1
|
Zedde M, Quatrale R, Andreone V, Pezzella FR, Micieli G, Cortelli P, Del Sette M, Pascarella R. Post-infectious central nervous system vasculitides in adults: an underdiagnosed and treatable disease : Part I. Overview. Neurol Sci 2025; 46:633-650. [PMID: 39663273 DOI: 10.1007/s10072-024-07935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION The differential diagnosis of Primary Central Nervous System Angiitis (PACNS) is complex and includes several inflammatory and non-inflammatory conditions. Among the first ones, post-infectious CNS vasculitides represent a relevant topic and they are often underdiagnosed. AIMS The main aim of this review is to summarize the clinical and neuroimaging features of post-infectious vasculitides, highlighting the diagnostic clues and the need to carefully consider them in the differential diagnosis of PACNS. FINDINGS Several infectious agents (viruses, bacteria, fungi and parasites) can be involved in documented post-infectious vasculitides, often with a pathological confirmation. Post-infectious vasculitides involve not only immunocompromised hosts but also immunocompetent people and the diagnosis might be complicated by the lack of close time relationship between infections and neuro-logical symptoms, as in Varicella Zoster Virus (VZV) related vasculopathy in adults. Several complications may occur, ranging from ischemic to hemorrhagic stroke, from arterial to venous thrombosis, from large to small vessel involvement, often simultaneously. CONCLUSIONS Post-infectious vasculitides are caused by a broad spectrum of microorganisms and they should be carefully considered in the differential diagnosis of some neurological pictures and neuroradiologicals findings in immunocompetent adults too.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia, 42122, Italy.
| | - Rocco Quatrale
- Dipartimento Di Scienze Neurologiche, UOC Di Neurologia, Ospedale Dell'Angelo AULSS 3 Serenissima, Venice Mestre, Italy
| | - Vincenzo Andreone
- Neurology and Stroke Unit, A.O.R.N. Antonio Cardarelli, Napoli, Italy
| | | | - Giuseppe Micieli
- Former Department of Emergency Neurology, IRCCS C. Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- DIBINEM, University of Bologna, Bologna, Italy
| | | | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia, 42122, Italy
| |
Collapse
|
2
|
Burne AM, Richey LJ, Schoeb TR, Brown MB. Galleria mellonella Invertebrate Model Mirrors the Pathogenic Potential of Mycoplasma alligatoris within the Natural Host. Transbound Emerg Dis 2024; 2024:3009838. [PMID: 40303151 PMCID: PMC12017031 DOI: 10.1155/2024/3009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2025]
Abstract
Most mycoplasmal infections result in chronic, clinically silent disease. In direct contrast, Mycoplasma alligatoris elicits a fulminant, multisystem disease in the natural host, Alligator mississippiensis (American alligator). The goals of the study were to better understand the disease in the natural host and to determine if the invertebrate model G. mellonella could serve as a surrogate alternate host. The survival of alligators infected intratracheally was dose dependent (p=0.0003), ranging from no mortality (102 CFU) to 100% mortality (108 CFU), with 60% mortality at the 104 and 105 CFU infectious dose. Microbial load in blood, joints, and brain was dose dependent, regardless of whether alligators were infected intratracheally or intravenously (p < 0.002). Weight loss was similarly impacted (p < 0.001). Experimental infection of the invertebrate Galleria mellonella mirrored the result in the natural host. In a dose response infection study, both larval survival curves and successful pupation curves were significantly different (p ≤ 0.0001) and dose dependent. Infected insects did not emerge as moths (p < 0.0001). Here, we describe the first study investigating G. mellonella as a surrogate model to assess the pathogenic potential of M. alligatoris. G. mellonella survival was dose dependent and impacted life stage outcome.
Collapse
Affiliation(s)
- Alexandra M. Burne
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Lauren J. Richey
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- Comparative Pathology Services, Tufts University, Boston, MA 02155, USA
| | - Trenton R. Schoeb
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- Program in Immunology, Heersink School of Medicine, University of Alabama Birmingham, Birmingham, AL 35294, UK
| | - Mary B. Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
3
|
Barbosa MS, Sampaio BA, Spergser J, Rosengarten R, Marques LM, Chopra-Dewasthaly R. Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines (Basel) 2024; 12:156. [PMID: 38400139 PMCID: PMC10892753 DOI: 10.3390/vaccines12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Contagious agalactia (CA) is a serious multietiological disease whose classic etiological agent is Mycoplasma agalactiae and which causes high morbidity and mortality rates in infected herds. CA is classified as a notifiable disease by the World Organization for Animal Health due to its significant worldwide economic impact on livestock, primarily involving goat and sheep farms. The emergence of atypical symptoms and strains of M. agalactiae in wildlife ungulates reestablishes its highly plastic genome and is also of great epidemiological significance. Antimicrobial therapy is the main form of control, although several factors, such as intrinsic antibiotic resistance and the selection of resistant strains, must be considered. Available vaccines are few and mostly inefficient. The virulence and pathogenicity mechanisms of M. agalactiae mainly rely on surface molecules that have direct contact with the host. Because of this, they are essential for the development of vaccines. This review highlights the currently available vaccines and their limitations and the development of new vaccine possibilities, especially considering the challenge of antigenic variation and dynamic genome in this microorganism.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
| | | | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
- Department of Microbiology, State University of Santa Cruz (UESC), Ilheus 45662-900, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| |
Collapse
|
4
|
Duarte-Benvenuto A, Sacristán C, Ewbank AC, Zamana-Ramblas R, Lial HC, Silva SC, Arias Lugo MA, Keid LB, Pessi CF, Sabbadini JR, Ribeiro VL, do Valle RDR, Bertozzi CP, Colosio AC, Ramos HDCG, Sánchez-Sarmiento AM, Ferioli RB, Pavanelli L, Ikeda JMP, Carvalho VL, Catardo Gonçalves FA, Ibáñez-Porras P, Sacristán I, Catão-Dias JL. Molecular Detection and Characterization of Mycoplasma spp. in Marine Mammals, Brazil. Emerg Infect Dis 2023; 29:2471-2481. [PMID: 37987585 PMCID: PMC10683811 DOI: 10.3201/eid2912.230903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Mycoplasma spp. are wall-less bacteria able to infect mammals and are classified as hemotropic (hemoplasma) and nonhemotropic. In aquatic mammals, hemoplasma have been reported in California sea lions (Zalophus californianus) and river dolphins (Inia spp.). We investigated Mycoplasma spp. in blood samples of West Indian manatees (Trichechus manatus), pinnipeds (5 species), and marine cetaceans (18 species) that stranded or were undergoing rehabilitation in Brazil during 2002-2022. We detected Mycoplasma in blood of 18/130 (14.8%) cetaceans and 3/18 (16.6%) pinnipeds. All tested manatees were PCR-negative for Mycoplasma. Our findings indicate that >2 different hemoplasma species are circulating in cetaceans. The sequences from pinnipeds were similar to previously described sequences. We also detected a nonhemotropic Mycoplasma in 2 Franciscana dolphins (Pontoporia blainvillei) that might be associated with microscopic lesions. Because certain hemoplasmas can cause disease and death in immunosuppressed mammals, the bacteria could have conservation implications for already endangered aquatic mammals.
Collapse
|
5
|
Ko CC, Merodio MM, Spronk E, Lehman JR, Shen H, Li G, Derscheid RJ, Piñeyro PE. Diagnostic investigation of Mycoplasma hyorhinis as a potential pathogen associated with neurological clinical signs and central nervous system lesions in pigs. Microb Pathog 2023; 180:106172. [PMID: 37230257 DOI: 10.1016/j.micpath.2023.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Mycoplasma hyorhinis (M. hyorhinis) is a commensal of the upper respiratory tract in swine with the typical clinical presentations of arthritis and polyserositis in postweaning pigs. However, it has also been associated with conjunctivitis and otitis media, and recently has been isolated from meningeal swabs and/or cerebrospinal fluid of piglets with neurological signs. The objective of this study is to evaluate the role of M. hyorhinis as a potential pathogen associated with neurological clinical signs and central nervous system lesions in pigs. The presence of M. hyorhinis was evaluated in a clinical outbreak and a six-year retrospective study by qPCR detection, bacteriological culture, in situ hybridization (RNAscope®), and phylogenetic analysis and with immunohistochemistry characterization of the inflammatory response associated with its infection. M. hyorhinis was confirmed by bacteriological culture and within central nervous system lesions by in situ hybridization on animals with neurological signs during the clinical outbreak. The isolates from the brain had close genetic similarities from those previously reported and isolated from eye, lung, or fibrin. Nevertheless, the retrospective study confirmed by qPCR the presence of M. hyorhinis in 9.9% of cases reported with neurological clinical signs and histological lesions of encephalitis or meningoencephalitis of unknown etiology. M. hyorhinis mRNA was confirmed within cerebrum, cerebellum, and choroid plexus lesions by in situ hybridization (RNAscope®) with a positive rate of 72.7%. Here we present strong evidence that M. hyorhinis should be included as a differential etiology in pigs with neurological signs and central nervous system inflammatory lesions.
Collapse
Affiliation(s)
- Calvin C Ko
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Maria M Merodio
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - E Spronk
- Swine Vet Center P.A., 1608 South Minnesota Avenue, St. Peter, Minnesota, USA
| | - J R Lehman
- Swine Technical Services, Merck Animal Health, Lenexa, KS, USA
| | - H Shen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - G Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Rachel J Derscheid
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Pablo E Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Sim KY, Byeon Y, Bae SE, Yang T, Lee CR, Park SG. Mycoplasma fermentans infection induces human necrotic neuronal cell death via IFITM3-mediated amyloid-β (1-42) deposition. Sci Rep 2023; 13:6864. [PMID: 37100873 PMCID: PMC10132800 DOI: 10.1038/s41598-023-34105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 04/28/2023] Open
Abstract
Mycoplasma fermentans is a proposed risk factor of several neurological diseases that has been detected in necrotic brain lesions of acquired immunodeficiency syndrome patients, implying brain invasiveness. However, the pathogenic roles of M. fermentans in neuronal cells have not been investigated. In this study, we found that M. fermentans can infect and replicate in human neuronal cells, inducing necrotic cell death. Necrotic neuronal cell death was accompanied by intracellular amyloid-β (1-42) deposition, and targeted depletion of amyloid precursor protein by a short hairpin RNA (shRNA) abolished necrotic neuronal cell death. Differential gene expression analysis by RNA sequencing (RNA-seq) showed that interferon-induced transmembrane protein 3 (IFITM3) was dramatically upregulated by M. fermentans infection, and knockdown of IFITM3 abolished both amyloid-β (1-42) deposition and necrotic cell death. A toll-like receptor 4 antagonist inhibited M. fermentans infection-mediated IFITM3 upregulation. M. fermentans infection also induced necrotic neuronal cell death in the brain organoid. Thus, neuronal cell infection by M. fermentans directly induces necrotic cell death through IFITM3-mediated amyloid-β deposition. Our results suggest that M. fermentans is involved in neurological disease development and progression through necrotic neuronal cell death.
Collapse
Affiliation(s)
- Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yeongseon Byeon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - So-Eun Bae
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Cho-Rong Lee
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Metagenomic Approach Reveals the Second Subtype of PRRSV-1 in a Pathogen Spectrum during a Clinical Outbreak with High Mortality in Western Siberia, Russia. Viruses 2023; 15:v15020565. [PMID: 36851780 PMCID: PMC9965736 DOI: 10.3390/v15020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a significant economic impact on pig farming worldwide by causing reproductive problems and affecting the respiratory systems of swine. In Eastern Europe, PRRSV-1 strains are characterized by high genetic variability, and pathogenicity differs among all known subtypes. This case study describes the detection of a wide pathogen spectrum, including the second subtype PRRSV-1, with a high mortality rate among nursery piglets (23.8%). This study was conducted at a farrow-to-finish farm in the Western Siberia region of Russia. Clinical symptoms included apathy, sneezing, and an elevation in body temperature, and during the autopsy, degenerative lesions in different tissues were observed. Moreover, 1.5 percent of the affected animals displayed clinical signs of the central nervous system and were characterized by polyserositis. Nasal swabs from diseased piglets and various tissue swabs from deceased animals were studied. For diagnostics, the nanopore sequencing method was applied. All the samples tested positive for PRRSV, and a more detailed analysis defined it as a second subtype of PRRSV-1. The results, along with the clinical picture, showed a complex disease etiology with the dominant role of PRRSV-1 and were informative about the high pathogenicity of the subtype in question under field conditions.
Collapse
|
8
|
Lai S, Wang J, Wang B, Wang R, Li G, Jia Y, Chen T, Chen Y. Alterations in gut microbiota affect behavioral and inflammatory responses to methamphetamine in mice. Psychopharmacology (Berl) 2022; 239:1-16. [PMID: 35503371 DOI: 10.1007/s00213-022-06154-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE AND OBJECTIVES Methamphetamine (METH) is a highly addictive and widely abused drug that causes severe neuroinflammation in the human brain. The gut microbiota has a tremendous impact on the core symptoms of neuropsychiatric disorders via the microbiota-gut-brain (MGB) axis. However, it is not clear whether alterations in the gut microbiota are involved in METH exposure. METHODS We established a mouse model with chronic, escalating doses of METH exposure. Intervene in gut microbiota with antibiotics to observe the changes of locomotor activity caused by METH exposure in mice. qPCR and 16S rRNA gene sequencing were used to analyze the gut microbiota profiles. In addition, we tested the levels of inflammatory factors in the nucleus accumbens (NAc), prefrontal cortex (mPFC), hippocampus (HIp), and spleen. Finally, short-chain fatty acids (SCFAs) were supplemented to determine the interaction between behavior changes and the structure of gut microbiota. RESULTS In this research, METH increased the locomotor activity of mice, while antibiotics changed the effect. Antibiotics enhanced the expression of pro-inflammatory cytokines in mPFC, HIp, and spleen of METH-exposed mice. METH altered the gut microbiota of mice after antibiotic treatment, such as Butyricicoccus and Roseburia, which are related to butyrate metabolism. Supplementation with SCFAs changed the behavior of METH-exposed mice and decreased Parabacteroides and increased Lactobacillus in METH-exposed mice gut. CONCLUSIONS This research showed that antibiotics affected the behavior of METH-exposed mice and promoted inflammation. Our findings suggest that SCFAs might regulate METH-induced gut microbiota changes and behavior.
Collapse
Affiliation(s)
- Simin Lai
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Jing Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Rui Wang
- Forensic Medicine College, Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Guodong Li
- National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, the Second Affiliated Hospital of Xi'an Jiaotong University College of Medicin, Xi'an, People's Republic of China
| | - Yuwei Jia
- Department of Laboratory Medicine, Baoji Maternal and Child Health Hospital, Baoji, People's Republic of China
| | - Teng Chen
- Forensic Medicine College, Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China.
| |
Collapse
|
9
|
Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166264. [PMID: 34481867 PMCID: PMC8413106 DOI: 10.1016/j.bbadis.2021.166264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/28/2023]
Abstract
The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Guirado
- Department of Infectious Diseases, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaeology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
10
|
Deeney AS, Collins R, Ridley AM. Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005-2019. BMC Vet Res 2021; 17:325. [PMID: 34641885 PMCID: PMC8513359 DOI: 10.1186/s12917-021-03037-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mycoplasma species have been associated with economically important diseases affecting ruminants worldwide and include contagious bovine pleuropneumonia (CBPP), contagious caprine pleuropneumonia (CCPP) and contagious agalactia, listed by the World Organisation for Animal Health (OIE). The Mycoplasma Team at the Animal and Plant Health Agency provides an identification service for Mycoplasma and Ureaplasma species of veterinary importance to the United Kingdom (UK), supporting the detection of new and emerging pathogens, as well as contributing to the surveillance of endemic, and the OIE listed diseases exotic to the UK. Mycoplasma and other Mollicutes species were identified from diagnostic samples from farmed ruminants in England and Wales using a combination of culture and 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis, submitted between 2005 and 2019. Results A total of 5578 mollicutes identifications, which include mycoplasmas and the related acholeoplasmas and ureaplasmas, were made from farmed ruminant animals during the study period. Throughout the study period, the pathogen Mycoplasma bovis was consistently the most frequently identified species, accounting for 1411 (32%) of 4447 molecular identifications in cattle, primarily detected in the lungs of pneumonic calves, followed by joints and milk of cattle showing signs of arthritis and mastitis, respectively. M. bovirhinis, M. alkalescens, M. dispar, M. arginini and Ureaplasma diversum, were also common. Mixed species, principally M. bovis with M. alkalescens, M. arginini or M. bovirhinis were also prevalent, particularly from respiratory samples. The non-cultivable blood-borne haemoplasmas Candidatus ‘Mycoplasma haemobos’ and Mycoplasma wenyonii were identified from cattle, with the latter species most often associated with milk-drop. M. ovipneumoniae was the predominant species identified from sheep and goats experiencing respiratory disease, while M. conjunctivae preponderated in ocular samples. The UK remains free of the ruminant mycoplasmas listed by OIE. Conclusions The continued high prevalence of M. bovis identifications confirms its ongoing dominance and importance as a significant pathogen of cattle in England and Wales, particularly in association with respiratory disease. M. ovipneumoniae has seen a general increase in prevalence in recent years, notably in coughing lambs and should therefore be considered as a primary differential diagnosis of respiratory disease in small ruminants.
Collapse
Affiliation(s)
- Alannah S Deeney
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK.
| | - Rachael Collins
- Animal and Plant Health Agency Veterinary Investigation Centre, Starcross, Exeter, UK
| | - Anne M Ridley
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| |
Collapse
|
11
|
Pereyre S, Tardy F. Integrating the Human and Animal Sides of Mycoplasmas Resistance to Antimicrobials. Antibiotics (Basel) 2021; 10:1216. [PMID: 34680797 PMCID: PMC8532757 DOI: 10.3390/antibiotics10101216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023] Open
Abstract
Mycoplasma infections are frequent in humans, as well as in a broad range of animals. However, antimicrobial treatment options are limited, partly due to the lack of a cell wall in these peculiar bacteria. Both veterinary and human medicines are facing increasing resistance prevalence for the most commonly used drugs, despite different usage practices. To date, very few reviews have integrated knowledge on resistance to antimicrobials in humans and animals, the latest dating back to 2014. To fill this gap, we examined, in parallel, antimicrobial usage, resistance mechanisms and either phenotype or genotype-based methods for antimicrobial susceptibility testing, as well as epidemiology of resistance of the most clinically relevant human and animal mycoplasma species. This review unveiled common features and differences that need to be taken into consideration in a "One Health" perspective. Lastly, two examples of critical cases of multiple drug resistance are highlighted, namely, the human M. genitalium and the animal M. bovis species, both of which can lead to the threat of untreatable infections.
Collapse
Affiliation(s)
- Sabine Pereyre
- USC EA 3671, Mycoplasmal and Chlamydial Infections in Humans, Univ. Bordeaux, INRAE, F-33000 Bordeaux, France
- Bacteriology Department, National Reference Center for Bacterial Sexually Transmitted Infections, CHU Bordeaux, F-33000 Bordeaux, France
| | - Florence Tardy
- UMR Mycoplasmoses Animales, Anses, VetAgro Sup, Université de Lyon, F-69007 Lyon, France
| |
Collapse
|
12
|
Pires D, Morais A, Cunha N, Machado L, Barbosa L, Mendonça J, Balaro M, Santos J, Souza G, Barreto M, Nascimento E. Proposal of an iELISA for Mycoplasma bovis diagnosis in dairy cattle and associated risk factors. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Mycoplasma bovis is a highly contagious agent associated with several pathologies in cattle. The detection of reactive antibodies to M. bovis by Indirect Enzyme-Linked Immunosorbent Assay (iELISA) identifies if there was an exposure to the microorganism. The current study aimed to optimize an iELISA from M. bovis total cell antigen, applying it to bovine serum samples, and to evaluate risk factors. Serum samples were obtained from 400 cows from 17 herds from Southeast Brazil. In the optimization of iELISA, the following was established: 2 μg/mL of antigen, sera dilution 1:300, and conjugate dilution 1:15000. The frequency was 62.3% (249/400) of reactive animals and 100% (17/17) of reactive herds. Risk factors were: herds with more than 100 animals (OR= 3.1; CI= 95%); Holstein breed (OR= 72.5; CI= 95%); cows (OR= 29.7; CI= 95%); intensive breeding system (OR= 3.3; CI= 95%); associated small ruminant production (OR= 4.4; CI= 95%); milk production above 500L (OR= 2.9; CI= 95%); no quarantine (OR= 1.5; CI= 95%); mechanical milking (OR= 5.5; CI= 95%) and cases of mastitis (OR= 5.5; CI= 95%). The proposed iELISA was able to detect antibodies reactive to M. bovis in bovine serum. Knowledge of these risk factors can assist in the implementation of prophylactic measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - G.N. Souza
- Universidade Federal Fluminense, Brazil; Empresa Brasileira de Pesquisa Agropecuária, Brazil
| | | | | |
Collapse
|
13
|
Bünger M, Brunthaler R, Unterweger C, Loncaric I, Dippel M, Ruczizka U, Schwarz L, Griessler A, Voglmayr T, Verhovsek D, Ladinig A, Spergser J. Mycoplasma hyorhinis as a possible cause of fibrinopurulent meningitis in pigs? - a case series. Porcine Health Manag 2020; 6:38. [PMID: 33292668 PMCID: PMC7713030 DOI: 10.1186/s40813-020-00178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Background Mycoplasma hyorhinis is an invader of the upper respiratory tract in swine that is considered to have ubiquitous distribution. It is mainly known for causing polyserositis and polyarthritis in weaned piglets, even though the mechanisms of systemic spread are not fully understood. Mycoplasma hyorhinis has also been associated with other diseases in pigs such as pneumonia or otitis media, but so far has not been known to cause central nervous disorders. This case series reports the isolation of Mycoplasma hyorhinis from cerebrospinal fluid and/ or meningeal swabs from piglets originating from four different piglet producing farms in Austria. Case presentation On farm 1, coughing, stiff movement and central nervous signs occurred in nursery piglets. Mycoplasma hyorhinis was the only pathogen isolated from meningeal swabs from two piglets showing central nervous signs. Fibrinopurulent leptomeningitis was only observed in one piglet. Only one of two nursery piglets from farm 2 showed mild central nervous signs but no histologic lesions; Mycoplasma hyorhinis was isolated from cerebrospinal fluid of the piglet with neurologic signs. Mycoplasma hyorhinis was isolated from cerebrospinal fluid of all three investigated piglets from farm 3, all of which showed central nervous signs and purulent leptomeningitis. Further, Streptococcus suis was isolated from the cerebrospinal fluid of one piglet. Fibrinopurulent leptomeningitis was detected in two piglets from farm 4 that had died overnight without showing any clinical signs and Mycoplasma hyorhinis was isolated from meningeal swabs from both piglets. Conclusion While causality has yet to be proven by experimental infection and in situ detection of the pathogen in histologic sections, the findings of this study and the absence of other pathogens suggest Mycoplasma hyorhinis as a potential causative agent of meningitis in swine.
Collapse
Affiliation(s)
- Moritz Bünger
- University Clinic for Swine, Vetmeduni Vienna, Vienna, Austria
| | | | | | - Igor Loncaric
- Institute of Microbiology, Vetmeduni Vienna, Vienna, Austria
| | | | - Ursula Ruczizka
- University Clinic for Swine, Vetmeduni Vienna, Vienna, Austria
| | - Lukas Schwarz
- University Clinic for Swine, Vetmeduni Vienna, Vienna, Austria
| | | | - Thomas Voglmayr
- Traunkreis Vet Clinic, Ried im Traunkreis, Traunkreis, Austria
| | - Doris Verhovsek
- University Clinic for Swine, Vetmeduni Vienna, Vienna, Austria.,VetFarm Medau, Vetmeduni Vienna, Berndorf, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Vetmeduni Vienna, Vienna, Austria.
| | | |
Collapse
|
14
|
Persistence in Livestock Mycoplasmas—a Key Role in Infection and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Purpose of Review
Mycoplasma, economically important pathogens in livestock, often establishes immunologically complex persistent infections that drive their pathogenesis and complicate prophylaxis and therapy of the caused diseases. In this review, we summarize some of the recent findings concerning cellular and molecular persistence mechanisms related to the pathogenesis of mycoplasma infections in livestock.
Recent Findings
Data from recent studies prove several mechanisms including intracellular lifestyle, immune dysregulation, and autoimmunity as well as microcolony and biofilm formation and apoptosis of different host cell types as important persistence mechanisms in several clinically significant Mycoplasma species, i.e., M. bovis, M. gallisepticum, M. hyopneumoniae, and M. suis.
Summary
Evasion of the immune system and the establishment of persistent infections are key features in the pathogenesis of livestock mycoplasmas. In-depth knowledge of the underlying mechanisms will provide the basis for the development of therapy and prophylaxis strategies against mycoplasma infections.
Collapse
|
15
|
Current status of vaccine research, development, and challenges of vaccines for Mycoplasma gallisepticum. Poult Sci 2020; 99:4195-4202. [PMID: 32867963 PMCID: PMC7598112 DOI: 10.1016/j.psj.2020.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is an important avian pathogen that causes significant economic losses in the poultry industry. Surprisingly, the limited protection and adverse reactions caused by the vaccines, including live vaccines, bacterin-based (killed) vaccines, and recombinant viral vaccines is still a major concern. Mycoplasma gallisepticum strains vary in infectivity and virulence and infection may sometimes unapparent and goes undetected. Although extensive research has been carried out on the biology of this pathogen, information is lacking about the type of immune response that confers protection and selection of appropriate protective antigens and adjuvants. Regardless of numerous efforts focused on the development of safe and effective vaccine for the control of MG, the use of modern DNA vaccine technology selected in silico approaches for the use of conserved recombinant proteins may be a better choice for the preparation of novel effective vaccines. More research is needed to characterize and elucidate MG products modulating MG-host interactions. These products could be used as a reference for the preparation and development of vaccines to control MG infections in poultry flocks.
Collapse
|
16
|
Jaÿ M, Tardy F. Contagious Agalactia In Sheep And Goats: Current Perspectives. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:229-247. [PMID: 31921613 PMCID: PMC6938181 DOI: 10.2147/vmrr.s201847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022]
Abstract
Contagious agalactia (CA) is a disease caused equally by four Mycoplasma species, in single or mixed infections. Clinical signs are multiple, including mastitis, arthritis, keratoconjunctivitis, pneumonia, and septicemia, non-specific, and expressed differently depending whether sheep or goats are affected, on causative mycoplasmas as well as type of husbandry. CA has been reported worldwide and its geographic distribution maps to that of small ruminant breeding areas. However, as current diagnostic tests are expensive and difficult to implement, it is certainly underdiagnosed and prevalence data are only available for a few countries. CA control relies on vaccines, chemotherapy and good herd management practices. It requires long-term commitment but is often unsuccessful, with frequent clinical relapses. The persistence of the etiological agents, despite their overall susceptibility to antimicrobials, comes from their genetic plasticity and capacity to escape the host immune response. The existence of asymptomatic carriers and the numerous sources of infections contribute to rapid spread of the disease and complicate the control and prevention efforts. Here we review all these aspects in order to highlight recent progress made and identify gaps in knowledge or tools needed for better disease management. Discussion also underlines the detrimental effect of contagious agalactia on small ruminant welfare.
Collapse
Affiliation(s)
- Maryne Jaÿ
- Université de Lyon, ANSES, Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Lyon69364, France
| | - Florence Tardy
- Université de Lyon, ANSES, Laboratoire de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Lyon69364, France
| |
Collapse
|
17
|
Haston JC, Rostad CA, Jerris RC, Milla SS, McCracken C, Pratt C, Wiley M, Prieto K, Palacios G, Shane AL, McElroy AK. Prospective Cohort Study of Next-Generation Sequencing as a Diagnostic Modality for Unexplained Encephalitis in Children. J Pediatric Infect Dis Soc 2019; 9:326-333. [PMID: 31107955 PMCID: PMC7457329 DOI: 10.1093/jpids/piz032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND Encephalitis is an inflammatory condition of the brain associated with long-term neurologic sequelae and even death in children. Although viruses are often implicated, an etiology is not identified in the majority of cases. Metagenomics-based next-generation sequencing (mNGS) is a high-throughput sequencing technique that can enhance the detection of novel or low-frequency pathogens. METHODS Hospitalized immunocompetent children aged 6 months to 18 years with encephalitis of unidentified etiology were eligible for enrollment. Demographic, historical, and clinical information was obtained, and residual blood and cerebrospinal fluid (CSF) samples were subjected to mNGS. Pathogens were identified by querying the sequence data against the NCBI GenBank database. RESULTS Twenty children were enrolled prospectively between 2013 and 2017. mNGS of CSF identified 7 nonhuman nucleic acid sequences of significant frequency in 6 patients, including that of Mycoplasma bovis, parvovirus B19, Neisseria meningitidis, and Balamuthia mandrillaris. mNGS also detected Cladophialophora species, tobacco mosaic virus, and human bocavirus, which were presumed to be contaminants or nonpathogenic organisms. One patient was found to have positive serology results for California encephalitis virus, but mNGS did not detect it. Patients for whom mNGS identified a diagnosis had a significantly higher CSF white blood cell count, a higher CSF protein concentration, and a lower CSF glucose level than patients for whom mNGS did not identify a diagnosis. CONCLUSION We describe here the results of a prospective cohort analysis to evaluate mNGS as a diagnostic tool for children with unexplained encephalitis. Although mNGS detected multiple nonpathogenic organisms, it also identified multiple pathogens successfully and was most useful in patients with a CSF abnormality.
Collapse
Affiliation(s)
- Julia C Haston
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | | | - Sarah S Milla
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Courtney McCracken
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Catherine Pratt
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland,College of Public Health, University of Nebraska Medical Center, Omaha
| | - Michael Wiley
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland,College of Public Health, University of Nebraska Medical Center, Omaha
| | - Karla Prieto
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland,College of Public Health, University of Nebraska Medical Center, Omaha
| | - Gustavo Palacios
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland
| | - Andi L Shane
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia
| | - Anita K McElroy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Children’s Healthcare of Atlanta, Georgia,Department of Pediatrics, University of Pittsburgh, Pennsylvania,Correspondence: A. K. McElroy, MD, PhD, University of Pittsburgh, Department of Pediatrics, 3501 Fifth Ave, Pittsburgh, PA 15261 ()
| |
Collapse
|
18
|
|
19
|
Calcutt MJ, Lysnyansky I, Sachse K, Fox LK, Nicholas RAJ, Ayling RD. Gap analysis of Mycoplasma bovis disease, diagnosis and control: An aid to identify future development requirements. Transbound Emerg Dis 2018; 65 Suppl 1:91-109. [PMID: 29582590 DOI: 10.1111/tbed.12860] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/07/2023]
Abstract
There is a worldwide problem of disease caused by Mycoplasma (M.) bovis in cattle; it has a significant detrimental economic and animal welfare impact on cattle rearing. Infection can manifest as a plethora of clinical signs including mastitis, pneumonia, arthritis, keratoconjunctivitis, otitis media and genital disorders that may result in infertility and abortion. Current diagnosis and control information are reviewed and analysed to identify gaps in knowledge of the causative organism in respect of the disease pathology, diagnosis and control methods. The main considerations are as follows: no vaccines are commercially available; antimicrobial resistance is increasing; diagnostic and antimicrobial sensitivity testing needs to be improved; and a pen-side test would facilitate more rapid diagnosis and implementation of treatment with antimicrobials. More data on host susceptibility, stress factors, immune response and infectious dose levels are required. The impact of asymptomatic carriers, M. bovis survival in the environment and the role of wildlife in transmitting the disease also needs investigation. To facilitate development of vaccines, further analysis of more M. bovis genomes, its pathogenic mechanisms, including variable surface proteins, is required, along with reproducible disease models.
Collapse
Affiliation(s)
| | | | - K Sachse
- Friedrich-Loeffler-Institut, Jena, Germany.,Department of RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität, Jena, Germany
| | - L K Fox
- Washington State University, Pullman, WA, USA
| | | | - R D Ayling
- Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|