1
|
Shen SR, Huang ZQ, Yang YD, Han JB, Fang ZM, Guan Y, Xu JC, Min JL, Wang Y, Wu GJ, Xiao ZX, Luo W, Huang ZQ, Liang G. JOSD2 inhibits angiotensin II-induced vascular remodeling by deubiquitinating and stabilizing SMAD7. Acta Pharmacol Sin 2025; 46:1275-1288. [PMID: 39833306 DOI: 10.1038/s41401-024-01437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025]
Abstract
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues. Whole-body knockout of JOSD2 significantly deteriorated Ang II-induced vascular remodeling in mice. Conversely, Ang II-induced vascular remodeling was reversed by vascular smooth muscle cell (VSMC)-specific JOSD2 overexpression. In vitro, JOSD2 deficiency aggravated Ang II-induced fibrosis, proliferation, and migration VSMCs, while these changes were reversed by JOSD2 overexpression. RNA-seq analysis showed that the protective effects of JOSD2 in VSMCs were related to the TGFβ-SMAD pathway. Furthermore, the LC-MS/MS analysis identified SMAD7, a negative regulator in the TGFβ-SMAD pathway, as the substrate of JOSD2. JOSD2 specifically bound to the MH1 domain of SMAD7 to remove the K48-linked ubiquitin chains from SMAD7 at lysine 220 to sustain SMAD7 stability. Taken together, our finding reveals that the JOSD2-SMAD7 axis is critical for relieving Ang II-induced vascular remodeling and JOSD2 may be a novel and potential therapeutic target for hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Si-Rui Shen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhu-Qi Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Die Yang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji-Bo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zi-Min Fang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Guan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Chen Xu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ju-Lian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China
| | - Wu Luo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhou-Qing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
2
|
Zhang R, Li W, Yang J, Fan X, Fan H, Li W. The Role of Luteolin in Inhibiting Prostaglandin-Endoperoxide Synthase 2 to Relieve Neointimal Hyperplasia in Arteriovenous Fistula. Adv Biol (Weinh) 2025; 9:e2400437. [PMID: 39960128 DOI: 10.1002/adbi.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/24/2025] [Indexed: 04/17/2025]
Abstract
This study aims to investigate the role and mechanism of luteolin in inflammation and phenotypic switch of vascular smooth muscle cells (VSMCs) in an arteriovenous fistula (AVF) model, for providing a potential agent for the prevention and therapy of AVF neointimal hyperplasia. In vivo, an AVF model is created in Sprague Dawley rats. In vitro, rat VSMCs are treated with platelet-derived growth factor-BB (PDGF-BB) to induce the phenotypic switch of VSMCs. Histological AVF changes are analyzed using hematoxylin-eosin. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) are utilized to detect prostaglandin-endoperoxide synthase 2 (PTGS2) expression. In vivo, luteolin inhibits neointima formation and reduces vimentin, α-SMA, MCP-1, MMP-9, TNF-α, and IL-6 levels. In vitro, under PDGF-BB treatment, luteolin inhibits proliferation and migration and reduces TNF-α, vimentin, α-SMA, MCP-1, MMP-9, and IL-6 levels in VSMCs. In rat AVF tissues, PTGS2 expression is increased. Luteolin inhibits PTGS2 expression in vivo and in vitro. PTGS2 overexpression reverses the role of luteolin in extracellular matrix protein expression, proliferation, inflammation, and migration in VSMCs treated with PDGF-BB. Altogether, in the AVF, luteolin inhibits proliferation, migration, the phenotypic switch of VSMCs, neointima formation, and the inflammatory response through inhibiting PTGS2 expression.
Collapse
Affiliation(s)
- Ruibin Zhang
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, P. R. China
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Wei Li
- Department of hand and foot, Gaomi People's Hospital, Gaomi, Shandong, 261500, P. R. China
| | - Jihua Yang
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Xiujie Fan
- Department of Medical Experimental Diagnosis Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Huili Fan
- Department of Nephrology, Jinxiang Affiliated Hospital of Jining Medical University, Jining, Shandong, 272200, P. R. China
| | - Wei Li
- Department of Nephrology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, 250014, P. R. China
| |
Collapse
|
3
|
Wang SF, Yang LY, Zhao AQ, Wang ZY, Wang S, Gong M, Zheng MQ, Liu G, Yang SY, Lin JJ, Sun SG. A Novel Hidden Protein p-414aa Encoded by circSETD2(14,15) Inhibits Vascular Remodeling. Circulation 2025. [PMID: 40099364 DOI: 10.1161/circulationaha.124.070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia, is a fundamental cause of vascular remodeling diseases such as atherosclerosis and hypertension. Novel hidden proteins encoded by circular RNAs play crucial roles in disease progression, yet their involvement in vascular remodeling diseases has not been comprehensively studied. This study identifies a novel protein derived from a circular RNA in VSMCs and demonstrates its potential role in regulating vascular remodeling. METHODS Cell proliferation assays were performed to investigate the effects of circSETD2(14,15) on VSMC proliferation. Techniques such as vector construction, immunoprecipitation-mass spectrometry, and dual-luciferase reporter gene were used to confirm that circSETD2(14,15) encoded a novel protein, p-414aa. The interaction between p-414aa and HuR (human antigen R) was validated with techniques such as coimmunoprecipitation, mass spectrometry, and proximity ligation assay. Through experiments including RNA sequencing and RNA immunoprecipitation, the interaction between HuR and C-FOS (C-Fos proto-oncogene) mRNA was revealed. The role of p-414aa in neointimal hyperplasia was assessed with a carotid artery ligation model in male mice. RESULTS Overexpression of circSETD2(14,15) inhibits VSMC phenotypic switching. The novel protein p-414aa, encoded by circSETD2(14,15), interacts with HuR to reduce C-FOS mRNA stability, thereby suppressing VSMC proliferation and ultimately inhibiting neointimal hyperplasia in male mice. CONCLUSIONS We uncover a novel hidden protein derived from circSETD2(14,15), called p-414aa, that inhibits vascular remodeling. CircSETD2(14,15) and p-414aa may serve as potential therapeutic targets for vascular remodeling diseases.
Collapse
Affiliation(s)
- Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, China (S.-F.W.)
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Sen Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| | - Ming-Qi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, China (M.-Q.Z., G.L.)
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, China (M.-Q.Z., G.L.)
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (S.-Y.Y.)
| | - Jia-Jie Lin
- School of Basic Medicine, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China (J.-J.L.)
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China (S.-F.W., L.-Y.Y., A.-Q.Z., Z.-Y.W., S.W., M.G., S.-G.S.)
| |
Collapse
|
4
|
Wu G, Fan Q, Chen M, Luo G, Wu Z, Zhao J, Lin J, Zhang C, Li H, Qi X, Huo H, Zheng L, Luo M. Activation of AMP-activated Protein Kinase by Metformin Inhibits Dedifferentiation of Platelet-derived Growth Factor-BB-induced Vascular Smooth Muscle Cells to Improve Arterial Remodeling in Cirrhotic Portal Hypertension. Cell Mol Gastroenterol Hepatol 2025; 19:101487. [PMID: 40024535 PMCID: PMC12008675 DOI: 10.1016/j.jcmgh.2025.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND & AIMS Portal hypertension (PHT) is the potentially deadly complication of liver cirrhosis. Intrahepatic vascular resistance and the splanchnic hyperdynamic circulation are 2 principal driving factors contributing to the maintenance and exacerbation of PHT. However, in the advanced stages of cirrhosis, the fibrotic process in the liver becomes irreversible, leading to persistent and intractable increases in intrahepatic vascular resistance. Arterial remodeling emerges as a crucial mechanism driving the hyperdynamic splanchnic circulation. Therefore, ameliorating the hyperdynamic splanchnic circulation has become an indispensable component of PHT therapeutic strategies. METHODS Liver cirrhosis with PHT was induced in the rats by common bile duct ligation (BDL). Based on the transcriptomic sequencing of the mesenteric arteries, we investigated the effects and mechanisms of metformin on the arterial remodeling at different stages of cirrhosis. We further validated potential molecular mechanisms through in vitro experiments using the A7r5 smooth muscle cell line and primary vascular smooth muscle cells (VSMCs). RESULTS Our findings revealed the beneficial effects of metformin on liver cirrhosis and PHT in rats following BDL for 4 and 6 weeks. Metformin was observed to ameliorate PHT and splanchnic hyperdynamic circulation in BDL rats, even in the advanced stages of liver cirrhosis. This effect was evidenced by reduced portal pressure and cardiac output, decreased superior mesenteric artery (SMA) flow, accompanied by improvements in systemic vascular resistance and SMA resistance. Moreover, chronic inflammation in BDL rats was alleviated by metformin, which might inhibit the driving factors of angiogenesis and arterial remodeling. Notably, SMA dilation and arterial remodeling in BDL rats were potent alleviated following metformin treatment. Metformin ameliorated arterial remodeling in BDL rats by inhibiting the dedifferentiation of contractile VSMCs, resulting in the upregulation of contractile protein expressions such as alpha-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α). Platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor receptor beta (PDGFR-β) signaling exerted crucial roles in regulating the VSMCs cell phenotype. Activation of AMP-activated protein kinase (AMPK) by metformin blocked the downstream pathway of PDGF-BB/PDGFRβ. Furthermore, in vitro cell experiments, VSMCs were respectively treated with AMPK activator metformin or AMPK inhibitor Compound C. We revealed the molecular mechanism that metformin inhibited the phenotypic switching of A7r5 cells induced by PDGF-BB and primary VSMCs from BDL rats, which was mediated by activating AMPK to enhance the expression of contractile protein α-SMA. These findings suggest that AMPK can ameliorate the progression of arterial remodeling during PHT via suppressing the PDGF-BB/PDGFRβ signaling pathway, thereby offering novel insights into seek PHT treatment approaches. CONCLUSIONS Our findings revealed that metformin exerts its effects by activating the AMPK pathway, inhibiting the dedifferentiation of contractile VSMCs in the splanchnic arteries, and improving arterial remodeling, thereby ameliorating PHT and splanchnic hyperdynamic circulation in cirrhotic rats.
Collapse
Affiliation(s)
- Guangbo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guqing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbo Zhao
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Pu Z, Li L, Zhang Y, Shui Y, Liu J, Wang X, Jiang X, Zhang L, Yang H. Exploring the therapeutic potential of HAPC in COVID-19-induced acute lung injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156563. [PMID: 40023068 DOI: 10.1016/j.phymed.2025.156563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is one of the critical complications of coronavirus disease 2019 (COVID-19), which significantly impacts the survival of patients. PURPOSE In this study, we screened COVID-19-related target genes and identified and optimized potential drugs targeting these genes for the treatment of COVID-19. STUDY DESIGN In this study, bioinformatic analyses were conducted and subsequently identified and optimized potential drugs targeting these genes for the treatment of COVID-19 were carried out. METHODS Firstly, we analyzed the targets gene in patients with COVID-19 using single-cell data analysis. We performed structural modifications on Chicoric acid (CA) and combined it with hyaluronic acid to enhance the targeted activity towards Cluster of differentiation 44 (CD44). Poly (sodium-p styrenesulfonate) (PSS) was used to form a PSS-coated CA+hyaluronic acid nanocomplex (HA-P). Subsequently, Lactobacillus murinus conidia cell wall (CW) was encapsulated to prepare PSS-coated CA + hyaluronic acid + Lactobacillus murinus conidia cell wall (HAPC) nanocomplexes. RESULTS The expression of APPL1 expression in macrophage of COVID-19 patients was up-regulation. CA was found to bind to the APPL1 protein and inhibit its ubiquitination. HAPC effectively targeted ALI through the highly efficient interaction between CD44 and Hyaluronic acid (HA). HAPC alleviated the symptoms of ALI and restored epithelial function in mice with ALI. HAPC induced the Adaptor protein containing a pH domain, PTB domain and leucine zipper motif 1 (APPL1)/ liver kinase B1 (LKB1)/ AMP-activated protein kinase (AMPK) pathway by inactivating the NOD - like receptor protein 3 (NLRP3) pathway in ALI. CA interacted with the APPL1 protein and prevented its ubiquitination. HAPC facilitated the interaction between APPL1 and LKB1 to induce the AMPK/NLRP3 pathway. It promoted the formation of LKB1 at GLU-67, ARG-72, ARG-314, ASP-316, and GLN-312 and APPL1 at ARG-106, ASP-115, LYS-124, ASN-119, and GLU-120. CONCLUSION Altogether, HAPC nanocomplexes exerted anti-inflammatory effects on ALI by promoting the interaction between APPL1 and LKB1 to induce the AMPK/NLRP3 pathway, and may be one new therapeutic strategie for ALI.
Collapse
Affiliation(s)
- Zhichen Pu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui 241001, China,; Drug Clinical Evaluation, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Lingling Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Yan Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Yinping Shui
- Wannan Medical College Wuhu 241001, Anhui, PR China
| | - Jun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Xiaohu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaogan Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China,.
| | - Liqin Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui 241001, China,; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China,.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui 241001, China,; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China,; Tissue bank of the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
6
|
Jia Z, Wu J, Liu F, Wang H, Zheng P, Shen B, Zhao R. Arachidonic acid is involved in high-salt diet-induced coronary remodeling through stimulation of the IRE1α/XBP1s/RUNX2/OPN signaling cascade. Lipids Health Dis 2025; 24:44. [PMID: 39934848 DOI: 10.1186/s12944-025-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The impact of a high-salt (HS) diet on metabolic disturbances in individuals with coronary heart disease remains unclear. The arachidonic acid (AA) metabolic pathway is closely linked to the development of cardiometabolic diseases and atherosclerotic cardiovascular diseases. Furthermore, endoplasmic reticulum stress (ERS) has emerged as a major contributor to cardiometabolic diseases. AA-related inflammation and ERS are hypothesized to play a role in HS diet-induced coronary remodeling. METHODS Rats were subjected to an HS diet for 4 weeks, and the serum concentration of AA was measured via enzyme-linked immunosorbent assay. Immunofluorescence staining and vascular tension measurements were conducted on coronary arteries. In addition, AA-stimulated coronary artery smooth muscle cells (CASMCs) were treated with ERS inhibitors to explore the underlying pathway involved. RESULTS Increased susceptibility to myocardial infarction in the HS diet-fed rats was accompanied by increased serum AA concentrations and increased expression of the key AA metabolic enzyme cyclooxygenase-2 (COX-2). AA incubation weakened the contraction of denuded coronary arteries, reduced the expression of contraction markers, and increased the fluorescence intensity of synthetic and ERS response markers in coronary arteries. Further investigation of CASMCs revealed that AA-induced phenotypic transformation was mediated via the ERS pathway. CONCLUSIONS ERS and AA were found to be stimulated in CASMCs following an HS diet. AA triggers an ERS response through COX-2 catalysis, and the downstream inositol requiring enzyme 1 - X-box binding protein-1 - osteopontin pathway may contribute to the AA-induced phenotypic transformation of CASMCs, resulting in dysfunctional coronary tension. This study may provide potential therapeutic targets for cardiovascular diseases associated with excessive AA-derived ERS.
Collapse
Affiliation(s)
- Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jian Wu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fang Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Huimin Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Peiyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
7
|
Zhang Z, Wang H, Kan X, Zhang X, Xu S, Cai J, Guo J. The interplay of ferroptosis and oxidative stress in the pathogenesis of aortic dissection. Front Pharmacol 2025; 16:1519273. [PMID: 39974735 PMCID: PMC11835687 DOI: 10.3389/fphar.2025.1519273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025] Open
Abstract
Aortic dissection (AD) is a life-threatening vascular condition marked by the separation or tearing of the aortic media. Ferroptosis, a form of iron-dependent programmed cell death, occurs alongside lipid peroxidation and the accumulation of reactive oxygen species (ROS). The relationship between ferroptosis and AD lies in its damaging effect on vascular cells. In AD, ferroptosis worsens the damage to vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), thereby weakening the vascular wall's structural integrity and accelerating the onset and progression of the condition. However, the molecular mechanisms through which ferroptosis regulates the onset and progression of AD remain poorly understood. This article explores the relationship between ferroptosis and AD.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Haichao Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xi Kan
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaozhao Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Senping Xu
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jie Cai
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Lin Y, Liu Y, Feng J, Ye F, Hu L, Cao Y. Metabolomics analysis of acute lung injury induced by aortic dissection in mice. Ann Med Surg (Lond) 2025; 87:497-505. [PMID: 40110328 PMCID: PMC11918661 DOI: 10.1097/ms9.0000000000002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 03/22/2025] Open
Abstract
Thoracic aortic aneurysm/dissection (TAA/D) is a complicated vascular disorder with galloping development and high mortality. Phenotype switching plays an important role in the pathological process of TAA/D. Previous studies indicated the potential correlation between the expression level of lncRNA RP11-465L10.10 and MMP9 involved in the development of TAA/D. Here, our results showed that RP11-465L10.10 and MMP9 were highly increased in TAD patient tissues, which was consistent in Ang II-induced vascular smooth muscle cell (VSMC) phenotype switching. However, the effects and underlying mechanism of RP11-465L10.10 on VSMC phenotypic switching remain uncertain. Therefore, the expression of SM22α, cell proliferation, and migration were investigated when ectopically expressed RP11-465L10.10 in VSMCs. The results showed that RP11-465L10.10 overexpression decreased SM22α expression and facilitated VSMC proliferation, migration, and MMP9 expression. Furthermore, the NF-κB signaling pathway was enriched in transcriptome data analysis, indicating that NF-κB signaling may be involved in RP11-465L10.10-induced VSMC phenotype switching and MMP9 expression. In conclusion, this study demonstrated that RP11-465L10.10 induces VSMC phenotype switching and MMP9 expression via the NF-κB signaling pathway, suggesting that RP11-465L10.10 might be a potential therapeutic target for TAA/D treatment.
Collapse
Affiliation(s)
- Yang Lin
- Department of Cardiovascular Surgery of the GaoZhou People's Hospital, Gaozhou, Guangdong, China
| | - Yi Liu
- Department of Cardiovascular Surgery of the GaoZhou People's Hospital, Gaozhou, Guangdong, China
| | - Jianfei Feng
- Department of Cardiovascular Surgery of the GaoZhou People's Hospital, Gaozhou, Guangdong, China
| | - Fuyong Ye
- Department of Cardiovascular Surgery of the GaoZhou People's Hospital, Gaozhou, Guangdong, China
| | - Lian Hu
- Department of Cardiovascular Surgery of the GaoZhou People's Hospital, Gaozhou, Guangdong, China
| | - Yong Cao
- Department of Cardiovascular Surgery of the GaoZhou People's Hospital, Gaozhou, Guangdong, China
| |
Collapse
|
9
|
Xie S, Zhao J, Zhang F, Li X, Yu X, Shu Z, Cheng H, Liu S, Shi S. Dehydrodiisoeugenol inhibits PDGF-BB-induced proliferation and migration of human pulmonary artery smooth muscle cells via the mTOR/HIF1-α/HK2 signaling pathway. Toxicol Appl Pharmacol 2025; 495:117212. [PMID: 39719250 DOI: 10.1016/j.taap.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
Abnormal proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling are critical factors in the development of pulmonary hypertension (pH). Dehydrodiisoeugenol (DEH), a natural phenolic compound, is renowned for its antioxidant and anti-inflammatory properties. However, the precise role and mechanisms of DEH in PH remain unclear. In this study, human PASMCs were exposed to PDGF-BB for 48 h to establish an in vitro model. Subsequently, cells were treated with DEH, and assessments of cell proliferation, migration, and apoptosis were performed using CCK-8/EdU assays, scratch/transwell assays, and flow cytometry. The results showed that PDGF-BB induced phenotypic modulation, proliferation, and migration of PASMCs while reducing apoptosis. Treatment with DEH effectively reversed these effects. Bioinformatics analysis identified mTOR as a target of DEH action. Western blot experiments were conducted to evaluate the expression of proteins involved in the mTOR/HIF1-α/HK2 signaling pathway, suggesting that DEH modulates this pathway by targeting and inhibiting mTOR. After treating cells with mTOR inhibitors, cellular glycolysis was assessed using the extracellular acidification rate (ECAR) assay. The results indicated that inhibition of mTOR phosphorylation decreased aerobic glycolysis in PASMCs and suppressed cell proliferation, migration, and apoptosis resistance, regardless of PDGF-BB treatment. Activation of mTOR reversed the inhibition of PDGF-BB-induced PASMC-related protein expression by DEH. These findings suggest that DEH inhibits aerobic glycolysis in PDGF-BB-induced PASMCs through the mTOR/HIF1-α/HK2 signaling pathway, thereby suppressing cell proliferation, migration, and resistance to apoptosis. Consequently, DEH holds promise as a novel therapeutic agent for treating pulmonary arterial hypertension.
Collapse
MESH Headings
- Humans
- Cell Proliferation/drug effects
- Pulmonary Artery/drug effects
- Pulmonary Artery/cytology
- Cell Movement/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Becaplermin/pharmacology
- Signal Transduction/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Eugenol/pharmacology
- Eugenol/analogs & derivatives
- Apoptosis/drug effects
- Cells, Cultured
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/pathology
Collapse
Affiliation(s)
- Shishun Xie
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China; Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jianjun Zhao
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Fan Zhang
- Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China
| | - Zhiyun Shu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China
| | - Hongyuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China
| | - Siyao Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130000, China
| | - Shaomin Shi
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
10
|
Mu SQ, Lin JJ, Wang Y, Yang LY, Wang S, Wang ZY, Zhao AQ, Luo WJ, Dong ZQ, Cao YG, Jiang ZA, Wang SF, Cao SH, Meng L, Li Y, Yang SY, Sun SG. Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation. Commun Biol 2025; 8:146. [PMID: 39881153 PMCID: PMC11779959 DOI: 10.1038/s42003-025-07580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms. Functionally, overexpression of circ-1304 promotes VSMC autophagy in vitro and exacerbates neointimal hyperplasia in vivo, and this exacerbation is accompanied by autophagy activation. Mechanistically, circ-1304 acts as a sponge for miR-636, resulting in increased protein levels of YTHDF2. Subsequently, the YTHDF2 protein promotes the degradation of mTOR mRNA by binding to the latter's m6A modification sites. We demonstrate that PDGF-BB activates VSMC autophagy via circRNA regulation. Therefore, circ-1304 may serve as a potential therapeutic target for vascular remodeling diseases.
Collapse
Affiliation(s)
- Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- Shijiazhuang Medical College, Shijiazhuang, 050500, China
| | - Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- School of Basic Medicine, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- Baoding Key Laboratory of Pediatric Hematology Oncology, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 07100, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sen Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen-Jun Luo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Qi Dong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu-Guang Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li Meng
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
11
|
Huang XY, Fu FY, Qian K, Feng QL, Cao S, Wu WY, Luo YL, Chen WJ, Zhang Z, Huang SC. CircHAT1 regulates the proliferation and phenotype switch of vascular smooth muscle cells in lower extremity arteriosclerosis obliterans through targeting SFRS1. Mol Cell Biochem 2025; 480:203-215. [PMID: 38409514 DOI: 10.1007/s11010-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
This study aimed to decipher the mechanism of circular ribonucleic acids (circRNAs) in lower extremity arteriosclerosis obliterans (LEASO). First, bioinformatics analysis was performed for screening significantly down-regulated cardiac specific circRNA-circHAT1 in LEASO. The expression of circHAT1 in LEASO clinical samples was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of splicing factor arginine/serine-rich 1 (SFRS1), α-smooth muscle actin (α-SMA), Calponin (CNN1), cyclin D1 (CNND1) and smooth muscle myosin heavy chain 11 (SMHC) in vascular smooth muscle cells (VSMCs) was detected by Western blotting. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays were used to evaluate cell proliferation and migration, respectively. RNA immunoprecipitation (RNA-IP) and RNA pulldown verified the interaction between SFRS1 and circHAT1. By reanalyzing the dataset GSE77278, circHAT1 related to VSMC phenotype conversion was screened, and circHAT1 was found to be significantly reduced in peripheral blood mononuclear cells (PBMCs) of LEASO patients compared with healthy controls. Knockdown of circHAT1 significantly promoted the proliferation and migration of VSMC cells and decreased the expression levels of contractile markers. However, overexpression of circHAT1 induced the opposite cell phenotype and promoted the transformation of VSMCs from synthetic to contractile. Besides, overexpression of circHAT1 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced phenotype switch of VSMC cells. Mechanistically, SFRS1 is a direct target of circHAT1 to mediate phenotype switch, proliferation and migration of VSMCs. Overall, circHAT1 regulates SFRS1 to inhibit the cell proliferation, migration and phenotype switch of VSMCs, suggesting that it may be a potential therapeutic target for LEASO.
Collapse
Affiliation(s)
- Xian-Ying Huang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Fang-Yong Fu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Kai Qian
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Qiao-Li Feng
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Sai Cao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wei-Yu Wu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yuan-Lin Luo
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Wei-Jie Chen
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Zhi Zhang
- Department of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China.
| | - Shui-Chuan Huang
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
12
|
Han Y, Cui Y, Liu J, Wang D, Zou G, Qi X, Meng J, Huang X, He H, Li X. Single-Cell RNA-Seq Reveals Injuries in Aortic Dissection and Identifies PDGF Signalling Pathway as a Potential Therapeutic Target. J Cell Mol Med 2024; 28:e70293. [PMID: 39720896 DOI: 10.1111/jcmm.70293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Aortic dissection (AD) represents a critical condition characterised by a tear in the inner lining of the aorta, leading to the leakage of blood into the layers of the aortic wall, posing a significant risk to life. However, the pathogenesis is unclear. In this study, scRNA-seq was applied to cells derived from aortas of both AD and non-AD donors (control) to unveil the cellular landscape. ScRNA-seq data uncover significant cellular heterogeneity in AD aortas. Specifically, we observed an accumulation of CD4+ T cells, which contributed to inflammation and cell death, and abnormal collagen formation mediated by fibroblast cells in AD. Moreover, we revealed a greater prevalence of cell death, oxidative stress and senescence in AD aorta cells. Furthermore, we found a decrease in the percentage of vascular stem cells (VSCs), along with a repression in their ability to differentiate into contractile vascular smooth muscle cells (VSMCs). Finally, our data demonstrated that the PDGF signalling pathway was activated in AD. We found that PDGF activation could lead to VSMCs aberrant switch from contractile to synthetic phenotype, which could be ameliorated by PDGF inhibitor. This underscores the potential of the PDGF as a therapeutic target for AD. In summary, our study highlights the cellular heterogeneity and associated injuries within aortas affected by AD, including cell death, oxidative stress, senescence and dysregulation of signalling pathways influencing the aberrant phenotypic switch of VSMCs. These insights offer valuable contributions to understanding the molecular mechanisms underlying AD and present new avenues for therapeutic intervention in this condition.
Collapse
Affiliation(s)
- Yichi Han
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Afliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yongji Cui
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Dingchen Wang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guoxiang Zou
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Qi
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jinxiu Meng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoran Huang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Haiwei He
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Wu H, Li D, Zhang CY, Huang LL, Zeng YJ, Chen TG, Yu K, Meng JW, Lin YX, Guo R, Zhou Y, Gao G. Restoration of ARA metabolic disorders in vascular smooth muscle cells alleviates intimal hyperplasia. Eur J Pharmacol 2024; 983:176824. [PMID: 39265882 DOI: 10.1016/j.ejphar.2024.176824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/14/2024]
Abstract
Intimal hyperplasia (IH) is an innegligible issue for patients undergoing interventional therapy. The proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF-BB) are critical events in the development of IH. While the exact mechanism and effective target for IH needs further investigation. Metabolic disorders of arachidonic acid (ARA) are involved in the occurrence and progression of various diseases. In this study, we found that the expressions of soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) were significantly increased in the VSMCs during balloon injury-induced IH. Then, we employed a COX-2/sEH dual inhibitor PTUPB to increase the concentration of epoxyeicosatrienoic acids (EETs) while prevent the release of pro-inflammatory prostaglandins. Results showed that PTUPB treatment significantly reduced neointimal thickening induced by balloon injury in rats in vivo and inhibited PDGF-BB-induced proliferation and migration of VSMCs in vitro. Our results showed that PTUPB may reverse the phenotypic transition of VSMCs by inhibiting Pttg1 expression. In conclusion, we found that the dysfunction of ARA metabolism in VSMCs contributes to IH, and the COX-2/sEH dual inhibitor PTUPB attenuates IH progression by reversing the phenotypic switch in VSMC through the Sirt1/Pttg1 pathway.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Hyperplasia
- Male
- Rats
- Cyclooxygenase 2/metabolism
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats, Sprague-Dawley
- Cell Movement/drug effects
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/metabolism
- Tunica Intima/pathology
- Tunica Intima/metabolism
- Tunica Intima/drug effects
- Becaplermin/pharmacology
- Neointima/pathology
- Neointima/metabolism
- Neointima/drug therapy
- Metabolic Diseases/metabolism
- Metabolic Diseases/drug therapy
- Metabolic Diseases/pathology
Collapse
Affiliation(s)
- Hui Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Dai Li
- Phase I Clinical Research Center, Xiangya Hospital, Central South University, Changsha, 410005, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Ling-Li Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - You-Jie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tian-Ge Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Ke Yu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jia-Wei Meng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu-Xin Lin
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
14
|
Liu X, Chai R, Xu Q, Zou M, Jiang S, Liu Y, Li R, Kong T, Chen X, Xu R, Liu S, Zhang Z, Liu N. Targeting Skp2 degradation with troxerutin decreases neointima formation. Eur J Pharmacol 2024; 982:176947. [PMID: 39209097 DOI: 10.1016/j.ejphar.2024.176947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The proliferative and migratory abilities of vascular smooth muscle cells (VSMCs) play a crucial role in neointima formation following vascular injury. Skp2 facilitates proliferation and migration in cells through cell cycle regulation, presenting an important therapeutic target for atherosclerosis, pulmonary hypertension, and vascular restenosis. This study aimed to identify a natural product capable of inhibiting neointima formation post vascular injury. Here, we demonstrate that troxerutin, a flavonoid, significantly reduced viability and downregulated Skp2 in VSMCs. Moreover, troxerutin exhibited anti-proliferative effects on VSMCs and mitigated neointima formation. These findings collectively elucidate the intrinsic mechanism of troxerutin in treating atherosclerosis, pulmonary hypertension, and vascular restenosis by targeting the E3-linked enzyme Skp2.
Collapse
MESH Headings
- Hydroxyethylrutoside/analogs & derivatives
- Hydroxyethylrutoside/pharmacology
- S-Phase Kinase-Associated Proteins/metabolism
- S-Phase Kinase-Associated Proteins/antagonists & inhibitors
- Neointima/drug therapy
- Neointima/pathology
- Neointima/metabolism
- Animals
- Cell Proliferation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteolysis/drug effects
- Cell Survival/drug effects
- Humans
- Cell Movement/drug effects
- Down-Regulation/drug effects
- Rats
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Renjie Chai
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiong Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Min Zou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Siqin Jiang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yajing Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Rongxue Li
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Tianyu Kong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaohua Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ruqin Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
15
|
Liao Z, Ni Z, Cao J, Liao J, Zhu H, Zhong X, Cao G, Huang L, Li X, Jiang G, Pei F. LncRNA MALAT1-Targeting Antisense Oligonucleotide Ameliorates the AngII-Induced Vascular Smooth Muscle Cell Proliferation and Migration Through Nrf2/GPX4 Antioxidant Pathway. J Cardiovasc Pharmacol 2024; 84:515-527. [PMID: 38086068 PMCID: PMC11537474 DOI: 10.1097/fjc.0000000000001521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/19/2023] [Indexed: 11/07/2024]
Abstract
ABSTRACT The high level of oxidative stress induced by angiotensin II (AngII) is the main pathophysiological process that promotes the proliferation and migration of vascular smooth muscle cells (VSMCs) and induces vascular remodeling. LncRNA metastasis-related lung adenocarcinoma transcript 1 (MALAT1) has been determined to play an important role in the modulation of oxidative stress and the development of cardiovascular diseases. Nevertheless, the function and underlying mechanism of MALAT1 in restenosis induced by hypertensive angioplasty remain unclear. AngII increased the expression of MALAT1 in VSMCs. We found that antisense oligonucleotide lncRNA MALAT1 (ASO-MALAT1) could inhibit AngII-induced reactive oxygen species production and VSMCs proliferation and migration by inducing the expression of glutathione peroxidase 4 (GPX4), which can be reversed by siRNA-GPX4. GPX4 overexpression can inhibit the proliferation and migration of VSMCs induced by AngII. In addition, we found that the process by which MALAT1 knockdown induces GPX4 expression involves nuclear factor erythrocyte 2-related factor 2 (Nrf2). Overexpression of Nrf2 can increase the expression of GPX4, and downregulation of GPX4 by ML385 (Nrf2 inhibitor) blocked the protective effect of ASO-MALAT1 on AngII-induced proliferation and migration of VSMCs. Ferrostatin-1 (Fer-1, ip 5 mg/kg per day for 2 weeks), a GPX4 agonist, significantly inhibited neointimal formation in spontaneously hypertensive rat by the inhibition of oxidative stress. In conclusion, these data imply that ASO-MALAT1 suppresses the AngII-induced oxidative stress, proliferation, and migration of VSMCs by activating Nrf2/GPX4 antioxidant signaling. GPX4 may be a potential target for the therapeutic intervention of hypertensive vascular restenosis.
Collapse
MESH Headings
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation/drug effects
- Angiotensin II/pharmacology
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction/drug effects
- Oxidative Stress/drug effects
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Male
- Cells, Cultured
- Rats, Sprague-Dawley
- Oligonucleotides, Antisense/pharmacology
- Disease Models, Animal
- Vascular Remodeling/drug effects
- Antioxidants/pharmacology
- Reactive Oxygen Species/metabolism
- Rats
- Rats, Inbred SHR
Collapse
Affiliation(s)
- Zili Liao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhonghan Ni
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jin Liao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Hengqing Zhu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Xiutong Zhong
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Gang Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Ling Huang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Xiaoyue Li
- Department of Critical Care Medicine, Department of Emergency Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China; and
| | - Guojun Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Han X, Xu S, Hu K, Yu Y, Wang X, Qu C, Yang B, Liu X. Early growth response 1 exacerbates thoracic aortic aneurysm and dissection of mice by inducing the phenotypic switching of vascular smooth muscle cell through the activation of Krüppel-like factor 5. Acta Physiol (Oxf) 2024; 240:e14237. [PMID: 39345002 DOI: 10.1111/apha.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
AIM Vascular smooth muscle cell (VSMC) phenotypic switching has been reported to regulate vascular function and thoracic aortic aneurysm and dissection (TAAD) progression. Early growth response 1 (Egr1) is associated with the differentiation of VSMCs. However, the mechanisms through which Egr1 participates in the regulation of VSMCs and progression of TAAD remain unknown. This study aimed to investigate the role of Egr1 in the phenotypic switching of VSMCs and the development of TAAD. METHODS Wild-type C57BL/6 and SMC-specific Egr1-knockout mice were used as experimental subjects and fed β-aminopropionitrile for 4 weeks to construct the TAAD model. Ultrasound and aortic staining were performed to examine the pathological features in thoracic aortic tissues. Transwell, wound healing, CCK8, and immunofluorescence assays detected the migration and proliferation of synthetic VSMCs. Egr1 was directly bound to the promoter of Krüppel-like factor 5 (KLF5) and promoted the expression of KLF5, which was validated by JASPAR database and dual-luciferase reporter assay. RESULTS Egr1 expression increased and was partially co-located with VSMCs in aortic tissues of mice with TAAD. SMC-specific Egr1 deficiency alleviated TAAD and inhibited the phenotypic switching of VSMC. Egr1 knockdown prevented the phenotypic switching of VSMCs and subsequently suppressed the migration and proliferation of synthetic VSMCs. The inhibitory effects of Egr1 deficiency on VSMCs were blunted once KLF5 was overexpressed. CONCLUSION Egr1 aggravated the development of TAAD by promoting the phenotypic switching of VSMCs via enhancing the transcriptional activation of KLF5. These results suggest that inhibition of SMC-specific Egr1 expression is a promising therapy for TAAD.
Collapse
MESH Headings
- Animals
- Early Growth Response Protein 1/metabolism
- Early Growth Response Protein 1/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Kruppel-Like Transcription Factors/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Cell Proliferation
Collapse
Affiliation(s)
- Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ke Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Wang L, Ren Z, Wu L, Zhang X, Wang M, Niu H, He X, Wang H, Chen Y, Shi G, Qian X. HRD1 reduction promotes cholesterol-induced vascular smooth muscle cell phenotypic change via endoplasmic reticulum stress. Mol Cell Biochem 2024; 479:3021-3036. [PMID: 38145449 DOI: 10.1007/s11010-023-04902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
Phenotypic change of vascular smooth muscle cells (VSMCs) is the main contributor of vascular pathological remodeling in atherosclerosis. The endoplasmic reticulum (ER) is critical for maintaining VSMC function through elimination of misfolded proteins that impair VSMC cellular function. ER-associated degradation (ERAD) is an ER-mediated process that controls protein quality by clearing misfolded proteins. One of the critical regulators of ERAD is HRD1, which also plays a vital role in lipid metabolism. However, the function of HRD1 in VSMCs of atherosclerotic vessels remains poorly understood. The level of HRD1 expression was analyzed in aortic tissues of mice fed with a high-fat diet (HFD). The H&E and EVG (VERHOEFF'S VAN GIESON) staining were used to demonstrate pathological vascular changes. IF (immunofluorescence) and WB (western blot) were used to explore the signaling pathways in vivo and in vitro. The wound closure and transwell assays were also used to test the migration rate of VSMCs. CRISPR gene editing and transcriptomic analysis were applied in vitro to explore the cellular mechanism. Our data showed significant reduction of HRD1 in aortic tissues of mice under HFD feeding. VSMC phenotypic change and HRD1 downregulation were detected by cholesterol supplement. Transcriptomic and further analysis of HRD1-KO VSMCs showed that HRD1 deficiency induced the expression of genes related to ER stress response, proliferation and migration, but reduced the contractile-related genes in VSMCs. HRD1 deficiency also exacerbated the proliferation, migration and ROS production of VSMCs induced by cholesterol, which promoted the VSMC dedifferentiation. Our results showed that HRD1 played an essential role in the contractile homeostasis of VSMCs by negatively regulating ER stress response. Thus, HRD1 in VSMCs could serve as a potential therapeutic target in metabolic disorder-induced vascular remodeling.
Collapse
Affiliation(s)
- Linli Wang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhitao Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lin Wu
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ximei Zhang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Min Wang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Haiming Niu
- Department of Critical Care Medicine, Zhongshan People's Hospital, Zhongshan, 528400, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Heting Wang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiaoxian Qian
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
19
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
20
|
Zhu XX, Zheng GL, Lu QB, Su JB, Liu Y, Wang M, Sun QY, Hu JY, Bao N, Xiao PX, Sun HJ, Han ZJ, Zhang JR. Cichoric acid ameliorates sepsis-induced acute kidney injury by inhibiting M1 macrophage polarization. Eur J Pharmacol 2024; 976:176696. [PMID: 38821160 DOI: 10.1016/j.ejphar.2024.176696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Cichoric acid (CA), a widely utilized polyphenolic compound in medicine, has garnered significant attention due to its potential health benefits. Sepsis-induced acute kidney disease (AKI) is related with an elevated risk of end-stage kidney disease (ESKD). However, it remains unclear whether CA provides protection against septic AKI. The aim of this study is to investigated the protective effect and possible mechanisms of CA against LPS-induced septic AKI. Sepsis-induced AKI was induced in mice through intraperitoneal injection of lipopolysaccharide (LPS), and RAW264.7 macrophages were incubated with LPS. LPS exposure significantly increased the levels of M1 macrophage biomarkers while reducing the levels of M2 macrophage indicators. This was accompanied by the release of inflammatory factors, superoxide anion production, mitochondrial dysfunction, activation of succinate dehydrogenase (SDH), and subsequent succinate formation. Conversely, pretreatment with CA mitigated these abnormalities. CA attenuated hypoxia-inducible factor-1α (HIF-1α)-induced glycolysis by lifting the NAD+/NADH ratio in macrophages. Additionally, CA disrupted the K (lysine) acetyltransferase 2A (KAT2A)/α-tubulin complex, thereby reducing α-tubulin acetylation and subsequently inactivating the NLRP3 inflammasome. Importantly, administration of CA ameliorated LPS-induced renal pathological damage, apoptosis, inflammation, oxidative stress, and disturbances in mitochondrial function in mice. Overall, CA restrained HIF-1α-mediated glycolysis via inactivation of SDH, leading to NLRP3 inflammasome inactivation and the amelioration of sepsis-induced AKI.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Guan-Li Zheng
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Jia-Bao Su
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Yao Liu
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Min Wang
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Qing-Yi Sun
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Jin-Yi Hu
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Neng Bao
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China
| | - Ping-Xi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu Province, China.
| | - Hai-Jian Sun
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China; Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi, 214001, China.
| | - Ji-Ru Zhang
- Wuxi School of Medicine, Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China.
| |
Collapse
|
21
|
Yang J, Li X, Zhang Y, Che P, Qin W, Wu X, Liu Y, Hu B. Circ_0090231 knockdown protects vascular smooth muscle cells from ox-LDL-induced proliferation, migration and invasion via miR-942-5p/PPM1B axis during atherosclerosis. Mol Cell Biochem 2024; 479:2035-2045. [PMID: 37515673 DOI: 10.1007/s11010-023-04811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Atherosclerosis (AS) is a dominant pathological basis of cardiovascular disease. Circular RNAs (circRNAs) have been proposed to have crucial functions in regulating pathological progressions of AS. Hence, the aim of this study was to investigate the potential function of circ_0090231 in AS progression. Oxidized low densitylipoprotein (ox-LDL)-challenged vascular smooth muscle cells (VSMCs) were used for in vitro functional analysis. Levels of genes and proteins were measured by qRT-PCR and Western blot. The proliferation, migration and invasion were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell assays. The interaction between miR-942-5p and circ_0090231 or PPM1B (Protein Phosphatase, Mg2+/Mn2+ Dependent 1B) was evaluated by dual-luciferase reporter and pull-down assays. Circ_0090231 is a stable circRNA, and was increased in the serum of AS patients and ox-LDL-challenged VSMCs. Functionally, silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs. Mechanistically, circ_0090231 directly targeted miR-942-5p, and PPM1B was a target of miR-942-5p. Besides, circ_0090231 sequestered miR-942-5p to release PPM1B expression, suggesting the circ_0090231/miR-942-5p/PPM1B axis. Further rescue experiments showed that miR-942-5p inhibition or ectopic overexpression of PPM1B dramatically attenuated the suppressing influences of circ_0090231 knockdown on VSMC proliferative, migratory and invasive abilities under ox-LDL treatment. Silencing of circ_0090231 could reverse ox-LDL-induced proliferation, migration and invasion in VSMCs via miR-942-5p/PPM1B axis, providing a theoretical basis for elucidating the mechanism of AS process.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xiangyan Li
- Department of Interventional Catheter Lab, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Yuming Zhang
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Pengfei Che
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Wei Qin
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Xuecui Wu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China
| | - Yue Liu
- Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, China
| | - Bing Hu
- Department of Ultrasonic Imaging, Affiliated Renhe Hospital of China Three Gorges University, No.410, Yiling Avenue, Yichang, 443001, China.
| |
Collapse
|
22
|
Liu Y, Chen X, Zhang X, Guo J, Tang Y, Jin C, Wu M. CCL28 promotes progression of hepatocellular carcinoma through PDGFD-regulated MMP9 and VEGFA pathways. Discov Oncol 2024; 15:324. [PMID: 39085670 PMCID: PMC11291847 DOI: 10.1007/s12672-024-01185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major global health concern with limited therapeutic options and poor prognosis. Chemokines have emerged as critical regulators in the progression and metastasis of HCC. This study aims to investigate the mechanisms involved in CCL28-promoted progression of HCC and provide novel therapeutic targets for HCC treatment. Relationship between CCL28 expression and HCC progression were investigated by bioinformatic analysis and immunohistochemical staining assays. CCK-8, Transwell, and colony formation assay were conducted to explore the impact of CCL28 on the growth, migration and invasion of HCC cells. Quantitative real-time PCR and western blotting assays were performed to learn potential molecular mechanisms underlying the transformation of HCC driven by CCL28. The results showed that there was a direct link between increased CCL28 levels and the advancement of HCC, leading to a worse outcome. CCL28 significantly augmented malignant transformation of HCC cells, containing proliferation, migration, invasion, and clonogenicity, via activation of PDGFD-regulated MMP9 and VEGFA pathways. CCL28 emerges as a pivotal contributor to HCC tumorigenesis, propelling HCC development through the PDGFD signaling pathway. Our findings unveil potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Youyi Liu
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Xingyi Chen
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Xiading Zhang
- Wuxi Higher Health Vocational Technology School, Wuxi, 214000, China
| | - Jingrou Guo
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Yifei Tang
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Jiangnan University, No. 1000 Hefeng Road, Wuxi, 214041, Jiangsu, China.
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
23
|
Tong Y, Wang DD, Zhang YL, He S, Chen D, Wu YX, Pang QF. MiR-196a-5p hinders vascular smooth muscle cell proliferation and vascular remodeling via repressing BACH1 expression. Sci Rep 2024; 14:16904. [PMID: 39043832 PMCID: PMC11266626 DOI: 10.1038/s41598-024-68122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Ying Tong
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dan-Dan Wang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Yan-Li Zhang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Shuai He
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Dan Chen
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Xian Wu
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Qing-Feng Pang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
24
|
Ni L, Yang L, Lin Y. Recent progress of endoplasmic reticulum stress in the mechanism of atherosclerosis. Front Cardiovasc Med 2024; 11:1413441. [PMID: 39070554 PMCID: PMC11282489 DOI: 10.3389/fcvm.2024.1413441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
The research progress of endoplasmic reticulum (ER) stress in atherosclerosis (AS) is of great concern. The ER, a critical cellular organelle, plays a role in important biological processes including protein synthesis, folding, and modification. Various pathological factors may cause ER stress, and sustained or excessive ER stress triggers the unfolded protein response, ultimately resulting in apoptosis and disease. Recently, researchers have discovered the importance of ER stress in the onset and advancement of AS. ER stress contributes to the occurrence of AS through different pathways such as apoptosis, inflammatory response, oxidative stress, and autophagy. Therefore, this review focuses on the mechanisms of ER stress in the development of AS and related therapeutic targets, which will contribute to a deeper understanding of the disease's pathogenesis and provide novel strategies for preventing and treating AS.
Collapse
Affiliation(s)
| | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
25
|
Pham TH, Trang NM, Kim EN, Jeong HG, Jeong GS. Citropten Inhibits Vascular Smooth Muscle Cell Proliferation and Migration via the TRPV1 Receptor. ACS OMEGA 2024; 9:29829-29839. [PMID: 39005766 PMCID: PMC11238308 DOI: 10.1021/acsomega.4c03539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration play critical roles in arterial remodeling. Citropten, a natural organic compound belonging to coumarin and its derivative classes, exhibits various biological activities. However, mechanisms by which citropten protects against vascular remodeling remain unknown. Therefore, in this study, we investigated the inhibitory effects of citropten on VSMC proliferation and migration under high-glucose (HG) stimulation. Citropten abolished the proliferation and migration of rat vascular smooth muscle cells (RVSMCs) in a concentration-dependent manner. Also, citropten inhibited the expression of proliferation-related proteins, including proliferating cell nuclear antigen (PCNA), cyclin E1, cyclin D1, and migration-related markers such as matrix metalloproteinase (MMP), MMP2 and MMP9, in a concentration-dependent manner. In addition, citropten inhibited the phosphorylation of ERK and AKT, as well as hypoxia-inducible factor-1α (HIF-1α) expression, mediated to the Krüppel-like factor 4 (KLF4) transcription factor. Using pharmacological inhibitors of ERK, AKT, and HIF-1α also strongly blocked the expression of MMP9, PCNA, and cyclin D1, as well as migration and the proliferation rate. Finally, molecular docking suggested that citropten docked onto the binding site of transient receptor potential vanilloid 1 (TRPV1), like epigallocatechin gallate (EGCG), a well-known agonist of TRPV1. These data suggest that citropten inhibits VSMC proliferation and migration by activating the TRPV1 channel.
Collapse
Affiliation(s)
- Thi Hoa Pham
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Minh Trang
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun-Nam Kim
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye Gwang Jeong
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gil-Saeng Jeong
- College
of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
26
|
Liu YC, Tseng YH, Kuan YH, Wang LY, Huang SE, Tsai SP, Yeh JL, Hsu JH. Proteasome inhibitor bortezomib prevents proliferation and migration of pulmonary arterial smooth muscle cells. Kaohsiung J Med Sci 2024; 40:542-552. [PMID: 38682650 DOI: 10.1002/kjm2.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pulmonary vascular remodeling is a key pathological process of pulmonary arterial hypertension (PAH), characterized by uncontrolled proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Bortezomib (BTZ) is the first Food and Drug Administration (FDA)-approved proteasome inhibitor for multiple myeloma treatment. Recently, there is emerging evidence showing its effect on reversing PAH, although its mechanisms are not well understood. In this study, anti-proliferative and anti-migratory effects of BTZ on PASMCs were first examined by different inducers such as fetal bovine serum (FBS), angiotensin II (Ang II) and platelet-derived growth factor (PDGF)-BB, while potential mechanisms including cellular reactive oxygen species (ROS) and mitochondrial ROS were then investigated; finally, signal transduction of ERK and Akt was examined. Our results showed that BTZ attenuated FBS-, Ang II- and PDGF-BB-induced proliferation and migration, with associated decreased cellular ROS production and mitochondrial ROS production. In addition, the phosphorylation of ERK and Akt induced by Ang II and PDGF-BB was also inhibited by BTZ treatment. This study indicates that BTZ can prevent proliferation and migration of PASMCs, which are possibly mediated by decreased ROS production and down-regulation of ERK and Akt. Thus, proteasome inhibition can be a novel pharmacological target in the management of PAH.
Collapse
Affiliation(s)
- Yi-Ching Liu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsin Kuan
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lin-Yen Wang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-En Huang
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Siao-Ping Tsai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Lin JJ, Chen R, Yang LY, Gong M, Du MY, Mu SQ, Jiang ZA, Li HH, Yang Y, Wang XH, Wang SF, Liu KX, Cao SH, Wang ZY, Zhao AQ, Yang SY, Li C, Sun SG. Hsa_circ_0001402 alleviates vascular neointimal hyperplasia through a miR-183-5p-dependent regulation of vascular smooth muscle cell proliferation, migration, and autophagy. J Adv Res 2024; 60:93-110. [PMID: 37499939 PMCID: PMC11156604 DOI: 10.1016/j.jare.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.
Collapse
Affiliation(s)
- Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xing-Hui Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
28
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
29
|
Hu Z, Dai M, Chang Y, Hua X, Zhang N, Chen X, Sheng Y, Xu Z, Zhang H, Zhang Y, Cui H, Jia H, Wang XJ, Song J. Strategies for arterial graft optimization at the single-cell level. NATURE CARDIOVASCULAR RESEARCH 2024; 3:541-557. [PMID: 39195932 DOI: 10.1038/s44161-024-00464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/21/2024] [Indexed: 08/29/2024]
Abstract
Common arterial grafts used in coronary artery bypass grafting include internal thoracic artery (ITA), radial artery (RA) and right gastroepiploic artery (RGA) grafts; of these, the ITA has the best clinical outcome. Here, by analyzing the single-cell transcriptome of different arterial grafts, we suggest optimization strategies for the RA and RGA based on the ITA as a reference. Compared with the ITA, the RA had more lipid-handling-related CD36+ endothelial cells. Vascular smooth muscle cells from the RGA were more susceptible to spasm, followed by those from the RA; comparison with the ITA suggested that potassium channel openers may counteract vasospasm. Fibroblasts from the RA and RGA highly expressed GDF10 and CREB5, respectively; both GDF10 and CREB5 are associated with extracellular matrix deposition. Cell-cell communication analysis revealed high levels of macrophage migration inhibitory factor signaling in the RA. Administration of macrophage migration inhibitory factor inhibitor to mice with partial carotid artery ligation blocked neointimal hyperplasia induced by disturbed flow. Modulation of identified targets may have protective effects on arterial grafts.
Collapse
Affiliation(s)
- Zhan Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Dai
- Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyu Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiu-Jie Wang
- Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Hu P, Du Y, Xu Y, Ye P, Xia J. The role of transcription factors in the pathogenesis and therapeutic targeting of vascular diseases. Front Cardiovasc Med 2024; 11:1384294. [PMID: 38745757 PMCID: PMC11091331 DOI: 10.3389/fcvm.2024.1384294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Lv Q, Zhang J, Cai J, Chen L, Liang J, Zhang T, Lin J, Chen R, Zhang Z, Guo P, Hong Y, Pan L, Ji H. Design, synthesis and mechanism study of coumarin-sulfonamide derivatives as carbonic anhydrase IX inhibitors with anticancer activity. Chem Biol Interact 2024; 393:110947. [PMID: 38479716 DOI: 10.1016/j.cbi.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
In this study, twenty-nine coumarin-3-sulfonamide derivatives, twenty-seven of which are original were designed and synthesized. Cytotoxicity assay indicated that most of these derivatives exhibited moderated to good potency against A549 cells. Among them, compound 8q showed potent inhibition against the four tested cancer cell lines, especially A549 cells with IC50 value of 6.01 ± 0.81 μM, and much lower cytotoxicity on the normal cells was observed compared to the reference compounds. Bioinformatics analysis revealed human carbonic anhydrase IX (CAIX) was highly expressed in lung adenocarcinoma (LUAD) and associated with poor prognosis. The inhibitory activity of compound 8q against CAIX was assessed by using molecular docking and molecular dynamics simulations, which revealed prominent interactions of both compound 8q and CAIX at the active site and their high affinity. The results of ELISA assays verified that compound 8q possessed strong inhibitory activity against CAIX and high subtype selectivity, and could also down-regulate the expression of CAIX in A549 cells. Furthermore, the significant inhibitory effects of compound 8q on the migration and invasion of A549 cells were also found. After treatment with compound 8q, intracellular reactive oxygen species (ROS) levels increased and mitochondrial membrane potential (MMP) decreased. Mechanistic investigation using western blotting revealed compound 8q exerted the anti-migrative and anti-invasive effects probably through mitochondria-mediated PI3K/AKT pathway by targeting CAIX. In summary, coumarin-3-sulfonamide derivatives were developed as potential and effective CAIX inhibitors, which were worthy of further investigation.
Collapse
Affiliation(s)
- Qianqian Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Lexian Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianwan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahui Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruiyao Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peiting Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yue Hong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingxue Pan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Ji
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Liu Y, Du L, Gu S, Liang J, Huang M, Huang L, Lai S, Zhang S, Tu Z, Sun W, Chen D, Chen J. Identification of the role of DAB2 and CXCL8 in uterine spiral artery remodeling in early-onset preeclampsia. Cell Mol Life Sci 2024; 81:180. [PMID: 38613672 PMCID: PMC11016014 DOI: 10.1007/s00018-024-05212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/27/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.
Collapse
Affiliation(s)
- Yu Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shifeng Gu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jingying Liang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Minshan Huang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Siying Lai
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shuang Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
33
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
34
|
Ji T, Yan D, Huang Y, Luo M, Zhang Y, Xu T, Gao S, Zhang L, Ruan L, Zhang C. Fibulin 1, targeted by microRNA-24-3p, promotes cell proliferation and migration in vascular smooth muscle cells, contributing to the development of atherosclerosis in APOE -/- mice. Gene 2024; 898:148129. [PMID: 38184021 DOI: 10.1016/j.gene.2024.148129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) are the main components of atherosclerosis (AS) plaque. VSMCs participate in plaque formation through phenotypic transformation. The complex interplay between ECM and VSMCs plays vital roles in the progression of AS throughout the disease. An in-depth investigation into the functions of ECM-related molecules in VSMC development might contribute to deciphering the complexity of AS pathogenesis. In this study, the roles and molecular mechanisms of the ECM-related molecule Fibulin-1 (FBLN1) in the development of AS and VSMCs were explored using RNA sequencing, bioinformatics analysis, and cell experiments. Furthermore, the expression of FBLN1, as determined by western blot analysis, immunohistochemistry, and real-time quantitative PCR, was significantly increased in AS vascular samples compared to normal vascular samples. Silencing the FBLN1 through AAV viral injection in mice revealed an improvement in AS. Functional analyses revealed that FBLN1 promoted VSMC proliferation, migration, and wound healing. Combined with RNA sequencing and TargetScan7.2 prediction data, 22 microRNAs (miRNAs) were found to have the potential for direct interaction with the FBLN1 3'UTR in VSMCs. Among these 22 miRNAs, it was demonstrated that microRNA-24-3p (miR-24-3p) could negatively regulate FBLN1 expression by directly binding to the FBLN1 3'UTR. Moreover, miR-24-3p inhibited cell proliferation, migration, and wound healing, and suppressed the expression of Ki67, matrix metalloproteinase-2 and -9 (MMP2/9) by targeting FBLN1 in VSMCs. Meanwhile, inhibition of FBLN1 expression could restrain VSMC phenotypic transformation. In conclusion, miR-24-3p inhibited VSMC proliferation and migration by targeting FBLN1. Additionally, multiple miRNAs with the potential to interact with the FBLN1 3'UTR were identified. These findings might deepen our understanding of ECM gene regulatory networks and the complex etiology of AS.
Collapse
Affiliation(s)
- Tianyi Ji
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mandi Luo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ting Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shangbang Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
35
|
Liu M, Xiang F, Yang T, Sun Y, Yang J, Wang T, Chen S, Xu Y, Shan G, Shi Y, Dong Z, Guo Y. Calcitonin Inhibits Phenotypic Switching of Aortic Smooth Muscle Cells and Neointimal Hyperplasia through the AMP-Activated Protein Kinase/Mechanistic Target of Rapamycin Pathway. ACS Pharmacol Transl Sci 2024; 7:733-742. [PMID: 38481691 PMCID: PMC10928884 DOI: 10.1021/acsptsci.3c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2025]
Abstract
Calcitonin (CT) is a peptide hormone secreted by the parafollicular C cells of the thyroid gland, salmon calcitonin was originally extracted from the hind cheek of salmon. Neointimal hyperplasia refers to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, a rat model of restenosis was employed to explore the impact of calcitonin on neointima proliferation. Calcitonin was administered via continuous injections for a duration of 14 days postsurgery, and the expression of proteins associated with proliferation, migration, and phenotypic switching was assessed using the vascular smooth muscle cells. Additionally, metabolomic analyses were conducted to shed light on the mechanisms that underlie the role of calcitonin in the development of cardiovascular disease. In our study, we found that calcitonin possesses the capability to dispute the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet-derived growth factor-BB (PDGF-BB) and 15% fetal bovine serum in vitro. Calcitonin has demonstrated a favorable impact on smooth muscle cells, both in vitro and in vivo. More specifically, it has been observed to mitigate phenotypic switching, proliferation, and migration of these cells. Moreover, calcitonin has been identified as a protective factor against phenotypic switching and the formation of neointima, operating through the AMP-activated protein kinase/mechanistic target of rapamycin (mTOR) pathway.
Collapse
Affiliation(s)
- Mingyu Liu
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
- The
Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic
Diagnosis and Treatment in Heilongjiang Province, the First Affiliated
Hospital, Harbin Medical University, Harbin 150088, China
| | - Fei Xiang
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Tao Yang
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Yujia Sun
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Jiemei Yang
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Tengyu Wang
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Sixuan Chen
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Yingjie Xu
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Gaojun Shan
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Yuanqi Shi
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
- The
Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic
Diagnosis and Treatment in Heilongjiang Province, the First Affiliated
Hospital, Harbin Medical University, Harbin 150088, China
| | - Zengxiang Dong
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
- The
Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic
Diagnosis and Treatment in Heilongjiang Province, the First Affiliated
Hospital, Harbin Medical University, Harbin 150088, China
- NHC
Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Yuanyuan Guo
- Department
of Cardiology, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
- Department
of Geriatrics, the First Affiliated Hospital
of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
36
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Zhou ZX, Ma XF, Xiong WH, Ren Z, Jiang M, Deng NH, Zhou BB, Liu HT, Zhou K, Hu HJ, Tang HF, Zheng H, Jiang ZS. TRIM65 promotes vascular smooth muscle cell phenotypic transformation by activating PI3K/Akt/mTOR signaling during atherogenesis. Atherosclerosis 2024; 390:117430. [PMID: 38301602 DOI: 10.1016/j.atherosclerosis.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND AIMS Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.
Collapse
Affiliation(s)
- Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Nian-Hua Deng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Bo-Bin Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Fang Tang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - He Zheng
- Department of Hepatobiliary Surgery, The Central Hospital of Shaoyang City and The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang City, 422000, PR China.
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China.
| |
Collapse
|
38
|
Yang T, Liu S, Ma H, Lai H, Wang C, Ni K, Lu Y, Li W, Hu X, Zhou Z, Lou C, He D. Carnitine functions as an enhancer of NRF2 to inhibit osteoclastogenesis via regulating macrophage polarization in osteoporosis. Free Radic Biol Med 2024; 213:174-189. [PMID: 38246515 DOI: 10.1016/j.freeradbiomed.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tao Yang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Shijie Liu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Haiwei Ma
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Hehuan Lai
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chengdi Wang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Kainan Ni
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Yahong Lu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Weiqing Li
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Xingyu Hu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Zhiguo Zhou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chao Lou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| | - Dengwei He
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| |
Collapse
|
39
|
Li CJ, Du HB, Zhao ZA, Sun Q, Li YM, Chen SJ, Zhang H, Zhang N, Niu CY, Zhao ZG. STELLATE GANGLION BLOCK REVERSES PHSML-INDUCED VASCULAR HYPOREACTIVITY THROUGH INHIBITING AUTOPHAGY-MEDIATED PHENOTYPIC TRANSFORMATION OF VSMCs. Shock 2024; 61:414-423. [PMID: 38150357 DOI: 10.1097/shk.0000000000002289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.
Collapse
Affiliation(s)
- Cai-Juan Li
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | | | | | - Yi-Ming Li
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | - Si-Jie Chen
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | - Nan Zhang
- Institute of Microcirculation and Basic Medicine College, Hebei North University, Zhangjiakou, PR China
| | | | | |
Collapse
|
40
|
Lin X, Tan Y, Pan L, Tian Z, Lin L, Su M, Ou G, Chen Y. Prognostic value of RRM1 and its effect on chemoresistance in pancreatic cancer. Cancer Chemother Pharmacol 2024; 93:237-251. [PMID: 38040978 DOI: 10.1007/s00280-023-04616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Pancreatic cancer (PC) remains a lethal disease, and gemcitabine resistance is prevalent. However, the biomarkers suggestive of gemcitabine resistance remain unclear. METHODS Bioinformatic tools identified ribonucleotide reductase catalytic subunit M1 (RRM1) in gemcitabine-related datasets. A cox regression model revealed the predictive value of RRM1 with clinical features. An external clinical cohort confirmed the prognostic value of RRM1. RRM1 expression was validated in gemcitabine-resistant cells in vitro and in orthotopic PC model. CCK8, flow cytometry, transwell migration, and invasion assays were used to explore the effect of RRM1 on gemcitabine-resistant cells. The CIBERSORT algorithm investigated the impact of RRM1 on immune infiltration. RESULTS The constructed nomogram based on RRM1 effectively predicted prognosis and was further validated. Moreover, patients with higher RRM1 had shorter overall survival. RRM1 expression was significantly higher in PC tissue and gemcitabine-resistant cells in vitro and in vivo. RRM1 knockdown reversed gemcitabine resistance, inhibited migration and invasion. The infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and plasma cells correlated markedly with RRM1 expression, and communication between tumor and immune cells probably depends on NF-κB/mTOR signaling. CONCLUSION RRM1 may be a potential marker for prognosis and a target marker for gemcitabine resistance in PC.
Collapse
Affiliation(s)
- Xingyi Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lijun Lin
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Guangsheng Ou
- Department of Gastrointestinal Surgery, The Third-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510600, People's Republic of China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
41
|
Wei B, Deng N, Guo H, Wei Y, Xu F, Luo S, You W, Chen J, Li W, Si X. Trimethylamine N-oxide promotes abdominal aortic aneurysm by inducing vascular inflammation and vascular smooth muscle cell phenotypic switching. Eur J Pharmacol 2024; 965:176307. [PMID: 38160930 DOI: 10.1016/j.ejphar.2023.176307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). Trimethylamine N-oxide (TMAO) has emerged as a crucial risk factor in cardiovascular diseases, inducing vascular inflammation and calcification. We aimed to evaluate the effect of TMAO on the formation of AAA. APPROACH AND RESULTS Here, we showed that TMAO was elevated in plasma from AAA patients compared with nonaneurysmal subjects by liquid chromatography‒mass spectrometry (LC‒MS) detection. Functional studies revealed that increased TMAO induced by feeding a choline-supplemented diet promoted Ang II-induced AAA formation. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analyses revealed that TMAO induced macrophage infiltration and inflammatory factor release. Conversely, inhibition of TMAO by supplementation with DMB suppressed AAA formation and the inflammatory response. Molecular studies revealed that TMAO regulated VSMC phenotypic switching. Flow cytometry analyses showed that TMAO induces macrophage M1-type polarization. Furthermore, pharmacological intervention experiments suggested that the nuclear factor-κB (NF-κB) signaling pathway was critical for TMAO to trigger AAA formation. CONCLUSIONS TMAO promotes AAA formation by inducing vascular inflammation and VSMC phenotypic switching through activation of the NF-κB signaling pathway. Thus, TMAO is a prospective therapeutic AAA target.
Collapse
Affiliation(s)
- Bo Wei
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Na Deng
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Haijun Guo
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Yingying Wei
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Fujia Xu
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Sihan Luo
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Weili You
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Jingjing Chen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China
| | - Wei Li
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China.
| | - Xiaoyun Si
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Road, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
42
|
Su C, Liu M, Yao X, Hao W, Ma J, Ren Y, Gao X, Xin L, Ge L, Yu Y, Wei M, Yang J. Vascular injury activates the ELK1/SND1/SRF pathway to promote vascular smooth muscle cell proliferative phenotype and neointimal hyperplasia. Cell Mol Life Sci 2024; 81:59. [PMID: 38279051 PMCID: PMC10817852 DOI: 10.1007/s00018-023-05095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.
Collapse
Affiliation(s)
- Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Mingxia Liu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuyang Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Wei Hao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinzheng Ma
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lingbiao Xin
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
- State Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
43
|
Cheng X, Zhang Y, Guo H, Li X, Wang Y, Song Y, Wang H, Ma D. Cichoric acid improves isoproterenol-induced myocardial fibrosis via inhibition of HK1/NLRP3 inflammasome-mediated signaling pathways by reducing oxidative stress, inflammation, and apoptosis. Food Sci Nutr 2024; 12:180-191. [PMID: 38268894 PMCID: PMC10804096 DOI: 10.1002/fsn3.3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 01/26/2024] Open
Abstract
Cichoric acid (CA), a natural phenolic compound found in many plants, has been reported to have antioxidant, anti-inflammatory, hypoglycemic, and other effects. The aim of this study was to determine the potential role and underlying mechanisms of CA in isoproterenol (ISO)-induced myocardial fibrosis (MF). The MF model was induced by subcutaneous ISO injection in mice. Blood and heart tissue were collected for examination. Hematoxylin and eosin staining and Masson's trichrome staining were used to evaluate the histopathological changes and collagen deposition. The production of reactive oxygen species markers was observed by fluorescence microscopy, the degree of cardiomyocyte microstructure injury was observed by transmission electron microscope, and oxidative stress factors were detected by kit method, and the effect of CA on inflammatory factors was detected by ELISA. The expression levels of collagen proteins and signaling pathways were further investigated by western blotting. The results showed that CA inhibited the expression of ISO-induced proinflammatory factors (TNF-α, IL-1β, and IL-18) and proteins (HK1, NLRP3, caspase-1, cleaved-caspase-1, and ASC), and regulated the expression of apoptotic factors (caspase-3, cleaved-caspase-3, Bax, and Bcl-2). The results indicated that CA may regulate the HK1/NLRP3 inflammasome pathway by inhibiting HK1 expression and play a protective role in MF.
Collapse
Affiliation(s)
- Xizhen Cheng
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Yuling Zhang
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Haochuan Guo
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Xinnong Li
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Yanan Wang
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
| | - Yongxing Song
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei ProvinceShijiazhuangChina
| | - Hongfang Wang
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
- Hebei Technology Innovation Center of TCM Formula PreparationsShijiazhuangChina
| | - Donglai Ma
- School of PharmacyHebei University of Chinese MedicineShijiazhuangChina
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei ProvinceShijiazhuangChina
- Hebei Technology Innovation Center of TCM Formula PreparationsShijiazhuangChina
| |
Collapse
|
44
|
Goyal A, Dubey N, Agrawal A, Sharma R, Verma A. An Insight into the Promising Therapeutic Potential of Chicoric Acid. Curr Pharm Biotechnol 2024; 25:1708-1718. [PMID: 38083896 DOI: 10.2174/0113892010280616231127075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 09/04/2024]
Abstract
The pharmacological treatments that are now recommended for the therapy of chronic illnesses are examined in a great number of studies to determine whether or not they are both safe and effective. Therefore, it is important to investigate various alternative therapeutic assistance, such as natural remedies derived from medicinal plants. In this context, chicoric acid, classified as a hydroxycinnamic acid, has been documented to exhibit a range of health advantages. These include antiviral, antioxidant, anti-inflammatory, obesity-preventing, and neuroprotective effects. Due to its considerable pharmacological properties, chicoric acid has found extensive applications in food, pharmaceuticals, animal husbandry, and various other commercial sectors. This article provides a comprehensive overview of in vitro and in vivo investigations on chicoric acid, highlighting its beneficial effects and therapeutic activity when used as a preventative and management aid for public health conditions, including diabetes, cardiovascular disease, and hepatic illnesses like non-alcoholic steatohepatitis. Moreover, further investigation of this compound can lead to its development as a potential phytopharmaceutical candidate.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rashmi Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
45
|
Yu L, Huang T, Zhao J, Zhou Z, Cao Z, Chi Y, Meng S, Huang Y, Xu Y, Xia L, Jiang H, Yin Z, Wang H. Branched-chain amino acid catabolic defect in vascular smooth muscle cells drives thoracic aortic dissection via mTOR hyperactivation. Free Radic Biol Med 2024; 210:25-41. [PMID: 37956909 DOI: 10.1016/j.freeradbiomed.2023.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Metabolic reprogramming of vascular smooth muscle cell (VSMC) plays a critical role in the pathogenesis of thoracic aortic dissection (TAD). Previous researches have mainly focused on dysregulation of fatty acid or glucose metabolism, while the impact of amino acids catabolic disorder in VSMCs during the development of TAD remains elusive. Here, we identified branched-chain amino acid (BCAA) catabolic defect as a metabolic hallmark of TAD. The bioinformatics analysis and data from human aorta revealed impaired BCAA catabolism in TAD individuals. This was accompanied by upregulated branched-chain α-ketoacid dehydrogenase kinase (BCKDK) expression and BCKD E1 subunit alpha (BCKDHA) phosphorylation, enhanced vascular inflammation, and hyperactivation of mTOR signaling. Further in vivo experiments demonstrated that inhibition of BCKDK with BT2 (a BCKDK allosteric inhibitor) treatment dephosphorylated BCKDHA and re-activated BCAA catabolism, attenuated VSMCs phenotypic switching, alleviated aortic remodeling, mitochondrial reactive oxygen species (ROS) damage and vascular inflammation. Additionally, the beneficial actions of BT2 were validated in a TNF-α challenged murine VSMC cell line. Meanwhile, rapamycin conferred similar beneficial effects against VSMC phenotypic switching, cellular ROS damage as well as inflammatory response. However, co-treatment with MHY1485 (a classic mTOR activator) reversed the beneficial effects of BT2 by reactivating mTOR signaling. Taken together, the in vivo and in vitro evidence showed that impairment of BCAA catabolism resulted in aortic accumulation of BCAA and further caused VSMC phenotypic switching, mitochondrial ROS damage and inflammatory response via mTOR hyperactivation. BCKDK and mTOR signaling may serve as the potential drug targets for the prevention and treatment of TAD.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zijun Cao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110847, PR China
| | - Yanbang Chi
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Shan Meng
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China; Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China
| | - Yuting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui Jiang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zongtao Yin
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
46
|
Ma Y, Yu X, Ye S, Li W, Yang Q, Li YX, Wang Y, Wang YL. Immune-regulatory properties of endovascular extravillous trophoblast cells in human placenta. Placenta 2024; 145:107-116. [PMID: 38128221 DOI: 10.1016/j.placenta.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Uterine spiral artery remodeling is the prerequisite for ensuring adequate blood supply to the maternal-fetal interface during human pregnancy. One crucial cellular event in this process involves the extensive replacement of the spiral artery endothelial cells by endovascular extravillous trophoblasts (enEVTs), a subtype of extravillous trophoblasts (EVTs). However, our understanding of the properties of enEVTs remains limited. METHODS Human enEVTs in decidual tissues during early pregnancy was purified using flow sorting by specific makers, NCAM1 and HLA-G. The high-throughput RNA sequencing analysis as well as the cytokine antibody array experiments were carried out to analyze for cell properties. Gene ontology (GO) enrichment, kyoto encyclopedia of genes and genomes (KEGG) enrichment, and gene set enrichment analysis (GSEA) were performed on differentially expressed genes of enEVTs. Immunofluorescent assays were used to verify the analysis results. RESULTS Both enEVTs and interstitial EVTs (iEVTs) exhibited gene expression patterns typifying EVT characteristics. Intriguingly, enEVTs displayed gene expression associated with immune responses, particularly reminiscent of M2 macrophage characteristics. The active secretion of multiple cytokines and chemokines by enEVTs provided partial validation for their expression pattern of immune-regulatory genes. DISCUSSION Our study reveals the immune-regulatory properties of human enEVTs and provides new insights into their functions and mechanisms involved in spiral artery remodeling.
Collapse
Affiliation(s)
- Yeling Ma
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shenglong Ye
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China
| | - Wenlong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqing Wang
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China.
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Yang Y, Huang S, Wang J, Nie X, Huang L, Li T. Wogonin attenuates vascular remodeling by inhibiting smooth muscle cell proliferation and migration in hypertensive rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:39-48. [PMID: 38154963 PMCID: PMC10762488 DOI: 10.4196/kjpp.2024.28.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Wogonin, extracted from the roots of Scutellaria baicalensis Georgi, has been shown to suppress collagen deposition in spontaneously hypertensive rats (SHRs). This study was performed to investigate the role and mechanism of wogonin underlying vascular remodeling in SHRs. After injection of SHRs with 40 mg/kg of wogonin, blood pressure in rats was measured once a week. Masson's trichrome staining was conducted to observe the changes in aortas and mesenteric arteries. Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were treated with Angiotensin II (Ang II; 100 nM) in the presence or absence of varying concentrations of wogonin. The viability and proliferation of VSMCs were examined using Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, respectively. The migration of VSMCs was examined using wound healing assay and transwell assay. We found that wogonin administration alleviated hypertension, increased lumen diameter, and reduced the thickness of the arterial media in SHRs. Ang II treatment enhanced the viability of VSMCs, which was inhibited by wogonin in a concentration-dependent manner. Wogonin reversed Ang II-induced increases in the viability, proliferation, and migration of VSMCs. Moreover, wogonin inhibited Ang II-induced activation of mitogen-activated protein kinase (MAPK) signaling in VSMCs. Overall, wogonin repressed the proliferative and migratory capacity of VSMCs by regulating the MAPK signaling pathway, thereby attenuating vascular remodeling in hypertensive rats, indicating that wogonin might be a therapeutic agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shan Huang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Jun Wang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Xiao Nie
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou 570311, China
| | - Ling Huang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Tianfa Li
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| |
Collapse
|
48
|
Sun HJ, Zheng GL, Wang ZC, Liu Y, Bao N, Xiao PX, Lu QB, Zhang JR. Chicoric acid ameliorates sepsis-induced cardiomyopathy via regulating macrophage metabolism reprogramming. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155175. [PMID: 37951150 DOI: 10.1016/j.phymed.2023.155175] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Sepsis-related cardiac dysfunction is believed to be a primary cause of high morbidity and mortality. Metabolic reprogramming is closely linked to NLRP3 inflammasome activation and dysregulated glycolysis in activated macrophages, leading to inflammatory responses in septic cardiomyopathy. Succinate dehydrogenase (SDH) and succinate play critical roles in the progression of metabolic reprogramming in macrophages. Inhibition of SDH may be postulated as an effective strategy to attenuate macrophage activation and sepsis-induced cardiac injury. PURPOSE This investigation was designed to examine the role of potential compounds that target SDH in septic cardiomyopathy and the underlying mechanisms involved. METHODS/RESULTS From a small molecule pool containing about 179 phenolic compounds, we found that chicoric acid (CA) had the strongest ability to inhibit SDH activity in macrophages. Lipopolysaccharide (LPS) exposure stimulated SDH activity, succinate accumulation and superoxide anion production, promoted mitochondrial dysfunction, and induced the expression of hypoxia-inducible factor-1α (HIF-1α) in macrophages, while CA ameliorated these changes. CA pretreatment reduced glycolysis by elevating the NAD+/NADH ratio in activated macrophages. In addition, CA promoted the dissociation of K(lysine) acetyltransferase 2A (KAT2A) from α-tubulin, and thus reducing α-tubulin acetylation, a critical event in the assembly and activation of NLRP3 inflammasome. Overexpression of KAT2A neutralized the effects of CA, indicating that CA inactivated NLRP3 inflammasome in a specific manner that depended on KAT2A inhibition. Importantly, CA protected the heart against endotoxin insult and improved sepsis-induced cardiac mitochondrial structure and function disruption. Collectively, CA downregulated HIF-1α expression via SDH inactivation and glycolysis downregulation in macrophages, leading to NLRP3 inflammasome inactivation and the improvement of sepsis-induced myocardial injury. CONCLUSION These results highlight the therapeutic role of CA in the resolution of sepsis-induced cardiac inflammation.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Guan-Li Zheng
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yao Liu
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Neng Bao
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214125, China
| | - Ping-Xi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210000, China.
| | - Qing-Bo Lu
- Department of Endocrine, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214125, China.
| | - Ji-Ru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China.
| |
Collapse
|
49
|
Peng K, Wang M, Wang J, Wang Q, Li D, Sun X, Yang Y, Yang D. Nuclear receptor subfamily 1 group D member 1 suppresses the proliferation, migration of adventitial fibroblasts, and vascular intimal hyperplasia via mammalian target of rapamycin complex 1/β-catenin pathway. Clin Exp Hypertens 2023; 45:2178659. [PMID: 36794491 DOI: 10.1080/10641963.2023.2178659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND In-stent restenosis hardly limits the therapeutic effect of the percutaneous vascular intervention. Although the restenosis is significantly ameliorated after the application of new drug-eluting stents, the incidence of restenosis remains at a high level. OBJECTIVE Vascular adventitial fibroblasts (AFs) play an important role in intimal hyperplasia and subsequent restenosis. The current study was aimed to investigate the role of nuclear receptor subfamily 1, group D, member 1 (NR1D1) in the vascular intimal hyperplasia. METHODS AND RESULTS We observed increased expression of NR1D1 after the transduction of adenovirus carrying Nr1d1 gene (Ad-Nr1d1) in AFs. Ad-Nr1d1 transduction significantly reduced the numbers of total AFs, Ki-67-positive AFs, and the migration rate of AFs. NR1D1 overexpression decreased the expression level of β-catenin and attenuated the phosphorylation of the effectors of mammalian target of rapamycin complex 1 (mTORC1), including mammalian target of rapamycin (mTOR) and 4E binding protein 1 (4EBP1). Restoration of β-catenin by SKL2001 abolished the inhibitory effects of NR1D1 overexpression on the proliferation and migration of AFs. Surprisingly, the restoration of mTORC1 activity by insulin could also reverse the decreased expression of β-catenin, attenuated proliferation, and migration in AFs induced by NR1D1 overexpression. In vivo, we found that SR9009 (an agonist of NR1D1) ameliorated the intimal hyperplasia at days 28 after injury of carotid artery. We further observed that SR9009 attenuated the increased Ki-67-positive AFs, an essential part of vascular restenosis at days 7 after injury to the carotid artery. CONCLUSION These data suggest that NR1D1 inhibits intimal hyperplasia by suppressing the proliferation and migration of AFs in a mTORC1/β-catenin-dependent manner.
Collapse
Affiliation(s)
- Ke Peng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Mingliang Wang
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jun Wang
- Central Sterile Supply Department, General Hospital of Western Theater Command, Chengdu, China
| | - Qiang Wang
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - De Li
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiongshan Sun
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Yongjian Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Dachun Yang
- Department of Cardiovascular Medicine, General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
50
|
Hu S, Zhang Y, Qiu C, Li Y. RGS10 inhibits proliferation and migration of pulmonary arterial smooth muscle cell in pulmonary hypertension via AKT/mTORC1 signaling. Clin Exp Hypertens 2023; 45:2271186. [PMID: 37879890 DOI: 10.1080/10641963.2023.2271186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Objective: Excessive proliferation and migration of pulmonary arterial smooth muscle cell (PASMC) is a core event of pulmonary hypertension (PH). Regulators of G protein signaling 10 (RGS10) can regulate cellular proliferation and cardiopulmonary diseases. We demonstrate whether RGS10 also serves as a regulator of PH.Methods: PASMC was challenged by hypoxia to induce proliferation and migration. Adenovirus carrying Rgs10 gene (Ad-Rgs10) was used for external expression of Rgs10. Hypoxia/SU5416 or MCT was used to induce PH. Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were used to validate the establishment of PH model.Results: RGS10 was downregulated in hypoxia-challenged PASMC. Ad-Rgs10 significantly suppressed proliferation and migration of PASMC after hypoxia stimulus, while silencing RGS10 showed contrary effect. Mechanistically, we observed that phosphorylation of S6 and 4E-Binding Protein 1 (4EBP1), the main downstream effectors of mammalian target of rapamycin complex 1 (mTORC1) as well as phosphorylation of AKT, the canonical upstream of mTORC1 in hypoxia-induced PASMC were negatively modulated by RGS10. Both recovering mTORC1 activity and restoring AKT activity abolished these effects of RGS10 on PASMC. More importantly, AKT activation also abolished the inhibitory role of RGS10 in mTORC1 activity in hypoxia-challenged PASMC. Finally, we also observed that overexpression of RGS10 in vivo ameliorated pulmonary vascular wall thickening and reducing RVSP and RVHI in mouse PH model.Conclusion: Our findings reveal the modulatory role of RGS10 in PASMC and PH via AKT/mTORC1 axis. Therefore, targeting RGS10 may serve as a novel potent method for the prevention against PH."
Collapse
Affiliation(s)
- Sheng Hu
- Department of Pulmonary and Critical Care Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Yijie Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| | - Chenming Qiu
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, China
| | - Ying Li
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|