1
|
Takács A, Jessen M, Lajkó E, Szász Z, Kalabay M, Csámpai A, Kőhidai L. Quinine-chalcone hybrids as potent inhibitors of P-glycoprotein with apoptotic effects on EBC-1 cells. Biomed Pharmacother 2025; 187:118076. [PMID: 40267640 DOI: 10.1016/j.biopha.2025.118076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025] Open
Abstract
Chincona alkaloids extracted from the bark stem of Cinchona officinalis have been historically used to treat fever and malaria. More recently, cinchona alkaloid derivatives have been attributed to apoptotic effects in the context of cancer. Similarly, chalcones are plant-derived polyphenolic compounds with known anti-fungal, -microbial, -malarial, and -carcinogenic properties. Here, we reveal cytotoxic and antiproliferative characteristics of synthetic quinine-chalcone hybrids in human cancer cell lines. Two derivatives (AD-12 and AD-13) presented IC50 values below 2 µM in the lung squamous cell carcinoma cell line (EBC-1). Our study shows that AD-12 and AD-13 increased intracellular ROS levels and promoted caspase-3/7, and -8 activity in EBC-1 cells. These apoptotic effects were accompanied by short-term inhibition of P-gp efflux activity, while expression levels of P-gp transporters remained stable. Together, our study illustrates the potential of quinine-chalcone hybrids as novel anticancer drug candidates.
Collapse
Affiliation(s)
- Angéla Takács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | - Malin Jessen
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zsófia Szász
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Márton Kalabay
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Antal Csámpai
- Institute of Chemistry, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Nemčeková K, Dudoňová P, Holka T, Balážová S, Hornychová M, Szebellaiová V, Naumowicz M, Gemeiner P, Mackuľak T, Gál M, Svitková V. Silver Nanoparticles for Biosensing and Drug Delivery: A Mechanical Study on DNA Interaction. BIOSENSORS 2025; 15:331. [PMID: 40422070 DOI: 10.3390/bios15050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Silver nanoparticles (AgNPs) have attracted tremendous attention in recent years due to their unique physicochemical properties, including pronounced surface plasmon resonance, tunable size, and amenability to functionalization. These attributes underpin the growing interest in AgNPs as SMART nanocarriers for targeted drug delivery and as active components in biosensing platforms. In this work, we discuss various synthesis strategies for AgNPs-ranging from conventional chemical methods to green approaches-and highlight their subsequent functionalization with anticancer drugs, notably doxorubicin (DOX). We also examine the potential of AgNPs in biosensor applications, emphasizing electrochemical and optical detection modalities capable of monitoring drug release, oxidative stress, and relevant biomarkers. Our experimental data support the conclusion that AgNPs can effectively improve therapeutic efficacy by exploiting tumor-specific conditions (e.g., lower pH) while also enhancing biosensor sensitivity via surface plasmon resonance and electrochemical signal amplification. We provide a thorough discussion of the results, including mechanistic aspects of reactive oxygen species (ROS) generation, drug release kinetics, and sensor performance metrics. Overall, AgNP-based nanocarriers emerge as a powerful platform to address current challenges in precision oncology and medical diagnostics.
Collapse
Affiliation(s)
- Katarína Nemčeková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Patrícia Dudoňová
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| | - Tomáš Holka
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Sabína Balážová
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Michaela Hornychová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Viktória Szebellaiová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland
| | - Pavol Gemeiner
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
- MicroPoll s.r.o., Vazovova 5, 812 43 Bratislava, Slovakia
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
- MicroPoll s.r.o., Vazovova 5, 812 43 Bratislava, Slovakia
| | - Veronika Svitková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
- MicroPoll s.r.o., Vazovova 5, 812 43 Bratislava, Slovakia
| |
Collapse
|
3
|
Singh DD. NLRP3 inflammasome: structure, mechanism, drug-induced organ toxicity, therapeutic strategies, and future perspectives. RSC Med Chem 2025:d5md00167f. [PMID: 40370650 PMCID: PMC12070810 DOI: 10.1039/d5md00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Drug-induced toxicity is an important issue in clinical medicine, which typically results in organ dysfunction and adverse health consequences. The family of NOD-like receptors (NLRs) includes intracellular proteins involved in recognizing pathogens and triggering innate immune responses, including the activation of the NLRP3 inflammasome. The NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3) inflammasome is a critical component for both innate and adaptive immune responses and has been implicated in various drug-induced toxicities, including hepatic, renal, and cardiovascular diseases. The unusual activation of the NLRP3 inflammasome causes the release of pro-inflammatory cytokines, such as IL-1β and IL-18, which can lead to more damage to tissues. Targeting NLRP3 inflammasome is a potential therapeutic endeavour for suppressing drug-induced toxicity. This review provides insights into the mechanism, drug-induced organ toxicity, therapeutic strategies, and prospective therapeutic approaches of the NLRP3 inflammasome and summarizes the developing therapies that target the inflammasome unit. This review has taken up one of the foremost endeavours in understanding and inhibiting the NLRP3 inflammasome as a means of generating safer pharmacological therapies.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur 303002 India +91 9450078260
| |
Collapse
|
4
|
Garcia-Sureda L, Jacques C, Pons DG, Sastre-Serra J, Oliver J, Floris I. Active Substances from the Micro-Immunotherapy Medicine 2LMIREG Display Antioxidative Properties In Vitro in Two Colorectal Cancer Cell Lines. Life (Basel) 2025; 15:743. [PMID: 40430171 PMCID: PMC12112867 DOI: 10.3390/life15050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Mitochondria play a crucial role in oxidative stress control and reactive oxygen species (ROS) generation, impacting many cellular processes. Dysregulated mitochondria are linked to diseases such as colorectal cancer (CRC), known for its aggressiveness. Since ROS plays a role in tumor growth and metastasis, there is considerable interest in developing therapies that target these reactives. This study investigates the effects of some active substances from the micro-immunotherapy (MI) medicine 2LMIREG® on mitochondrial metabolism parameters in two CRC-derived cell lines. HT-29 and the metastasis-derived SW620 cell lines, which heavily rely on ROS for proliferation, were used to evaluate the effects of the tested active substances. Cellular viability and various mitochondrial metabolism parameters were measured: ROS production, mitochondrial mass index, and mitochondrial DNA levels. In both cell lines, the tested MI formulation reduced cellular viability as well as ROS production compared to the vehicle used as a control. The treatment also appeared to increase the mitochondrial mass index without affecting mitochondrial DNA levels in the two CRC models. Altogether, these preliminary results report for the first time the mitochondria-related effects of some actives from 2LMIREG® in two CRC cell models and open perspectives for further in-depth metabolism-based studies.
Collapse
Affiliation(s)
| | - Camille Jacques
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Daniel G. Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Ilaria Floris
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
5
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025; 22:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
6
|
Wei H, Zheng H, Wang S, Yang Y, Zhao R, Gu A, Hu R, Lan F, Wen W. Targeting redox-sensitive MBD2-NuRD condensate in cancer cells. Nat Cell Biol 2025; 27:801-816. [PMID: 40307576 DOI: 10.1038/s41556-025-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Transcriptional silencing of hypermethylated tumour suppressor genes is a hallmark of tumorigenesis but the underlying mechanism remains enigmatic. Here we show that methyl-CpG-binding domain protein 2 (MBD2) forms nuclear condensate in diverse cancer cells, where it assembles and navigates the chromatin remodeller NuRD complex to these gene loci for transcriptional suppression, thus fuelling tumour growth. Disturbance of MBD2 condensate reduces the level of NuRD complex-specific proteins, destabilizes heterochromatin foci, facilitates chromatin relaxation and consequently impedes tumour progression. We demonstrate that MBD2 condensate is redox sensitive, mediated by C359. Pro-oxidative interventions disperse MBD2-NuRD condensate, thereby alleviating the transcriptional repression of tumour suppressor genes. Our findings illuminate a hitherto unappreciated function of MBD2 condensate in sustaining a repressive chromatin state essential for cancer cell proliferation and suggest an oxidative stress targeting approach for malignancies with excessive MBD2 condensate.
Collapse
Affiliation(s)
- Heyang Wei
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongdan Zheng
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siqing Wang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yun Yang
- Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ronggui Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Lan
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Pandey V, Pandey T. A Mechanistic Understanding of Reactive Oxygen Species (ROS)-Responsive Bio-Polymeric Nanoparticles: Current State, Challenges and Future Toward Precision Therapeutics. Biopolymers 2025; 116:e70027. [PMID: 40370134 DOI: 10.1002/bip.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/19/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Inflammation is a hallmark of various pathological conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and autoimmune diseases. Reactive oxygen species (ROS) are crucial mediators in the inflammatory microenvironment, playing a pivotal role in both normal cellular processes and disease progression. Targeting ROS overproduction in inflamed tissues has emerged as a promising therapeutic strategy. Polymeric nanoparticles (NPs) responsive to ROS levels in pathological tissues have gained substantial attention as precision drug delivery systems, capable of ensuring controlled, site-specific drug release. This review provides a comprehensive mechanistic insight into ROS-responsive polymeric nanoparticles, examining their structural design, functionalization strategies, drug release mechanisms, and potential for targeted therapies in inflammatory conditions. Furthermore, we discuss recent advancements, challenges, and future directions in utilizing ROS-responsive polymeric nanoparticles for precision therapeutics, highlighting their transformative potential in clinical applications.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Luz P, Ramos S, Oliveira MJ, Costa JG, Saraiva N, Fernandes AS. Interaction between redox regulation, immune activation, and response to treatment in HER2+ breast cancer. Redox Biol 2025; 82:103609. [PMID: 40174475 PMCID: PMC11999322 DOI: 10.1016/j.redox.2025.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
In HER2+ breast cancer (BC), neoadjuvant therapy represents an ideal scenario for translational research, considering pathological complete response (pCR) as an endpoint. In these patients, achieving pCR after neoadjuvant therapy is associated with a better prognosis. However, biomarkers are needed to tailor optimal treatment for each patient. Evaluating tumour-infiltrating lymphocytes (TILs) has gained attention in predicting pCR. In the context of metastatic disease, TILs also appear to play a role in predicting outcomes. The interaction between the presence of TILs and reactive oxygen species (ROS) remains an area to be explored. ROS are critical for tumour cell homeostasis, and different levels can trigger differential biological responses in cancer cells and their microenvironment. Nevertheless, the influence of ROS on treatment efficacy and prognosis in patients with HER2+ BC remains to be elucidated. In this article, we reviewed the interplay between treatment response, immune system activation, and ROS production in HER2+ BC and suggested novel areas of intervention and research. We also present a bioinformatic analysis demonstrating that the altered expression of several redox-related genes could be associated with the prevalence of immune cell populations in the tumour microenvironment and with patient survival. New biomarkers are thus suggested and should be further explored to tailor the best treatment to each patient.
Collapse
Affiliation(s)
- Paulo Luz
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal; Universidad de Alcalá de Henares. Departamento de Ciencias Biomédicas, Alcalá de Henares, Madrid, Spain; Medical Oncology Department, Unidade Local de Saúde do Baixo Alentejo - Hospital José Joaquim Fernandes, Beja, Portugal
| | - Sofia Ramos
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal; Universidad de Alcalá de Henares. Departamento de Ciencias Biomédicas, Alcalá de Henares, Madrid, Spain
| | - Maria José Oliveira
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisbon, Portugal.
| |
Collapse
|
9
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 PMCID: PMC12021792 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
10
|
Shokrzadeh S, Moghim S, Shokrzadeh M, Aghajanshakeri S. An added value of azithromycin: mitigation of doxorubicin-associated oxidative damage and genotoxicity in normal human bronchial epithelium cells. Mutagenesis 2025; 40:126-136. [PMID: 39373202 DOI: 10.1093/mutage/geae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024] Open
Abstract
Doxorubicin, a well-known and widely used antineoplastic agent with direct ROS-accumulating activity, has proven effective in treating various cancer types. However, its non-specific cytotoxicity towards non-cancerous cells prompts concerns regarding potential adverse effects. Azithromycin is an antibiotic for treating bacterial infections and an anti-inflammatory agent, particularly beneficial in managing respiratory conditions like bronchitis and sinusitis. Despite azithromycin's well-documented antibacterial properties, its potential cellular/genomic protective effects remain unexplored. As an in vitro model, BEAS-2B cells (normal human bronchial epithelium cells) were employed in this study to assess whether azithromycin possesses any protective properties against doxorubicin-induced cellular toxicity. Cells in pretreatment culture were treated to various amounts of azithromycin (3.125, 6.25, 12.5, 25, and 50 μg/ml) in combination with doxorubicin at IC50 (0.08 μg/ml). Doxorubicin at 0.08 μg/ml highlighted cytotoxicity, oxidative stress, and genotoxicity. Azithromycin at 25 and 50 μg/ml markedly modulated oxidative stress and genomic damage by decreasing the ROS and LPO amounts and suppressing DNA fragmentation in the comet assay parameters. Consequently, azithromycin may be regarded as a cytomodulating, antigenotoxic, and antioxidant agent.
Collapse
Affiliation(s)
| | - Shahrzad Moghim
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Aghajanshakeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Kumar P, Ashique S, Sharma H, Yasmin S, Islam A, Mandal S, Gowda BHJ, Khalid M, Ansari MY, Singh M, Ehsan I, Taj T, Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg Chem 2025; 157:108305. [PMID: 40022847 DOI: 10.1016/j.bioorg.2025.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cancer is a leading cause of death worldwide. While traditional and synthetic medical therapies are in place for cancer treatment, their effectiveness is hindered by various limitations, such as toxic side effects, limited availability, and high costs. In recent years, a promising alternative approach has emerged in the form of green-synthesized metallic nanoparticles (MNPs), which offer targeted cancer therapy. These nanoparticles (NPs) have garnered significant attention from cancer researchers owing to their natural or surface-induced anticancer properties, versatility of metals as agents, and eco-friendly nature. This approach may positively impact healthy cells surrounding the cancerous cells. Green-synthesized MNPs have gained popularity in cancer management because of their ease of handling in the laboratory and the affordability of starting materials compared to synthetic methods. This review analyzes green-synthesized MNPs for targeted cancer therapy, highlighting tumor-targeting strategies, synthesis methods, and clinical challenges. Unlike general reviews, it compares plant-, microbial-, and enzyme-mediated synthesis approaches, emphasizing their impact on nanoparticle stability, functionalization, and interactions with the tumor microenvironment for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM Modinagar College of Pharmacy, SRMIST Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India.
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, (UP), India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Subhajit Mandal
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi-241124 Uttar Pradesh (U.P.) India.
| | - Mansi Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Iman Ehsan
- School of Pharmacy Sister Nivedita University, Kolkata-700156, WB, India
| | - Tahreen Taj
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Semeradtova A, Liegertova M, Herma R, Capkova M, Brignole C, Del Zotto G. Extracellular vesicles in cancer´s communication: messages we can read and how to answer. Mol Cancer 2025; 24:86. [PMID: 40108630 PMCID: PMC11921637 DOI: 10.1186/s12943-025-02282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Extracellular vesicles (EVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME), profoundly influencing cancer progression. These nano-sized vesicles, released by both tumor and stromal cells, carry a diverse cargo of proteins, nucleic acids, and lipids, reflecting the dynamic cellular landscape and mediating intricate interactions between cells. This review provides a comprehensive overview of the biogenesis, composition, and functional roles of EVs in cancer, highlighting their significance in both basic research and clinical applications. We discuss how cancer cells manipulate EV biogenesis pathways to produce vesicles enriched with pro-tumorigenic molecules, explore the specific contributions of EVs to key hallmarks of cancer, such as angiogenesis, metastasis, and immune evasion, emphasizing their role in shaping TME and driving therapeutic resistance. Concurrently, we submit recent knowledge on how the cargo of EVs can serve as a valuable source of biomarkers for minimally invasive liquid biopsies, and its therapeutic potential, particularly as targeted drug delivery vehicles and immunomodulatory agents, showcasing their promise for enhancing the efficacy and safety of cancer treatments. By deciphering the intricate messages carried by EVs, we can gain a deeper understanding of cancer biology and develop more effective strategies for early detection, targeted therapy, and immunotherapy, paving the way for a new era of personalized and precise cancer medicine with the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Alena Semeradtova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic.
| | - Michaela Liegertova
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Regina Herma
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí Nad Labem, Pasteurova 3632/15, Ústí Nad Labem, 40096, Czech Republic
| | - Magdalena Capkova
- Institute of Photonics and Electronics of the CAS, Chaberská 1014/57, Prague, 182 51, Czech Republic
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Genny Del Zotto
- Core Facilities, Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| |
Collapse
|
13
|
Ajayi GO, Ma A, Modarai SR, Opdenaker LM, Sims-Mourtada J. CRISPR/Cas9 Targeting of Aldehyde Dehydrogenase 1A1 Reveals Heterogeneous Roles in Radiation Response and Redox Stress Across Clonal Lines in Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:2303. [PMID: 40076923 PMCID: PMC11900224 DOI: 10.3390/ijms26052303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
The metabolic enzyme aldehyde dehydrogenase 1A1 (ALDH1A1), a cancer stem cell marker associated with poor outcomes in breast cancer, has emerged as a promising therapeutic target in TNBC. The aim of this study was to investigate the role of ALDH1A1 in radiation resistance and redox stress in triple negative breast cancer (TNBC). Functional knockouts of ALDH1A1 were generated by the CRISPR/Cas9-mediated deletion of ALDH1A1 in the SUM159 cell line, and three distinct clonal populations were isolated. Genetic targeting was confirmed by Sanger sequencing, and the loss of ALDH1A1 protein expression was validated by Western blotting. Functional assays assessed ALDEFLUOR activity, cell viability, self-renewal capacity, and reactive oxygen species (ROS) levels with or without radiation in both the bulk population and clonal lines. Interestingly, ALDEFLUOR activity was uniformly lost across all clonal lines; however, functional effects of ALDH1A1 loss on redox stress, survival, and radiation sensitivity were observed in only one clonal population. These findings highlight significant variability in the role of ALDH1A1 among clonal populations, reflecting the complexity of tumor heterogeneity. This underscores the importance of accounting for tumor heterogeneity when targeting ALDH1A1, as certain TNBC subpopulations may rely more heavily on ALDH1A1 function. These insights are critical for developing effective ALDH1A1-targeted therapies.
Collapse
Affiliation(s)
- Grace O. Ajayi
- Department of Biological Sciences, University of Delaware, 105 The Green, Newark, DE 19716, USA
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, 4701 Ogletown Stanton Rd Suite 4300, Newark, DE 19713, USA
| | - Aihui Ma
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, 4701 Ogletown Stanton Rd Suite 4300, Newark, DE 19713, USA
| | - Shirin R. Modarai
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, 4701 Ogletown Stanton Rd Suite 4300, Newark, DE 19713, USA
| | - Lynn M. Opdenaker
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, 4701 Ogletown Stanton Rd Suite 4300, Newark, DE 19713, USA
| | - Jennifer Sims-Mourtada
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, ChristianaCare, 4701 Ogletown Stanton Rd Suite 4300, Newark, DE 19713, USA
| |
Collapse
|
14
|
Erboz A, Kesekler E, Gentili PL, Uversky VN, Coskuner-Weber O. Electromagnetic radiation and biophoton emission in neuronal communication and neurodegenerative diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:87-99. [PMID: 39732343 DOI: 10.1016/j.pbiomolbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aysin Erboz
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Elif Kesekler
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123, Perugia, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
15
|
Kwon MJ, Raut PK, Jang JH, Chun KS. Isoliquiritigenin Induces Apoptosis via ROS-Mediated Inhibition of p38/mTOR/STAT3 Pathway in Human Melanoma Cells. Biomol Ther (Seoul) 2025; 33:378-387. [PMID: 39933948 PMCID: PMC11893486 DOI: 10.4062/biomolther.2024.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 02/13/2025] Open
Abstract
Isoliquiritigenin (ISL), a phenolic compound derived from licorice, exhibits various biological activities, including anti-inflammatory, anti-viral, anti-tumor, and antioxidant effects. However, the molecular mechanisms underlying its anti-cancer effects are not well understood in SK-MEL-28 melanoma cells. Melanoma, a highly aggressive and treatment-resistant cancer, remains a significant health challenge. This study investigates the anti-cancer effects of ISL, focusing on identifying reactive oxygen species (ROS)-mediated apoptosis mechanisms on SK-MEL-28 melanoma cells. Our results show that ISL treatment induces apoptosis in SK-MEL-28 cells, as evidenced by the cleavage of caspase-9, -7, -3, and PARP. ISL increased Bax expression, decreased Bcl-2 expression, and promoted cytochrome C release into the cytosol. ISL also reduced the expression of cell cycle markers, including cyclin D1, D3, and survivin. Notably, ISL treatment markedly increased intracellular ROS levels and pretreatment with N-acetyl cysteine, a ROS scavenger, abrogated the ISL-induced inhibition of the p38/mTOR/STAT3 pathway and prevented apoptosis. Moreover, ISL significantly diminished the constitutive phosphorylation of mTOR and STAT3 in SK-MEL-28 cells by blocking the phosphorylation of p38 MAPK, an upstream kinase of mTOR. Pharmacological inhibition of mTOR attenuated the STAT3 signaling, indicating that mTOR acts as an upstream kinase of STAT3 in these cells. Collectively, these findings demonstrate that ISL inhibits SK-MEL-28 cell growth by downregulating cell survival proteins and inducing apoptosis through ROS generation.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
16
|
Prajapati J, Bhatt N, Rawal R. Hepatoprotective effects of phytochemicals and plant extracts against chemotherapy-induced liver damage in animal models: a systematic review. Arch Toxicol 2025; 99:887-914. [PMID: 39729113 DOI: 10.1007/s00204-024-03928-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Chemotherapy, a cornerstone of cancer treatment, is frequently marred by its hepatotoxic effects, which can significantly impede therapeutic efficacy. This systematic review meticulously evaluates the hepatoprotective properties of phytochemicals and plant extracts against chemotherapy-induced liver damage, primarily in experimental animal models. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an exhaustive search was conducted across databases like SCOPUS, PubMed, and Web of Science, culminating in the inclusion of 61 pertinent studies. These studies illustrate those natural compounds, spanning a diverse array of phytochemicals and plant extracts that can effectively mitigate biochemical markers of liver damage, enhance antioxidant defences, and modulate inflammatory responses in model organisms subjected to hepatotoxic chemotherapeutic agents such as cyclophosphamide, cisplatin, and doxorubicin. Notably, the natural agents reviewed have demonstrated significant reductions in liver enzymes, improved histopathological outcomes, and bolstered cellular antioxidant capacities. The systematic synthesis of data underscores the potential of these natural substances to diminish liver toxicity associated with chemotherapy in preclinical settings. However, the review also highlights critical gaps in research, notably the underreporting of molecular mechanisms and inconsistent data on clinical translatability. To optimize the therapeutic utility of these compounds, future studies should focus on detailed molecular analyses and rigorous clinical trials to validate efficacy and safety, paving the way for integrated approaches in oncological care that minimize hepatic complications.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- INVENTAYU Private Limited, AIC-LMCP Foundation, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Narendra Bhatt
- INVENTAYU Private Limited, AIC-LMCP Foundation, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Rakesh Rawal
- Department of Medical Biotechnology, Gujarat Biotechnology University, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
17
|
Kurhaluk N, Tkaczenko H. Recent Issues in the Development and Application of Targeted Therapies with Respect to Individual Animal Variability. Animals (Basel) 2025; 15:444. [PMID: 39943214 PMCID: PMC11815764 DOI: 10.3390/ani15030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This literature review explores the impact of molecular, genetic, and environmental factors on the efficacy of targeted therapies in veterinary medicine. Relevant studies were identified through systematic searches of PubMed, Web of Science, Scopus, and ScienceDirect using keywords such as "species-specific treatment strategies", "signalling pathways", "epigenetic and paragenetic influences", "targeted therapies", "veterinary medicine", "genetic variation", and "free radicals and oxidative stress". Inclusion criteria included studies focusing on species-specific therapeutic responses, genetic influences, and oxidative stress. To ensure that only the most recent and relevant evidence was included, only peer-reviewed publications from the last two decades were considered. Each study selected for analysis was critically appraised, with a particular emphasis on methodological quality, experimental design, and scientific contribution to the understanding of how environmental and biological factors influence therapeutic outcomes. A special emphasis was placed on studies that used a comparative, cross-species approach to assess variability in therapeutic responses and potential adverse effects. The review synthesises evidence on the role of epigenetic and paragenetic factors and highlights the importance of cross-species studies to understand how environmental and biological factors influence treatment outcomes. By highlighting genetic variation, oxidative stress, and individual species differences, the review argues for personalised and species-specific therapeutic approaches. The review emphasises that such an approach would improve veterinary care and inform future research aimed at optimising targeted therapies, ultimately leading to better animal health and treatment efficacy. A key contribution of the review is its emphasis on the need for more personalised treatment protocols that take into account individual genetic profiles and environmental factors; it also calls for a greater integration of cross-species studies.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
18
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
19
|
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants (Basel) 2025; 14:115. [PMID: 39857449 PMCID: PMC11760857 DOI: 10.3390/antiox14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS. Cancer cells maintain moderate levels of ROS to promote tumorigenesis, metastasis, and drug resistance; indeed, once the cytotoxicity threshold is exceeded, ROS trigger oxidative damage, ultimately leading to cell death. Based on this, mitochondrial metabolic functions and ROS generation are considered attractive targets of synthetic and natural anticancer compounds. Tocotrienols (TTs), specifically the δ- and γ-TT isoforms, are vitamin E-derived biomolecules widely shown to possess striking anticancer properties since they regulate several intracellular molecular pathways. Herein, we provide for the first time an overview of the mitochondrial metabolic reprogramming and redox homeostasis perturbation occurring in cancer cells, highlighting their involvement in the anticancer properties of TTs. This evidence sheds light on the use of these natural compounds as a promising preventive or therapeutic approach for novel anticancer strategies.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Giulia Sauro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| |
Collapse
|
20
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
21
|
Arora S, Upadhayay S, Kumar P, Kumar P, Kumar R. Design, synthesis and anticancer evaluation of 4-Substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines as dual topoisomerase I and II inhibitors. Bioorg Chem 2025; 154:108043. [PMID: 39705937 DOI: 10.1016/j.bioorg.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
In this study, we herein report the design, synthesis, and anticancer assessment of a series of new 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. The synthesis involved key intermediates such as the 2-aminoester derivative, which underwent a series of reactions to produce compounds 7a-7t. The optimized SNAr reactions, utilizing microwave irradiation in DMF, led to high yields and efficient preparation of the desired compounds. The biological evaluation revealed significant cytotoxicity of compounds 7b and 7t against MCF-7 breast cancer cell lines with IC50 values of 8.80 ± 0.08 and 7.45 ± 0.26 µM, respectively, demonstrating superior activity to standard controls like camptothecin and etoposide. Both the compounds exhibited dual topoisomerase I and II inhibition (7t > 7b), enhanced reactive oxygen species (ROS) generation in cancer cells, and halted cell cycle at the G2/M phase. Molecular docking and dynamics simulations further supported the higher binding affinity of compound 7t to topoisomerase enzymes compared to 7b and standard compounds. In silico ADME profiling of 7b and 7t confirmed their drug-likeness, while DFT calculations provided insight into their electronic properties.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pradeep Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India.
| |
Collapse
|
22
|
Das S, Mathew A, Janardhanan KK. Methanolic Extract of Morchella esculenta (Ascomycota) Prevents Chemotherapy-Related Cardiotoxicity in Tumor-Bearing Mice. Int J Med Mushrooms 2025; 27:51-61. [PMID: 39717918 DOI: 10.1615/intjmedmushrooms.2024055751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The quest for bioactives that confer protection against chemotherapy induced cardio toxicity is a front-line area of cardio oncology research. Species of genus Morchella have been used in traditional medicine to treat asthma, wound healing, cough, cold, indigestion, excessive phlegm and breathlessness. M. esculenta, commonly known as guchhi in India is a highly prized culinary morel mushroom. Recent studies carried out in our laboratory have demonstrated significant cardioprotective effect of M. esculenta against doxorubicin (DOX)-induced cardiotoxicity. Since bioactive extracts of morel mushrooms were found to possess profound antioxidant activity, the possible interference of these extracts with antineoplastic activity of chemotherapy drugs is often surmised. The current study was undertaken to evaluate the effect of two anticancer drugs, DOX and cyclophosphamide (CP) on solid tumor-bearing mice treated with bioactive extract of M. esculenta. Solid tumor was induced by subcutaneous injection of Dalton's lymphoma ascites (DLA) cells on the right hind limbs of Swiss albino mice. Animals were administered with various concentrations of methanol extract (ME) of M. esculenta following tumor induction. Tumor growth (volume and mass) was measured for four weeks after tumor induction. Cardioprotective effect of methanolic extract was assessed by determining cardiac injury markers levels in serum, antioxidant status in myocardium and histopathology of heart tissue. The results showed significant cardioprotective effect of ME of M. esculenta on tumor-bearing mice. The findings also suggest that ME of M. esculenta did not delimit the therapeutic effect of DOX and CP despite its profound antioxidant activity.
Collapse
Affiliation(s)
- Sneha Das
- Department of Microbiology, Amala Cancer Research Centre, Amala Nagar, Thrissur 680 555, Kerala, India
| | - Anit Mathew
- Department of Microbiology, Amala Cancer Research Centre, Amala Nagar, Thrissur 680 555, Kerala, India
| | | |
Collapse
|
23
|
Chen J, Shao F, Zhang S, Qian Y, Chen M. A pan-cancer analysis of the oncogenic role of N-acetyltransferase 8 like in human cancer. Discov Oncol 2024; 15:792. [PMID: 39692770 DOI: 10.1007/s12672-024-01605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND N-Acetyltransferase 8 Like (NAT8L) inhibits natural killer (NK)/T-cell cytotoxicity by impairing the formation of the immunological synapse via N-acetylaspartate (NAA). Existing research has predominantly focused on the metabolic functions of NAT8L, particularly in adipose tissues and myelination in the brain. However, in contrast to other N-acetyltransferases such as NAT1 and NAT2, the role of NAT8L in cancer has been less extensively studied. In this study, we conducted a comprehensive pan-cancer analysis to investigate the carcinogenic role of NAT8L in human cancers. METHODS We utilized the standardized TCGA pan-cancer dataset to analyze differential expression, clinical prognosis, gene mutation, immune infiltration, epigenetic modification, tumor stemness, and heterogeneity. Additionally, we evaluated the sensitivity of NAT8L to small molecule drugs using the GDSC and CTRP databases. RESULTS In this study, we identified that NAT8L expression was upregulated in 6 cancers and downregulated in 12 compared to normal tissues. We analyzed its prognostic value in 5 tumor types (KIRP, COAD, COADREAD, GBMLGG, LUSC) and found correlations with overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). Furthermore, NAT8L expression was significantly correlated with levels of most immune checkpoints, immunomodulators, and immune cell infiltration. The mutation frequencies for bladder cancer (BLCA), glioblastoma multiforme and glioma (GBMLGG), lower-grade glioma (LGG), and KIRP were 1.2%, 0.9%, 0.8%, and 0.4%, respectively. CONCLUSION Our findings suggest that NAT8L may serve as a potential prognostic marker and therapeutic target across a variety of cancers, particularly in KIRP, COAD, COADREAD, GBMLGG, and lung squamous cell carcinoma (LUSC).
Collapse
Affiliation(s)
- Jiamin Chen
- Institute of Clinical Pathology& Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | | | - Shuxia Zhang
- Research Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Youliang Qian
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China.
| | - Mei Chen
- Department of Urology, Yaan People's Hospital, Yaan, China.
| |
Collapse
|
24
|
Mavroeidi D, Georganta A, Stefanou DT, Papanikolaou C, Syrigos KN, Souliotis VL. DNA Damage Response Network and Intracellular Redox Status in the Clinical Outcome of Patients with Lung Cancer. Cancers (Basel) 2024; 16:4218. [PMID: 39766117 PMCID: PMC11726754 DOI: 10.3390/cancers16244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Background/Objectives: DNA damage response (DDR) is a network of molecular pathways associated with the pathogenesis and progression of several diseases, as well as the outcome of chemotherapy. Moreover, the intracellular redox status is essential for maintaining cell viability and controlling cellular signaling. Herein, we analyzed DDR signals and redox status in peripheral blood mononuclear cells (PBMCs) from patients with lung cancer with different response rates to platinum-based chemotherapy. Methods: Several DDR-associated signals and redox status, expressed as the GSH/GSSG ratio, were measured in two lung cancer cell lines (A549, H1299), two normal fibroblast cell lines (WS1, 1BR3hT), and PBMCs from 20 healthy controls and 32 patients with lung cancer at baseline (17 responders and 15 non-responders to subsequent platinum-based chemotherapy). Results: Higher levels of endogenous/baseline DNA damage, decreased GSH/GSSG ratios, and augmented apurinic/apyrimidinic sites, as well as lower nucleotide excision repair (NER) and increased interstrand cross-links (ICLs) repair efficiencies, were observed in lung cancer cell lines compared with normal ones (all p < 0.05). Moreover, PBMCs from patients with lung cancer showed reduced GSH/GSSG ratios, augmented apurinic/apyrimidinic sites, decreased NER and ICL repair capacities, and lower apoptosis rates, compared with healthy controls (all p < 0.001). Interestingly, PBMCs from patients who are responders are characterized by reduced GSH/GSSG ratios, augmented apurinic/apyrimidinic sites, decreased NER and ICL repair capacities, and higher apoptosis rates compared with patients who are non-responders (all p < 0.01). Conclusions: Together, DDR-associated parameters and redox status measured in PBMCs from patients with lung cancer at baseline are associated with the therapeutic benefit of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Anastasia Georganta
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Dimitra T. Stefanou
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
| | - Konstantinos N. Syrigos
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
| |
Collapse
|
25
|
Langley BO, Rillamas-Sun E, Huang Y, Indorf A, Robles M, Feaster R, D'Addario L, Ergas IJ, Roh JM, Kushi LH, Greenlee H. Validation and Utility of Drug-Nutrient Interaction and Dietary Supplement Mechanistic Activity in the Natural Medicines Database. JCO ONCOLOGY ADVANCES 2024; 1:e2400062. [PMID: 39758135 PMCID: PMC11698021 DOI: 10.1200/oa-24-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE The increasing use of dietary supplements by patients with cancer and other chronic diseases requires the systematized review of potential interactions between prescription drugs and nutrients from supplements by health care and clinical research teams. Dietary supplement interaction databases are positioned to fill a gap in quantifying potential risks for patients, although none have been assessed for reliability in data interpretation. The NatMed database, a source for comprehensive reports on mechanistic and safety data for dietary supplement ingredients, was evaluated for use in future investigations. METHODS Data from NatMed were retrieved using licensed end points for ingredient monographs with drug-nutrient interactions with doxorubicin across five pharmacokinetic and metabolic pathways, and for ingredient monographs with antioxidant activity. Interactions between dietary supplements and doxorubicin treatment and antioxidant monographs were independently reviewed and characterized by clinical pharmacists. Cohen's K was used to measure interrater reliability and the degree of agreement between pharmacists. RESULTS Three hundred fifteen potential interactions with doxorubicin (n = 115 monographs) and 455 other antioxidant ingredients were identified and reviewed by clinical pharmacists. There was substantial to near-perfect agreement for drug-nutrient interactions with doxorubicin (Cohen's K = 0.64-0.85) and for antioxidants (Cohen's K = 0.84). A small proportion of retrieved monographs were not validated by the clinical pharmacists for interactions with doxorubicin (n = 20 occurrences, 6.4%) or for antioxidant activity (n = 28, 6.2%). CONCLUSION A high degree of reliability in data on dietary supplement interactions with doxorubicin and mechanisms of action suggests NatMed may be a dependable source of data for future investigators. Additional procedures including independent data validation and use of multiple dietary supplement interaction databases will strengthen the quality of findings in future studies.
Collapse
Affiliation(s)
- Blake O. Langley
- Fred Hutchinson Cancer Center, Public Health Sciences Division, Seattle, WA
| | | | - Yuhan Huang
- Fred Hutchinson Cancer Center, Public Health Sciences Division, Seattle, WA
- University of Washington, School of Public Health, Seattle, WA
| | - Amy Indorf
- Fred Hutchinson Cancer Center, Department of Pharmacy, Seattle, WA
| | - Michael Robles
- Fred Hutchinson Cancer Center, Department of Pharmacy, Seattle, WA
| | - Rachel Feaster
- Fred Hutchinson Cancer Center, Department of Pharmacy, Seattle, WA
| | - Lia D'Addario
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Isaac J. Ergas
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Janise M. Roh
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Lawrence H. Kushi
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Heather Greenlee
- Fred Hutchinson Cancer Center, Public Health Sciences Division, Seattle, WA
- University of Washington, School of Public Health, Seattle, WA
- University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
26
|
Li H, Sun W, Gong W, Han Y. Transfer and fates of damaged mitochondria: role in health and disease. FEBS J 2024; 291:5342-5364. [PMID: 38545811 DOI: 10.1111/febs.17119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 12/19/2024]
Abstract
Intercellular communication is pivotal in mediating the transfer of mitochondria from donor to recipient cells. This process orchestrates various biological functions, including tissue repair, cell proliferation, differentiation and cancer invasion. Typically, dysfunctional and depolarized mitochondria are eliminated through intracellular or extracellular pathways. Nevertheless, increasing evidence suggests that intercellular transfer of damaged mitochondria is associated with the pathogenesis of diverse diseases. This review investigates the prevalent triggers of mitochondrial damage and the underlying mechanisms of mitochondrial transfer, and elucidates the role of directional mitochondrial transfer in both physiological and pathological contexts. Additionally, we propose potential previously unknown mechanisms mediating mitochondrial transfer and explore their prospective roles in disease prevention and therapy.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Stejerean-Todoran I, Gibhardt CS, Bogeski I. Calcium signals as regulators of ferroptosis in cancer. Cell Calcium 2024; 124:102966. [PMID: 39504596 DOI: 10.1016/j.ceca.2024.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The field of ferroptosis research has grown exponentially since this form of cell death was first identified over a decade ago. Ferroptosis, an iron- and ROS-dependent type of cell death, is controlled by various metabolic pathways, including but not limited to redox and calcium (Ca2+) homeostasis, iron fluxes, mitochondrial function and lipid metabolism. Importantly, therapy-resistant tumors are particularly susceptible to ferroptotic cell death, rendering ferroptosis a promising therapeutic strategy against numerous malignancies. Calcium signals are important regulators of both cancer progression and cell death, with recent studies indicating their involvement in ferroptosis. Cells undergoing ferroptosis are characterized by plasma membrane rupture and the formation of nanopores, which facilitate influx of ions such as Ca2+ into the affected cells. Furthermore, mitochondrial Ca²⁺ levels have been implicated in directly influencing the cellular response to ferroptosis. Despite the remarkable progress made in the field, our understanding of the contribution of Ca2+ signals to ferroptosis remains limited. Here, we summarize key connections between Ca²⁺ signaling and ferroptosis in cancer pathobiology and discuss their potential therapeutic significance.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
28
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Zhang W, Ran Y, Yang M, Hu Y, Wang Z, Cao Y, Ran H. An Oxidative Stress Nano-Amplifier for Improved Tumor Elimination and Combined Immunotherapy. Adv Healthc Mater 2024; 13:e2402349. [PMID: 39221686 PMCID: PMC11650535 DOI: 10.1002/adhm.202402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Amplifying oxidative stress to disrupt intracellular redox homeostasis can accelerate tumor cell death. In this work, an oxidative stress amplifier (PP@T) is prepared for enhanced tumor oxidation therapy to reduce tumor growth and metastases. The nano-amplifier has been successfully constructed by embedding MTH1 inhibitor (TH588) in the PDA-coated porphyrin metal-organic framework PCN-224. The controllable-released TH588 is demonstrated from pores can hinder MTH1-mediated damage-repairing process by preventing the hydrolysis of 8-oxo-dG, thereby amplifying oxidative stress and exacerbating the oxidative DNA damage induced by the sonodynamic therapy of PP@T under ultrasound irradiation. Furthermore, PP@T can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response. When administered in combination with immune checkpoint blockade, PP@T not only impedes the progression of the primary tumor but also achieves obvious antimetastasis in breast cancer murine models, including orthotopic and artificial whole-body metastasis models. Furthermore, the nanoplatform also provides photoacoustic imaging for in vivo treatment guidance. In conclusion, by amplifying oxidative stress and reactive oxygen species sensitized immunotherapy, this image-guided nanosystem shows potential for highly specific, effective combined therapy against tumor cells with negligible side-effects to normal cells which will provide a new insight for precise tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Yijun Ran
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Mi Yang
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Yaqin Hu
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Zhigang Wang
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Yang Cao
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Haitao Ran
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| |
Collapse
|
30
|
Zhao F, Xie H, Guan Y, Teng J, Li Z, Gao F, Luo X, Ma C, Ai X. A redox-related lncRNA signature in bladder cancer. Sci Rep 2024; 14:28323. [PMID: 39550498 PMCID: PMC11569154 DOI: 10.1038/s41598-024-80026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
The redox status is intricately linked to the development and progression of cancer, a process that can be modulated by long non-coding RNAs (lncRNAs). Previous studies have demonstrated that redox regulation can be considered a potential therapeutic approach for cancer. However, the redox-related lncRNA predictive signature specific to bladder cancer (BCa) has yet to be fully elucidated. The purpose of our study is to establish a redox-related lncRNA signature to improve the prognostic prediction for BCa patients. To achieve this, we downloaded transcriptome and clinical data from the Cancer Genome Atlas (TCGA) database. Prognostic redox-related lncRNAs were identified through univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analysis, resulting in the establishment of two risk groups. A comprehensive analysis corresponding to clinical features between high-risk and low-risk groups was conducted. Eight redox-related lncRNAs (AC018653.3, AC090229.1, AL357033.4, AL662844.4, AP003352.1, LINC00649, LINC01138, and MAFG-DT) were selected to construct the risk model. The overall survival (OS) in the high-risk group was worse than that in the low-risk group (p < 0.001). The redox-related lncRNA signature exhibits superior predictive accuracy compared to traditional clinicopathological characteristics. Gene Set Enrichment Analysis (GSEA) showed that the MAPK signaling pathway and Wnt signaling pathway were enriched in the high-risk group. Compared with the low-risk group, patients in the high-risk group demonstrated increased sensitivity to cisplatin, docetaxel, and paclitaxel. Furthermore, IGF2BP2, a potential target gene of MAFG-DT, was found to be overexpressed in tumor tissues and correlated with overall survival (OS). Our study demonstrated that the predictive signature based on eight redox-related lncRNAs can independently and accurately predict the prognosis of BCa patients.
Collapse
Affiliation(s)
- Fuguang Zhao
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Hui Xie
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
| | - Yawei Guan
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Jingfei Teng
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Zhihui Li
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Feng Gao
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Xiao Luo
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Chong Ma
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China.
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China.
| | - Xing Ai
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China.
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China.
| |
Collapse
|
31
|
Jevtić M, Pirković MS, Komazec T, Mojić M, Mijatović S, Maksimović-Ivanić D, Dimić D, Marković Z, Simijonović D, Milenković D, Avdović E. A Comprehensive Evaluation of a Coumarin Derivative and Its Corresponding Palladium Complex as Potential Therapeutic Agents in the Treatment of Gynecological Cancers: Synthesis, Characterization, and Cytotoxicity. Pharmaceutics 2024; 16:1437. [PMID: 39598560 PMCID: PMC11597210 DOI: 10.3390/pharmaceutics16111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The aim of this research is the synthesis and characterization of coumarin-palladium complex and the investigation of the cytotoxicity of both the ligand and the complex. Methods: The palladium( II) complex (CC) was obtained in the reaction between (E)-3-(1-((4-hydroxy-3-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl-acetate (CL) and potassium-tetrachloropalladate(II) and characterized using IR and NMR spectra, experimentally and theoretically. Cytotoxicity of CL and CC were determined for human cervical carcinoma HeLa, ovarian cancer A2780, hormone dependent breast cancer MCF7, and colorectal cancer HCT116 lines. The interaction of investigated compounds with HSA was followed by spectrofluorimetric method. The binding mechanism in the active pocket was assessed via molecular docking simulations. Results: A low mean absolute error between experimental and theoretical data proved that the optimized structure corresponded to the experimental one. Both compounds showed a satisfactory selectivity index towards neoplastic cells. The binding affinity of tested compounds to the HSA were confirmed. The molecular docking showed a much lower change in the Gibbs free energy of binding for CC compared to CL. Conclusions: The obtained results revealed that CL and CC exhibit significant effects on several cancer cell lines and good binding properties to HSA, while molecular docking discovered that CC has the most pronounced activity against alpha-fetoprotein.
Collapse
Affiliation(s)
- Mirela Jevtić
- Department of Gynecology and Obstetrics General Hospital Uzice, Miloša Obrenovića 17, 31000 Užice, Serbia;
| | - Marijana Stanojević Pirković
- Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Teodora Komazec
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (T.K.); (M.M.); (S.M.); (D.M.-I.)
| | - Marija Mojić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (T.K.); (M.M.); (S.M.); (D.M.-I.)
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (T.K.); (M.M.); (S.M.); (D.M.-I.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (T.K.); (M.M.); (S.M.); (D.M.-I.)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Zoran Marković
- Department of Natural Science and Mathematics, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia;
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard Leibnitz-Str. 2, 06217 Merseburg, Germany
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.S.); (D.M.)
| | - Dušica Simijonović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.S.); (D.M.)
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.S.); (D.M.)
| | - Edina Avdović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (D.S.); (D.M.)
| |
Collapse
|
32
|
Iwhiwhu SA, Kumar R, Khan AH, Afolabi JM, Williams JD, de la Cruz JE, Adebiyi A. A low-dose pemetrexed-cisplatin combination regimen induces significant nephrotoxicity in mice. BMC Nephrol 2024; 25:370. [PMID: 39434019 PMCID: PMC11494951 DOI: 10.1186/s12882-024-03822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pemetrexed is combined with cisplatin to treat cancer. Whether pemetrexed-cisplatin combination chemotherapy exacerbates cisplatin nephrotoxicity is unclear. Here, we investigated kidney injury in mice administered a non-lethal low-dose regimen of pemetrexed or cisplatin alone and compared it with a pemetrexed-cisplatin combination. METHODS Mice were randomly divided into four groups and administered intraperitoneally the experimental drugs solubilized in captisol (sulfobutylether β-cyclodextrin). Group 1 received captisol, Group 2 pemetrexed (10 mg/kg), Group 3 cisplatin (1 mg/kg), and Group 4 pemetrexed (10 mg/kg) plus cisplatin (1 mg/kg). The mice were treated every other day for two weeks, three times per week. Glomerular filtration rate (GFR) was determined on the third day after the last treatment, followed by a necropsy. RESULTS Whereas the relative kidney weight was comparable in the control vs. pemetrexed or cisplatin alone group, it was significantly increased in the combination group. Mice treated with cisplatin and pemetrexed-cisplatin combination exhibited reduced GFR. The pemetrexed-cisplatin combination caused significant increases in the plasma or urinary levels of kidney injury biomarkers, renal lipid peroxidation, and nitrosative stress compared with pemetrexed or cisplatin alone. Histopathology revealed that pemetrexed or cisplatin alone had minimal effects on the kidneys. By contrast, the pemetrexed-cisplatin combination caused tubular degeneration, dilatation, and granular casts. Live-cell imaging showed that the pemetrexed-cisplatin combination caused more severe apoptosis of primary renal epithelial cells than individual concentrations. CONCLUSIONS These findings suggest that combining pemetrexed and cisplatin causes oxidative kidney damage at individual doses that do not cause significant nephrotoxicity. Hence, the renal function of patients undergoing treatment with the pemetrexed-cisplatin combination needs extensive monitoring.
Collapse
Affiliation(s)
- Samson A Iwhiwhu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ravi Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri Columbia, MO, 65211, USA
| | - Abdul H Khan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri Columbia, MO, 65211, USA
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, MO, USA
| | - Jeremiah M Afolabi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jada D Williams
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri Columbia, MO, 65211, USA
| | - Julia E de la Cruz
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri Columbia, MO, 65211, USA
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri Columbia, MO, 65211, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, USA.
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
33
|
Klabukov I, Smirnova A, Yakimova A, Kabakov AE, Atiakshin D, Petrenko D, Shestakova VA, Sulina Y, Yatsenko E, Stepanenko VN, Ignatyuk M, Evstratova E, Krasheninnikov M, Sosin D, Baranovskii D, Ivanov S, Shegay P, Kaprin AD. Oncomatrix: Molecular Composition and Biomechanical Properties of the Extracellular Matrix in Human Tumors. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:437-453. [DOI: 10.3390/jmp5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The extracellular matrix is an organized three-dimensional network of protein-based molecules and other macromolecules that provide structural and biochemical support to tissues. Depending on its biochemical and structural properties, the extracellular matrix influences cell adhesion and signal transduction and, in general, can influence cell differentiation and proliferation through specific mechanisms of chemical and mechanical sensing. The development of body tissues during ontogenesis is accompanied by changes not only in cells but also in the composition and properties of the extracellular matrix. Similarly, tumor development in carcinogenesis is accompanied by a continuous change in the properties of the extracellular matrix of tumor cells, called ‘oncomatrix’, as the tumor matures, from the development of the primary focus to the stage of metastasis. In this paper, the characteristics of the composition and properties of the extracellular matrix of tumor tissues are considered, as well as changes to the composition and properties of the matrix during the evolution of the tumor and metastasis. The extracellular matrix patterns of tumor tissues can be used as biomarkers of oncological diseases as well as potential targets for promising anti-tumor therapies.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anna Smirnova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Anna Yakimova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Alexander E. Kabakov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Daria Petrenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Victoria A. Shestakova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Obninsk Institute of Nuclear Power Engineering of the National Research Nuclear University MEPhI, 249034 Obninsk, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elena Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Vasiliy N. Stepanenko
- Department of Obstetrics and Gynecology, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ekaterina Evstratova
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Michael Krasheninnikov
- Scientific and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry Sosin
- Center for Strategic Planning and Management of Medical and Biological Health Risks of the FMBA of Russia, 119121 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Sergey Ivanov
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of Russian Federation, 249036 Obninsk, Russia
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
34
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
35
|
Berrell N, Monkman J, Donovan M, Blick T, O'Byrne K, Ladwa R, Tan CW, Kulasinghe A. Spatial resolution of the head and neck cancer tumor microenvironment to identify tumor and stromal features associated with therapy response. Immunol Cell Biol 2024; 102:830-846. [PMID: 39048134 DOI: 10.1111/imcb.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/29/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Head and neck cancer (HNC) is the seventh most common cancer globally, resulting in 440 000 deaths per year. While there have been advancements in chemoradiotherapy and surgery, relapse occurs in more than half of HNCs, and these patients have a median survival of 10 months and a 2-year survival of < 20%. Only a subset of patients displays durable benefits from immunotherapies in metastatic and recurrent HNC, making it critical to understand the tumor microenvironment (TME) underpinning therapy responses in HNC. To recognize biological differences within the TME that may be predictive of immunotherapy response, we applied cutting-edge geospatial whole-transcriptome profiling (NanoString GeoMx Digital Spatial Profiler) and spatial proteomics profiling (Akoya PhenoCycler-Fusion) on a tumor microarray consisting of 25 cores from 12 patients that included 4 immunotherapy-unresponsive (8 cores) and 2 immunotherapy-responsive patients (5 cores), as well as 6 immunotherapy naïve patients (12 cores). Through high-plex, regional-based transcriptomic mapping of the tumor and TME, pathways involved with the complement system and hypoxia were identified to be differentially expressed in patients who went on to experience a poor immunotherapy response. Single-cell, targeted proteomic analysis found that immune cell infiltration of the cancer cell mass and interactions of CD8 T cells with tumor and other immune cells were associated with positive immunotherapy response. The relative abundance of specific tumor phenotypes and their interactions with various immune cells was identified to be different between response groups. This study demonstrates how spatial transcriptomics and proteomics can resolve novel alterations in the TME of HNC that may contribute to therapy sensitivity and resistance.
Collapse
Affiliation(s)
- Naomi Berrell
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Wesley Research Institute, Level 8 East Wing, The Wesley Hospital, Auchenflower, QLD, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Meg Donovan
- Wesley Research Institute, Level 8 East Wing, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ken O'Byrne
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Rahul Ladwa
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Chin Wee Tan
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Wesley Research Institute, Level 8 East Wing, The Wesley Hospital, Auchenflower, QLD, Australia
| |
Collapse
|
36
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
37
|
Napiórkowska M, Otto-Ślusarczyk D, Kurpios-Piec D, Stukan I, Gryzik M, Wojda U. BM7, a derivative of benzofuran, effectively fights cancer by promoting cancer cell apoptosis and impacting IL-6 levels. Eur J Pharmacol 2024; 978:176751. [PMID: 38897442 DOI: 10.1016/j.ejphar.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Department of General Pathology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 1 Rybacka Street, 70-204, Szczecin, Poland
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
38
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
39
|
Kadi I, Şekerci G, Boulebd H, Zebbiche Z, Tekin S, Benarous K, Serseg T, Küçükbay F, Küçükbay H, Boumoud T. Exploring the anticancer potential of new 3-cyanopyridine derivatives bearing N-acylhydrazone motif: Synthesis, DFT calculations, cytotoxic evaluation, molecular modeling, and antioxidant properties. J Biochem Mol Toxicol 2024; 38:e23819. [PMID: 39180345 DOI: 10.1002/jbt.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
3-Cyanopyridine derivatives are known for exhibiting excellent anticancer activity due to their strong capability to inhibit various biological targets, including Pim-1 kinase, survivin, and tubulin polymerization. On the other hand, N-acylhydrazones (NAH) are known to be a very versatile motif in medicinal chemistry and drug design. Based on these data, we report in this paper, the synthesis of novel 3-cyanopyridines incorporating N-acyl hydrazine scaffold, the evaluation of their cytotoxicity on the breast (MCF-7) and ovarian (A-2780) cancer cell lines and their antioxidant properties. Excluding 4a and 4d, all tested molecules exhibited high cytotoxicity against A-2780, with IC50 values ranging from 1.14 to 1.76 µM. Conversely, only four molecules 3d, 4b, 4c, and 4d demonstrated cytotoxicity against MCF-7, with IC50 values ranging from 1.14 to 3.38 µM. On the other hand, all the tested molecules exhibited a moderate antioxidant capacity in both the DPPH and metal chelation assays. Docking and molecular dynamics studies revealed that 2d, 3d, and 4d are potential inhibitors of tubulin and the œstrogen receptor, which may explain their high cytotoxicity. These results are promising to study these newly synthesized 3-cyanopyridine-N-acylhydrazones in depth for use as potential anticancer candidates.
Collapse
Affiliation(s)
- Ibtissem Kadi
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| | - Güldeniz Şekerci
- Physiology Department, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkey
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| | - Zineddine Zebbiche
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| | - Suat Tekin
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
- Laboratoire des sciences appliquées et didactiques, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
| | - Fatümetüzzehra Küçükbay
- Basic Pharmaceutical Sciences Department, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Taoues Boumoud
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| |
Collapse
|
40
|
Dong W, Lu J, Li Y, Zeng J, Du X, Yu A, Zhao X, Chi F, Xi Z, Cao S. SIRT1: a novel regulator in colorectal cancer. Biomed Pharmacother 2024; 178:117176. [PMID: 39059350 DOI: 10.1016/j.biopha.2024.117176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The class-III histone deacetylase SIRT1 is the most extensively investigated sirtuin deacetylase. It is resistant to the broad deacetylase inhibitor trichostatin A and depends on oxidized nicotinamide adenine nucleotide (NAD+). SIRT1 plays a crucial role in the tumorigenesis of numerous types of cancers, including colorectal cancer (CRC). Accumulating evidence indicates that SIRT1 is a therapeutic target for CRC; however, the function and underlying mechanism of SIRT1 in CRC still need to be elucidated. Herein, we provide a detailed and updated review to illustrate that SIRT1 regulates many processes that go awry in CRC cells, such as apoptosis, autophagy, proliferation, migration, invasion, metastasis, oxidative stress, resistance to chemo-radio therapy, immune evasion, and metabolic reprogramming. Moreover, we closely link our review to the clinical practice of CRC treatment, summarizing the mechanisms and prospects of SIRT1 inhibitors in CRC therapy. SIRT1 inhibitors as monotherapy in CRC or in combination with chemotherapy, radiotherapy, and immune therapies are comprehensively discussed. From epigenetic regulation to its potential therapeutic effect, we hope to offer novel insights and a comprehensive understanding of SIRT1's role in CRC.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Jinjing Lu
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - You Li
- Nursing Department, Liaoning Jinqiu Hospital, Shenyang, Liaoning Province 110016, China
| | - Juan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xiaoyun Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Ao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Xuechan Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Shuo Cao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
41
|
Alboabdullah AKA, Goodarzi MT, Homayouni Tabrizi M. The Lawson-loaded β-cyclodextrin nanocarriers (LB-NCs) a novel targeted cancer cell in stomach and breast cancer as a drug delivery system. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6623-6631. [PMID: 38483577 DOI: 10.1007/s00210-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 09/25/2024]
Abstract
Applying nanotechnology to design drug delivery systems is a promising turning point in cancer treatment strategies. In the current study, Lawson, a nonpolar anticancer phytochemical, was entrapped into β-cyclodextrin polymer to evaluate its selective cytotoxicity in several types of human cancer cell lines including MCF-7, AGS, A549, and PC3. The Lawson-loaded β-cyclodextrin nanocarriers (LB-NCs) were produced by applying a high-energy ultrasound-mediated homogenization technique. The LB-NCs were characterized by applying dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), zeta potential, and field emission scanning electron microscopy (FESEM) analysis. Also, the selective cytotoxic impact of the LB-NCs was studied by conducting the MTT assay on human MCF-7, AGS, A549, and PC3 cancer cell lines. Finally, the type of cellular death was evaluated by measuring the cell cycle status and apoptotic gene expression profile of the treated MCF-7 cells by conducting flow cytometry and Q-PCR methods, respectively. The synthesized negatively charged (- 23.8 mV) nanoparticles (348.12 nm) exhibited apoptotic activity in the human breast MCF-7 cancer cells by upregulating the apoptotic gene expression profile (Caspase 3, 8, and 9). The LB-NCs exhibited a significant selective cytotoxic effect on the human cancer cell lines compared with the normal HUVEC cells. However, variable toxic intensities were detected depending on the cancer cell type. Selective cancer cell-depended anticancer activity of the produced LB-NCs has the potential to be considered their safe efficient targeted anticancer activity. However, studying the animal cancer models has to be conducted to verify their selective toxicity and clarify the cellular death mechanism.
Collapse
|
42
|
Paramasivam G, Palem VV, Meenakshy S, Suresh LK, Gangopadhyay M, Antherjanam S, Sundramoorthy AK. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf B Biointerfaces 2024; 241:114032. [PMID: 38905812 DOI: 10.1016/j.colsurfb.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Carbon nanomaterials are indispensable due to their unique properties of high electrical conductivity, mechanical strength and thermal stability, which makes them important nanomaterials in biomedical applications and waste management. Limitations of conventional nanomaterials, such as limited surface area, difficulty in fine tuning electrical or thermal properties and poor dispersibility, calls for the development of advanced nanomaterials to overcome such limitations. Commonly, carbon nanomaterials were synthesized by chemical vapor deposition (CVD), laser ablation or arc discharge methods. The advancement in these techniques yielded monodispersed carbon nanotubes (CNTs) and allows p-type and n-type doping to enhance its electrical and catalytic activities. The functionalized CNTs showed exceptional mechanical, electrical and thermal conductivity (3500-5000 W/mK) properties. On the other hand, carbon quantum dots (CQDs) exhibit strong photoluminescence properties with high quantum yield. Carbon nanohorns are another fascinating type of nanomaterial that exhibit a unique structure with high surface area and excellent adsorption properties. These carbon nanomaterials could improve waste management by adsorbing pollutants from water and soil, enabling precise environmental monitoring, while enhancing wastewater treatment and drug delivery systems. Herein, we have discussed the potentials of all these carbon nanomaterials in the context of innovative waste management solutions, fostering cleaner environments and healthier ecosystems for diverse biomedical applications such as biosensing, drug delivery, and environmental monitoring.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Vishnu Vardhan Palem
- Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, 641022 India
| | - Simi Meenakshy
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Lakshmi Krishnaa Suresh
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Moumita Gangopadhyay
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Santhy Antherjanam
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, No.162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
43
|
Hei Z, Yang S, Ouyang G, Hanna J, Lepoivre M, Huynh T, Aguinaga L, Cassinat B, Maslah N, Bourge M, Golinelli-Cohen MP, Guittet O, Vallières C, Vernis L, Fenaux P, Huang ME. Targeting the redox vulnerability of acute myeloid leukaemia cells with a combination of auranofin and vitamin C. Br J Haematol 2024; 205:1017-1030. [PMID: 39087522 DOI: 10.1111/bjh.19680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by complex molecular and cytogenetic abnormalities. Pro-oxidant cellular redox status is a common hallmark of AML cells, providing a rationale for redox-based anticancer strategy. We previously discovered that auranofin (AUF), initially used for the treatment of rheumatoid arthritis and repositioned for its anticancer activity, can synergize with a pharmacological concentration of vitamin C (VC) against breast cancer cell line models. In this study, we observed that this drug combination synergistically and efficiently killed cells of leukaemic cell lines established from different myeloid subtypes. In addition to an induced elevation of reactive oxygen species and ATP depletion, a rapid dephosphorylation of 4E-BP1 and p70S6K, together with a strong inhibition of protein synthesis were early events in response to AUF/VC treatment, suggesting their implication in AUF/VC-induced cytotoxicity. Importantly, a study on 22 primary AML specimens from various AML subtypes showed that AUF/VC combinations at pharmacologically achievable concentrations were effective to eradicate primary leukaemic CD34+ cells from the majority of these samples, while being less toxic to normal cord blood CD34+ cells. Our findings indicate that targeting the redox vulnerability of AML with AUF/VC combinations could present a potential anti-AML therapeutic approach.
Collapse
Affiliation(s)
- Zhiliang Hei
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Shujun Yang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jolimar Hanna
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Tony Huynh
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Lorea Aguinaga
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Bruno Cassinat
- INSERM UMR 1131, Université Paris Cité, Hôpital Saint-Louis, IRSL, Paris, France
| | - Nabih Maslah
- INSERM UMR 1131, Université Paris Cité, Hôpital Saint-Louis, IRSL, Paris, France
| | - Mickaël Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Pierre Fenaux
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris Cité, Paris, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| |
Collapse
|
44
|
Barciszewska AM, Belter A, Barciszewski JF, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Mechanistic Insights on Metformin and Arginine Implementation as Repurposed Drugs in Glioblastoma Treatment. Int J Mol Sci 2024; 25:9460. [PMID: 39273414 PMCID: PMC11394688 DOI: 10.3390/ijms25179460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
As the most common and aggressive primary malignant brain tumor, glioblastoma is still lacking a satisfactory curative approach. The standard management consisting of gross total resection followed by radiotherapy and chemotherapy with temozolomide only prolongs patients' life moderately. In recent years, many therapeutics have failed to give a breakthrough in GBM treatment. In the search for new treatment solutions, we became interested in the repurposing of existing medicines, which have established safety profiles. We focused on the possible implementation of well-known drugs, metformin, and arginine. Metformin is widely used in diabetes treatment, but arginine is mainly a cardiovascular protective drug. We evaluated the effects of metformin and arginine on total DNA methylation, as well as the oxidative stress evoked by treatment with those agents. In glioblastoma cell lines, a decrease in 5-methylcytosine contents was observed with increasing drug concentration. When combined with temozolomide, both guanidines parallelly increased DNA methylation and decreased 8-oxo-deoxyguanosine contents. These effects can be explained by specific interactions of the guanidine group with m5CpG dinucleotide. We showed that metformin and arginine act on the epigenetic level, influencing the foreground and potent DNA regulatory mechanisms. Therefore, they can be used separately or in combination with temozolomide, in various stages of disease, depending on desired treatment effects.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, University Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Jakub F Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | | |
Collapse
|
45
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
46
|
Li J, Lim JYS, Eu JQ, Chan AKMH, Goh BC, Wang L, Wong ALA. Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies. Antioxid Redox Signal 2024; 41:322-341. [PMID: 38445392 DOI: 10.1089/ars.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Significance: Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism, and are tightly controlled through homeostatic mechanisms to maintain intracellular redox, regulating growth and proliferation in healthy cells. However, ROS production is perturbed in cancers where abnormal accumulation of ROS leads to oxidative stress and genomic instability, triggering oncogenic signaling pathways on one hand, while increasing oxidative damage and triggering ROS-dependent death signaling on the other. Recent Advances: Our review illuminates how critical interactions between ROS and oncogenic signaling, the tumor microenvironment, and DNA damage response (DDR) pathways have led to interest in ROS modulation as a means of enhancing existing anticancer strategies and developing new therapeutic opportunities. Critical Issues: ROS equilibrium exists via a delicate balance of pro-oxidant and antioxidant species within cells. "Antioxidant" approaches have been explored mainly in the form of chemoprevention, but there is insufficient evidence to advocate its routine application. More progress has been made via the "pro-oxidant" approach of targeting cancer vulnerabilities and inducing oxidative stress. Various therapeutic modalities have employed this approach, including direct ROS-inducing agents, chemotherapy, targeted therapies, DDR therapies, radiotherapy, and immunotherapy. Finally, emerging delivery systems such as "nanosensitizers" as radiotherapy enhancers are currently in development. Future Directions: While approaches designed to induce ROS have shown considerable promise in selectively targeting cancer cells and dealing with resistance to conventional therapies, most are still in early phases of development and challenges remain. Further research should endeavor to refine treatment strategies, optimize drug combinations, and identify predictive biomarkers of ROS-based cancer therapies.
Collapse
Affiliation(s)
- Jiaqi Li
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
47
|
Samy EM, Radwan RR, Mosallam FM, Mohamed HA. Ameliorative effect of nano-pregabalin in gastrocnemius muscle of gamma irradiated rats with an experimental model of fibromyalgia: Crosstalk of Sirt3, IL-1β and PARP1 pathways. Toxicol Appl Pharmacol 2024; 490:117037. [PMID: 39004143 DOI: 10.1016/j.taap.2024.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Fibromyalgia (FM) is a complex syndrome with somatic symptoms connected to the operational state of muscles. Although radiotherapy is a cornerstone in cancer treatment, it is implicated in the aggravation of FM. Lately, formulation of medicines in nano-forms become of great prominence due to their prospective applications in medicine. So, this study aimed to assess possible therapeutic benefits of formulating pregabalin in a nono-form (N-PG) for managing FM during exposure to gamma radiation. METHODS Gamma rays administered in fractionated doses (2 Gy/day) to male rats after one hour of s.c. injection of reserpine (1 mL/kg per day) to induce FM, then treated with single daily dose of (30 mg/kg, p.o.) PG or N-PG for ten successive days. Rats were subjected to behavioral tests, then sacrificed to obtain serum and gastrocnemius muscles. RESULTS N-PG significantly antagonized reserpine-induced FM as proved by; the immobility and performance times in forced swim and rotarod performance tests, respectively were restored near to the normal time, serum IL-8 and MCP-1 chemokines were nearby the normal levels, mitigated oxidative stress through increasing total thiol, Sirt3, CAT enzyme and decreasing COX-1, inhibition of inflammation via IL-1β and MIF significant reduction, it possessed anti-apoptotic effect verified by decreasing PARP-1 and increasing Bcl-XL, gastrocnemius muscles had minimal fibrosis levels as seen after Masson trichrome staining. Histopathological results were coincidence with biochemical inspection. CONCLUSION This study identifies N-PG as a novel drug that could be of a value in the management of FM particularly in cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Esraa M Samy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt.
| | - Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 9621, 11787 Nasr City, Cairo, Egypt
| |
Collapse
|
48
|
Hou Y, Wang H, Wu J, Guo H, Chen X. Dissecting the pleiotropic roles of reactive oxygen species (ROS) in lung cancer: From carcinogenesis toward therapy. Med Res Rev 2024; 44:1566-1595. [PMID: 38284170 DOI: 10.1002/med.22018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Lung cancer is a major cause of morbidity and mortality. The specific pulmonary structure to directly connect with ambient air makes it more susceptible to damage from airborne toxins. External oxidative stimuli and endogenous reactive oxygen species (ROS) play a crucial role in promoting lung carcinogenesis and development. The biological properties of higher ROS levels in tumor cells than in normal cells make them more sensitive and vulnerable to ROS injury. Therefore, the strategy of targeting ROS has been proposed for cancer therapy for decades. However, it is embarrassing that countless attempts at ROS-based therapies have had very limited success, and no FDA approval in the anticancer list was mechanistically based on ROS manipulation. Even compared with the untargetable proteins, such as transcription factors, ROS are more difficult to be targeted due to their chemical properties. Thus, the pleiotropic roles of ROS provide therapeutic potential for anticancer drug discovery, while a better dissection of the mechanistic action and signaling pathways is a prerequisite for future breakthroughs. This review discusses the critical roles of ROS in cancer carcinogenesis, ROS-inspired signaling pathways, and ROS-based treatment, exemplified by lung cancer. In particular, an eight considerations rule is proposed for ROS-targeting strategies and drug design and development.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Department of Pharmaceutical Sciences, University of Macau, Taipa, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, China
| |
Collapse
|
49
|
Wu G, Gu M, Zhu J, Gu R, Yang B, Ji S, Zhao Y, Gu K. Prognostic prediction of oxidative stress related hematological biomarkers in locally advanced cervical cancer patients undergoing chemoradiotherapy. Biomarkers 2024; 29:255-264. [PMID: 38767430 DOI: 10.1080/1354750x.2024.2358300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE This investigation aimed to develop and validate a novel oxidative stress score for prognostic prediction in locally advanced cervical cancer (LACC) patients receiving chemoradiotherapy. METHODS A total of 301 LACC patients were enrolled and randomly divided into a training and a validation set. The association between oxidative stress parameters and prognosis was analyzed for oxidative stress score (OSS) establishment. A Cox regression model was conducted for overall survival (OS) and progression-free survival (PFS). A nomogram prediction model was developed using independent prognostic factors from the training set and validated in the validation set. RESULTS A novel OSS was established with four oxidative stress parameters, including albumin, total bilirubin, blood urea nitrogen, and lactate dehydrogenase. Multivariate regression analysis identified OSS as an independent prognostic factor for OS (p = 0.001) and PFS (p < 0.001). A predictive nomogram based on the OSS was established and validated. The C-indexes of the nomogram in the training set were 0.772 for OS and 0.781 for PFS, while in the validation set the C-indexes were 0.642 for OS and 0.621 for PFS. CONCLUSION This study confirmed that preoperative OSS could serve as a useful independent prognostic factor in LACC patients who received CCRT.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Mengxuan Gu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiahao Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ruike Gu
- Department of Rehabilitation Medical, Suzhou Rehabilitation Hospital (Suzhou Municipal Hospital Rehabilitation Medical Center), Suzhou, Jiangsu, P.R. China
| | - Bo Yang
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
50
|
Li Y, Liu X, Lv W, Wang X, Du Z, Liu X, Meng F, Jin S, Wen S, Bai R, Liu N, Tang R. Metformin use correlated with lower risk of cardiometabolic diseases and related mortality among US cancer survivors: evidence from a nationally representative cohort study. BMC Med 2024; 22:269. [PMID: 38926749 PMCID: PMC11210152 DOI: 10.1186/s12916-024-03484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND In the USA, the prolonged effective survival of cancer population has brought significant attention to the rising risk of cardiometabolic morbidity and mortality in this population. This heightened risk underscores the urgent need for research into effective pharmacological interventions for cancer survivors. Notably, metformin, a well-known metabolic regulator with pleiotropic effects, has shown protective effects against cardiometabolic disorders in diabetic individuals. Despite these promising indications, evidence supporting its efficacy in improving cardiometabolic outcomes in cancer survivors remains scarce. METHODS A prospective cohort was established using a nationally representative sample of cancer survivors enrolled in the US National Health and Nutrition Examination Survey (NHANES), spanning 2003 to 2018. Outcomes were derived from patient interviews, physical examinations, and public-access linked mortality archives up to 2019. The Oxidative Balance Score was utilized to assess participants' levels of oxidative stress. To evaluate the correlations between metformin use and the risk of cardiometabolic diseases and related mortality, survival analysis of cardiometabolic mortality was performed by Cox proportional hazards model, and cross-sectional analysis of cardiometabolic diseases outcomes was performed using logistic regression models. Interaction analyses were conducted to explore the specific pharmacological mechanism of metformin. RESULTS Among 3995 cancer survivors (weighted population, 21,671,061, weighted mean [SE] age, 62.62 [0.33] years; 2119 [53.04%] females; 2727 [68.26%] Non-Hispanic White individuals), 448 reported metformin usage. During the follow-up period of up to 17 years (median, 6.42 years), there were 1233 recorded deaths, including 481 deaths from cardiometabolic causes. Multivariable models indicated that metformin use was associated with a lower risk of all-cause (hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.47-0.81) and cardiometabolic (HR, 0.65; 95% CI, 0.44-0.97) mortality compared with metformin nonusers. Metformin use was also correlated with a lower risk of total cardiovascular disease (odds ratio [OR], 0.41; 95% CI, 0.28-0.59), stroke (OR, 0.44; 95% CI, 0.26-0.74), hypertension (OR, 0.27; 95% CI, 0.14-0.52), and coronary heart disease (OR, 0.41; 95% CI, 0.21-0.78). The observed inverse associations were consistent across subgroup analyses in four specific cancer populations identified as cardiometabolic high-risk groups. Interaction analyses suggested that metformin use as compared to non-use may counter-balance oxidative stress. CONCLUSIONS In this cohort study involving a nationally representative population of US cancer survivors, metformin use was significantly correlated with a lower risk of cardiometabolic diseases, all-cause mortality, and cardiometabolic mortality.
Collapse
Affiliation(s)
- Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Xiaoying Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Wenhe Lv
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Xuesi Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Zhuohang Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Xinmeng Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Fanchao Meng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Shuqi Jin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China
| | - Songnan Wen
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Rong Bai
- Banner University Medical Center Phoenix, College of Medicine University of Arizona, Phoenix, AZ, 85123, USA.
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China.
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China.
| | - Ribo Tang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China.
- National Clinical Research Center for Cardiovascular Diseases, Beijing, 100012, China.
| |
Collapse
|