. The aim of this study was to identify a mechanism of how changes in the intestinal microbiota contribute to ALD. Metagenomic sequencing of intestinal contents demonstrated that chronic ethanol feeding in mice is associated with an over-representation of bacterial genomic DNA encoding choloylglycine hydrolase, which deconjugates bile acids in the intestine. Bile acid analysis confirmed an increased amount of unconjugated bile acids in the small intestine after ethanol administration. Mediated by a lower farnesoid X receptor (FXR) activity in enterocytes, lower fibroblast growth factor (FGF)-15 protein secretion was associated with increased hepatic cytochrome P450 enzyme (Cyp)-7a1 protein expression and circulating bile acid levels. Depletion of the commensal microbiota with nonabsorbable antibiotics attenuated hepatic Cyp7a1 expression and reduced ALD in mice, suggesting that increased bile acid synthesis is dependent on gut bacteria. To restore intestinal FXR activity, we used a pharmacological intervention with the intestine-restricted FXR agonist fexaramine, which protected mice from ethanol-induced liver injury. Whereas bile acid metabolism was only minimally altered, fexaramine treatment stabilized the gut barrier and significantly modulated hepatic genes involved in lipid metabolism. To link the beneficial metabolic effect to FGF15, a nontumorigenic FGF19 variant-a human FGF15 ortholog-was overexpressed in mice using adeno-associated viruses. FGF19 treatment showed similarly beneficial metabolic effects and ameliorated alcoholic steatohepatitis. CONCLUSION Taken together, alcohol-associated metagenomic changes result in alterations of bile acid profiles. Targeted interventions improve bile acid-FXR-FGF15 signaling by modulation of hepatic Cyp7a1 and lipid metabolism, and reduce ethanol-induced liver disease in mice. (Hepatology 2018;67:2150-2166).
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Katrin Hochrath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Angela Horvath
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Gastroenterology and Hepatology, Medical University of Graz, Graz Austria
| | - Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sally Coulter
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Australia
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lei Ling
- NGM Biopharmaceuticals, Inc., South San Francisco, CA, USA
| | | | | | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
32
|
Feng S, Gan L, Yang CS, Liu AB, Lu W, Shao P, Dai Z, Sun P, Luo Z. Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3417-3425. [PMID: 29583004 DOI: 10.1021/acs.jafc.7b06146] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To study the effects of stigmasterol and β-sitosterol on high-fat Western diet (HFWD)-induced nonalcoholic fatty liver disease (NAFLD), lipidomic analyses were conducted in liver samples collected after 33 weeks of the treatment. Principal component analysis showed these phytosterols were effective in protecting against HFWD-induced NAFLD. Orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and S-plots showed that triacylglycerols (TGs), phosphatidylcholines, cholesteryl esters, diacylglycerols, and free fatty acids (FFAs) were the major lipid species contributing to these discriminations. The alleviation of NAFLD is mainly associated with decreases in hepatic cholesterol, TGs with polyunsaturated fatty acids, and alterations of free hepatic FFA. In conclusion, phytosterols, at a dose comparable to that suggested for humans by the FDA for the reduction of plasma cholesterol levels, are shown to protect against NAFLD in this long-term (33-week) study.
Collapse
Affiliation(s)
- Simin Feng
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
- Zhejiang University , College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing , Hangzhou 310058 , People's Republic of China
| | - Ling Gan
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Anna B Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Wenyun Lu
- Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics , Princeton University , Princeton , New Jersey 08544 , United States
| | - Ping Shao
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
| | - Zhuqing Dai
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
| | - Zisheng Luo
- Zhejiang University , College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing , Hangzhou 310058 , People's Republic of China
| |
Collapse
|
33
|
Williams JA, Ding WX. Mechanisms, pathophysiological roles and methods for analyzing mitophagy - recent insights. Biol Chem 2018; 399:147-178. [PMID: 28976892 DOI: 10.1515/hsz-2017-0228] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
In 2012, we briefly summarized the mechanisms, pathophysiological roles and methods for analyzing mitophagy. As then, the mitophagy field has continued to grow rapidly, and many new molecular mechanisms regulating mitophagy and molecular tools for monitoring mitophagy have been discovered and developed. Therefore, the purpose of this review is to update information regarding these advances in mitophagy while focusing on basic molecular mechanisms of mitophagy in different organisms and its pathophysiological roles. We also discuss the advantage and limitations of current methods to monitor and quantify mitophagy in cultured cells and in vivo mouse tissues.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Huang J, Feng S, Liu A, Dai Z, Wang H, Reuhl K, Lu W, Yang CS. Green Tea Polyphenol EGCG Alleviates Metabolic Abnormality and Fatty Liver by Decreasing Bile Acid and Lipid Absorption in Mice. Mol Nutr Food Res 2018; 62. [PMID: 29278293 DOI: 10.1002/mnfr.201700696] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/19/2017] [Indexed: 12/20/2022]
Abstract
SCOPE The tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has been shown to ameliorate metabolic abnormalities and fatty liver. The present study investigates the mechanisms of actions of EGCG on bile acid homeostasis and lipid metabolism. METHODS Male C57BL/6J mice are fed a low-fat diet, a high-fat western-style diet, or a high-fat western-style diet containing 0.32% EGCG. The effects of the treatments on biochemical parameters, gene expression, and lipidomics are analyzed. RESULTS EGCG treatment significantly reduces body weight gain, mesenteric fat mass, fasting blood glucose, insulin resistance, serum cholesterol, and severity of fatty liver after treatment for 17 weeks, but most of these effects were less apparent at week 33. At week 17, EGCG treatment significantly elevates the mRNA levels of cholesterol 7α-hydroxylase, HMG-CoA reductase, low-density lipoprotein receptor, and scavenger receptor B1, and partially normalizes the high-fat diet induced lipidomic profile. The intestinal bile acid content is significantly decreased by EGCG, while fecal excretion of bile acids, cholesterol, and total lipids are increased. CONCLUSION EGCG decreases bile acid reabsorption, results in lower intestinal bile acid levels, which further decreases the absorption of lipids. These actions contribute to the alleviation of metabolic abnormalities and fatty liver disease caused by the high-fat diet.
Collapse
Affiliation(s)
- Jinbao Huang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,International Joint Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
| | - Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,Visiting student from Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Anna Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Zhuqing Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,Visiting student from College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Wenyun Lu
- Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.,International Joint Research Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
35
|
Sericin improves heart and liver mitochondrial architecture in hypercholesterolaemic rats and maintains pancreatic and adrenal cell biosynthesis. Exp Cell Res 2017; 358:301-314. [DOI: 10.1016/j.yexcr.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/17/2017] [Accepted: 07/01/2017] [Indexed: 01/07/2023]
|
36
|
Gai Z, Chu L, Xu Z, Song X, Sun D, Kullak-Ublick GA. Farnesoid X receptor activation protects the kidney from ischemia-reperfusion damage. Sci Rep 2017; 7:9815. [PMID: 28852062 PMCID: PMC5575310 DOI: 10.1038/s41598-017-10168-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Farnesoid X receptor (FXR) activation has been reported to reduce inflammation and oxidative stress. Because both inflammation and oxidative stress are critical for tissue destruction during kidney ischemia reperfusion (I/R) injury, we investigated the protective role of FXR against kidney damage induced by I/R in mice. Mice undergoing renal I/R developed the typical features of acute kidney injury (AKI): increased creatinine, albuminuria, tubular necrosis and apoptosis. Inflammatory cytokine production and oxidative stress were also markedly increased. In mice pretreated with 6-ethyl-chenodeoxycholic acid (6-ECDCA), a selective FXR agonist, I/R induced changes were prevented and renal function and structure were improved. Moreover, FXR activation also effectively prevented the subsequent progression of AKI to chronic kidney disease (CKD) by ameliorating glomerulosclerosis and interstitial fibrosis and by suppressing fibrogenic gene expression. FXR mRNA levels were inversely correlated with the progression to CKD in mice and with the degree of interstitial fibrosis in human biopsies. In further experiments administering 6-ECDCA to renal proximal tubular cells cultured under hypoxia, the renoprotective effects of FXR activation were associated with inhibition of oxidative and ER stress and with increased antioxidant activity. In conclusion, FXR agonists may have a therapeutic role in conditions associated with ischemic kidney damage.
Collapse
Affiliation(s)
- Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lei Chu
- Department of Urology, Tengzhou Central People's Hospital, Zaozhuang, People's Republic of China
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiaoming Song
- Department of Thoracic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China
| | - Dongfeng Sun
- Department of Thoracic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, People's Republic of China.
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Eid N, Kondo Y. Parkin in cancer: Mitophagy-related/unrelated tasks. World J Hepatol 2017; 9:349-351. [PMID: 28321271 PMCID: PMC5340990 DOI: 10.4254/wjh.v9.i7.349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Dysfunctional mitochondria may produce excessive reactive oxygen species, thus inducing DNA damage, which may be oncogenic if not repaired. As a major role of the PINK1-Parkin pathway involves selective autophagic clearance of damaged mitochondria via a process termed mitophagy, Parkin-mediated mitophagy may be a tumor-suppressive mechanism. As an alternative mechanism for tumor inhibition beyond mitophagy, Parkin has been reported to have other oncosuppressive functions such as DNA repair, negative regulation of cell proliferation and stimulation of p53 tumor suppressor function. The authors recently reported that acute ethanol-induced mitophagy in hepatocytes was associated with Parkin mitochondrial translocation and colocalization with accumulated 8-OHdG (a marker of DNA damage and mutagenicity). This finding suggests: (1) the possibility of Parkin-mediated repair of damaged mitochondrial DNA in hepatocytes of ethanol-treated rats (ETRs) as an oncosuppressive mechanism; and (2) potential induction of cytoprotective mitophagy in ETR hepatocytes if mitochondrial damage is too severe to be repaired. Below is a summary of the various roles Parkin plays in tumor suppression, which may or may not be related to mitophagy. A proper understanding of the various tasks performed by Parkin in tumorigenesis may help in cancer therapy by allowing the PINK1-Parkin pathway to be targeted.
Collapse
Affiliation(s)
- Nabil Eid
- Nabil Eid, Yoichi Kondo, Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoichi Kondo
- Nabil Eid, Yoichi Kondo, Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
38
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|
39
|
Xu W, Lu C, Yao L, Zhang F, Shao J, Zheng S. Dihydroartemisinin protects against alcoholic liver injury through alleviating hepatocyte steatosis in a farnesoid X receptor-dependent manner. Toxicol Appl Pharmacol 2016; 315:23-34. [PMID: 27939985 DOI: 10.1016/j.taap.2016.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/29/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a common etiology of liver diseases, characterized by hepatic steatosis. We previously identified farnesoid X receptor (FXR) as a potential therapeutic target for ALD. Dihydroartemisinin (DHA) has been recently identified to possess potent pharmacological activities on liver diseases. This study was aimed to explore the impact of DHA on ALD and further elaborate the underlying mechanisms. Gain- or loss-of-function analyses of FXR were applied in both in vivo and in vitro studies. Results demonstrated that DHA rescued FXR expression and activity in alcoholic rat livers. DHA also reduced serodiagnostic markers of liver injury, including aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase. DHA improved alcohol-induced liver histological lesions, expression of inflammation genes, and inflammatory cell infiltration. In addition, DHA not only attenuated hyperlipidemia but also reduced hepatic steatosis through regulating lipogenesis and lipolysis genes. In vitro experiments further consolidated the concept that DHA ameliorated ethanol-caused hepatocyte injury and steatosis. Noteworthily, DHA effects were reinforced by FXR agonist obeticholic acid or FXR expression plasmids but abrogated by FXR antagonist Z-guggulsterone or FXR siRNA. In summary, DHA significantly improved alcoholic liver injury by inhibiting hepatic steatosis, which was dependent on its activation of FXR in hepatocytes.
Collapse
Affiliation(s)
- Wenxuan Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Chunfeng Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lu Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
40
|
Xu W, Lu C, Zhang F, Shao J, Yao S, Zheng S. Dihydroartemisinin counteracts fibrotic portal hypertension via farnesoid X receptor-dependent inhibition of hepatic stellate cell contraction. FEBS J 2016; 284:114-133. [PMID: 27896916 DOI: 10.1111/febs.13956] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Portal hypertension is a frequent pathological symptom occurring especially in hepatic fibrosis and cirrhosis. Current paradigms indicate that inhibition of hepatic stellate cell (HSC) activation and contraction is anticipated to be an attractive therapeutic strategy, because activated HSC dominantly facilitates an increase in intrahepatic vein pressure through secreting extracellular matrix and contracting. Our previous in vitro study indicated that dihydroartemisinin (DHA) inhibited contractility of cultured HSC by activating intracellular farnesoid X receptor (FXR). However, the effect of DHA on fibrosis-related portal hypertension still requires clarification. In this study, gain- and loss-of-function models of FXR in HSC were established to investigate the mechanisms underlying DHA protection against chronic CCl4 -caused hepatic fibrosis and portal hypertension. Immunofluorescence staining visually showed a decrease in FXR expression in CCl4 -administrated rat HSC but an increase in that in DHA-treated rat HSC. Serum diagnostics and morphological analyses consistently indicated that DHA exhibited hepatoprotective effects on CCl4 -induced liver injury. DHA also reduced CCl4 -caused inflammatory mediator expression and inflammatory cell infiltration. These improvements were further enhanced by INT-747 but weakened by Z-guggulsterone. Noteworthily, DHA, analogous to INT-747, significantly lowered portal vein pressure and suppressed fibrogenesis. Experiments on mice using FXR shRNA lentivirus consolidated the results above. Mechanistically, inhibition of HSC activation and contraction was found as a cellular basis for DHA to relieve portal hypertension. These findings demonstrated that DHA attenuated portal hypertension in fibrotic rodents possibly by targeting HSC contraction via a FXR activation-dependent mechanism. FXR could be a target molecule for reducing portal hypertension during hepatic fibrosis.
Collapse
Affiliation(s)
- Wenxuan Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, China
| | - Chunfeng Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, China
| | - Shunyu Yao
- Class AP, Grade 11, Nanjing No. 1 High School, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, China
| |
Collapse
|
41
|
Han CY, Kim TH, Koo JH, Kim SG. Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Arch Pharm Res 2016; 39:1062-74. [PMID: 27515052 DOI: 10.1007/s12272-016-0812-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/04/2016] [Indexed: 12/24/2022]
Abstract
Maintenance of energy homeostasis is crucial for survival of organism. There exists a close link between energy metabolism and cell survival, which are coordinately regulated by common signaling pathways. Farnesoid X receptor (FXR) serves as a ligand-mediated transcription factor to regulate diverse genes involved in bile acid, lipid, and glucose metabolism, controlling cellular and systemic energy metabolism. Another important aspect on FXR biology is related to its beneficial effect on cell survival. FXR exerts antioxidative and cytoprotective effect, which is closely associated with the ability of FXR to regulate mitochondrial function. To maintain complex biological processes under homeostasis, FXR activity needs to be dynamically and tightly controlled by different signaling pathways and modifications. In this review, we discuss the role of FXR in the regulation of energy metabolism and cell survival, with the goal of understanding molecular basis for FXR regulation in physiological and pathological conditions. This information may be of assistance in understanding recent advancements of FXR research and strategies for the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
42
|
Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 2016; 590:2375-97. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022]
Abstract
p62/SQSTM1 is a multifunctional signaling hub and autophagy adaptor with many binding partners, which allow it to activate mTORC1-dependent nutrient sensing, NF-κB-mediated inflammatory responses, and the NRF2-activated antioxidant defense. p62 recognizes polyubiquitin chains via its C-terminal domain and binds to LC3 via its LIR motif, thereby promoting the autophagic degradation of ubiquitinated cargos. p62 accumulates in many human liver diseases, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), where it is a component of Mallory-Denk bodies and intracellular hyaline bodies. Chronic p62 elevation contributes to HCC development by preventing oncogene-induced senescence and death of cancer-initiating cells and enhancing their proliferation. In this review, we discuss p62-mediated signaling pathways and their roles in liver pathophysiology, especially NASH and HCC.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy. Nutrients 2016; 8:nu8010027. [PMID: 26742072 PMCID: PMC4728641 DOI: 10.3390/nu8010027] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease.
Collapse
|
44
|
Lívero FA, Acco A. Molecular basis of alcoholic fatty liver disease: From incidence to treatment. Hepatol Res 2016; 46:111-23. [PMID: 26417962 DOI: 10.1111/hepr.12594] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
Alcoholic liver diseases have complex and multiple pathogenic mechanisms but still no effective treatment. Steatosis or alcoholic fatty liver disease (AFLD) has a widespread incidence and is the first step in the progression to more severe stages of alcoholic liver disease, with concomitant increases in morbidity and mortality rates. The ways in which this progression occurs and why some individuals are susceptible are still unanswered scientific questions. Research with animal models and clinical evidence have shown that it is a multifactorial disease that involves interactions between lipid metabolism, inflammation, the immune response and oxidative stress. Each of these pathways provides a better understanding of the pathogenesis of AFLD and contributes to the development of therapeutic strategies. This review emphasizes the importance of research on alcoholic steatosis based on incidence data, key pathogenic mechanisms and therapeutic interventions, and discusses perspectives on the progression of this disease.
Collapse
Affiliation(s)
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
45
|
Williams JA, Ding WX. A Mechanistic Review of Mitophagy and Its Role in Protection against Alcoholic Liver Disease. Biomolecules 2015; 5:2619-42. [PMID: 26501336 PMCID: PMC4693250 DOI: 10.3390/biom5042619] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major health problem worldwide, and alcohol is well-known to cause mitochondrial damage, which exacerbates alcohol-induced liver injury and steatosis. No successful treatments are currently available for treating ALD. Therefore, a better understanding of mechanisms involved in regulation of mitochondrial homeostasis in the liver and how these mechanisms may protect against alcohol-induced liver disease is needed for future development of better therapeutic options for ALD. Mitophagy is a key mechanism for maintaining mitochondrial homeostasis by removing damaged mitochondria, and mitophagy protects against alcohol-induced liver injury. Parkin, an E3 ubiquitin ligase, is well-known to induce mitophagy in in vitro models although Parkin-independent mechanisms for mitophagy induction also exist. In this review, we discuss the roles of Parkin and mitophagy in protection against alcohol-induced liver injury and steatosis. We also discuss Parkin-independent mechanisms for mitophagy induction, which have not yet been evaluated in the liver but may also potentially have a protective role against ALD. In addition to mitophagy, mitochondrial spheroid formation may also provide a novel mechanism of protection against ALD, but the role of mitochondrial spheroids in protection against ALD progression needs to be further explored. Targeting removal of damaged mitochondria by mitophagy or inducing formation of mitochondrial spheroids may be promising therapeutic options for treatment of ALD.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
46
|
Eid N, Ito Y, Otsuki Y. Mitophagy in steatotic hepatocytes of ethanol-treated wild-type and Parkin knockout mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G513-G514. [PMID: 26374875 DOI: 10.1152/ajpgi.00254.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| |
Collapse
|
47
|
Williams JA, Ding WX. Mitophagy, mitochondrial spheroids, and mitochondrial-derived vesicles in alcohol-induced liver injury. Am J Physiol Gastrointest Liver Physiol 2015; 309:G515. [PMID: 26374876 DOI: 10.1152/ajpgi.00264.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
48
|
Zhang Z, Guo M, Zhao S, Xu W, Shao J, Zhang F, Wu L, Lu Y, Zheng S. The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomed Pharmacother 2015; 74:17-29. [DOI: 10.1016/j.biopha.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
|
49
|
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5:158-67. [PMID: 26579442 PMCID: PMC4629219 DOI: 10.1016/j.apsb.2014.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.
Collapse
Key Words
- 6ECDCA, 6α-ethyl-chenodeoxycholic acid
- ADH, alcohol dehydrogenase
- AF, activation function
- AKT, protein kinase B
- ALD, alcoholic liver disease
- ALT, alanine aminotransferase
- ASBT, apical sodium dependent bile acid transporter
- Alcoholic liver disease
- Atg, autophagy-related
- Autophagy
- BAAT, bile acid CoA:amino acid N-acyltransferase
- BACS, bile acid CoA synthetase
- BSEP, bile salt export pump
- Bile acids
- CA, cholic acid
- CB1R, cannabinoid receptor type 1
- CDCA, chenodeoxycholic acid
- CREB, cAMP response element-binding protein
- CREBH, cAMP response element-binding protein, hepatocyte specific
- CRTC2, CREB regulated transcription coactivator 2
- CYP, cytochrome P450
- DCA, deoxycholic acid
- DR1, direct repeat 1
- FGF15/19, fibroblast growth factor 15/19
- FGFR4, fibroblast growth factor receptor 4
- FXR, farnesoid X receptor
- Farnesoid X receptor
- FoxO3
- FoxO3a, forkhead box-containing protein class O3a
- GGT, gamma-glutamyltranspeptidase
- HCC, hepatocellular carcinoma
- IR-1, inverted repeat-1
- KO, knockout
- LC3, light chain 3
- LRH-1, liver receptor homolog 1
- LXR, liver X receptor
- MRP4, multidrug resistance protein 4
- NAD+, nicotinamide adenine dinucleotide
- NTCP, sodium taurocholate cotransporting polypeptide
- OSTα/β, organic solute transporter α/β
- PE, phosphatidylethanolamine
- PPARα, peroxisome proliferator-activated receptor alpha
- ROS, reactive oxygen species
- RXRα, retinoid X receptor-alpha
- SHP, small heterodimer partner
- SQSTM, sequestome-1
- SREBP1, sterol regulatory element-binding protein 1
- Sirt1, sirtuin 1
- TCA, taurocholic acid
- TFEB, transcription factor EB
- TLR4, toll-like receptor 4
- TUDCA, tauro-ursodeoxycholic acid
- UDCA, ursodeoxycholic acid
- WAY, WAY-362450
- WT, wild type
Collapse
Affiliation(s)
| | - Wenxing Ding
- Corresponding author. Tel.: +1 913 5889813; fax: +1 913 5887501.
| |
Collapse
|