1
|
Wu Y, Hou M, Deng Y, Xia X, Liu Y, Yu J, Yu C, Yang H, Zhang Y, Zhu X. Swimming exercise induces redox-lipid crosstalk to ameliorate osteoarthritis progression. Redox Biol 2025; 81:103535. [PMID: 39952199 PMCID: PMC11875157 DOI: 10.1016/j.redox.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Conventional pharmacotherapy exhibits limited efficacy in halting cartilage degeneration, whereas exercise interventions have demonstrated promising protective effects against osteoarthritis (OA), albeit with unclear underlying mechanisms. This study investigated the beneficial effects of swimming in mitigating local joint damage through the enhancement of systemic antioxidant capacity. We found that overexpression of superoxide dismutase 3 (SOD3) could promote the elimination of extracellular reactive oxygen species (ROS) and preserve the cartilage extracellular matrix (C-ECM). Conversely, genetic deletion of SOD3 accelerated the loss of C-ECM and contributed to OA due to an imbalance in extracellular oxidative stress. Further investigation revealed that SOD3 could interact with CCAAT/enhancer binding protein β (C/EBPβ), leading to the inhibition of apolipoprotein E (APOE) transcription and subsequent APOE-induced cholesterol transport. Ultimately, we developed targeted extracellular vesicles (EVs) with high cartilage affinity for efficient and precise delivery of SOD3. Overall, this study elucidated the potential of exercise for degenerative joint disorders through SOD3-mediated extracellular antioxidation and cholesterol redistribution.
Collapse
Affiliation(s)
- Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Jianfeng Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Chenqi Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Xuan Q, Huang L, Gu W, Ling C. Twenty years of research on exercise-induced fatigue: A bibliometric analysis of hotspots, bursts, and research trends. Medicine (Baltimore) 2025; 104:e41895. [PMID: 40128028 PMCID: PMC11936639 DOI: 10.1097/md.0000000000041895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Data from the Web of Science Core Collection (2004-2023) on "exercise-induced fatigue" were analyzed using bibliometric tools to explore research trends across countries, institutions, authors, journals, and keywords. The analysis was limited to "Article" and "Review" literature types. Among 4531 publications, the United States contributed the most articles (1005), followed by England (559) and China (516). The most influential institution was Universidade de São Paulo, while the most productive was Institut National de la Santé et de la Recherche Médicale with 103 papers. The European Journal of Applied Physiology ranked as the top journal with 233 articles. Millet Guillaume Y. emerged as the most prolific author, and Amann Markus was the most cited. Recent keyword trends showed a surge in terms like "physical activity" and "aerobic exercise," while "fatigue" and "exercise" remained dominant. Notable findings were observed in oncology, engineering, and multidisciplinary studies, indicating potential research trends. Oxidative stress was identified as the most commonly mentioned mechanism in exercise-induced fatigue studies. This bibliometric analysis highlights current research trends and gaps, suggesting that future studies should focus on understanding the mechanisms of exercise-induced fatigue, developing objective measurement criteria, and exploring strategies for its alleviation.
Collapse
Affiliation(s)
- Qiwen Xuan
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lele Huang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, China
| | - Wei Gu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Changquan Ling
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Lu Y, Kobayashi Y, Niki Y, Moriyama K. Possible role of superoxide dismutase 3 in hypoxia-induced developmental defects in murine molars. J Oral Biosci 2025; 67:100611. [PMID: 39746510 DOI: 10.1016/j.job.2024.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVES To investigate the effects of hypoxia on tooth germ development in mice and explore the underlying mechanisms. METHODS Tooth germs were extracted from E14.5 mouse embryos and divided into the control and hypoxia groups for organ culture. The hypoxia group was exposed to hypoxia (0% oxygen) for 3 h, followed by normoxia for 21 h. After 2 or 7 days, samples were collected for morphometric analysis, reverse transcription-quantitative polymerase chain reaction, immunohistochemistry (IHC), and immunofluorescent staining (IF). Additionally, superoxide dismutase 3 (SOD3) expression patterns in mandibular molar tooth germs from C57BL/6 mouse embryos were analyzed using IHC. The SOD inhibitor sodium N, N-diethyldithiocarbamate trihydrate (DETC; 400 μM) was applied under normoxia for 3 days, followed by morphometry, IHC, and IF. RESULTS After 7 days, the hypoxia group exhibited significantly smaller tooth size, fewer cusps, reduced cell proliferation, and increased apoptosis in the epithelium compared to the control group. Sod3 mRNA expression was higher than other Sod family member expressions in the control group. In the hypoxia group, Sod3 mRNA and SOD3 protein expression were significantly decreased, whereas hypoxia-inducible factor-1 expression and reactive oxygen species levels were increased. SOD3 was primarily expressed in the dental epithelium from E12.5 to E17.5. DETC impaired tooth germ development in the control group, resulting in a phenotype similar to that of the hypoxia group, and significantly reduced amelogenin and msh homeobox 2 expression in the epithelium. CONCLUSIONS Hypoxia impairs tooth germ development. SOD3 probably plays a protective role during this process.
Collapse
Affiliation(s)
- Yeming Lu
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukiho Kobayashi
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Yuki Niki
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
4
|
Sánchez-Nuño S, Santocildes G, Rebull J, Bardallo RG, Girabent-Farrés M, Viscor G, Carbonell T, Torrella JR. Effects of intermittent exposure to hypobaric hypoxia and cold on skeletal muscle regeneration: Mitochondrial dynamics, protein oxidation and turnover. Free Radic Biol Med 2024; 225:286-295. [PMID: 39313011 DOI: 10.1016/j.freeradbiomed.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Muscle injuries and the subsequent regeneration events compromise muscle homeostasis at morphological, functional and molecular levels. Among the molecular alterations, those derived from the mitochondrial function are especially relevant. We analysed the mitochondrial dynamics, the redox balance, the protein oxidation and the main protein repairing mechanisms after 9 days of injury in the rat gastrocnemius muscle. During the recovery rats were exposed to intermittent cold exposure (ICE), intermittent hypobaric hypoxia (IHH), and both simultaneous combined stimuli. Non-injured contralateral legs were also analysed to evaluate the specific effects of the three environmental exposures. Our results showed that ICE enhanced mitochondrial adaptation by improving the electron transport chain efficiency during muscle recovery, decreased the expression of regulatory subunit of proteasome and accumulated oxidized proteins. Exposure to IHH did not show mitochondrial compensation or increased protein turnover mechanisms; however, no accumulation of oxidized proteins was observed. Both ICE and IHH, when applied separately, elicited an increased expression of eNOS, which could have played an important role in accelerating muscle recovery. The combined effect of ICE and IHH led to a complex response that could potentially impede optimal mitochondrial function and enhanced the accumulation of protein oxidation. These findings underscore the nuanced role of environmental stressors in the muscle healing process and their implications for optimizing recovery strategies.
Collapse
Affiliation(s)
- Sergio Sánchez-Nuño
- Campus Docent Sant Joan de Déu, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), C/ Sant Benito Menni, 18-20, 08830, Sant Boi de Llobregat, Spain
| | - Garoa Santocildes
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Josep Rebull
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Raquel G Bardallo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Montserrat Girabent-Farrés
- Campus Docent Sant Joan de Déu, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), C/ Sant Benito Menni, 18-20, 08830, Sant Boi de Llobregat, Spain
| | - Ginés Viscor
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
5
|
Martinez-Canton M, Gallego-Selles A, Galvan-Alvarez V, Garcia-Gonzalez E, Garcia-Perez G, Santana A, Martin-Rincon M, Calbet JAL. CaMKII protein expression and phosphorylation in human skeletal muscle by immunoblotting: Isoform specificity. Free Radic Biol Med 2024; 224:182-189. [PMID: 39187050 DOI: 10.1016/j.freeradbiomed.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Calcium (Ca2+)/calmodulin-dependent protein kinase II (CaMKII) is activated during exercise by reactive oxygen species (ROS) and Ca2+ transients initiating muscle contraction. CaMKII modulates antioxidant, inflammatory, metabolic and autophagy signalling pathways. CaMKII is coded by four homologous genes (α, β, γ, and δ). In rat skeletal muscle, δD, δA, γD, γB and βM have been described while different characterisations of human skeletal muscle CaMKII isoforms have been documented. Precisely discerning between the various isoforms is pivotal for understanding their distinctive functions and regulatory mechanisms in response to exercise and other stimuli. This study aimed to optimize the detection of the different CaMKII isoforms by western blotting using eight different CaMKII commercial antibodies in human skeletal muscle. Exercise-induced posttranslational modifications, i.e. phosphorylation and oxidations, allowed the identification of specific bands by multitargeting them with different antibodies after stripping and reprobing. The methodology proposed has confirmed the molecular weight of βM CaMKII and allows distinguishing between γ/δ and δD CaMKII isoforms. The corresponding molecular weight for the CaMKII isoforms resolved were: δD, at 54.2 ± 2.1 kDa; γ/δ, at 59.0 ± 1.2 kDa and 61.6 ± 1.3 kDa; and βM isoform, at 76.0 ± 1.8 kDa. Some tested antibodies showed high specificity for the δD, the most responsive isoform to ROS and intracellular Ca2+ transients in human skeletal muscle, while others, despite the commercial claims, failed to show such specificity.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Giovanni Garcia-Perez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira S/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
6
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
7
|
Powers SK, Radak Z, Ji LL, Jackson M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:780-792. [PMID: 38719184 PMCID: PMC11336304 DOI: 10.1016/j.jshs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 05/22/2024]
Abstract
The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology, University of Florida, Gainesville, FL 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest 1123, Hungary
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St. Paul, MN 55455, USA
| | - Malcolm Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
8
|
Powers SK, Lategan-Potgieter R, Goldstein E. Exercise-induced Nrf2 activation increases antioxidant defenses in skeletal muscles. Free Radic Biol Med 2024; 224:470-478. [PMID: 39181477 DOI: 10.1016/j.freeradbiomed.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Following the discovery that exercise increases the production of reactive oxygen species in contracting skeletal muscles, evidence quickly emerged that endurance exercise training increases the abundance of key antioxidant enzymes in the trained muscles. Since these early observations, knowledge about the impact that regular exercise has on skeletal muscle antioxidant capacity has increased significantly. Importantly, in recent years, our understanding of the cell signaling pathways responsible for this exercise-induced increase in antioxidant enzymes has expanded exponentially. Therefore, the goals of this review are: 1) summarize our knowledge about the influence that exercise training has on the abundance of key antioxidant enzymes in skeletal muscles; and 2) to provide a state-of-the-art review of the nuclear factor erythroid 2-related factor (Nrf2) signaling pathway that is responsible for many of the exercise-induced changes in muscle antioxidant capacity. We begin with a discussion of the sources of reactive oxygen species in contracting muscles and then examine the exercise-induced changes in the antioxidant enzymes that eliminate both superoxide radicals and hydrogen peroxide in muscle fibers. We conclude with a discussion of the advances in our understanding of the exercise-induced control of the Nrf2 signaling pathway that is responsible for the expression of numerous antioxidant proteins. In hopes of stimulating future research, we also identify gaps in our knowledge about the signaling pathways responsible for the exercise-induced increases in muscle antioxidant enzymes.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | | | - Erica Goldstein
- Department of Health Sciences, Stetson University, Deland, FL, USA
| |
Collapse
|
9
|
Martinez-Canton M, Galvan-Alvarez V, Gallego-Selles A, Gelabert-Rebato M, Garcia-Gonzalez E, Gonzalez-Henriquez JJ, Martin-Rincon M, Calbet JAL. Activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle by high-intensity exercise in normoxia and hypoxia and after recovery with or without post-exercise ischemia. Free Radic Biol Med 2024; 222:607-624. [PMID: 39009244 DOI: 10.1016/j.freeradbiomed.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Autophagy is essential for the adaptive response to exercise and physiological skeletal muscle functionality. However, the mechanisms leading to the activation of macroautophagy and chaperone-mediated autophagy in human skeletal muscle in response to high-intensity exercise remain elusive. Our findings demonstrate that macroautophagy and chaperone-mediated autophagy are stimulated by high-intensity exercise in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg) in healthy humans. High-intensity exercise induces macroautophagy initiation through AMPKα phosphorylation, which phosphorylates and activates ULK1. ULK1 phosphorylates BECN1 at Ser15, eliciting the dissociation of BECN1-BCL2 crucial for phagophore formation. Besides, high-intensity exercise elevates the LC3B-II:LC3B-I ratio, reduces total SQSTM1/p62 levels, and induces p-Ser349 SQSTM1/p62 phosphorylation, suggesting heightened autophagosome degradation. PHAF1/MYTHO, a novel macroautophagy biomarker, is highly upregulated in response to high-intensity exercise. The latter is accompanied by elevated LAMP2A expression, indicating chaperone-mediated autophagy activation regardless of post-exercise HSPA8/HSC70 downregulation. Despite increased glycolytic metabolism, severe acute hypoxia does not exacerbate the autophagy signaling response. Signaling changes revert within 1 min of recovery with free circulation, while the application of immediate post-exercise ischemia impedes recovery. Our study concludes that macroautophagy and chaperone-mediated autophagy pathways are strongly activated by high-intensity exercise, regardless of PO2, and that oxygenation is necessary to revert these signals to pre-exercise values. PHAF1/MYTHO emerges as a pivotal exercise-responsive autophagy marker positively associated with the LC3B-II:LC3B-I ratio.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| |
Collapse
|
10
|
Folgueira C, Herrera-Melle L, López JA, Galvan-Alvarez V, Martin-Rincon M, Cuartero MI, García-Culebras A, Dumesic PA, Rodríguez E, Leiva-Vega L, León M, Porteiro B, Iglesias C, Torres JL, Hernández-Cosido L, Bonacasa C, Marcos M, Moro MÁ, Vázquez J, Calbet JAL, Spiegelman BM, Mora A, Sabio G. Remodeling p38 signaling in muscle controls locomotor activity via IL-15. SCIENCE ADVANCES 2024; 10:eadn5993. [PMID: 39141732 PMCID: PMC11323882 DOI: 10.1126/sciadv.adn5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Skeletal muscle has gained recognition as an endocrine organ releasing myokines upon contraction during physical exercise. These myokines exert both local and pleiotropic health benefits, underscoring the crucial role of muscle function in countering obesity and contributing to the overall positive effects of exercise on health. Here, we found that exercise activates muscle p38γ, increasing locomotor activity through the secretion of interleukin-15 (IL-15). IL-15 signals in the motor cortex, stimulating locomotor activity. This activation of muscle p38γ, leading to an increase locomotor activity, plays a crucial role in reducing the risk of diabetes and liver steatosis, unveiling a vital muscle-brain communication pathway with profound clinical implications. The correlation between p38γ activation in human muscle during acute exercise and increased blood IL-15 levels highlights the potential therapeutic relevance of this pathway in treating obesity and metabolic diseases. These findings provide valuable insights into the molecular basis of exercise-induced myokine responses promoting physical activity.
Collapse
Affiliation(s)
- Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - María Isabel Cuartero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alicia García-Culebras
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Phillip A. Dumesic
- Dana Farber Cancer Institute (DFCI), Department of Cell Biology, Harvard University Medical School, Boston, MA, USA
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Begoña Porteiro
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Iglesias
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | | | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Department of Surgery, University of Salamanca, Salamanca, Spain
| | - Clara Bonacasa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jose A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria 35017, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Bruce M. Spiegelman
- Dana Farber Cancer Institute (DFCI), Department of Cell Biology, Harvard University Medical School, Boston, MA, USA
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
11
|
Shi H, Yuan X, Fan W, Yang X, Liu G. Stem Cell Therapy for Diabetic Foot: An Umbrella Review of Systematic Reviews and Meta-Analyses. Adv Wound Care (New Rochelle) 2024; 13:201-216. [PMID: 38149885 DOI: 10.1089/wound.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Objective: This umbrella review aims to summarize and evaluate the evidence from current systematic reviews/meta-analyses (SRs/MAs) on the effectiveness of stem cell therapy for diabetic foot (DF). Approach: We conducted a comprehensive search in four databases for SRs/MAs that included randomized controlled trials (RCTs) on stem cell therapy for DF. Two separate researchers independently evaluated the methodological quality and evidence quality of the SRs/MAs that were included in the study. We conducted a quantitative synthesis of all RCTs included in the SRs/MAs to obtain objective and updated conclusions. Egger's test and sensitivity analysis are used to examine the reliability of the results. Results: This umbrella review includes eight SRs/MAs, and their methodological quality and evidence quality were all deemed unsatisfactory. Out of the 8 SRs/MAs, 26 RCTs were included, with a total corrected covered area of 21.4%, indicating a high degree of overlap. The test of super-significance did not yield any significant results. Our updated meta-analysis suggests that DF patients can benefit from stem cell therapy, as indicated by effectiveness in measures, including healing rate, amputation rate, ankle-brachial index, transcutaneous oxygen pressure, ulcer size reduction, complete healing time, pain-free walking distance, rest pain score, and new angiogenesis rate. Innovation: This study conducted a comprehensive evaluation and reanalysis of the current evidence regarding the effectiveness and safety of stem cell therapy for DF, which is the first of its kind. Conclusion: Based on the existing evidence, stem cell therapy is effective and safe for patients with DF.
Collapse
Affiliation(s)
- Hongshuo Shi
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Yuan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weijing Fan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Yang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guobin Liu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Powell K, Wadolowski S, Tambo W, Strohl JJ, Kim D, Turpin J, Al-Abed Y, Brines M, Huerta PT, Li C. Intrinsic diving reflex induces potent antioxidative response by activation of NRF2 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579910. [PMID: 38405863 PMCID: PMC10888858 DOI: 10.1101/2024.02.12.579910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Aims This study aims to elucidate the underlying mechanisms of diving reflex, a powerful endogenous mechanism supporting underwater mammalian survival. Antioxidative responses, observed in marine mammals, may be contributing factors. Using a multi-organ approach, this study assesses whether acute and chronic diving reflex activate nuclear factor-erythroid-2-related factor 2 (NRF2) signaling pathways, which regulate cellular antioxidant responses. Methods Male Sprague-Dawley rats ( n =38) underwent either a single diving session to elicit acute diving reflex, or daily diving sessions for 4-weeks to produce chronic diving reflex. NRF2 (total, nuclear, phosphorylated), NRF2-downstream genes, and malondialdehyde were assessed via Western blot, immunofluorescence, RT-PCR, and ELISA in brain, lung, kidney, and serum. Results Diving reflex increased nuclear NRF2, phosphorylated NRF2, and antioxidative gene expression, in an organ-specific and exposure time-specific manner. Comparing organs, the brain had the highest increase of phosphorylated NRF2 expression, while kidney had the highest degree of nuclear NRF2 expression. Comparing acute and chronic sessions, phosphorylated NRF2 increased the most with chronic diving reflex, but acute diving reflex had the highest antioxidative gene expression. Notably, calcitonin gene-related peptide appears to mediate diving reflex' effects on NRF2 activation. Conclusions Acute and chronic diving reflex activate potent NRF2 signaling in the brain and peripheral organs. Interestingly, acute diving reflex induces higher expression of downstream antioxidative genes compared to chronic diving reflex. This result contradicts previous assumptions requiring chronic exposure to diving for induction of antioxidative effects and implies that the diving reflex has a strong translational potential during preconditioning and postconditioning therapies. Key Points Diving reflex activates potent NRF2 signaling via multiple mechanisms, including phosphorylation, nuclear translocation, and KEAP1 downregulation with both acute and chronic exposure.Diving reflex activates NRF2 via differential pathways in the brain and other organs; phosphorylated NRF2 increases more in the brain, while nuclear NRF2 increases more in the peripheral organs.Acute diving reflex exposure induces a more pronounced antioxidative effect than chronic diving reflex exposure, indicating that the antioxidative response activated by diving reflex is not dependent upon chronic adaptive responses and supports diving reflex as both a preconditioning and postconditioning treatment.
Collapse
|
13
|
Zhang H, Feng Y, Si Y, Lu C, Wang J, Wang S, Li L, Xie W, Yue Z, Yong J, Dai S, Zhang L, Li X. Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol 2024; 69:102983. [PMID: 38064762 PMCID: PMC10755590 DOI: 10.1016/j.redox.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024] Open
Abstract
Shank3, a key molecule related to the development and deterioration of autism, has recently been found to downregulate in the murine brain after ischemia/reperfusion (I/R). Despite this discovery, however, its effects on neuronal injury and the mechanism underlying the effects remain to be clarified. To address this, in this study, based on genetically modified mice models, we revealed that the expression of Shank3 showed a time-dependent change in murine hippocampal neurons after I/R, and that conditional knockout (cko) of Shank3 in neurons resulted in aggravated neuronal injuries. The protective effects of Shank3 against oxidative stress and inflammation after I/R were achieved through direct binding STIM1 and subsequent proteasome-mediated degradation of STIM1. The STIM1 downregulation induced the phosphorylation of downstream Nrf2 Ser40, which subsequently translocated to the nucleus, and further increased the expression of antioxidant genes such as NQO1 and HO-1 in HT22 cells. In vivo, the study has further confirmed that double knockout of Shank3 and Stim1 alleviated oxidative stress and inflammation after I/R in Shank3cko mice. In conclusion, the present study has demonstrated that Shank3 interacts with STIM1 and inhibits post-I/R neuronal oxidative stress and inflammatory response via the Nrf2 pathway. This interaction can potentially contribute to the development of a promising method for I/R treatment.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Feng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanfang Si
- Department of Ophthalmology, The Eighth Medical Center, Affiliated to the Senior Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100091, China
| | - Chuanhao Lu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiquan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenyu Xie
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheming Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Yong
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
14
|
Shi HS, Yuan X, Wu FF, Li XY, Fan WJ, Yang X, Hu XM, Liu GB. Research progress and challenges in stem cell therapy for diabetic foot: Bibliometric analysis and perspectives. World J Stem Cells 2024; 16:33-53. [PMID: 38292441 PMCID: PMC10824042 DOI: 10.4252/wjsc.v16.i1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Stem cell therapy has shown great potential for treating diabetic foot (DF). AIM To conduct a bibliometric analysis of studies on the use of stem cell therapy for DF over the past two decades, with the aim of depicting the current global research landscape, identifying the most influential research hotspots, and providing insights for future research directions. METHODS We searched the Web of Science Core Collection database for all relevant studies on the use of stem cell therapy in DF. Bibliometric analysis was carried out using CiteSpace, VOSviewer, and R (4.3.1) to identify the most notable studies. RESULTS A search was conducted to identify publications related to the use of stem cells for DF treatment. A total of 542 articles published from 2000 to 2023 were identified. The United States had published the most papers on this subject. In this field, Iran's Shahid Beheshti University Medical Sciences demonstrated the highest productivity. Furthermore, Dr. Bayat from the same university has been an outstanding researcher in this field. Stem Cell Research & Therapy is the journal with the highest number of publications in this field. The main keywords were "diabetic foot ulcers," "wound healing," and "angiogenesis." CONCLUSION This study systematically illustrated the advances in the use of stem cell therapy to treat DF over the past 23 years. Current research findings suggested that the hotspots in this field include stem cell dressings, exosomes, wound healing, and adipose-derived stem cells. Future research should also focus on the clinical translation of stem cell therapies for DF.
Collapse
Affiliation(s)
- Hong-Shuo Shi
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xin Yuan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Fang-Fang Wu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xiao-Yu Li
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Wei-Jing Fan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xiao Yang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Xiao-Ming Hu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China
| | - Guo-Bin Liu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 250021, China.
| |
Collapse
|
15
|
Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, Perez-Suarez I, Garcia-Gonzalez E, Martin-Rincon M, Calbet JAL. Physiological and molecular predictors of cycling sprint performance. Scand J Med Sci Sports 2024; 34:e14545. [PMID: 38268080 DOI: 10.1111/sms.14545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
The study aimed to identify novel muscle phenotypic factors that could determine sprint performance using linear regression models including the lean mass of the lower extremities (LLM), myosin heavy chain composition (MHC), and proteins and enzymes implicated in glycolytic and aerobic energy generation (citrate synthase, OXPHOS proteins), oxygen transport and diffusion (myoglobin), ROS sensing (Nrf2/Keap1), antioxidant enzymes, and proteins implicated in calcium handling. For this purpose, body composition (dual-energy X-ray absorptiometry) and sprint performance (isokinetic 30-s Wingate test: peak and mean power output, Wpeak and Wmean ) were measured in young physically active adults (51 males and 10 females), from which a resting muscle biopsy was obtained from the musculus vastus lateralis. Although females had a higher percentage of MHC I, SERCA2, pSer16 /Thr17 -phospholamban, and Calsequestrin 2 protein expressions (all p < 0.05), and 18.4% lower phosphofructokinase 1 protein expression than males (p < 0.05), both sexes had similar sprint performance when it was normalized to body weight or LLM. Multiple regression analysis showed that Wpeak could be predicted from LLM, SDHB, Keap1, and MHC II % (R 2 = 0.62, p < 0.001), each variable contributing to explain 46.4%, 6.3%, 4.4%, and 4.3% of the variance in Wpeak , respectively. LLM and MHC II % explained 67.5% and 2.1% of the variance in Wmean , respectively (R 2 = 0.70, p < 0.001). The present investigation shows that SDHB and Keap1, in addition to MHC II %, are relevant determinants of peak power output during sprinting.
Collapse
Affiliation(s)
- Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Ismael Perez-Suarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, Las Palmas de Gran Canaria, Spain
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, Oslo, Norway
| |
Collapse
|
16
|
Zhang P, Jiang G, Wang Y, Yan E, He L, Guo J, Yin J, Zhang X. Maternal consumption of l-malic acid enriched diets improves antioxidant capacity and glucose metabolism in offspring by regulating the gut microbiota. Redox Biol 2023; 67:102889. [PMID: 37741046 PMCID: PMC10519833 DOI: 10.1016/j.redox.2023.102889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Maternal diets during pregnancy and lactation are key determinants that regulate the development of metabolic syndrome (MetS) in offspring. l-malic acid (MA) was previously reported to improve antioxidant capacity and aerobic metabolism. However, the effects of maternal MA consumption on the metabolic features of offspring remain largely unexplored. Herein, through pig models consuming MA-enriched diets during late pregnancy and lactation, we found that maternal MA consumption potentiated the anti-inflammatory and antioxidant capacity of sows, thereby improving their reproductive performance and the growth performance of piglets. Maternal MA consumption also induced a transition of slow-twitch to fast-twitch fibers in the early life of offspring. Along with muscle growth and fiber-type transition, insulin sensitivity and glucose metabolism, including aerobic metabolism and glycolysis, were improved in the skeletal muscle of offspring. An untargeted metabolomic analysis further revealed the contribution of modified amino acid metabolism to the improved aerobic metabolism. Mechanistically, maternal MA consumption remodeled colonic microbiota of their offspring. Briefly, the abundance of Colidextribacter, Romboutsia, and Family_XIII_AD3011_group increased, which were positively associated with the antioxidant capacity and glucose metabolism of skeletal muscles. A decreased abundance of Prevotella, Blautia, Prevotellaceae_NK3B31_group, and Collinsella was also detected, which were involved in less insulin sensitivity. Notably, milk metabolites, such as ascorbic acid (AA) and granisetron (GS), were found as key effectors regulating the gut microbiota composition of piglets. The properties of AA and GS in alleviating insulin resistance, inflammation, and oxidative stress were further verified through mice treated with high-fat diets. Overall, this study revealed that maternal MA consumption could modulate the inflammatory response, antioxidant capacity, and glucose metabolism by regulating the gut microbiota of offspring through the vertical transmission of milk metabolites. These findings suggest the potential of MA in the prevention and treatment of MetS in early life.
Collapse
Affiliation(s)
- Pengguang Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoyuan Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
18
|
Galvan-Alvarez V, Martin-Rincon M, Gallego-Selles A, Martínez Canton M, HamedChaman N, Gelabert-Rebato M, Perez-Valera M, García-Gonzalez E, Santana A, Holmberg HC, Boushel R, Hallén J, Calbet JAL. Determinants of the maximal functional reserve during repeated supramaximal exercise by humans: The roles of Nrf2/Keap1, antioxidant proteins, muscle phenotype and oxygenation. Redox Biol 2023; 66:102859. [PMID: 37666117 PMCID: PMC10491831 DOI: 10.1016/j.redox.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
When high-intensity exercise is performed until exhaustion a "functional reserve" (FR) or capacity to produce power at the same level or higher than reached at exhaustion exists at task failure, which could be related to reactive oxygen and nitrogen species (RONS)-sensing and counteracting mechanisms. Nonetheless, the magnitude of this FR remains unknown. Repeated bouts of supramaximal exercise at 120% of VO2max interspaced with 20s recovery periods with full ischaemia were used to determine the maximal FR. Then, we determined which muscle phenotypic features could account for the variability in functional reserve in humans. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation (near-infrared spectroscopy) were measured, and resting muscle biopsies were obtained from 43 young healthy adults (30 males). Males and females had similar aerobic (VO2max per kg of lower extremities lean mass (LLM): 166.7 ± 17.1 and 166.1 ± 15.6 ml kg LLM-1.min-1, P = 0.84) and anaerobic fitness (similar performance in the Wingate test and maximal accumulated oxygen deficit when normalized to LLM). The maximal FR was similar in males and females when normalized to LLM (1.84 ± 0.50 and 2.05 ± 0.59 kJ kg LLM-1, in males and females, respectively, P = 0.218). This FR depends on an obligatory component relying on a reserve in glycolytic capacity and a putative component generated by oxidative phosphorylation. The aerobic component depends on brain oxygenation and phenotypic features of the skeletal muscles implicated in calcium handling (SERCA1 and 2 protein expression), oxygen transport and diffusion (myoglobin) and redox regulation (Keap1). The glycolytic component can be predicted by the protein expression levels of pSer40-Nrf2, the maximal accumulated oxygen deficit and the protein expression levels of SOD1. Thus, an increased capacity to modulate the expression of antioxidant proteins involved in RONS handling and calcium homeostasis may be critical for performance during high-intensity exercise in humans.
Collapse
Affiliation(s)
- Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Martínez Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - NaDer HamedChaman
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Exercise Physiology, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Eduardo García-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Hans-Christer Holmberg
- Department of Health Sciences, Luleå University of Technology, Sweden; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Jostein Hallén
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
19
|
Martinez-Canton M, Galvan-Alvarez V, Garcia-Gonzalez E, Gallego-Selles A, Gelabert-Rebato M, Garcia-Perez G, Santana A, Lopez-Rios L, Vega-Morales T, Martin-Rincon M, Calbet JAL. A Mango Leaf Extract (Zynamite ®) Combined with Quercetin Has Exercise-Mimetic Properties in Human Skeletal Muscle. Nutrients 2023; 15:2848. [PMID: 37447175 DOI: 10.3390/nu15132848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Zynamite PX®, a mango leaf extract combined with quercetin, enhances exercise performance by unknown molecular mechanisms. Twenty-five volunteers were assigned to a control (17 males) or supplementation group (8 males, receiving 140 mg of Zynamite® + 140 mg quercetin/8 h for 2 days). Then, they performed incremental exercise to exhaustion (IE) followed by occlusion of the circulation in one leg for 60 s. Afterwards, the cuff was released, and a 30 s sprint was performed, followed by 90 s circulatory occlusion (same leg). Vastus lateralis muscle biopsies were obtained at baseline, 20 s after IE (occluded leg) and 10 s after Wingate (occluded leg), and bilaterally at 90 s and 30 min post exercise. Compared to the controls, the Zynamite PX® group showed increased basal protein expression of Thr287-CaMKIIδD (2-fold, p = 0.007) and Ser9-GSK3β (1.3-fold, p = 0.005) and a non-significant increase of total NRF2 (1.7-fold, p = 0.099) and Ser40-NRF2 (1.2-fold, p = 0.061). In the controls, there was upregulation with exercise and recovery of total NRF2, catalase, glutathione reductase, and Thr287-CaMKIIδD (1.2-2.9-fold, all p < 0.05), which was not observed in the Zynamite PX® group. In conclusion, Zynamite PX® elicits muscle signaling changes in resting skeletal muscle resembling those described for exercise training and partly abrogates the stress kinases responses to exercise as observed in trained muscles.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Giovanni Garcia-Perez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Laura Lopez-Rios
- Nektium Pharma, Las Mimosas 8, Agüimes, 35118 Las Palmas de Gran Canaria, Spain
| | | | - Marcos Martin-Rincon
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
- Department of Physical Performance, Norwegian School of Sport Sciences, 0806 Oslo, Norway
| |
Collapse
|
20
|
Zhang Z, Zheng Y, Chen N, Xu C, Deng J, Feng X, Liu W, Ma C, Chen J, Cai T, Xu Y, Wang S, Cao Y, Ge G, Jia C, Cao Y. San Huang Xiao Yan recipe modulates the HMGB1-mediated abnormal inflammatory microenvironment and ameliorates diabetic foot by activating the AMPK/Nrf2 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154931. [PMID: 37364421 DOI: 10.1016/j.phymed.2023.154931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Diabetic foot (DF) is one of the serious complications of diabetes and lacks of therapeutic drugs. Abnormal and chronic inflammation promoting foot infection and wound healing delay are the main pathogenesis of DF. The traditional prescription San Huang Xiao Yan Recipe (SHXY) has been used in the clinical treatment of DF for several decades as approved hospital experience prescription and showed remarkable therapeutic effect, but the mechanisms by which SHXY treats DF are still unclear. PURPOSE Objectives of this study were to investigate SHXY anti-inflammatory effect on DF and explore the molecular mechanism for SHXY. METHODS We detected the effects of SHXY on DF in C57 mouse and SD rat DF models. Animal blood glucose, weight and wound area were detected every week. Serum inflammatory factors were detected by ELISA. H&E and Masson's trichrome were used to observe tissue pathology. Single-cell sequencing data reanalysis revealed the role of M1 macrophages in DF. Venn analysis showed the co-target genes between DF M1 macrophages and compound-disease network pharmacology. Western blotting was used to explored target protein expression. Meanwhile, RAW264.7 cells were treated with drug-containing serum of SHXY to further unravel the roles of target proteins during high glucose-induced inflammation in vitro. The Nrf2 inhibitor ML385 was used on RAW 264.7 cells to further explore the relationship between Nrf2, AMPK and HMGB1. The main components of SHXY were analysed by HPLC. Finally, the treatment effect of SHXY on DF were detected on rat DF model. RESULTS In vivo, SHXY can ameliorate inflammatory, accelerate wound healing and upregulate expression of Nrf2, AMPK and downregulate of HMGB1. Bioinformatic analysis showed that M1 macrophages were the main inflammatory cell population in DF. Moreover, the Nrf2 downstream proteins HO-1 and HMGB1 were potential DF therapeutic targets for SHXY. In vitro, we also found that SHXY increased AMPK and Nrf2 protein levels and downregulated HMGB1 expression in RAW264.7 cells. Inhibiting the expression of Nrf2 impaired the inhibition effect of SHXY on HMGB1. SHXY promoted Nrf2 translocation into the nucleus and increased the phosphorylation of Nrf2. SHXY also inhibited HMGB1 extracelluar release under high glucose. In rat DF models, SHXY also exhibited significant anti-inflammatory effect. CONCLUSION The SHXY activated AMPK/Nrf2 pathway to suppress abnormal inflammation on DF via inhibiting HMGB1 expression. These findings provide novel insight into the mechanisms by which SHXY treats DF.
Collapse
Affiliation(s)
- Zhihui Zhang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China.
| | - Yihan Zheng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Nan Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Chenqin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Jie Deng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Xia Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Wei Liu
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Tongkai Cai
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Yicheng Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Song Wang
- Pharmacy Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chenglin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China.
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 303 Changyang Road, Shanghai 200082, China.
| |
Collapse
|
21
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
22
|
Jiang M, Li P, Wang Y, Cao Y, Han X, Jiang L, Liu X, Wu W. Role of Nrf2 and exercise in alleviating COPD-induced skeletal muscle dysfunction. Ther Adv Respir Dis 2023; 17:17534666231208633. [PMID: 37966017 PMCID: PMC10652666 DOI: 10.1177/17534666231208633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disease with cumulative impacts on multiple systems, exhibiting significant extrapulmonary impacts, and posing a serious public health problem. Skeletal muscle dysfunction is one of the most pronounced extrapulmonary effects in patients with COPD, which severely affects patient prognosis and mortality primarily through reduced productivity resulting from muscle structural and functional alterations. Although the detailed pathogenesis of COPD has not been fully determined, some researchers agree that oxidative stress plays a significant role. Oxidative stress not only catalyzes the progression of pulmonary symptoms but also drives the development of skeletal muscle dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), is a key transcription factor that regulates the antioxidant response and plays an enormous role in combating oxidative stress. In this review, we have summarized current research on oxidative stress damage to COPD skeletal muscle and analyzed the role of Nrf2 in improving skeletal muscle dysfunction in COPD through exercise. The results suggest that oxidative stress drives the occurrence and development of skeletal muscle dysfunction in COPD. Exercise may improve skeletal muscle dysfunction in patients with COPD by promoting the dissociation of Kelch-like ECH-associated protein 1 (Keap1) and Nrf2, inducing sequestosome1(p62) phosphorylation to bind with Keap1 competitively leading to Nrf2 stabilization and improving dynamin-related protein 1-dependent mitochondrial fission. Nrf2 may be a key target for exercise anti-oxidative stress to alleviate skeletal muscle dysfunction in COPD.
Collapse
Affiliation(s)
- Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road Pudong New District Shanghai 201203, P.R. China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 650 Qingyuanhuan Road, Yangpu District Shanghai 200438, P.R. China
| |
Collapse
|
23
|
Gallego-Selles A, Galvan-Alvarez V, Martinez-Canton M, Garcia-Gonzalez E, Morales-Alamo D, Santana A, Gonzalez-Henriquez JJ, Dorado C, Calbet JAL, Martin-Rincon M. Fast regulation of the NF-κB signalling pathway in human skeletal muscle revealed by high-intensity exercise and ischaemia at exhaustion: Role of oxygenation and metabolite accumulation. Redox Biol 2022; 55:102398. [PMID: 35841628 PMCID: PMC9287614 DOI: 10.1016/j.redox.2022.102398] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
The NF-κB signalling pathway plays a critical role in inflammation, immunity, cell proliferation, apoptosis, and muscle metabolism. NF-κB is activated by extracellular signals and intracellular changes in Ca2+, Pi, H+, metabolites and reactive oxygen and nitrogen species (RONS). However, it remains unknown how NF-κB signalling is activated during exercise and how metabolite accumulation and PO2 influence this process. Eleven active men performed incremental exercise to exhaustion (IE) in normoxia and hypoxia (PIO2:73 mmHg). Immediately after IE, the circulation of one leg was instantaneously occluded (300 mmHg). Muscle biopsies from m. vastus lateralis were taken before (Pre), and 10s (Post, occluded leg) and 60s after exercise from the occluded (Oc1m) and free circulation (FC1m) legs simultaneously together with femoral vein blood samples. NF-κB signalling was activated by exercise to exhaustion, with similar responses in normoxia and acute hypoxia, as reflected by the increase of p105, p50, IKKα, IκBβ and glutathione reductase (GR) protein levels, and the activation of the main kinases implicated, particularly IKKα and CaMKII δD, while IKKβ remained unchanged. Postexercise ischaemia maintained and stimulated further NF-κB signalling by impeding muscle reoxygenation. These changes were quickly reverted at the end of exercise when the muscles recovered with open circulation. Finally, we have shown that Thioredoxin 1 (Trx1) protein expression was reduced immediately after IE and after 1 min of occlusion while the protein expression levels of glutathione peroxidase 1 (Gpx1) and thioredoxin reductase 1 (TrxR1) remained unchanged. These novel data demonstrate that exercising to exhaustion activates NF-κB signalling in human skeletal muscle and regulates the expression levels of antioxidant enzymes in human skeletal muscle. The fast regulation of NF-κB at exercise cessation has implications for the interpretation of published studies and the design of new experiments.
Collapse
Affiliation(s)
- Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alfredo Santana
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
24
|
Li X, Chen J, Yuan S, Zhuang X, Qiao T. Activation of the P62-Keap1-NRF2 Pathway Protects against Ferroptosis in Radiation-Induced Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8973509. [PMID: 35847598 PMCID: PMC9277166 DOI: 10.1155/2022/8973509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022]
Abstract
Radiation-induced lung injury (RILI) is one of the most common, serious, and dose-limiting toxicities of thoracic radiotherapy. A primary cause for this is the radiation-induced cell death. Ferroptosis is a recently recognized form of regulated cell death, characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS). The ROS generated by irradiation might be the original trigger of ferroptosis in RILI. In addition, activation of the P62-Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (NRF2) pathway has been shown to blunt ferroptosis and thus acts as a protective factor. Therefore, this study aimed to explore the protective effect of the P62-Keap1-NRF2 pathway against radiation-induced ferroptosis in alveolar epithelial cells. First, we found that radiation induced ferroptosis in vitro using a RILI cell model, which could be significantly reduced by ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor. Additionally, overexpression of P62 interacted with Keap1 to facilitate the translocation of NRF2 into the nucleus and promote the expression of its target proteins, including quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO1), and ferritin heavy chain 1 (FTH1). In summary, our results demonstrated that the activation of the P62-Keap1-NRF2 pathway prevents radiation-induced ferroptosis in RILI cells, providing a theoretical basis of finding a potential therapeutic approach for RILI.
Collapse
Affiliation(s)
- Xuan Li
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China
| | - Jingyao Chen
- Fudan University Shanghai Medical School, Shanghai, China
| | - Sujuan Yuan
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China
| | - Xibing Zhuang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China
| | - Tiankui Qiao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University Shanghai Medical School, Shanghai, China
| |
Collapse
|
25
|
Taborsky B, Kuijper B, Fawcett TW, English S, Leimar O, McNamara JM, Ruuskanen S. An evolutionary perspective on stress responses, damage and repair. Horm Behav 2022; 142:105180. [PMID: 35569424 DOI: 10.1016/j.yhbeh.2022.105180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Variation in stress responses has been investigated in relation to environmental factors, species ecology, life history and fitness. Moreover, mechanistic studies have unravelled molecular mechanisms of how acute and chronic stress responses cause physiological impacts ('damage'), and how this damage can be repaired. However, it is not yet understood how the fitness effects of damage and repair influence stress response evolution. Here we study the evolution of hormone levels as a function of stressor occurrence, damage and the efficiency of repair. We hypothesise that the evolution of stress responses depends on the fitness consequences of damage and the ability to repair that damage. To obtain some general insights, we model a simplified scenario in which an organism repeatedly encounters a stressor with a certain frequency and predictability (temporal autocorrelation). The organism can defend itself by mounting a stress response (elevated hormone level), but this causes damage that takes time to repair. We identify optimal strategies in this scenario and then investigate how those strategies respond to acute and chronic exposures to the stressor. We find that for higher repair rates, baseline and peak hormone levels are higher. This typically means that the organism experiences higher levels of damage, which it can afford because that damage is repaired more quickly, but for very high repair rates the damage does not build up. With increasing predictability of the stressor, stress responses are sustained for longer, because the animal expects the stressor to persist, and thus damage builds up. This can result in very high (and potentially fatal) levels of damage when organisms are exposed to chronic stressors to which they are not evolutionarily adapted. Overall, our results highlight that at least three factors need to be considered jointly to advance our understanding of how stress physiology has evolved: (i) temporal dynamics of stressor occurrence; (ii) relative mortality risk imposed by the stressor itself versus damage caused by the stress response; and (iii) the efficiency of repair mechanisms.
Collapse
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland.
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, UK; Institute for Data Science and Artificial Intelligence, University of Exeter, UK
| | - Tim W Fawcett
- Centre for Research in Animal Behaviour (CRAB), University of Exeter, UK
| | - Sinead English
- School of Biological Sciences, University of Bristol, UK
| | - Olof Leimar
- Department of Zoology, Stockholm University, Sweden
| | | | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| |
Collapse
|
26
|
Thomas A, Farah K, Millis RM. Epigenetic Influences on Wound Healing and Hypertrophic-Keloid Scarring: A Review for Basic Scientists and Clinicians. Cureus 2022; 14:e23503. [PMID: 35371887 PMCID: PMC8958133 DOI: 10.7759/cureus.23503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2022] [Indexed: 12/28/2022] Open
Abstract
Primary care physicians and dermatologists are challenged by patients affected by keloid or hypertrophic scarring resulting from accidental wounding, surgical incisions, tattooing, or “branding” procedures to demonstrate their association with a specific culture, fraternity, or cult. The dysregulated wound healing associated with keloids and hypertrophic scarring adversely affects genetically susceptible individuals, especially persons of color with Fitzpatrick Skin types IV-VI. Although the specific mechanisms of bulky hypertrophic/keloid scarring and its association with oxidative stress and inflammation remain unclear, the current knowledge base is sufficient to provide some guidance to health practitioners who must serve, treat, and counsel affected individuals. This review focuses on providing insight to healthcare professionals about the role of epigenetics, oxidative stress, poor local oxygenation, and its relationship to impaired wound healing. The goal is to promote further research on bulky hypertrophic and keloid scarring for its prevention and to develop evidence-based clinical guidelines for optimal treatment.
Collapse
Affiliation(s)
- Asia Thomas
- Pathophysiology, American University of Antigua, Coolidge, ATG
| | - Kanith Farah
- Pathophysiology, American University of Antigua, Coolidge, ATG
| | | |
Collapse
|
27
|
Yan X, Shen Z, Yu D, Zhao C, Zou H, Ma B, Dong W, Chen W, Huang D, Yu Z. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic Biol Med 2022; 178:59-75. [PMID: 34823019 DOI: 10.1016/j.freeradbiomed.2021.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 02/09/2023]
Abstract
The progressive and generalized loss of skeletal muscle mass and function, also known as sarcopenia, underlies disability, increasing adverse outcomes and poor quality of life in older people. Exercise interventions are commonly recommended as the primary treatment for sarcopenia. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a vital role in regulating metabolism, mitochondrial function, and the ROS-dependent adaptations of skeletal muscle, as the response to exercise. To investigate the contribution of Nrf2 to the benefits of exercise interventions in older age, aged (∼22 month old) Nrf2 knockout (Nrf2-KO) mice and age-matched wild-type (WT) C57BL6/J mice were randomly divided into 2 groups (sedentary or exercise group). We found that exercise interventions improved skeletal muscle function and restored the sarcopenia-like phenotype in WT mice, accompanied with the increasing mRNA level of Nrf2. While these alternations were minimal in Nrf2-KO mice after exercise. Further studies indicated that Nrf2 could increase the stability of Drp1 through deubiquitinating and promote Drp1-dependent mitochondrial fission to attenuate mitochondrial disorder. We also observed the effects of sulforaphane (SFN), a Nrf2 activator, in restoring mitochondrial function in senescent C2C12 cells and improving sarcopenia in older WT mice, which were abolished by Nrf2 deficiency. These results indicated that some benefits of exercise intervention to skeletal muscle were Nrf2 mediated, and a future work should focus on Nrf2 signaling to identify a pharmacological treatment for sarcopenia.
Collapse
Affiliation(s)
- Xialin Yan
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zile Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dingye Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongke Zhao
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbo Zou
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Bingwei Ma
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxi Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenhao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongdong Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Zhen Yu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
28
|
Ailioaie LM, Litscher G. Photobiomodulation and Sports: Results of a Narrative Review. Life (Basel) 2021; 11:1339. [PMID: 34947870 PMCID: PMC8706093 DOI: 10.3390/life11121339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Benefits of photobiomodulation (PBM) have been known for several decades. More recently, PBM applied in sports offers a special chance to support the modeling of the performance and recovery. Increasingly complex physical activities and fierce competition in the world of sports generate a state of psycho-emotional and physical stress that can induce chronic fatigue syndrome, failure in physical training, predisposition to muscle damage, physical and emotional exhaustion etc., for which PBM could be an excellent solution. To evaluate and identify all risk factors and the influence of PBM on health and performance in sport and for a better understanding of its effects, we did a search for "Photobiomodulation and Sports" on PubMed, to update the PBM science applied in sports, and we retained for analysis the articles published from 2014 to date. The term "PBM" is recent, and we did not include previous studies with "low level laser therapy" or "LLLT" before 2014. In the present research, PBM has been shown to have valuable protective and ergogenic effects in 25 human studies, being the key to success for high performance and recovery, facts supported also by 22 animal studies. PBM applied creatively and targeted depending on sport and size of the level of physical effort could perfectly modulate the mitochondrial activity and thus lead to remarkable improvements in performance. PBM with no conclusive results or without effects from this review (14 studies from a total of 39 on humans) was analyzed and we found the motivations of the authors from the perspective of multiple causes related to technological limitations, participants, the protocols for physical activity, the devices, techniques and PBM parameters. In the near future, dose-response experiments on physical activity should be designed and correlated with PBM dose-response studies, so that quantification of PBM parameters to allow the energy, metabolic, immune, and neuro-endocrine modulation, perfectly coupled with the level of training. There is an urgent need to continuously improve PBM devices, delivery methods, and protocols in new ingenious future sports trials. Latest innovations and nanotechnologies applied to perform intracellular signaling analysis, while examining extracellular targets, coupled with 3D and 4D sports motion analysis and other high-tech devices, can be a challenge to learn how to maximize PBM efficiency while achieving unprecedented sports performance and thus fulfilling the dream of millions of elite athletes.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
29
|
Liu B, Wen H, Li X, Yang J, Li G, Zhang M, Li J, He F. Acute hypoxia effects on Keap1/Nrf2 (Mafs)-GST pathway related oxidative metabolism in muscle of Japanese flounder (Paralichthys olivaceus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148646. [PMID: 34247093 DOI: 10.1016/j.scitotenv.2021.148646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Acute hypoxia can aggravate the oxidation metabolism of fish muscle tissue. However, the molecular mechanism of oxidative metabolism in fish muscle under acute hypoxia is not very clear. We carried out effects of a typical oxidative metabolism pathway Keap1/Nrf2 (MafG)-GST on muscle oxidative metabolism of Japanese flounder (Paralichthys olivaceus) during acute hypoxia stimulation (1.65 ± 0.05 mg/L; 1 h, 3 h, 6 h, 12 h, 24 h) and reoxygenation (7.30 ± 0.08 mg/L; R12 h, R24 h, R48 h). The mRNAs of Nrf2 and GST in skeletal muscle were found co-existent, and their expressions were significant increase in 3 h and 6 h. The methylation level of CpG island1 in Nrf2 promoter, whose minimum value appeared at 3 h hypoxia treatment group, was affected by acute hypoxia, and it was negatively correlated with Nrf2 expression. The result suggests that environmental factors may regulate gene expression by epigenetic modification. Dual-luciferase reporter assay showed that GST gene was activated by transcription factor Nrf2, whose transcriptional activation binding region in GST promoter was antioxidant response element located near -980 and -852 sites, and Keap1 and MafG were Nrf2 antagonistic and synergistic factor, respectively. Furthermore, the GST activity changed with hypoxia and reoxygenation treatment in muscle, where other oxidative stress factor (MDA), antioxidant factors (T-AOC, GSH) and antioxidant enzyme activities (GST, SOD, CAT) were also changed. The results of MDA and T-AOC being further different between its hypoxia and normoxia groups (P < 0.05) at 6 h demonstrated that hypoxia stimulation lasting for 6 h would deeply affect Japanese flounder. The study illustrated that Japanese flounder responded to acute hypoxia in multiple metabolic levels by changing methylation status and transcription factor activation. It is significant to understand oxidative metabolic mechanism, analyze organism stress response and promote the scientific development of aquaculture.
Collapse
Affiliation(s)
- Binghua Liu
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Xiaohui Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Jun Yang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Guangling Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Meizhao Zhang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Jifang Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Feng He
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
30
|
Alsahly MB, Zakari MO, Koch LG, Britton S, Katwa LC, Fisher-Wellman K, Lust RM. Augmented Cardiac Mitochondrial Capacity in High Capacity Aerobic Running "Disease-Resistant" Phenotype at Rest Is Lost Following Ischemia Reperfusion. Front Cardiovasc Med 2021; 8:752640. [PMID: 34805308 PMCID: PMC8595288 DOI: 10.3389/fcvm.2021.752640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Regular active exercise is considered therapeutic for cardiovascular disease, in part by increasing mitochondrial respiratory capacity, but a significant amount of exercise capacity is determined genetically. Animal models, demonstrating either high capacity aerobic running (HCR) or low capacity aerobic running (LCR) phenotypes, have been developed to study the intrinsic contribution, with HCR rats subsequently characterized as "disease resistant" and the LCRs as "disease prone." Enhanced cardioprotection in HCRs has been variable and mutifactoral, but likely includes a metabolic component. These studies were conducted to determine the influence of intrinsic aerobic phenotype on cardiac mitochondrial function before and after ischemia and reperfusion. Methods: A total of 34 HCR and LCR rats were obtained from the parent colony at the University of Toledo, housed under sedentary conditions, and fed normal chow. LCR and HCR animals were randomly assigned to either control or ischemia-reperfusion (IR). On each study day, one HCR/LCR pair was anesthetized, and hearts were rapidly excised. In IR animals, the hearts were immediately flushed with iced hyperkalemic, hyperosmotic, cardioplegia solution, and subjected to global hypothermic ischemic arrest (80 min). Following the arrest, the hearts underwent warm reperfusion (120 min) using a Langendorff perfusion system. Following reperfusion, the heart was weighed and the left ventricle (LV) was isolated. A midventricular ring was obtained to estimate infarction size [triphenyltetrazolium chloride (TTC)] and part of the remaining tissue (~150 mg) was transferred to a homogenation buffer on ice. Isolated mitochondria (MITO) samples were prepared and used to determine respiratory capacity under different metabolic conditions. In control animals, MITO were obtained and prepared similarly immediately following anesthesia and heart removal, but without IR. Results: In the control rats, both resting and maximally stimulated respiratory rates were higher (32 and 40%, respectively; p < 0.05) in HCR mitochondria compared to LCR. After IR, resting MITO respiratory rates were decreased to about 10% of control in both strains, and the augmented capacity in HCRs was absent. Maximally stimulated rates also were decreased more than 50% from control and were no longer different between phenotypes. Ca++ retention capacity and infarct size were not significantly different between HCR and LCR (49.2 ± 5.6 vs. 53.7 ± 4.9%), nor was average coronary flow during reperfusion or arrhythmogenesis. There was a significant loss of mitochondria following IR, which was coupled with decreased function in the remaining mitochondria in both strains. Conclusion: Cardiac mitochondrial capacity from HCR was significantly higher than LCR in the controls under each condition. After IR insult, the cardiac mitochondrial respiratory rates were similar between phenotypes, as was Ca++ retention capacity, infarct size, and arrhythmogenicity, despite the increased mitochondrial capacity in the HCRs before ischemia. Relatively, the loss of respiratory capacity was actually greater in HCR than LCR. These data could suggest limits in the extent to which the HCR phenotype might be "protective" against acute tissue stressors. The extent to which any of these deficits could be "rescued" by adding an active exercise component to the intrinsic phenotype is unknown.
Collapse
Affiliation(s)
- Musaad B. Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC, United States
| | - Madaniah O. Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lauren G. Koch
- Department of Physiology, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Steven Britton
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Laxmansa C. Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
31
|
The Role of Nrf2 in Skeletal Muscle on Exercise Capacity. Antioxidants (Basel) 2021; 10:antiox10111712. [PMID: 34829582 PMCID: PMC8615226 DOI: 10.3390/antiox10111712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 Nfe2l2 (Nrf2) is believed to play a crucial role in protecting cells against oxidative stress. In addition to its primary function of maintaining redox homeostasis, there is emerging evidence that Nrf2 is also involved in energy metabolism. In this review, we briefly discuss the role of Nrf2 in skeletal muscle metabolism from the perspective of exercise physiology. This article is part of a special issue “Mitochondrial Function, Reactive Oxygen/Nitrogen Species and Skeletal Muscle” edited by Håkan Westerblad and Takashi Yamada.
Collapse
|
32
|
Gasier HG, Suliman HB, Piantadosi CA. The HO-1/CO System and Mitochondrial Quality Control in Skeletal Muscle. Exerc Sport Sci Rev 2021; 50:49-55. [PMID: 34690283 DOI: 10.1249/jes.0000000000000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Inducible heme oxygenase (HO)-1 catalyzes the breakdown of heme to biliverdin, iron and carbon monoxide (CO). CO binds to cytochrome c oxidase and alters mitochondrial redox balance and coordinately regulates mitochondrial quality control (MQC) during oxidant stress and inflammation. The hypothesis presented is that skeletal muscle HO-1/CO system helps modulate components in the MQC cycle during metabolic stress.
Collapse
Affiliation(s)
- Heath G Gasier
- Department of Anesthesiology Department of Pathology Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | |
Collapse
|
33
|
Flensted-Jensen M, Gram M, Dela F, Helge JW, Larsen S. Six weeks of high intensity cycle training reduces H 2O 2 emission and increases antioxidant protein levels in obese adults with risk factors for type 2 diabetes. Free Radic Biol Med 2021; 173:1-6. [PMID: 34273538 DOI: 10.1016/j.freeradbiomed.2021.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Obesity has been associated with increased production of reactive oxygen species (ROS), which may be involved in the development of cardiovascular disease and type 2 diabetes (T2D). Endurance exercise lowers ROS production and increases antioxidant capacity in muscle cells, but it is currently unknown whether high intensity interval training (HIT) elicits the same effects. Twelve sedentary obese subjects at risk of developing T2D took part in a six-week intervention, performing three HIT sessions per week (five 1-min sets of high-intensity cycling (125% of VO2peak), with 90 s recovery in between sets). Muscle biopsies were obtained for assessment of ROS production (H2O2 emission), mitochondrial respiratory capacity, and antioxidant protein levels before and after the intervention. H2O2 emission decreased 60.4% after the intervention (Succinate 3 mmol・l-1), concurrent with a 35.1% increase in protein levels of the antioxidant manganese superoxide dismutase (MnSOD) and a trend towards increased levels of the antioxidant catalase (p = 0.06, 72.9%). These findings were accompanied by a 19% increased mitochondrial respiratory capacity (CI + II), a 6.9% increased VO2peak and a 1.7% lower body fat percentage. These effects were achieved after just 15 min of high-intensity work and 40 min of total time spent per week. Overall, this suggests that a relatively small amount of HIT is sufficient to induce beneficial effects on ROS production and antioxidant status in muscle cells, which may lower oxidative stress and potentially protect against the development of cardiovascular disease.
Collapse
Affiliation(s)
- Mathias Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Martin Gram
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark.
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
34
|
Ostrom EL, Valencia AP, Marcinek DJ, Traustadóttir T. High intensity muscle stimulation activates a systemic Nrf2-mediated redox stress response. Free Radic Biol Med 2021; 172:82-89. [PMID: 34089788 PMCID: PMC8355059 DOI: 10.1016/j.freeradbiomed.2021.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022]
Abstract
High intensity exercise is a popular mode of exercise to elicit similar or greater adaptive responses compared to traditional moderate intensity continuous exercise. However, the molecular mechanisms underlying these adaptive responses are still unclear. The purpose of this pilot study was to compare high and low intensity contractile stimulus on the Nrf2-mediated redox stress response in mouse skeletal muscle. An intra-animal design was used to control for variations in individual responses to muscle stimulation by comparing a stimulated limb (STIM) to the contralateral unstimulated control limb (CON). High Intensity (HI - 100Hz), Low Intensity (LI - 50Hz), and Naïve Control (NC - Mock stimulation vs CON) groups were used to compare these effects on Nrf2-ARE binding, Keap1 protein, and downstream gene and protein expression of Nrf2 target genes. Muscle stimulation significantly increased Nrf2-ARE binding in LI-STIM compared to LI-CON (p = 0.0098), while Nrf2-ARE binding was elevated in both HI-CON and HI-STIM compared to NC (p = 0.0007). The Nrf2-ARE results were mirrored in the downregulation of Keap1, where Keap1 expression in HI-CON and HI-STIM were both significantly lower than NC (p = 0.008) and decreased in LI-STIM compared to LI-CON (p = 0.015). In addition, stimulation increased NQO1 protein compared to contralateral control regardless of stimulation intensity (p = 0.019), and HO1 protein was significantly higher in high intensity compared to the Naïve control group (p = 0.002). Taken together, these data suggest a systemic redox signaling exerkine is activating Nrf2-ARE binding and is intensity gated, where Nrf2-ARE activation in contralateral control limbs were only seen in the HI group. Other research in exercise induced Nrf2 signaling support the general finding that Nrf2 is activated in peripheral tissues in response to exercise, however the specific exerkine responsible for the systemic signaling effects is not known. Future work should aim to delineate these redox sensitive systemic signaling mechanisms.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Biological Sciences, Northern Arizona University, United States
| | - Ana P Valencia
- Department of Radiology, University of Washington School of Medicine, United States
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, United States
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, United States.
| |
Collapse
|
35
|
Xiao Z, Zheng YB, Dao WX, Luo JF, Deng WH, Yan RC, Liu JS. MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res 2021; 55:720-730. [PMID: 34160338 DOI: 10.1080/10715762.2021.1923705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gastric cancer is a common lethal malignancy and causes great cancer-related mortality worldwide. MicroRNA (miR)-328-3p is implicated in the progression of various human cancers; however, its role and mechanism in the progression of gastric cancer remain unclear.Human gastric cancer cells were incubated with miR-328-3p mimic, inhibitor or the matched negative control. Cell viability, colony formation, migrative and invasive capacity, cell apoptosis and oxidative stress were measured. To clarify the involvement of nuclear factor-E2-related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1), small interfering RNA was used. miR-328-3p was upregulated in human gastric cancer cells and tissues, and its level positively correlated with the progression of gastric cancer. miR-328-3p promoted cell viability, colony formation, migration and invasion, thereby facilitating the progression of gastric cancer. miR-328-3p mimic reduced, while miR-328-3p inhibitor increased apoptosis and oxidative stress of human gastric cancer cells. Mechanistically, miR-328-3p upregulated NRF2 via targeting KEAP1to attenuate excessive free radical production and cell apoptosis. miR-328-3p functions as an oncogenic gene and inhibiting miR-328-3p may help to develop novel therapeutic strategies of human gastric cancer.
Collapse
Affiliation(s)
- Zhe Xiao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Bin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Xin Dao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian-Fei Luo
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Hong Deng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Cheng Yan
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia-Sheng Liu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
36
|
Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab 2021; 33:957-970.e6. [PMID: 33740420 DOI: 10.1016/j.cmet.2021.02.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group.
Collapse
Affiliation(s)
- Mikael Flockhart
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden.
| | - Lina C Nilsson
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - Senna Tais
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - Björn Ekblom
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - William Apró
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden; Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden.
| |
Collapse
|
37
|
Rahim I, Sayed RK, Fernández-Ortiz M, Aranda-Martínez P, Guerra-Librero A, Fernández-Martínez J, Rusanova I, Escames G, Djerdjouri B, Acuña-Castroviejo D. Melatonin alleviates sepsis-induced heart injury through activating the Nrf2 pathway and inhibiting the NLRP3 inflammasome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:261-277. [PMID: 32936353 DOI: 10.1007/s00210-020-01972-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Melatonin improved the outcome of septic cardiomyopathy by inhibiting NLRP3 priming induced by reactive oxygen species. To get insights into these events, we studied the melatonin/Nrf2 antioxidant pathways during sepsis in the heart of NLRP3-deficient mice. Sepsis was induced by cecal ligation and puncture and melatonin was given at a dose of 30 mg/kg. Nuclear turnover of Nrf2 and p-Ser40 Nrf2 and expression of ho-1 were enhanced in nlrp3+/+ and nlrp3-/- mice during sepsis. Sepsis caused higher mitochondria impairment, apoptotic and autophagic events in nlrp3+/+ mice than in nlrp3-/- animals. These findings were accompanied by greater levels of Parkin and PINK-1, and lower Mfn2/Drp-1 ratio in nlrp3+/+ than in nlrp3-/- mice during sepsis, supporting less mitophagy in the latter. Ultrastructural analysis of myocardial tissue further confirmed these observations. The activation of NLRP3 inflammasome accounted for most of the deleterious effects of sepsis, whereas the Nrf2-dependent antioxidative response activation in response to sepsis was unable to neutralize these events. In turn, melatonin further enhanced the Nrf2 response in both mice strains and reduced the NLRP3 inflammasome activation in nlrp3+/+ mice, restoring myocardial homeostasis. The data support that the anti-inflammatory efficacy of melatonin against sepsis depends, at least in part, on Nrf2 activation.
Collapse
Affiliation(s)
- Ibtissem Rahim
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
- Département de Biologie et Physiologie Cellulaire, Faculté des Sciences de la Nature et de la Vie, Université Blida 1, 09000, Blida, Algeria
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Bab-Ezzouar, 16111, Algiers, Algeria
| | - Ramy K Sayed
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
| | - Paula Aranda-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
| | - Ana Guerra-Librero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
| | - José Fernández-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
| | - Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, 18016, Granada, Spain
| | - Bahia Djerdjouri
- Faculté des Sciences Biologiques, Laboratoire de Biologie Cellulaire et Moléculaire, Université des Sciences et de la Technologie Houari Boumediene, Bab-Ezzouar, 16111, Algiers, Algeria
| | - Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016, Granada, Spain.
- CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, 18016, Granada, Spain.
| |
Collapse
|
38
|
Martinez-Canton M, Gallego-Selles A, Gelabert-Rebato M, Martin-Rincon M, Pareja-Blanco F, Rodriguez-Rosell D, Morales-Alamo D, Sanchis-Moysi J, Dorado C, Jose Gonzalez-Badillo J, Calbet JAL. Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand J Med Sci Sports 2020; 31:91-103. [PMID: 32949027 DOI: 10.1111/sms.13828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
Strength training promotes a IIX-to-IIA shift in myosin heavy chain (MHC) composition, likely due to changes in sarcoplasmic [Ca2+ ] which are sensed by CaMKII. Sarcoplasmic [Ca2+ ] is in part regulated by sarcolipin (SLN), a small protein that when overexpressed in rodents stimulates mitochondrial biogenesis and a fast-to-slow fiber type shift. The purpose of this study was to determine whether CaMKII and SLN are involved in muscle phenotype and performance changes elicited by strength training. Twenty-two men followed an 8-week velocity-based resistance training program using the full squat exercise while monitoring repetition velocity. Subjects were randomly assigned to two resistance training programs differing in the repetition velocity loss allowed in each set: 20% (VL20) vs 40% (VL40). Strength training caused muscle hypertrophy, improved 1RM and increased total CaMKII protein expression, particularly of the δD isoform. Phospho-Thr287 -CaMKII δD expression increased only in VL40 (+89%), which experienced greater muscle hypertrophy, and a reduction in MHC-IIX percentage. SLN expression was increased in VL20 (+33%) remaining unaltered in VL40. The changes in phospho-Thr287 -CaMKII δD were positively associated with muscle hypertrophy and the number of repetitions during training, and negatively with the changes in MHC-IIX and SLN. Most OXPHOS proteins remained unchanged, except for NDUFB8 (Complex I), which was reduced after training (-22%) in both groups. The amount of fatigue allowed in each set critically influences muscle CaMKII and SLN responses and determines muscle phenotype changes. With lower intra-set fatigue, the IIX-to-IIA MHC shift is attenuated.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Fernando Pareja-Blanco
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - David Rodriguez-Rosell
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Joaquin Sanchis-Moysi
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | | | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.,School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|