1
|
Paustenbach D, McCauley K, Siracusa J, Smallets S, Brew D, Stevens M, Deckard B, Hua M. United States Environmental Protection Agency's Perfluorooctanoic Acid, Perfluorooctane Sulfonic Acid, and Related Per- and Polyfluoroalkyl Substances 2024 Drinking Water Maximum Contaminant Level: Part 2 - Fifteen Misconceptions About the Health Hazards. Crit Rev Toxicol 2025; 55:368-415. [PMID: 40391660 DOI: 10.1080/10408444.2024.2446453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 05/22/2025]
Abstract
This paper examines widely held beliefs about the six per- and polyfluoroalkyl substances (PFAS) addressed in the final U.S. Environmental Protection Agency's (EPA) rule on PFAS in drinking water (e.g., the Maximum Contaminant Levels - MCLs). Based on our understanding of the scientific literature and the comments submitted by stakeholders regarding the EPA's regulation that was promulgated in April 2024, we identified 15 misconceptions that had a weak scientific foundation. These are now memoralized in the MCLs for the six PFAS but remain debated due to ongoing ambiguous research findings. Many critics of the MCLs found the EPA's systematic review of the published relevant information, particularly the toxicology of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), to be inadequate. The following seven views are among the most important. First, the EPA asserted that the toxicology of these six chemicals was poorly understood and lacked sufficient data to determine a safe daily intake level for chronic health effects; nonetheless, they promulgated what may be the costliest environmental regulation to date. Notably, adverse effects remain difficult to demonstrate in occupationally exposed individuals even at blood concentrations 50-100 times higher than current background PFAS levels. Second, the Agency indicated that the epidemiology data showed that exposure to PFOA and PFOS caused kidney and potentially other cancers, yet the data were equivocal and do not support that assertion. Third, it was stated that specific non-cancer effects, such as heart disease, would be prevented under the promulgated rule; however, the studies that they relied upon do not show an increased incidence of heart disease even in highly exposed populations. Fourth, the Agency relied on animal data to support its views on the likely toxic effects in humans, despite ample toxicology data that animals, particularly rodents, are poor predictors of the human response to PFAS exposures. Fifth, the EPA predicted a reduction in healthcare expenditures that would offset much of the cost of complying with the MCL, but, they did not have adequate data to support this prediction. Sixth, the EPA suggested that these six PFAS act through a shared mechanism of action (i.e., PPARα pathway induction); however, data indicate that PPARα induction in humans may be 80% less than what is observed in rodents. Also, induction of the PPARα pathway is not a cause of systemic disease. Seventh, the Agency failed to disclose that achieving the new MCL would yield negligible reductions in blood PFAS levels even among highly exposed populations, given drinking water accounts for only 20% or less of total PFAS exposure. The survey that could answer that question, the EPA's fifth Unregulated Contaminant Monitoring Rule, was only 25% complete at the time the MCL was promulgated. Overall, our analysis concluded that while the EPA's intent to regulate these chemicals due to their environmental presence was necessary, the derivation of the MCLs and the alleged health effects was based on the application of the precautionary principle rather than robust scientific evidence.
Collapse
Affiliation(s)
| | | | | | | | - David Brew
- Paustenbach and Associates, Jackson, WY, USA
| | | | | | - My Hua
- Paustenbach and Associates, Glendale, CA, USA
| |
Collapse
|
2
|
Li J, Bian X, Zhang C, Chen Y, Huang S, Zhao S, Li Y. Identifying prognostic biomarkers and immune interactions in ovarian cancer associated with perfluorooctanoic acid exposure: Insights from comparative toxicogenomics and molecular docking studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117831. [PMID: 39955862 DOI: 10.1016/j.ecoenv.2025.117831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) exposure has been implicated in various health issues. This study aims to identify common genes associated with PFOA exposure and ovarian cancer, elucidate their biological functions, and explore their prognostic significance. METHODS We identified common genes linked to PFOA exposure and ovarian cancer using the Comparative Toxicogenomics Database. Protein-protein interaction and functional enrichment analyses were performed via Metascape. A PFOA-related risk model was developed using TCGA data and LASSO regression. Survival and expression analyses were conducted, and a prognostic nomogram was created. Tumor immune microenvironment interactions were investigated using ESTIMATE and ssGSEA methods. Molecular docking studies assessed the binding affinities between PFOA and target proteins. RESULTS Utilizing the Comparative Toxicogenomics Database, we identified 229 common genes linked to both PFOA exposure and ovarian cancer. A comprehensive protein-protein interaction (PPI) network analysis revealed distinct functional modules. Enrichment analysis indicated significant involvement of these genes in pathways like the PI3K-Akt signaling pathway and focal adhesion. Lasso regression identified seven key prognostic genes (ERBB2, CCNH, PDE2A, CXCL11, TIAM1, SLC9A1, and EPHA2), with survival analysis demonstrating that PFOA-related high risk group exhibited significantly worse overall survival. Expression analysis showed the dysregulation of key prognostic genes in tumor tissues, while immune correlation analysis indicated significant associations with the tumor microenvironment. Molecular docking and molecular dynamics simulations revealed strong binding affinities between PFOA and the PDE2A. CONCLUSION Overall, this research contributes to a deeper understanding of the health risks associated with PFOA exposure and highlights the importance of continued monitoring and regulation of environmental pollutants to safeguard public health.
Collapse
Affiliation(s)
- Jianing Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Bian
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China
| | - Caixia Zhang
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yirong Chen
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shijia Huang
- Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuli Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yanchuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Central Laboratory of Nanjing Medical University Affiliated Nanjing Hospital, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Drury NL, Prueitt RL, Beck BD. Commentary: Understanding IARC's PFOA and PFOS carcinogenicity assessments. Regul Toxicol Pharmacol 2024; 154:105726. [PMID: 39433235 DOI: 10.1016/j.yrtph.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
In November 2023, the International Agency for Research on Cancer (IARC) classified PFOA as "carcinogenic to humans" (Group 1) and PFOS as "possibly carcinogenic to humans" (Group 2B). We evaluated these classifications, considering the epidemiology, experimental animal, and mechanistic evidence. It is our opinion that the IARC Working Group overstated the available evidence for the carcinogenicity of PFOA and PFOS. Epidemiology studies have shown weak and inconsistent associations across studies. Studies reporting increased incidences of tumors in experimental animals exposed to PFOA or PFOS had statistically significant results that were driven by the presence of benign adenomas. The IARC Working Group used the key characteristics of carcinogens (KCCs, which comprise 10 chemical and/or biological properties of known human carcinogens) approach to upgrade the carcinogenicity classifications for PFOA and PFOS from initially lower classifications that were based on the strength of the epidemiology and experimental animal evidence. However, this is not a robust assessment of mechanistic evidence, as it fails to consider the quality, external validity, and relevance of the evidence. Rather than use the KCCs as a checklist of potential carcinogenic mechanisms, IARC should use a rigorous method to evaluate the plausibility and human relevance of mechanistic evidence.
Collapse
|
5
|
Pesonen M, Vähäkangas K. Involvement of per- and polyfluoroalkyl compounds in tumor development. Arch Toxicol 2024; 98:1241-1252. [PMID: 38478087 PMCID: PMC10965717 DOI: 10.1007/s00204-024-03685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic persistent chemicals, which are used in many industrial and commercial applications. Hundreds of different PFAS have been identified in the environment and they are commonly found also in human blood. Due to the chemical stability and extensive use, PFAS pose a risk for human health and wildlife. Mounting evidence indicates that PFAS-exposure adversely affects many organs including liver, kidney, and reproductive tissues and induces tumors in laboratory rodents. Epidemiological studies show association between PFAS-exposure and some tumors also in humans. Effects of PFAS-exposure are complex and obviously do not depend only on the concentration and the structure of PFAS, but also on age and sex of the exposed individuals. It has been difficult to show a causal link between PFAS-exposure and tumors. Moreover, molecular mechanisms of the PFAS effects in different tissues are poorly understood. PFAS are not directly mutagenic and they do not induce formation of DNA binding metabolites, and thus are assumed to act more through non-genotoxic mechanisms. In this review, we discuss the involvement of PFAS-compounds in tumor development in tissues where PFAS exposure has been associated with cancer in epidemiological and animal studies (liver, kidney, testicle and breast). We will focus on molecular pathways and mechanisms related to tumor formation following PFAS-exposure.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
6
|
Boyd RI, Shokry D, Fazal Z, Rennels BC, Freemantle SJ, La Frano MR, Prins GS, Madak Erdogan Z, Irudayaraj J, Singh R, Spinella MJ. Perfluorooctanesulfonic Acid Alters Pro-Cancer Phenotypes and Metabolic and Transcriptional Signatures in Testicular Germ Cell Tumors. TOXICS 2024; 12:232. [PMID: 38668455 PMCID: PMC11054796 DOI: 10.3390/toxics12040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The potential effects of poly- and perfluoroalkyl substances (PFAS) are a recently emergent human and environmental health concern. There is a consistent link between PFAS exposure and cancer, but the mechanisms are poorly understood. Although epidemiological evidence supporting PFAS exposure and cancer in general is conflicting, there is relatively strong evidence linking PFAS and testicular germ cell tumors (TGCTs). However, no mechanistic studies have been performed to date concerning PFAS and TGCTs. In this report, the effects of the legacy PFAS perfluorooctanesulfonic acid (PFOS) and the newer "clean energy" PFAS lithium bis(trifluoromethylsulfonyl)imide (LiTFSi, called HQ-115), on the tumorigenicity of TGCTs in mice, TGCT cell survival, and metabolite production, as well as gene regulation were investigated. In vitro, the proliferation and survival of both chemo-sensitive and -resistant TGCT cells were minimally affected by a wide range of PFOS and HQ-115 concentrations. However, both chemicals promoted the growth of TGCT cells in mouse xenografts at doses consistent with human exposure but induced minimal acute toxicity, as assessed by total body, kidney, and testis weight. PFOS, but not HQ-115, increased liver weight. Transcriptomic alterations of PFOS-exposed normal mouse testes were dominated by cancer-related pathways and gene expression alterations associated with the H3K27me3 polycomb pathway and DNA methylation, epigenetic pathways that were previously showed to be critical for the survival of TGCT cells after cisplatin-based chemotherapy. Similar patterns of PFOS-mediated gene expression occurred in PFOS-exposed cells in vitro. Metabolomic studies revealed that PFOS also altered metabolites associated with steroid biosynthesis and fatty acid metabolism in TGCT cells, consistent with the proposed ability of PFAS to mimic fatty acid-based ligands controlling lipid metabolism and the proposed role of PFAS as endocrine disrupters. Our data, is the first cell and animal based study on PFAS in TGCTs, support a pro-tumorigenic effect of PFAS on TGCT biology and suggests epigenetic, metabolic, and endocrine disruption as potential mechanisms of action that are consistent with the non-mutagenic nature of the PFAS class.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Brayden C. Rennels
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Sarah J. Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Michael R. La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine and Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Li X, Wang Z, Wu Q, Klaunig JE. Evaluating the mode of action of perfluorooctanoic acid-induced liver tumors in male Sprague-Dawley rats using a toxicogenomic approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:189-213. [PMID: 38494990 DOI: 10.1080/26896583.2024.2327969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) underlying perfluorooctanoic acid (PFOA)-induced liver tumors in rats is proposed to involve peroxisome proliferator-activated receptor α (PPARα) agonism. Despite clear PPARα activation evidence in rodent livers, the mechanisms driving cell growth remain elusive. Herein, we used dose-responsive apical endpoints and transcriptomic data to examine the proposed MOA. Male Sprague-Dawley rats were treated with 0, 1, 5, and 15 mg/kg PFOA for 7, 14, and 28 days via oral gavage. We showed PFOA induced hepatomegaly along with hepatocellular hypertrophy in rats. PPARα was activated in a dose-dependent manner. Toxicogenomic analysis revealed six early biomarkers (Cyp4a1, Nr1d1, Acot1, Acot2, Ehhadh, and Vnn1) in response to PPARα activation. A transient rise in hepatocellular DNA synthesis was demonstrated while Ki-67 labeling index showed no change. Transcriptomic analysis indicated no significant enrichment in pathways related to DNA synthesis, apoptosis, or the cell cycle. Key cyclins including Ccnd1, Ccnb1, Ccna2, and Ccne2 were dose-dependently suppressed by PFOA. Oxidative stress and the nuclear factor-κB signaling pathway were unaffected. Overall, evidence for PFOA-induced hepatocellular proliferation was transient within the studied timeframe. Our findings underscore the importance of considering inter-species differences and chemical-specific effects when evaluating the carcinogenic risk of PFOA in humans.
Collapse
Affiliation(s)
- Xilin Li
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - Zemin Wang
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - Qiangen Wu
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
8
|
Racz L, Gauthier A, Bare J, Heintz M, Feifarek D, Kennedy S, Panko J. Assessment of perfluorocarboxylic acids in fluorinated high-density polyethylene containers and estimation of potential non-cancer risks associated with anticipated use scenarios. Regul Toxicol Pharmacol 2024; 147:105560. [PMID: 38182014 DOI: 10.1016/j.yrtph.2024.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
High density polyethylene (HDPE) containers are fluorinated to impart barrier properties that prevent permeation of liquid products filled in the container. The process of fluorination may result in the unintentional formation of certain per- and polyfluoroalkyl substances (PFAS), specifically perfluoroalkyl carboxylic acids (PFCAs), as impurities. This study measured the amounts of PFCAs that may be present in the fluorinated HDPE containers, which could migrate into products stored in these containers. Migration studies were also conducted using water and mineral spirits to estimate the amount of PFCAs that might be found in the products stored in these containers. The migration results were used to conservatively model potential PFCA exposures from use of six product types: indoor-sprayed products, floor products, hand-applied products, manually-sprayed pesticides, hose-end sprayed products, and agricultural (industrial) pesticides. The potential that such uses could result in a non-cancer hazard was assessed by comparing the modeled exposures to both applicable human non-cancer toxicity values and environmental screening levels. Environmental releases were also compared to aquatic and terrestrial predicted no-effect concentrations (PNECs). The results of these analyses indicated no unreasonable non-cancer risk to humans, aquatic species, and terrestrial species from PFCAs in products stored in fluorinated HDPE containers.
Collapse
Affiliation(s)
- LeeAnn Racz
- ToxStrategies LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA.
| | - Alison Gauthier
- ToxStrategies LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA
| | - Jennifer Bare
- ToxStrategies LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA
| | - Melissa Heintz
- ToxStrategies LLC, 31 College Place, Suite B118, Asheville, NC, 28801, USA
| | - David Feifarek
- ToxStrategies LLC, 23501 Cinco Ranch Blvd, Suite B226, Katy, TX, 77494, USA
| | - Stephanie Kennedy
- ToxStrategies LLC, 31 College Place, Suite B118, Asheville, NC, 28801, USA
| | - Julie Panko
- ToxStrategies LLC, 322 North Shore Drive, Suite 200 - #186, Pittsburgh, PA, 15212, USA
| |
Collapse
|
9
|
Robarts DR, Dai J, Lau C, Apte U, Corton JC. Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice. TOXICS 2023; 11:963. [PMID: 38133364 PMCID: PMC10748317 DOI: 10.3390/toxics11120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Christopher Lau
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
10
|
Wei Y, He H, Han T, Wang B, Ji P, Wu X, Qian J, Shao P. Environmental explanation of prostate cancer progression based on the comprehensive analysis of perfluorinated compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115267. [PMID: 37499384 DOI: 10.1016/j.ecoenv.2023.115267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Perfluorinated compounds (PFCs) are man-made chemicals used in the manufacture of many products with water and dirt repellent properties. Many diseases have been proved to be related to the exposure of PFCs, including breast fibroadenoma, hepatocellular carcinoma, breast cancer and leydig cell adenoma. However, whether the PFCs promote the progression of prostate cancer remains unclear. In this work, through comprehensive bioinformatics analysis, we discovered the correlation between the prostate cancer and five PFCs using Comparative Toxicogenomics Database (CTD), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, further analysis showed that several PFCs-related genes demonstrated strong prognostic value for prostate cancer patients. The survival analysis and receiver operating characteristic (ROC) curves revealed that PFCs-related genes based prognostic model held great predictive value for the prognosis of prostate cancer, which could potentially serve as an independent risk factor in the future. In vitro experiments verified the promotive role of perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the growth of prostate cancer cells. This study provided novel insights into understanding the role of PFCs in prostate cancer and brought attention to the environmental association with cancer risks and progression.
Collapse
Affiliation(s)
- Yuang Wei
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haibing He
- Urology Department, Maanshan General Hospital of Ranger-Duree Healthcare, China
| | - Tian Han
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bao Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peng Ji
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangzheng Wu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Qian
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Pengfei Shao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Mandour DA, Morsy MM, Fawzy A, Mohamed NM, Ahmad MM. Structural and molecular changes in the rat myocardium following perfluoroctane sulfonate (PFOS) exposure are mitigated by quercetin via modulating HSP 70 and SERCA 2. J Mol Histol 2023; 54:283-296. [PMID: 37365388 PMCID: PMC10412685 DOI: 10.1007/s10735-023-10134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a man-made fluorinated compound employed in a variety of industrial and civilian applications. Due to its long elimination half-life and promotion of oxidative stress and inflammation, it is one of the most abundant organic contaminants. The present study was designed to determine the cytotoxic effect of PFOS on adult male rat cardiac tissue and to assess the cardioprotective role of the flavonoid quercetin (Que), which possesses antioxidant, anti-inflammatory, and anti-apoptotic properties. Twenty-four adult male Sprague-Dawley rats were randomly divided into four equal groups: Group I (Control). Group II (Que) received Que (75 mg/kg/day for 4 weeks) by oral gavage. Group III (PFOS group): supplemented orally with PFOS (20 mg/kg/day for 4 weeks) and Group IV (PF OS/Que). The rat heart was processed for histological, immunohistochemical, and gene expression studies. The PFOS group showed histological alterations in the myocardium that were partially reversed by the administration of Que. The inflammatory biomarkers (TNF, IL-6, and IL-1), lipid profile, TSH, MDA, and serum cardiac enzymes (LDH and CK-MB) were all altered. These findings collectively suggest that PFOS had adverse effects on the cardiac muscle structure, and these effects were alleviated by quercetin, which is a promising cardioprotective flavonoid.
Collapse
Affiliation(s)
- Dalia A. Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal M. Morsy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Fawzy
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Marwa M. Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Qu W, Yan Y, Gerrish K, Scappini E, Tucker CJ, Dixon D, Merrick BA. Chronic PFOA exposure in vitro causes acquisition of multiple tumor cell characteristics in rat liver cells. Toxicol In Vitro 2023; 89:105577. [PMID: 36849026 PMCID: PMC10427995 DOI: 10.1016/j.tiv.2023.105577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is tumorigenic in rats and mice and potentially tumorigenic in humans. Here, we studied long-term PFOA exposure with an in vitro transformation model using the rat liver epithelial cell, TRL 1215. Cells were cultured in 10 μM (T10), 50 μM (T50) and 100 μM (T100) PFOA for 38 weeks and compared to passage-matched control cells. T100 cells showed morphological changes, loss of cell contact inhibition, formation of multinucleated giant and spindle-shaped cells. T10, T50, and T100 cells showed increased LC50 values 20%, 29% to 35% above control with acute PFOA treatment, indicating a resistance to PFOA toxicity. PFOA-treated cells showed increases in Matrix metalloproteinase-9 secretion, cell migration, and developed more and larger colonies in soft agar. Microarray data showed Myc pathway activation at T50 and T100, associating Myc upregulation with PFOA-induced morphological transformation. Western blot confirmed that PFOA produced significant increases in c-MYC protein expression in a time- and concentration-related manner. Tumor invasion indicators MMP-2 and MMP-9, cell cycle regulator cyclin D1, and oxidative stress protein GST were all significantly overexpressed in T100 cells. Taken together, chronic in vitro PFOA exposure produced multiple cell characteristics of malignant progression and differential gene expression changes suggestive of rat liver cell transformation.
Collapse
Affiliation(s)
- Wei Qu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Yitang Yan
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Kevin Gerrish
- Molecular Genomics Core Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erica Scappini
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, NIEHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Abudayyak M, Karaman EF, Guler ZR, Ozden S. Effects of perfluorooctanoic acid on endoplasmic reticulum stress and lipid metabolism-related genes in human pancreatic cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104083. [PMID: 36804611 DOI: 10.1016/j.etap.2023.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) is environmentally persistent and has been classified by The International Cancer Research Agency (IARC) as a possible human pancreatic carcinogen. In this study, the epigenetic alteration, the changes in the expression levels of endoplasmic reticulum stress-related and metabolism-related genes, as well as DNA methyltransferase expression were investigated using RT-PCR and ELISA assays. PFOA induced a significant increase in the methylation ratio (5-mC%), impacted DNA methylation maintenance gene expression and decreased lipid metabolism-related genes except for PPARγ (≥ 13-fold increase). While PFOA induced the expression of ATF4 (≥ 5.41-folds), CHOP (≥ 5.41-folds) genes, it inhibited the expression of ATF6 (≥ 67.2%), GRP78 (≥ 64.3%), Elf2α (≥ 95.8%), IRE1 (≥ 95.5%), and PERK (≥ 91.7%) genes. It is thought that epigenetic mechanisms together with disruption in the glucose-lipid metabolism and changes in endoplasmic reticulum stress-related genes may play a key role in PFOA-induced pancreatic toxicity.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
14
|
Effect of pretreatment with a synbiotic on Perfluorooctanoic acid-induced liver damage after sub-acute oral exposure in C57BL/6J mice. Toxicol Appl Pharmacol 2023; 459:116360. [PMID: 36572227 DOI: 10.1016/j.taap.2022.116360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA(is used in several industrial applications, and serves as a surfactant. It is persistent in the environment and is resistant to typical environmental degradation processes. Exposure to this contaminant has been shown to reduce the normal gastrointestinal flora, especially Lactobacillus and Bifidobacterium. Since exposure to this contaminant still occurs and it has been suggested that gut microbiota imbalance might accelerate the progression of liver disorders, we aimed to study the effect of synbiotics pretreatment on PFOA-induced hepatotoxicity. METHOD AND MATERIALS Herein, C57BL/6 J mice were administered 1, 5, 10, and 20 mg PFOA per kg body weight orally by gavage once daily up to 28 days. Another group was pretreated with synbiotic 4 h before receiving 10 mg PFOA/kg. Also, a control group received 2% Tween 80 orally as a vehicle of PFOA during the study. Plasma ALT, AST, TNF-α, HGF, IL-6, and IFN-γ were measured every week. In addition, a liver histopathological assessment was performed at the end of exposure studies. RESULTS It was observed that exposure to PFOA can trigger inflammatory markers such as TNF-α, HGF, IL-6, and IFN-γ as well as hepatic enzymes AST and ALT in comparison with the control group. Synbiotic pretreatment prevented or statistically significant reduced the release of the inflammatory markers and the liver enzymes compared to PFOA only treated group. CONCLUSION It could be inferred that having intact gut flora or even using synbiotic complements containing Lactobacillus, Bifidobacterium, and Streptococcus plus fructooligosaccharides as prebiotic is an appropriate strategy to reduce the negative effects of PFOA exposure.
Collapse
|
15
|
Feng X, Long G, Zeng G, Zhang Q, Song B, Wu KH. Association of increased risk of cardiovascular diseases with higher levels of perfluoroalkylated substances in the serum of adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89081-89092. [PMID: 35849234 DOI: 10.1007/s11356-022-22021-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Evidence showing the association of perfluoroalkylated substance (PFAS) exposure with CVD risk is scarce. The objective of this study was to explore the relationships of CVD risk with mixed or individual serum PFAS levels among general adults. We analyzed combined data of 7904 adults who participated in the National Health and Nutrition Examination Survey 2003-2012 with a Bayesian kernel machine regression (BKMR) to examine the relationships of individual or mixed PFAS exposure with total CVD risk. A logistic regression model and restricted cubic spline (RCS) regression with multivariate adjustment were conducted to assess the relationships between individual serum PFAS levels and the risk of total CVD or its subtypes. A mediation model was applied to investigate how C-reactive protein (CRP) levels mediate the strength of the association. The BKMR results indicated a positive relationship between mixed PFAS exposure and total CVD risk; among the PFASs, perfluorooctane sulfonic acid (PFOS) had the highest posterior inclusion probability. As determined by logistic regression, a log-unit change in PFOS levels was positively related to a higher risk of heart attack and stroke in males (both P < 0.05). A nonlinear relationship was found between PFOS levels and stroke risk (P for nonlinearity = 0.04), as illustrated in the RCS plot. The mediation analysis showed that CRP levels mediated 8% and 1.2% of the relationship between serum PFOS and PFNA levels, respectively, and the prevalence of stroke. A significant relationship between higher serum PFAS concentrations and an increased risk of CVD was observed, mainly in males.
Collapse
Affiliation(s)
- Xinghui Feng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Binqian Song
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
16
|
Kasten-Jolly J, Lawrence DA. Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) modify in vitro mitogen- and antigen-induced human peripheral blood mononuclear cell (PBMC) responses. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:715-737. [PMID: 35611390 DOI: 10.1080/15287394.2022.2075816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Environmental contaminants perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are present in human serum at the highest concentration among all per- and polyfluoroalkyl substances (PFAS). Serum concentrations as high as 500 ng and 3000 ng PFOA/ml have been detected in individuals living near contamination sites and those occupationally exposed, respectively. Animal and human studies indicated that PFOA and PFOS at these serum concentrations perturb the immune system. The aim of this study was to examine the effects of in vitro exposure of human peripheral blood mononuclear cells (PBMC) to 1, 10, or 100 µM PFOA or PFOS in a medium with serum (RPMI-1640 + 5% human AB serum) on the measurement of proliferation, T cell activation, generation of memory T cells, and cytokine production/secretion. In addition, these immune system parameters were assessed for PBMC in a serum-free medium (OpSFM), which was stimulated with phytohemagglutinin (PHA) (2.5 µg/ml) or influenza vaccine antigen (0.625 µg/ml Flu Ag). PFOS decreased proliferation stimulated by PHA or Flu Ag. With Flu Ag stimulation, PFOA and PFOS inhibited the generation of memory T cells in a concentration-dependent manner. In OpSFM, PFOA and PFOS produced no marked change in proliferation and no inhibition of T cell activation. Cytokines measured in the media with Luminex methodology indicated decreased PBMC secretion of IFN-γ by PFOA and PFOS in medium with serum, but no alteration in OpSFM. The results indicated that changes in immune parameters due to PFOA or PFOS following Flu Ag stimulation are medium (±serum) dependent.
Collapse
Affiliation(s)
| | - David A Lawrence
- Department of Health, Wadsworth Center, Albany, NY, USA
- School of Public Health, University at Albany, Rensselaer, NY, USA
| |
Collapse
|
17
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM. Emerging contaminants of high concern for the environment: Current trends and future research. ENVIRONMENTAL RESEARCH 2022; 207:112609. [PMID: 34968428 DOI: 10.1016/j.envres.2021.112609] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/11/2023]
Abstract
Wastewater is contaminated water that must be treated before it may be transferred into other rivers and lakes in order to prevent further groundwater pollution. Over the last decade, research has been conducted on a wide variety of contaminants, but the emerging contaminants are those caused primarily by micropollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, and toxins, as well as industrially-related synthetic dyes and dye-containing hazardous pollutants. Most emerging pollutants did not have established guidelines, but even at low concentrations they could have harmful effects on humans and aquatic organisms. In order to combat the above ecological threats, huge efforts have been done with a view to boosting the effectiveness of remediation procedures or developing new techniques for the detection, quantification and efficiency of the samples. The increase of interest in biotechnology and environmental engineering gives an opportunity for the development of more innovative ways to water treatment remediation. The purpose of this article is to provide an overview of emerging sources of contaminants, detection technologies, and treatment strategies. The goal of this review is to evaluate adsorption as a method for treating emerging pollutants, as well as sophisticated and cost-effective approaches for treating emerging contaminants.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Sulaiman M Alfadul
- King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
19
|
Ye S, Liu Q, Huang K, Jiang X, Zhang X. The comprehensive analysis based study of perfluorinated compounds-Environmental explanation of bladder cancer progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113059. [PMID: 34894427 DOI: 10.1016/j.ecoenv.2021.113059] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 05/15/2023]
Abstract
Perfluorinated compounds are emerging organic pollutants widely used in building materials, textiles, and electric equipment. Herein, silico analysis was conducted using bioinformatics approach to assess the potential relationship between bladder cancer and perfluorinated compounds. Transcriptome profiles and data of perfluorinated compounds were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression and Comparative Toxicogenomics databases. Gene Ontology (GO9 and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that interactive genes were mainly enriched in bladder cancer (BC). Transcriptome profiles were used to verify the expression of m6A-related genes at the mRNA and protein levels. Most m6A-related genes predicted BC prognosis. Survival analysis and ROC curves demonstrated that the expression levels of m6A-related genes were associated with BC prognosis. Perfluorooctanoic acid (PFOA) significantly increased the cell proliferation ability and promoted cell invasion capacity. In addition, PFOA significantly increased the cell viability and cell invasion capacity of T24 and BIU-87 cell lines compared with the control group. Taken together, these results show that perfluorinated compounds could promote BC progression. DATA AVAILABILITY: Data and materials are available within the manuscript.
Collapse
Affiliation(s)
- Shaopei Ye
- Department of Urology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Qin Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Fujian 361000, China
| | - Ke Huang
- Peoples Hosp Deyang City, Dept Clin Lab, Deyang, China
| | - Xinlu Jiang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 30001, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
20
|
Liu Y, Lin N, Dai C, Xu J, Zhang Y, Xu M, Wang F, Li Y, Chen D. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in human livers with liver cancer. ENVIRONMENTAL RESEARCH 2021; 202:111775. [PMID: 34333008 DOI: 10.1016/j.envres.2021.111775] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are anthropogenic compounds that are widely accumulated in human tissues, and the liver is considered a primary target organ for PFASs exposure. The occurrence and distribution of 21 PFASs in liver tissues with tumors (n = 55) and without tumors (n = 55) are investigated in this study. Eleven perfluorinated carboxylic acids (PFCAs) and five perfluorinated sulfonic acids (PFSAs) were detected at high frequencies (45.5%-100 %), while the detection frequencies of five perfluoroalkyl phosphate (PFPAs) were relatively lower (≤29.1 %). PFSAs and PFCAs accounted for up to 82.5%-92.7 % of the total PFASs. Although it was not found to be statistically significant, the concentrations of the total PFASs were slightly higher in the tumor liver samples (mean 64.3, range 5.70-303 ng/g) than those in the non-tumor liver samples (mean 62.7, range 4.08-240 ng/g).The perfluorooctanoic acid (PFOA), perfluorotridecanoic acid (PFTrDA), and perfluorobutanesulphonate (PFBS) showed significant differences (p < 0.05) between the tumor and non-tumor liver samples, and the different distribution levels of these three PFASs may have been a consequence of oxidative stress. The total concentrations of PFASs in the three age groups were in the decreasing order of middle-aged people (45-60) > old people (>60) > young people (<45). The PFASs in females were generally lower than in males, which may have been related to women's special excretion methods (such as childbirth and breastfeeding). The results should be valuable for further mechanistic studies regarding the toxic effects of PFASs in human livers.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cao Dai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jianliang Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
21
|
Bjork JA, Dawson DA, Krogstad JO, Wallace KB. Transcriptional effects of binary combinations of PFAS in FaO cells. Toxicology 2021; 464:152997. [PMID: 34695511 DOI: 10.1016/j.tox.2021.152997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/25/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a large class of structurally diverse chemicals of increasing public concern, mostly due to their chemical stability and undetermined toxicity profiles. In laboratory animals, adverse effects implicated for certain PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in particular, include liver toxicity and the associated metabolic dysregulation, immune and thyroid alterations, reproductive toxicity, and selected tumors. The broad commercialization and environmental distribution of PFAS has drawn attention to the need for understanding risks associated with combined exposure to multiple PFAS in complex mixtures. The purpose of this investigation is to determine whether binary combinations of PFAS elicit a molecular response that is either greater than or less than the sum of the individual responses. Exposure of FaO rat hepatoma cells for 24 h to 25 μM-200 μM of the 4- and 8-carbon perfluorocarboxylic acids (PFBA and PFOA) or the 4, 6, and 8-carbon perfluorosulfonic acids (PFBS, PFHxS, and PFOS, respectively) individually caused a dose-dependent increase in PPARα-regulated expression of peroxisomal bifunctional enzyme (Ehhadh). Potency increased with carbon number, with the carboxylates eliciting a greater transcriptional response than the corresponding sulfonates. Combined exposure to PFOA and PFBA produced an effect that was significantly less than the sum of the individual responses. The response to the combination of PFOA and PFOS produced a summative effect at concentrations that were not cytotoxic. Combined exposures to PFOS and either PFBS or PFHxS at low noncytotoxic concentrations produced a transcriptional effect that was significantly less than the sum of the individual effects. The results demonstrate that among the five structurally related perfluoroalkyl acids included in this investigation, PPARα transcriptional activation in response to combined binary exposures is consistently at or below that predicted by the sum of the individual effects.
Collapse
Affiliation(s)
- James A Bjork
- University of Minnesota Medical School, Department of Biomedical Sciences, 1035 University Drive, Duluth, MN, 55812, United States
| | - Douglas A Dawson
- Department of Biology/Toxicology, 318 Kettering Science Center, Ashland University, Ashland, OH, United States
| | - Jacob O Krogstad
- University of Minnesota Medical School, Department of Biomedical Sciences, 1035 University Drive, Duluth, MN, 55812, United States
| | - Kendall B Wallace
- University of Minnesota Medical School, Department of Biomedical Sciences, 1035 University Drive, Duluth, MN, 55812, United States.
| |
Collapse
|
22
|
Ojo AF, Xia Q, Peng C, Ng JC. Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress. CHEMOSPHERE 2021; 281:130808. [PMID: 34022600 DOI: 10.1016/j.chemosphere.2021.130808] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 05/26/2023]
Abstract
Although human exposure is to mixtures of per- and polyfluoroalkyl substances (PFAS), their combined effects and underlying mechanisms remain largely unknown. In this study, the combined effects of PFAS was investigated by treating human liver cells (HepG2) with various concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (PFDA), perfluorononanoic acid (PFNA), and perfluorohexanoic acid (PFHxS) individually or in binary combinations (PFOS + PFOA, PFOS + PFDA, PFOS + PFNA, PFOS + PFHxS, PFOA + PFDA, PFOA + PFNA, and PFOA + PFHxS) for 24 h using an orthogonal design. The individual and binary combination effects of PFAS on the cytotoxicity, intracellular reactive oxygen species (ROS) production, and glutathione (GSH) levels were determined by MTS assay, dichlorofluorescein diacetate assay, and GSH-Glo™ Glutathione assay, respectively. The results showed that exposure to PFOA, PFOS, PFDA, PFNA, and PFHxS individually and in binary combinations caused concentration-dependent cytotoxicity to HepG2 cells. Also, intracellular ROS production was not significantly induced in both the individual and co-treatment groups, indicating that ROS production may not be likely influencing the combined cytotoxicity of PFAS to HepG2 cells. However, the depletion of the intracellular glutathione levels was correlated with cytotoxicity. Moreover, the factorial analysis results showed no significant interactive effects between PFOS + PFOA, PFOS + PFDA, PFOS + PFNA, PFOS + PFHxS, PFOA + PFDA, PFOA + PFNA, and PFOA + PFHxS. Taken together, the results showed that both individual and combined PFAS could induce concentration-dependent cytotoxicity and depletion of GSH levels, but could not induce significant increases in ROS production at the concentration range tested. Overall, these results provided valuable toxicological data on the combined effects of mixed PFAS that may help to better assess their human health risk.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Qing Xia
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
23
|
Owumi S, Bello T, Oyelere AK. N-acetyl cysteine abates hepatorenal toxicities induced by perfluorooctanoic acid exposure in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103667. [PMID: 33933708 DOI: 10.1016/j.etap.2021.103667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 05/28/2023]
Abstract
Ingestion of perfluorooctanoic acid (PFOA) elicits toxicities in the hepatorenal system. We investigated the effect of PFOA and N-acetylcysteine (NAC) on the hepatorenal function of rats treated thus: control, PFOA (5 mg/kg), NAC (50 mg/kg), PFOA + NAC (5 and 25 mg/kg), and PFOA + NAC (5 and 50 mg/kg). We observed that NAC significantly (p < 0.05) reduced PFOA-induced increase in hepatic and renal function biomarkers of toxicities relative to PFOA alone and alleviated (p < 0.05) decreases in antioxidant status. Increases in oxidative stress and lipid peroxidation in PFOA-treated rats were reverted to normal by NAC and abated increased pro-inflammatory mediators, and decreased anti-inflammatory cytokine both in the hepatorenal system PFOA treated rats. Histology of the kidney and liver indicated that NAC, abated the severity of PFOA-induced damage significantly. Our findings affirm further that oxido-inflammatory mediators involved in PFOA-mediated toxicity can be effectively blocked by NAC through its antioxidant activity.
Collapse
Affiliation(s)
- Solomon Owumi
- CRMB Laboratory, Biochemistry Department, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, 200004, Nigeria.
| | - Taofeek Bello
- CRMB Laboratory, Biochemistry Department, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, 200004, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
24
|
Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, Baldwin WS. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food Chem Toxicol 2021; 152:112175. [PMID: 33838175 PMCID: PMC8154739 DOI: 10.1016/j.fct.2021.112175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
PFOS is a persistent, fluorosurfactant used in multiple products. Murine Cyp2b's are induced by PFOS and high-fat diets (HFD) and therefore we hypothesized that human CYP2B6 may alleviate PFOS-induced steatosis. Cyp2b-null and hCYP2B6-Tg mice were treated with 0, 1, or 10 mg/kg/day PFOS by oral gavage for 21-days while provided a chow diet (ND) or HFD. Similar to murine Cyp2b10, CYP2B6 is inducible by PFOS. Furthermore, three ND-fed hCYP2B6-Tg females treated with 10 mg/kg/day PFOS died during the exposure period; neither Cyp2b-null nor HFD-fed mice died. hCYP2B6-Tg mice retained more PFOS in serum and liver than Cyp2b-null mice presumably causing the observed toxicity. In contrast, serum PFOS retention was reduced in the HFD-fed hCYP2B6-Tg mice; the opposite trend observed in HFD-fed Cyp2b-null mice. Hepatotoxicity biomarkers, ALT and ALP, were higher in PFOS-treated mice and repressed by a HFD. However, PFOS combined with a HFD exacerbated steatosis in all mice, especially in the hCYP2B6-Tg mice with significant disruption of key lipid metabolism genes such as Srebp1, Pparg, and Hmgcr. In conclusion, CYP2B6 is induced by PFOS but does not alleviate PFOS toxicity presumably due to increased retention. CYP2B6 protects from PFOS-mediated steatosis in ND-fed mice, but increases steatosis when co-treated with a HFD.
Collapse
Affiliation(s)
- Matthew C Hamilton
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Marisa Pfohl
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Emily Marques
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Lucie Ford
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
25
|
Singh N, Hsieh CYJ. Exploring Potential Carcinogenic Activity of Per- and Polyfluorinated Alkyl Substances Utilizing High-Throughput Toxicity Screening Data. Int J Toxicol 2021; 40:355-366. [PMID: 33944624 DOI: 10.1177/10915818211010490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous, persistent, and toxic chemicals that pose public health risks. Recent carcinogenicity concerns have arisen based on epidemiological studies, animal tumor findings, and mechanistic data. Thousands of PFAS exist; however, current understanding of their toxicity is informed by studies of a select few, namely, perfluorooctanoic acid and perfluorooctanesulfonic acid. Hence, the computational, high-throughput screening tool, the US EPA CompTox Chemical Dashboard's ToxCast, was utilized to explore the carcinogenicity potential of PFAS. Twenty-three major PFAS that had sufficient in vitro ToxCast data and covered a range of structural subclasses were analyzed with the visual analytics software ToxPi, yielding a qualitative and quantitative assessment of PFAS activity in realms closely linked with carcinogenicity. A comprehensive literature search was also conducted to check the consistency of analyses with other mechanistic data streams. The PFAS were found to induce a vast range of biological perturbations, in line with several of the International Agency for Research on Cancer-defined key carcinogen characteristics. Patterns observed varied by length of fluorine-bonded chains and/or functional group within and between each key characteristic, suggesting some structure-based variability in activity. In general, the major conclusions drawn from the analysis, that is, the most notable activities being modulation of receptor-mediated effects and induction of oxidative stress, were supported by literature findings. The study helps enhance understanding of the mechanistic pathways that underlie the potential carcinogenicity of various PFAS and hence could assist in hazard identification and risk assessment for this emerging and relevant class of environmental toxicants.
Collapse
Affiliation(s)
- Nalin Singh
- Office of Environmental Health Hazard Assessment, 7020California Environmental Protection Agency, Sacramento, CA, USA.,University of California, Davis, CA, USA
| | - Ching Yi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, 7020California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
26
|
Shen CY, Weng JC, Tsai JD, Su PH, Chou MC, Wang SL. Prenatal Exposure to Endocrine-Disrupting Chemicals and Subsequent Brain Structure Changes Revealed by Voxel-Based Morphometry and Generalized Q-Sampling MRI. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094798. [PMID: 33946254 PMCID: PMC8125311 DOI: 10.3390/ijerph18094798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023]
Abstract
Previous studies have indicated that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse neuropsychiatric disorders in children and adolescents. This study aimed to determine the association between the concentrations of prenatal EDCs and brain structure changes in teenagers by using MRI. We recruited 49 mother–child pairs during the third trimester of pregnancy, and collected and examined the concentration of EDCs—including phthalate esters, perfluorochemicals (PFCs), and heavy metals (lead, arsenic, cadmium, and mercury)—in maternal urine and/or serum. MRI voxel-based morphometry (VBM) and generalized q-sampling imaging (GQI) mapping—including generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA), and the isotropic value of the orientation distribution function (ISO)—were obtained in teenagers 13–16 years of age in order to find the association between maternal EDC concentrations and possible brain structure alterations in the teenagers’ brains. We found that there are several specific vulnerable brain areas/structures associated with prenatal exposure to EDCs, including decreased focal brain volume, primarily in the frontal lobe; high frontoparietal lobe, temporooccipital lobe and cerebellum; and white matter structural alterations, which showed a negative association with GFA/NQA and a positive association with ISO, primarily in the corpus callosum, external and internal capsules, corona radiata, superior fronto-occipital fasciculus, and superior longitudinal fasciculus. Prenatal exposure to EDCs may be associated with specific brain structure alterations in teenagers.
Collapse
Affiliation(s)
- Chao-Yu Shen
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jun-Cheng Weng
- Bachelor Program in Artificial Intelligence, Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: (J.-C.W.); (S.-L.W.); Tel.: +886-(3)-2118800 (ext. 5394) (J.-C.W.); +886-(3)-7246166 (ext. 36509) (S.-L.W.)
| | - Jeng-Dau Tsai
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pen-Hua Su
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
- Correspondence: (J.-C.W.); (S.-L.W.); Tel.: +886-(3)-2118800 (ext. 5394) (J.-C.W.); +886-(3)-7246166 (ext. 36509) (S.-L.W.)
| |
Collapse
|
27
|
Rice PA, Cooper J, Koh-Fallet SE, Kabadi SV. Comparative analysis of the physicochemical, toxicokinetic, and toxicological properties of ether-PFAS. Toxicol Appl Pharmacol 2021; 422:115531. [PMID: 33933458 DOI: 10.1016/j.taap.2021.115531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/29/2022]
Abstract
Perfluoropolyethers, also known as ether-PFAS, are linear or branched alkyl ether polymers, where the substituent hydrogens on the carbon atoms in the chain have been fully replaced by fluorine atoms. Some of these molecules may have a carboxylate functional group attached to one of the terminal carbon atoms to form an ether-PFAS carboxylate. Perfluoropolyethers are used as processing aids in the manufacture of various types of perfluorinated polymeric materials which are used in a variety of consumer applications. Although the physicochemical and toxicological properties of certain perfluoropolyether compounds have been extensively studied, data are relatively sparse for some members of this class of compounds. Moreover, the physicochemical, toxicokinetic, and toxicological properties of ether-PFAS as a class have not been elucidated in previous comprehensive review articles. This article reviews the nomenclature and uses of ether-PFAS and compares the physicochemical properties, toxicokinetic characteristics, apical effects in toxicological studies, and dose-response profiles across four specific ether-PFAS compounds. This comparison, including a description of identified data gaps should help to inform the design of studies to further elucidate the characteristics of ether-PFAS and to propose potential read-across assessment strategies for members of this class.
Collapse
Affiliation(s)
- Penelope A Rice
- FDA/CFSAN/OFAS/DFCS, 5001 Campus Drive, HFS 275, College Park, MD 20740, United States of America.
| | - Jessica Cooper
- FDA/CFSAN/OFAS/DFCS, 5001 Campus Drive, HFS 275, College Park, MD 20740, United States of America
| | - Sharon E Koh-Fallet
- FDA/CFSAN/OFAS/DFCS, 5001 Campus Drive, HFS 275, College Park, MD 20740, United States of America
| | - Shruti V Kabadi
- FDA/CFSAN/OFAS/DFCS, 5001 Campus Drive, HFS 275, College Park, MD 20740, United States of America
| |
Collapse
|
28
|
Ojo AF, Peng C, Ng JC. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124863. [PMID: 33373965 DOI: 10.1016/j.jhazmat.2020.124863] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 05/25/2023]
Abstract
Humans are exposed to complex mixtures of per- and polyfluoroalkyl substances (PFAS). However, human health risk assessment of PFAS currently relies on animal toxicity data derived from individual substance exposure, which may not adequately predict the risk from combined exposure due to possible interactions that can influence the overall risk. Long-chain perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are recognised as global emerging contaminants of concern due to their ubiquitous distribution in all environmental media, wildlife, and humans, persistency, bioaccumulative-, toxic-, and human health-risk potentials. This article reviews the current understanding of the human health risks associated with PFAS exposure focusing on more recent toxicological and epidemiological studies from 2010 to 2020. The existing information on PFAA mixtures was also reviewed in an attempt to highlight the need for greater focus on their potential interactions as mixtures within the class of these chemicals. A growing number of toxicological studies have indicated several adverse health outcomes of PFAA exposure, including developmental and reproductive toxicity, neurotoxicity, hepatotoxicity, genotoxicity, immunotoxicity, thyroid disruption, and carcinogenicity. Epidemiological findings further support some of these adverse human health outcomes. However, the mechanisms underlying these adverse effects are not well defined. A few in vitro studies focusing on PFAA mixtures revealed that these compounds may act additively or interact synergistically/antagonistically depending on the species, dose level, dose ratio, and mixture components. Hence, the combined effects or potential interactions of PFAS mixtures should be considered and integrated into toxicity assessment to obtain a realistic and more refined human health risk assessment.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
29
|
Tarapore P, Ouyang B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073794. [PMID: 33916482 PMCID: PMC8038605 DOI: 10.3390/ijerph18073794] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are manmade synthetic chemicals which have been in existence for over 70 years. Though they are currently being phased out, their persistence in the environment is widespread. There is increasing evidence linking PFAS exposure to health effects, an issue of concern since PFAS such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) bioaccumulate in humans, with a half-life of years. Many epidemiological studies suggest that, worldwide, semen quality has decreased over the past several decades. One of the most worrying effects of PFOS and PFOA is their associations with lower testosterone levels, similar to clinical observations in infertile men. This review thus focuses on PFOS/PFOA-associated effects on male reproductive health. The sources of PFAS in drinking water are listed. The current epidemiological studies linking increased exposure to PFAS with lowered testosterone and semen quality, and evidence from rodent studies supporting their function as endocrine disruptors on the reproductive system, exhibiting non-monotonic dose responses, are noted. Finally, their mechanisms of action and possible toxic effects on the Leydig, Sertoli, and germ cells are discussed. Future research efforts must consider utilizing better human model systems for exposure, using more accurate PFAS exposure susceptibility windows, and improvements in statistical modeling of data to account for the endocrine disruptor properties of PFAS.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-5148
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
- Center of Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
30
|
Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:606-630. [PMID: 33017053 PMCID: PMC7906952 DOI: 10.1002/etc.4890] [Citation(s) in RCA: 956] [Impact Index Per Article: 239.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Reports of environmental and human health impacts of per- and polyfluoroalkyl substances (PFAS) have greatly increased in the peer-reviewed literature. The goals of the present review are to assess the state of the science regarding toxicological effects of PFAS and to develop strategies for advancing knowledge on the health effects of this large family of chemicals. Currently, much of the toxicity data available for PFAS are for a handful of chemicals, primarily legacy PFAS such as perfluorooctanoic acid and perfluorooctane sulfonate. Epidemiological studies have revealed associations between exposure to specific PFAS and a variety of health effects, including altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. Concordance with experimental animal data exists for many of these effects. However, information on modes of action and adverse outcome pathways must be expanded, and profound differences in PFAS toxicokinetic properties must be considered in understanding differences in responses between the sexes and among species and life stages. With many health effects noted for a relatively few example compounds and hundreds of other PFAS in commerce lacking toxicity data, more contemporary and high-throughput approaches such as read-across, molecular dynamics, and protein modeling are proposed to accelerate the development of toxicity information on emerging and legacy PFAS, individually and as mixtures. In addition, an appropriate degree of precaution, given what is already known from the PFAS examples noted, may be needed to protect human health. Environ Toxicol Chem 2021;40:606-630. © 2020 SETAC.
Collapse
Affiliation(s)
- Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Alan Boobis
- Imperial College London, London, United Kingdom
| | - Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Christopher Lau
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carla Ng
- Departments of Civil and Environmental Engineering and Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James S. Smith
- Navy and Marine Corps Public Health Center, Portsmouth, Virginia, USA
| | - Stephen M. Roberts
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Mao W, Hu Q, Chen S, Chen Y, Luo M, Zhang Z, Geng J, Wu J, Xu B, Chen M. Polyfluoroalkyl chemicals and the risk of kidney stones in US adults: A population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111497. [PMID: 33091773 DOI: 10.1016/j.ecoenv.2020.111497] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The potential nephrotoxicity of polyfluoroalkyl chemicals (PFCs) have received extensive attention. However, the relationship between PFCs and the risk of kidney stones remain unclear. This study aimed to examine the level of PFCs in the US population and its relationship with the risk of kidney stones. We investigated the serum levels of six PFCs in 8453 adult participants (≥20 years) from the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2016, including perfluorodecanoic acid (PFDE), perfluorohexane sulfonic acid (PFHS), 2-(N-methyl-perfluorooctane sulfonamido) acetate (MPAH), perfluorononanoic acid (PFNA), perfluoroundecanoic acid (PFUA), and perfluorododecanoic acid (PFDO). Logistic regression model was used to evaluate the correlation between PFCs and kidney stones. Of the 8453 participants, 787 self-reported a history of kidney stones. After adjusting for gender, age, race, education, marital status, body mass index (BMI), hypertension, diabetes and estimated glomerular filtration rate (eGFR), we found that total PFCs and PFHS were positively correlated with the risk of kidney stones. Compared with the lowest tertile, the odds ratios with 95% confidence intervals (CI) with increasing tertiles were 1.30 (95% CI,1.08-1.59, p = 0.007) and 1.25 (95 CI%,1.00-1.52, p = 0.024) for total PFCs and 1.24 (95 CI%,1.03-1.51, p = 0.032), and 1.35 (95 CI,1.10-1.68, p = 0.005) for PFHS. Our study shows that total PFCs and PFHS were associated with an increased risk of kidney stones.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, People's Hospital of Putuo District, Shanghai 200060, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Qiang Hu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Saisai Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Yu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ziwei Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiang Geng
- Department of Urology, People's Hospital of Putuo District, Shanghai 200060, China; Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China.
| |
Collapse
|
33
|
Liu J, Liu S, Huang Z, Fu Y, Fei J, Liu X, He Z. Associations between the serum levels of PFOS/PFOA and IgG N-glycosylation in adult or children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114285. [PMID: 32806420 DOI: 10.1016/j.envpol.2020.114285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS) have been shown to be associated with disease development. Immunoglobulin G (IgG) N-glycosylation plays a vital role in human immune system and inflammatory activities. Altered IgG glycosylation was one of the molecular markers of various disorders. However, whether the chemicals affect IgG glycosylation has not been investigated. METHODS Serum samples of 190 individuals including 95 adults and 95 children were selected based on the sex, age and PFOA/PFOS concentration. IgG N-glycome profile was obtained from glycan release, derivatization, and MALDI-MS analysis. One-factor ANOVA test was performed to analyze the association between different levels of PFOS/PFOA and IgG glycosylation changes. Evaluation of the diagnostic performance of significantly changed IgG glycosylation was performed by receiver operating characteristic curve. PFOS/PFOA concentrations were studied in relation to IgG glycosylation by 3D-nonlinear regression analysis. RESULTS 10 of the 28 individual IgG glycans were significantly altered between different levels of PFOS/PFOA in adult serum. Among children with high serum levels of PFOS or PFOA, a total of 12 IgG N-glycans were markedly different from those with lower serum PFOS/PFOA. The glycan derived traits for adults with higher serum PFOS or PFOA were marked by significant alterations in IgG digalactosylation, agalactosylation, fucosylation, fucosylated sialylation, and disialylation. Similarly, pronounced changes in agalactosylation, digalactosylation, mono-sialylation and total sialylation, as well as neutral and sialo bisection, were associated with elevated serum PFOS or PFOA in children. Several glycans gained moderately accurate scores of area under the curve for diagnosis of PFOS or PFOA pollution. Nonlinear surface fitting showed the independent or coordinate effect of PFOS or PFOA on the expression of IgG glycosylation. CONCLUSIONS High levels of PFOS or PFOA in human serum were strongly associated with altered IgG glycosylation and therefore are a potential risk factor for the development of diseases.
Collapse
Affiliation(s)
- Junling Liu
- Wuhan Centers for Disease Prevention and Control, Wuhan, 430015, China
| | - Si Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiwen Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Fu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian Fei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhenyu He
- Wuhan Centers for Disease Prevention and Control, Wuhan, 430015, China.
| |
Collapse
|
34
|
Chappell GA, Thompson CM, Wolf JC, Cullen JM, Klaunig JE, Haws LC. Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and Implications for Assessing Human Health Risks. Toxicol Pathol 2020; 48:494-508. [PMID: 32138627 PMCID: PMC7153225 DOI: 10.1177/0192623320905803] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
GenX is an alternative to environmentally persistent long-chain perfluoroalkyl and polyfluoroalkyl substances. Mice exposed to GenX exhibit liver hypertrophy, elevated peroxisomal enzyme activity, and other apical endpoints consistent with peroxisome proliferators. To investigate the potential role of peroxisome proliferator-activated receptor alpha (PPARα) activation in mice, and other molecular signals potentially related to observed liver changes, RNA sequencing was conducted on paraffin-embedded liver sections from a 90-day subchronic toxicity study of GenX conducted in mice. Differentially expressed genes were identified for each treatment group, and gene set enrichment analysis was conducted using gene sets that represent biological processes and known canonical pathways. Peroxisome signaling and fatty acid metabolism were among the most significantly enriched gene sets in both sexes at 0.5 and 5 mg/kg GenX; no pathways were enriched at 0.1 mg/kg. Gene sets specific to the PPARα subtype were significantly enriched. These findings were phenotypically anchored to histopathological changes in the same tissue blocks: hypertrophy, mitoses, and apoptosis. In vitro PPARα transactivation assays indicated that GenX activates mouse PPARα. These results indicate that the liver changes observed in GenX-treated mice occur via a mode of action (MOA) involving PPARα, an important finding for human health risk assessment as this MOA has limited relevance to humans.
Collapse
Affiliation(s)
| | | | | | - John M. Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - James E. Klaunig
- Indiana University, School of Public Health, Bloomington, IN, USA
| | | |
Collapse
|
35
|
Bogdanska J, Borg D, Bergström U, Mellring M, Bergman Å, DePierre J, Nobel S. Tissue distribution of 14C-labelled perfluorooctanoic acid in adult mice after 1-5 days of dietary exposure to an experimental dose or a lower dose that resulted in blood levels similar to those detected in exposed humans. CHEMOSPHERE 2020; 239:124755. [PMID: 31726523 DOI: 10.1016/j.chemosphere.2019.124755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA), a global environmental pollutant detected in both wildlife and human populations, has several pathophysiological effects in experimental animals, including hepatotoxicity, immunotoxicity, and developmental toxicity. However, details concerning the tissue distribution of PFOA, in particular at levels relevant to humans, are lacking, which limits our understanding of how humans, and other mammals, may be affected by this compound. Therefore, we characterized the tissue distribution of 14C-PFOA in mice in the same manner as we earlier examined its analogues perfluorooctanesulfonate (PFOS) and perfluorobutanesulfonate (PFBS) in order to allow direct comparisons. Following dietary exposure of adult male C57/BL6 mice for 1, 3 or 5 days to a low dose (0.06 mg/kg/day) or a higher experimental dose (22 mg/kg/day) of 14C-PFOA, both scintillation counting and whole-body autoradiography revealed the presence of PFOA in most of the 19 different tissues examined, demonstrating its ability to leave the bloodstream and enter tissues. There were no differences in the pattern of tissue distribution with the low and high dose and the tissue-to-blood ratios were similar. At both doses, PFOA levels were highest in the liver, followed by blood, lungs and kidneys. The body compartments estimated to contain the largest amounts of PFOA were the liver, blood, skin and muscle. In comparison with our identical studies on PFOS and PFBS, PFOA reached considerably higher tissue levels than PFBS, but lower than PFOS. Furthermore, the distribution of PFOA differed notably from that of PFOS, with lower tissue-to-blood ratios in the liver, lungs, kidneys and skin.
Collapse
Affiliation(s)
- Jasna Bogdanska
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Daniel Borg
- Swedish Chemicals Agency, SE-17267, Stockholm, Sweden.
| | - Ulrika Bergström
- Department of Environmental Toxicology, Uppsala University, SE-75236, Uppsala, Sweden.
| | - Maria Mellring
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Åke Bergman
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden; School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| | - Joseph DePierre
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Stefan Nobel
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| |
Collapse
|
36
|
Dourson ML, Gadagbui B, Onyema C, McGinnis PM, York RG. Data derived Extrapolation Factors for developmental toxicity: A preliminary research case study with perfluorooctanoate (PFOA). Regul Toxicol Pharmacol 2019; 108:104446. [PMID: 31425727 DOI: 10.1016/j.yrtph.2019.104446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/19/2022]
Abstract
Guidelines of the United States Environmental Protection Agency (EPA, 1991) and the International Programme on Chemical Safety (IPCS, 2005) suggest two different default positions for dosimetric extrapolation from experimental animals to humans when the dosimetry of the critical effect is not known. The default position of EPA (1991) for developmental toxicity is to use peak concentration (or Cmax) for this dosimetric extrapolation. In contrast, IPCS (2005, page 39) states its default position for dosimetric choice in the absence of data is to use the area under the curve (or AUC). The choice of the appropriate dose metric is important in the development of either a Chemical Specific Adjustment Factor (CSAF) of IPCS (2005) or a Data Derived Extrapolation Factor (DDEF) of EPA (2014). This research shows the derivation of a DDEF for developmental toxicity for perfluorooctanoate (PFOA), a chemical of current interest. Here, identification of the appropriate dosimetric adjustment from a review of developmental effects identified by EPA (2016) is attempted. Although some of these effects appear to be related to Cmax, most appear to be related to the average concentration or its AUC, but only during the critical period of development for a particular effect. A comparison was made of kinetic data from PFOA exposure in mice with newly available and carefully monitored kinetic data in humans after up to 36 weeks of PFOA exposure in a phase 1 clinical trial by Elcombe et al. (2013). Using the average concentration during the various exposure windows of concern, the DDEF for PFOA was determined to be 1.3 or 14. These values are significantly different than comparable extrapolations by several other authorities based on differences in PFOA half-life among species. Although current population exposures to PFOA are generally much lower than both the experimental animal data and the clinical human study, the development of these DDEFs is consistent with current guidelines of both EPA (2014) and IPCS (2005).
Collapse
Affiliation(s)
| | - Bernard Gadagbui
- Toxicology Excellence for Risk Assessment, Cincinnati, Ohio, USA
| | - Chijioke Onyema
- Toxicology Excellence for Risk Assessment, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
37
|
Can sustained exposure to PFAS trigger a genotoxic response? A comprehensive genotoxicity assessment in mice after subacute oral administration of PFOA and PFBA. Regul Toxicol Pharmacol 2019; 106:169-177. [DOI: 10.1016/j.yrtph.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/30/2022]
|
38
|
Lu H, Zhang H, Gao J, Li Z, Bao S, Chen X, Wang Y, Ge R, Ye L. Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:206-215. [PMID: 30999198 DOI: 10.1016/j.envpol.2019.03.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 05/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic (PFOS) are two perfluorinated chemical products widely existing in the environment. Evidence suggested that PFOA might relate to male reproductive dysfunction in rats and humans. PFOA exposure inhibited the function of Leydig cells. However, it is still unknown whether PFOA affects stem Leydig cells (SLCs). In the present study, we examined the effects of a short-term exposure to PFOA on Leydig cell regeneration and also explored the possible mechanism involved. Thirty-six adult Sprague-Dawley rats were randomly divided into three groups and intraperitoneally injected with a single dose of 75 mg/kg ethane dimethyl sulfonate (EDS) to eliminate all Leydig cells. From post-EDS day 7, the 3 group rats received 0, 25 or 50 mg/kg/day PFOA (n = 12 per group) for 9 consecutive days. Exposure to PFOA significantly decreased serum testosterone levels by day 21 and day 56 post-EDS treatment. Also, the expression levels of Leydig cell specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Hsd11b1 and Cyp17a1) and their protein levels were all down-regulated. PFOA exposure may also affect proliferation of SLCs or their progeny since the numbers of PCNA-positive Leydig cells were reduced by post-EDS day 21. These in vivo observations were also confirmed by in vitro studies where the effects of PFOA were tested by culture of seminiferous tubules. In summary, PFOA exposure inhibits the development of Leydig cells, possibly by affecting both the proliferation and differentiation of SLCs or their progeny.
Collapse
Affiliation(s)
- Hemin Lu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huishan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Gao
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Zhaohui Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Suhao Bao
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Renshan Ge
- Department of Anesthesiology, Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China; Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
39
|
Thompson CM, Fitch SE, Ring C, Rish W, Cullen JM, Haws LC. Development of an oral reference dose for the perfluorinated compound GenX. J Appl Toxicol 2019; 39:1267-1282. [PMID: 31215065 PMCID: PMC6771874 DOI: 10.1002/jat.3812] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
Abstract
Ammonium 2,3,3,3‐tetrafluoro‐2‐(heptafluoropropoxy)‐propanoate, also known as GenX, is a processing aid used in the manufacture of fluoropolymers. GenX is one of several chemistries developed as an alternative to long‐chain poly‐fluoroalkyl substances, which tend to have long clearance half‐lives and are environmentally persistent. Unlike poly‐fluoroalkyl substances, GenX has more rapid clearance, but has been detected in US and international water sources. There are currently no federal drinking water standards for GenX in the USA; therefore, we developed a non‐cancer oral reference dose (RfD) for GenX based on available repeated dose studies. The review of the available data indicate that GenX is unlikely to be genotoxic. A combination of traditional frequentist benchmark dose models and Bayesian benchmark dose models were used derive relevant points of departure from mammalian toxicity studies. In addition, deterministic and probabilistic RfD values were developed using available tools and regulatory guidance. The two approaches resulted in a narrow range of RfD values for liver lesions observed in a 2‐year bioassay in rats (0.01–0.02 mg/kg/day). The probabilistic approach resulted in the lower, i.e., more conservative RfD. The probabilistic RfD of 0.01 mg/kg/day results in a maximum contaminant level goal of 70 ppb. It is anticipated that these values, along with the hazard identification and dose‐response modeling described herein, should be informative for risk assessors and regulators interested in setting health‐protective drinking water guideline values for GenX. Ammonium 2,3,3,3‐tetrafluoro‐2‐(heptafluoropropoxy)‐propanoate, also known as GenX, is a processing aid used in the manufacture of fluoropolymers. There are currently no federal drinking water standards for GenX in the USA. Frequentist benchmark dose models and Bayesian benchmark dose models were used to derive points of departure from mammalian toxicity studies. Deterministic and probabilistic reference dose values were developed and resulted in a narrow range of values (0.01‐0.02 mg/kg/day). The lower reference dose results in a maximum contaminant level goal of 70 ppb.
Collapse
Affiliation(s)
| | | | | | | | - John M Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | | |
Collapse
|
40
|
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review. ENVIRONMENT INTERNATIONAL 2019; 124:336-353. [PMID: 30660847 DOI: 10.1016/j.envint.2019.01.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/07/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
The widespread occurrence and adverse environmental and health-related impacts of various types of emerging contaminants (ECs) have become an issue of high concern. With ever increasing scientific knowledge, socio-economic awareness, health-related problems and ecological apprehensions, people are more concerned about the widespread ECs, around the globe. Among ECs, biologically active compounds from pharmaceutical, cosmeceutical, biomedical, personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), and flame-retardants are of paramount concern. The presence and persistence of ECs in water bodies are of continued and burning interest, worldwide. Various types of ECs are being discharged knowingly/unknowingly with/without partial treatments into the aquatic environments that pose serious health issues and affects the entire living ecosystem. So far, various approaches have been developed for ECs degradation and removal to diminish their adverse impact. Many previous and/or ongoing studies have focused on contaminants degradation and efficient removal via numerous treatment strategies, i.e. (1) physical, (2) chemical and (3) biological. However, the experimental evidence is lacking to enable specific predictions about ECs mechanistic degradation and removal fate across various in-practice systems. In this context, the deployment oxidoreductases such as peroxidases (lignin peroxidases, manganese-dependent peroxidases, and horseradish peroxidase), aromatic dioxygenases, various oxygenases, laccases, and tyrosinases have received considerable research attention. Immobilization is highlighted as a promising approach to improve enzyme catalytic performance and stabilization, as well as, to protect the three-dimensional structure of the enzyme against the undesirable consequences of harsh reaction environment. This work overviews the current and state-of-the-art critical aspect related to hazardous pollutants at large and ECs in particular by the immobilized oxidoreductase enzymes. The first part of the review focuses on the occurrence, physiochemical behavior, potent sources and significant routes of ECs. Following that, environmentally-related adverse impacts and health-related issues of ECs are discussed in the second part. In the third part, biodegradation and removal strategies with a comparative overview of several conventional vs. non-conventional methods are presented briefly. The fourth part majorly focuses on operational modes of different oxidoreductase enzyme-based biocatalytic processes for the biodegradation and biotransformation of a wide array of harmful environmental contaminants. Finally, the left behind research gaps, concluding remarks as well as future trends and recommendations in the use of carrier-immobilized oxidoreductases for environmental perspective are also discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
41
|
López-Arellano P, López-Arellano K, Luna J, Flores D, Jiménez-Salazar J, Gavia G, Teteltitla M, Rodríguez JJ, Domínguez A, Casas E, Bahena I, Betancourt M, González C, Ducolomb Y, Bonilla E. Perfluorooctanoic acid disrupts gap junction intercellular communication and induces reactive oxygen species formation and apoptosis in mouse ovaries. ENVIRONMENTAL TOXICOLOGY 2019; 34:92-98. [PMID: 30277307 DOI: 10.1002/tox.22661] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acid family of compounds. Due to the presence of strong carbon-fluorine bonds, it is practically nonbiodegradable and highly persistent in the environment. PFOA has been detected in the follicular fluid of women, and positively associated with reduced fecundability and infertility. However, there are no reports concerning the experimental evaluation of PFOA on oocyte toxicity in mammals. The aim of the present study was to determine if PFOA is able to induce oxidative stress in fetal ovaries and cause apoptosis in oocytes in vitro. In addition, since inhibition of the gap junction intercellular communication (GJIC) by PFOA has been demonstrated in liver cells in vivo and in vitro, the effect of PFOA on the GJIC between the oocyte and its supportive cumulus cells was studied. Results show that PFOA induced oocyte apoptosis and necrosis in vitro (medium lethal concentration, LC50 = 112.8 μM), as evaluated with Annexin-V-Alexa 508 in combination with BOBO-1 staining. Reactive oxygen species (ROS) levels, as assessed by DCFH-DA, increased significantly in fetal ovaries exposed to ¼ LC50 (28.2 μM, a noncytotoxic and relevant occupational exposure concentration) and LC50 PFOA ex vivo. This perfluorinated compound also caused the blockage of GJIC in cumulus cells-oocyte complexes (COCs) obtained from female mice exposed in vivo, as evaluated by calcein transfer from cumulus cells to the oocyte. The ability of PFOA of disrupting the GJIC in COCs, generating ROS in the fetal ovary and causing apoptosis and necrosis in mammal's oocytes, might account for the reported association between increasing maternal plasma concentrations of PFOA with reduced fertility in women.
Collapse
Affiliation(s)
- Patricia López-Arellano
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
- Maestría en Biología de la Reproducción Animal, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Keila López-Arellano
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Jaquelinne Luna
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Diana Flores
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Javier Jiménez-Salazar
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Graciela Gavia
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Mario Teteltitla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Juan José Rodríguez
- Unidad de Investigación en Genética y Toxicología Ambiental, FES-Zaragoza, UNAM, CDMX, Mexico
| | - Alejandro Domínguez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Eduardo Casas
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Ivan Bahena
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Miguel Betancourt
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Cristina González
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Yvonne Ducolomb
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Edmundo Bonilla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| |
Collapse
|
42
|
Zhang H, Zhou X, Sheng N, Cui R, Cui Q, Guo H, Guo Y, Sun Y, Dai J. Subchronic Hepatotoxicity Effects of 6:2 Chlorinated Polyfluorinated Ether Sulfonate (6:2 Cl-PFESA), a Novel Perfluorooctanesulfonate (PFOS) Alternative, on Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12809-12818. [PMID: 30256107 DOI: 10.1021/acs.est.8b04368] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The compound 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an alternative to perfluorooctanesulfonate (PFOS) in the metal-plating industry, has been widely detected in various environmental matrices. However, its hepatotoxicity has yet to be clarified. Here, male mice were exposed to 0.04, 0.2, or 1 mg/kg/day of 6:2 Cl-PFESA for 56 days. Results demonstrated that relative liver weight increased significantly in the 0.2 and 1 mg/kg/day 6:2 Cl-PFESA groups, whereas liver lipid accumulation increased in all 6:2 Cl-PFESA groups. Serum enzyme activities of alanine transaminase and alkaline phosphatase were increased. Serum triglycerides and low-density lipoprotein cholesterol both increased, whereas serum total cholesterol and high-density lipoprotein cholesterol decreased following 6:2 Cl-PFESA exposure. A total of 264 differentially expressed proteins (127 up-regulated and 137 down-regulated), mainly involved in lipid metabolism, xenobiotic metabolism, and ribosome biogenesis, were identified by quantitative proteomics. Bioinformatics analysis highlighted the de-regulation of PPAR and PXR, which may contribute to the hepatotoxicity of 6:2 Cl-PFESA. Additionally, 6:2 Cl-PFESA induced both cell apoptosis and proliferation in the mouse liver. Compared to the overt toxicity of PFOS, 6:2 Cl-PFESA exhibited more-serious hepatotoxicity. Thus, caution should be exercised in the application of 6:2 Cl-PFESA as a replacement alternative to PFOS in industrial areas.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiujuan Zhou
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
43
|
Huang M, Jiao J, Zhuang P, Chen X, Wang J, Zhang Y. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. ENVIRONMENT INTERNATIONAL 2018; 119:37-46. [PMID: 29933236 DOI: 10.1016/j.envint.2018.05.051] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perfluoroalkyl chemicals (PFCs) as possible cardiovascular disrupters are universally detected in humans. However, evidence from epidemiological studies appears insufficient and ambiguous. OBJECTIVES We aim to examine the serum PFCs levels and their associations with the prevalence of cardiovascular diseases (CVD) and related outcomes in general US population. METHODS We investigated the serum levels of 12 major PFCs, including perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), 2-(N-ethyl-perfluorooctane sulfonamido) acetate (EPAH), 2-(N-methyl-perfluorooctane sulfonamido) acetate (MPAH), perfluorodecanoic acid (PFDE), perfluorobutane sulfonate (PFBS), perfluoroheptanoic acid (PFHP), perfluorononanoic acid (PFNA), perfluorooctane sulfonamide (PFSA), perfluoroundecanoic acid (PFUA), and perfluorododecanoic acid (PFDO), in 10,859 participants from the National Health and Nutritional Examination Survey (NHANES) 1999-2014. Logistic regression models were used to estimate the associations between serum PFCs and 5 self-reported CVD outcomes, including congestive heart failure, coronary heart disease, angina pectoris, heart attack, and stroke. Linear regression analyses were used to estimate the PFCs and their associations with 8 traditional CVD risk factors like serum triglyceride and total cholesterol. RESULTS In multivariable-adjusted models, total PFCs were positively associated with total CVD (p for trend = 0.0166), independent of traditional CVD risk factors, such as smoking status, diabetes, hypertension and serum cholesterol level. Compared with reference quartile of total PFCs levels, the multivariable adjusted odds ratios in increasing quartiles were 1.23 [95% confidence interval (CI): 0.91-1.66], 1.47 (95% CI: 1.14-1.89) and 1.45 (95% CI: 1.06-1.98) for total CVD. Similar positive associations were found if considering individual PFCs including PFOS, PFUA, MPAH, EPAH, PFDO, PFSA and PFBS. In addition, serum levels of MPAH and PFDO were positively associated with congestive heart failure; PFNA, PFDE, and PFUA were positively associated with coronary heart disease; PFUA and PFDO were positively associated with angina pectoris; and PFNA was positively associated with heart attack. CONCLUSIONS Our findings suggested that exposure to PFCs was positively associated with risk of CVD. Further longitudinal studies are needed to increase our understanding about the role of PFCs exposure in the prevalence of CVD.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Corticosteroid-binding globulin, induced in testicular Leydig cells by perfluorooctanoic acid, promotes steroid hormone synthesis. Arch Toxicol 2018; 92:2013-2025. [DOI: 10.1007/s00204-018-2207-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022]
|
45
|
Convertino M, Church TR, Olsen GW, Liu Y, Doyle E, Elcombe CR, Barnett AL, Samuel LM, MacPherson IR, Evans TRJ. Stochastic Pharmacokinetic-Pharmacodynamic Modeling for Assessing the Systemic Health Risk of Perfluorooctanoate (PFOA). Toxicol Sci 2018; 163:293-306. [PMID: 29462473 PMCID: PMC5920327 DOI: 10.1093/toxsci/kfy035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A phase 1 dose-escalation trial assessed the chemotherapeutic potential of ammonium perfluorooctanoate (APFO). Forty-nine primarily solid-tumor cancer patients who failed standard therapy received weekly APFO doses (50-1200 mg) for 6 weeks. Clinical chemistries and plasma PFOA (anionic APFO) were measured predose and weekly thereafter. Several clinical measures including total cholesterol, high-density lipoproteins (HDLs), thyroid stimulating hormone (TSH), and free thyroxine (fT4), relative to PFOA concentrations were examined by: Standard statistical analyses using generalized estimating equations (GEE) and a probabilistic analysis using probability distribution functions (pdf) at various PFOA concentrations; and a 2-compartment pharmacokinetic/pharmacodynamic (PK/PD) model to directly estimate mean changes. Based on the GEE, the average rates of change in total cholesterol and fT4 associated with increasing PFOA were approximately -1.2×10-3 mmol/l/μM and 2.8×10-3 pmol/l/μM, respectively. The PK/PD model predicted more closely the trends observed in the data as well as the pdfs of biomarkers. A decline in total cholesterol was observed, with a clear transition in shape and range of the pdfs, manifested by the maximum value of the Kullback-Leibler (KL) divergence, that occurred at plasma PFOA between 420 and 565 μM (175 000-230 000 ng/ml). High-density lipoprotein was unchanged. An increase in fT4 was observed at a higher PFOA transition point, albeit TSH was unchanged. Our findings are consistent with some animal models and may motivate re-examination of the epidemiologic studies to PFOA at levels several orders of magnitude lower than this study. These observational studies have reported contrary associations, but currently understood biology does not support the existence of such conflicting effects.
Collapse
Affiliation(s)
- Matteo Convertino
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
- Institute on the Environment, University of Minnesota, St. Paul, Minnesota 55455
- Institute for Engineering in Medicine
- Biomedical Informatics and Computational Biology Program
| | - Timothy R Church
- Division of Environmental Health Sciences, School of Public Health
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Geary W Olsen
- Medical Department, 3M Company, St. Paul, Minnesota 55144
| | - Yang Liu
- Division of Environmental Health Sciences and Public Health Informatics Program, HumNat Lab, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | | | | | - Iain R MacPherson
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| | - Thomas R J Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow G12 8Q, UK
| |
Collapse
|
46
|
Fratev F, Steinbrecher T, Jónsdóttir SÓ. Prediction of Accurate Binding Modes Using Combination of Classical and Accelerated Molecular Dynamics and Free-Energy Perturbation Calculations: An Application to Toxicity Studies. ACS OMEGA 2018; 3:4357-4371. [PMID: 31458661 PMCID: PMC6641415 DOI: 10.1021/acsomega.8b00123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 05/30/2023]
Abstract
Estimating the correct binding modes of ligands in protein-ligand complexes is crucial not only in the drug discovery process but also for elucidating potential toxicity mechanisms. In the current paper, we propose a computational modeling workflow using the combination of docking, classical molecular dynamics (cMD), accelerated molecular dynamics (aMD) and free-energy perturbation (FEP+ protocol) for identification of possible ligand binding modes. It was applied for investigation of selected perfluorocarboxyl acids (PFCAs) in the PPARγ nuclear receptor. Although both regular and induced fit docking failed to reproduce the experimentally determined binding mode of the ligands when docked into a non-native X-ray structure, cMD and aMD simulations successfully identified the most probable binding conformations. Moreover, multiple binding modes were identified for all of these compounds and the shorter-chain PFCAs continuously moved between a few energetically favorable binding conformations. On the basis of MD predictions of binding conformations, we applied the default and also redesigned FEP+ sampling protocols, which accurately reproduced experimental differences in the binding energies. Thus, the preliminary MD simulations can also provide helpful information about correct setup of the FEP+ calculations. These results show that the PFCA binding modes were accurately predicted and that the FEP+ protocol can be used to estimate free energies of binding of flexible ligands that are not typical druglike compounds. Our in silico workflow revealed the specific ligand-residue interactions within the ligand binding domain and the main characteristics of the PFCAs, and it was concluded that these compounds are week PPARγ partial agonists. This work also suggests a common pipeline for identification of ligand binding modes, ligand-protein dynamics description, and relative free-energy calculations.
Collapse
Affiliation(s)
- Filip Fratev
- Department
of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, 1101 N Campbell Street, El Paso, Texas 79902, United
States
- Micar21
Ltd., Persenk 34B, 1407 Sofia, Bulgaria
| | - Thomas Steinbrecher
- Schrödinger
GmbH, Dynamostrasse 13, 68165 Mannheim, Baden-Württemberg, Germany
| | | |
Collapse
|
47
|
Wu X, Liang M, Yang Z, Su M, Yang B. Effect of acute exposure to PFOA on mouse liver cells in vivo and in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24201-24206. [PMID: 28887612 DOI: 10.1007/s11356-017-0072-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 05/28/2023]
Abstract
Increasingly, epidemiological evidences indicate chemosynthetic perfluorooctanoic acid (PFOA), an environmental pollutant, induces potential adverse effect on human health after long-term exposure. However, less study has been performed for assessment of acute effect of PFOA exposure on metabolic homeostasis. In experimental designs, PFOA-exposed liver cells in vivo and in vitro were used to discuss underlying mechanism related to PFOA-induced metabolic dysfunction. In serological tests, PFOA-exposed mice showed increased treads of liver functional enzymes in alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin (T-BIL), trypsinase, low density lipoprotein-cholesterol (LDL-C), and insulin, while blood glucose, high density lipoprotein-cholesterol (HDL-C), and glucagon levels were reduced. In histocytological observations, PFOA-exposed liver showed visible cytoplasmic vesicles, and intact pancreatic islets were observed in PFOA-exposed pancreas. Additionally, increased insulin-positive cells and reduced glucagon-positive cells were detected in PFOA-exposed islets. As shown in immunoassays, PFOA-exposed liver resulted in elevations of cluster of differentiation 36 (CD36)-labeled cells and CD36 protein. In mouse liver cell study, PFOA-exposed cells showed increased cell apoptotic count, and increased phosphorylated levels of Bcl-2 and Bad in the cells. Furthermore, PFOA-exposed liver cells exhibited elevations of CD36-labeled cells and CD36 protein. Taken together, the present data demonstrate that acute exposure to PFOA-impaired liver function is associated with inducting CD36 expression and apoptosis, as well as disrupting key hormones in the pancreas.
Collapse
Affiliation(s)
- Xinmou Wu
- College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Minqing Liang
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, 537100, Guangxi, People's Republic of China
| | - Zhao Yang
- Department of Clinical Laboratory, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, 537100, Guangxi, People's Republic of China
| | - Min Su
- Faculty of Basic Medicine Science, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, Guangxi, People's Republic of China.
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
48
|
Chiu WA, Guyton KZ, Martin MT, Reif DM, Rusyn I. Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups. ALTEX 2017; 35:51-64. [PMID: 28738424 PMCID: PMC5783793 DOI: 10.14573/altex.1703231] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
Abstract
Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112-113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets not only peroxisome proliferator activated receptors, but also other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of "induces oxidative stress" and "alters cell proliferation, cell death or nutrient supply" and filling gaps for "modulates receptor-mediated effects." Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in contributing to the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations.
Collapse
Affiliation(s)
- Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Kathryn Z. Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Matthew T. Martin
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David M. Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
49
|
Butenhoff JL, Olsen GW, Chang S. Toxicological response of Sprague Dawley rats from inhalation exposure to perfluorooctane sulfonyl fluoride (POSF). Toxicol Lett 2017; 271:38-49. [DOI: 10.1016/j.toxlet.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 11/28/2022]
|
50
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|