1
|
Mahjoubian M, Sadat Naeemi A, Sheykhan M. Comparative Toxicity of TiO 2 and Sn-Doped TiO 2 Nanoparticles in Zebrafish After Acute and Chronic Exposure. Biol Trace Elem Res 2024; 202:1-19. [PMID: 38472510 DOI: 10.1007/s12011-024-04127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
This study was conducted to assess the toxicological potential of synthesized pure and Sn-doped TiO2 NPs (Sn-TiO2 NPs) in zebrafish after acute and chronic exposure. The pure TiO2 NPs, 4%, and 8% Sn-TiO2 NPs were synthesized and characterized using X-ray diffraction, Scanning Electron Microscope, diffuse reflectance spectra, dynamic light scattering, and zeta potential analyses. The pure TiO2 NPs, 4%, and 8% Sn-TiO2 NPs were spherical with average sizes of about 40, 28, and 21 nm, respectively, indicating significant size reduction of TiO2 NPs following Sn doping. According to our results, the LC50-96h increased in the order of 8% Sn-TiO2 NPs (45 mg L-1) < 4% Sn-TiO2 NPs (80.14 mg L-1) < pure TiO2 NPs (105.47 mg L-1), respectively. Exposure of fish to Sn-TiO2 NPs after 30 days resulted in more severe histopathological alterations in gills, liver, intestine, and kidneys than pure TiO2 NPs. Furthermore, Sn-doping significantly elevated malondialdehyde levels and micronuclei frequency, indicating increased oxidative stress and genotoxicity. Expression analysis revealed altered expression of various genes, including upregulation of pro-apoptotic Bax gene and downregulation of anti-apoptotic Bcl-2 gene, suggesting potential induction of apoptosis in response to Sn-doped NPs. Additionally, antioxidant genes (Gpx, Sod, Cat, and Ucp-2) and stress response gene (Hsp70) showed altered expression, suggesting complex cellular responses to mitigate the toxic effects. Overall, this study highlights the concerning impact of Sn-doping on the toxicity of TiO2 NPs in zebrafish and emphasizes the need for further research to elucidate the exact mechanisms underlying this enhanced toxicity.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mehdi Sheykhan
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
2
|
Tzevelekidis P, Theodosiou M, Papadopoulou A, Sakellis E, Boukos N, Bikogiannakis AK, Kyriakou G, Efthimiadou EK, Mitsopoulou CA. Visible-light-activated antibacterial and antipollutant properties of biocompatible Cu-doped and Ag-decorated TiO 2 nanoparticles. Heliyon 2024; 10:e35634. [PMID: 39295985 PMCID: PMC11408793 DOI: 10.1016/j.heliyon.2024.e35634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Optical and photocatalytic restrictions of anatase TiO2 nanoparticles (Nps) limit their potential applications, as antipollutant and antibacterial agents for sanitary applications, to the UV spectral region. While modification with transition metals extends the absorption capacity to the visible light spectrum, often undermines the photocatalysts' biocompatibility due to toxic ion leaching. In this study, we synthesized Cu-doped and Ag-decorated TiO2 photocatalysts by employing solvothermal (ATiO2:Cu) and sol-gel synthetic procedures (BTiO2:Ag), respectively. We acquired TiO2 Nps modified with three percentages of either Cu or Ag content, to examine the potential differentiation of their structural, photocatalytic, and biological impact. Comprehensive structural characterization supports the prevailing anatase crystalline structure of bare and modified titania nanostructures, while morphological differences are demonstrated among the different samples. Optical response in the visible region of ATiO2:Cu Nps stems from band gap narrowing and lattice-defect generation, while plasmonic effects are at play for BTiO2:Ag Nps. Their photocatalytic potential under visible light irradiation, originated from low-energy LED lamps commonly found in indoor spaces, was verified after monitoring the successful enhancement of methylene blue (MB) degradation rate. Safety assessment on immortalized healthy human keratinocyte cell line (HaCaT) revealed their biocompatibility up to a certain concentration, while reactive oxygen species (ROS) production was intensified after light irradiation. The visible-light-induced photocatalytic-driven antibacterial activity was confirmed against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli.
Collapse
Affiliation(s)
- Panagiotis Tzevelekidis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | - Maria Theodosiou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | - Athina Papadopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | | | - Georgios Kyriakou
- Department of Chemical Engineering, University of Patras, Caratheodory 1, Patras, 26504, Greece
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | - Christiana A Mitsopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| |
Collapse
|
3
|
Kaur H, Kalia A, Manchanda P. Elucidating the effect of TiO 2 nanoparticles on mung bean rhizobia via in vitro assay: Influence on growth, morphology, and plant growth promoting traits. J Basic Microbiol 2024; 64:e2300306. [PMID: 38183339 DOI: 10.1002/jobm.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are among the most commonly used nanomaterials and are most likely to end up in soil. Therefore, it is pertinent to study the interaction of TiO2 NPs with soil microorganisms. The present in vitro broth study evaluates the impacts of low-dose treatments (0, 1.0, 5.0, 10.0, 20.0, and 40.0 mg L-1 ) of TiO2 NPs on cell viability, morphology, and plant growth promoting (PGP) traits of rhizobia isolated from mung bean root nodule. Two types of TiO2 NPs, that is, mixture of anatase and rutile, and anatase alone were used in the study. These TiO2 NPs were supplemented in broth along with a multifunctional isolate (Bradyrhizobium sp.) and two reference cultures. The exposure of TiO2 (anatase+rutile) NPs at low concentrations (less than 20.0 mg L-1 ) enhanced the cell growth, and total soluble protein content, besides improving the phosphate solubilization, Indole-3-acetic acid (IAA) production, siderophore, and gibberellic acid production. The TiO2 (anatase) NPs enhanced exopolysaccharide (EPS) production by the test rhizobial cultures. The radical scavenging assay was performed to reveal the mode of action of the nano-TiO2 particles. The study revealed higher reactive oxygen species (ROS) generation by the TiO2 (anatase) NPs as compared with TiO2 (anatase+rutile) NPs. Exposure to TiO2 NPs also altered the morphology of rhizobial cells. The findings suggest that TiO2 NPs could act as promoters of PGP traits of PGP bacteria when applied at appropriate lower doses.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Musiol R. Efflux systems as a target for anti-biofilm nanoparticles: perspectives on emerging applications. Expert Opin Ther Targets 2023; 27:953-963. [PMID: 37788168 DOI: 10.1080/14728222.2023.2263910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Understanding the role of efflux pumps in biofilm resistance provides valuable insights for developing effective therapeutic strategies. Drugs designed for targeting efflux pumps in drug design holds promise for combating biofilm-related infections. Nanoparticles offer unparalleled advantages in designing drugs targeting efflux pumps. AREAS COVERED This review rigorously examines the existing body of knowledge on the prospective targeting of efflux pumps using metal-based nanoparticles. It includes and analyses the pertinent research findings sourced from the PubMed and SciFinder databases. It covers the experimental studies on efflux inhibition by nanoparticles and provides detailed analyses of their mechanisms of action, elucidating their interactions with the efflux system and their influence on biofilm formation and persistence. EXPERT OPINION The potential of nanoparticles to act as potent antibacterial agents through efflux pump inhibition remains tantalizing, although hindered by limited mechanistic understanding. From the burgeoning research landscape nanoparticles emerge as a novel direction for shaping antimicrobial drug design. Notably, beyond their contribution to drug resistance, efflux pumps play a pivotal role in biofilm development. The deliberate disruption of these pumps can effectively reduce biofilm adhesion and maturation. More details however are needed to exploit this potential.
Collapse
Affiliation(s)
- Robert Musiol
- Institute of Chemistry, Faculty of Science and Technology University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
5
|
Pelesinuo KB, Sattanathan G, Haque N, Al-Ghanim KA, Nicoletti M, Sachivkina N, Govindarajan M. Synthesis and Characterization of Mithun ( Bos frontalis) Urine-Based Antibacterial Copper Oxide Nanoparticles. Biomedicines 2023; 11:1690. [PMID: 37371785 DOI: 10.3390/biomedicines11061690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The increased prevalence of disease, mortality, and antibiotic resistance among aquatic microorganisms has renewed interest in non-conventional disease prevention and control approaches. Nanoparticles present several benefits in aquaculture and hold significant potential for controlling both human and animal infections. This study reports on the antibacterial properties of green copper oxide nanoparticles (CuO NPs) synthesized from the urine of Mithun (MU) (Bos frontalis). In addition, an array of analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy (UV), and Fourier transform infrared spectroscopy (FTIR), were employed to investigate the synthesized MU-CuO nanoparticles. Aeromonas hydrophila and Aeromonas veronii, two bacterial fish pathogens known to cause severe infectious diseases in fish, were tested for their antibacterial efficacy against MU-CuO NPs. At 100 µg/mL, MU-CuO NPs exhibit enhanced antibacterial efficacy against two bacterial pathogens commonly found in fish. Applications in aquaculture may be looked at given that MU-CuO NPs showed greater antibacterial activity.
Collapse
Affiliation(s)
| | | | - Nazrul Haque
- ICAR-National Research Centre on Mithun, Medziphema 797106, Nagaland, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples Friendship University of Russia Named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, Tamil Nadu, India
| |
Collapse
|
6
|
Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y, Lu T. Smart microneedle patches for wound healing and management. J Mater Chem B 2023; 11:2830-2851. [PMID: 36916631 DOI: 10.1039/d2tb02596e] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.
Collapse
Affiliation(s)
- Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Na Sun
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenhui Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| |
Collapse
|
7
|
Kavitha A, Doss A, Praveen Pole R, Pushpa Rani TK, Prasad R, Satheesh S. A mini review on plant-mediated zinc oxide nanoparticles and their antibacterial potency. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
9
|
Mingmongkol Y, Trinh DTT, Phuinthiang P, Channei D, Ratananikom K, Nakaruk A, Khanitchaidecha W. Enhanced Photocatalytic and Photokilling Activities of Cu-Doped TiO2 Nanoparticles. NANOMATERIALS 2022; 12:nano12071198. [PMID: 35407316 PMCID: PMC9000674 DOI: 10.3390/nano12071198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/16/2023]
Abstract
In this work, metal-doped titanium dioxide (TiO2) was synthesised with the aim of improving photocatalytic degradation and antimicrobial activities; TiO2 was doped with copper (Cu) ranging from 0.1 to 1.0 wt%. The physical and chemical properties of the Cu-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller method (BET) and diffuse reflection spectroscopy (DRS). The results revealed that the anatase phase of TiO2 was maintained well in all the Cu-doped TiO2 samples. No significant difference in the particle sizes or the specific surface areas was caused by increasing Cu doping. However, the band gap decreased continuously from 3.20 eV for undoped TiO2 to 3.12 eV for 1.0 wt.% Cu-doped TiO2. In addition, the 0.1 wt.% Cu-doped TiO2 displayed a much greater photocatalytic degradation of methylene blue (MB) and excellent antibacterial ability for Escherichia coli (E. coli) compared to undoped TiO2. On the other hand, the high Cu doping levels had negative impacts on the surface charge of nanoparticles and charge transfer for OH• generation, resulting in decreasing MB degradation and E. coli photokilling for 1.0 wt.% Cu-doped TiO2.
Collapse
Affiliation(s)
- Yumatorn Mingmongkol
- Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (Y.M.); (P.P.)
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (D.T.T.T.); (A.N.)
| | - Dang Trung Tri Trinh
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (D.T.T.T.); (A.N.)
- Institute of Environmental Science & Technology, Tra Vinh University, Tra Vinh 87000, Vietnam
| | - Patcharaporn Phuinthiang
- Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (Y.M.); (P.P.)
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (D.T.T.T.); (A.N.)
| | - Duangdao Channei
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Khakhanang Ratananikom
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Kalasin 46000, Thailand;
| | - Auppatham Nakaruk
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (D.T.T.T.); (A.N.)
- Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand
| | - Wilawan Khanitchaidecha
- Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (Y.M.); (P.P.)
- Centre of Excellence for Innovation and Technology for Water Treatment, Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand; (D.T.T.T.); (A.N.)
- Correspondence:
| |
Collapse
|
10
|
Hemeg HA. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z NATURFORSCH C 2022; 77:365-378. [PMID: 35234019 DOI: 10.1515/znc-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Some bacteria can withstand the existence of an antibiotic without undergoing any genetic changes. They are neither cysts nor spores and are one of the causes of disease recurrence, accounting for about 1% of the biofilm. There are numerous approaches to eradication and combating biofilm-forming organisms. Nanotechnology is one of them, and it has shown promising results against persister cells. In the review, we go over the persister cell and biofilm in extensive detail. This includes the biofilm formation cycle, antibiotic resistance, and treatment with various nanoparticles. Furthermore, the gene-level mechanism of persister cell formation and its therapeutic interventions with nanoparticles were discussed.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| |
Collapse
|
11
|
Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 2022; 300:102593. [PMID: 34971916 DOI: 10.1016/j.cis.2021.102593] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.
Collapse
|
12
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
13
|
Mobed A, Hasanzadeh M, Seidi F. Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges. RSC Adv 2021; 11:34688-34698. [PMID: 35494766 PMCID: PMC9042813 DOI: 10.1039/d1ra06030a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Gold nanocomposites are being widely used in numerous biomedical applications owing to their excellent stability and miniaturization. Gold nanocomposites are notable because of their flexibility of functionalization and synthesis, ease of detection, and low toxicity. Cost-effectiveness, long-term stability, non-cytotoxicity, and biocompatibility are the main aspects of ideal nanocomposites. Antibacterial nanocomposites are being developed extensively in the food industry, environmental applications, and biological and medical devices. This review focuses on the applications of metal-based nanoparticles, mainly gold nanoparticles (AuNPs), as antibacterial agents in medical approaches. Additionally, the antibacterial mechanisms of AuNPs and their roles in fighting antibiotic-resistant microorganisms are highlighted in the present review.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
14
|
Abstract
Concrete sewer pipes can be corroded by the biogenic sulfuric acid (H2SO4) generated from microbiological activities in a process called biocorrosion or microbiologically induced corrosion (MIC). In this study, inhibitors that can reduce Acidithiobacillus thiooxidans growth and thus may reduce the accumulation of biofilm components responsible for the biodegradation of concrete were used. D-tyrosine, tetrakis hydroxymethyl phosphonium sulfate (THPS) and TiO2 nanoparticles were investigated as potential inhibitors of sulfur-oxidizing bacteria (SOB) growth. Results showed that most of the chemicals used can inhibit SOB growth at a concentration lower than 100 mg/L. TiO2 nanoparticles exhibited the highest biocide effect and potential biocorrosion mitigation activity, followed by D-tyrosine and THPS.
Collapse
|
15
|
An Amalgam of Mg-Doped TiO2 Nanoparticles Prepared by Sol–Gel Method for Effective Antimicrobial and Photocatalytic Activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Abstract
The synthesis of nanomaterials, with characteristic dimensions of 1 to 100 nm, is a key component of nanotechnology. Vapor-phase synthesis of nanomaterials has numerous advantages such as high product purity, high-throughput continuous operation, and scalability that have made it the dominant approach for the commercial synthesis of nanomaterials. At the same time, this class of methods has great potential for expanded use in research and development. Here, we present a broad review of progress in vapor-phase nanomaterial synthesis. We describe physically-based vapor-phase synthesis methods including inert gas condensation, spark discharge generation, and pulsed laser ablation; plasma processing methods including thermal- and non-thermal plasma processing; and chemically-based vapor-phase synthesis methods including chemical vapor condensation, flame-based aerosol synthesis, spray pyrolysis, and laser pyrolysis. In addition, we summarize the nanomaterials produced by each method, along with representative applications, and describe the synthesis of the most important materials produced by each method in greater detail.
Collapse
Affiliation(s)
- Mohammad Malekzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
17
|
Staroń A, Długosz O. Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:680-693. [PMID: 33979267 DOI: 10.1080/10934529.2021.1917936] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The popularity of nanotechnology results from the possibility of obtaining materials that have better chemical, electrical, thermal, mechanical, or optical properties. Nano-sized materials are characterized by an increased surface area, which improves their chemical reactivity and mobility. Due to their enhanced reactivity and appropriately small size, some nanoparticles are used as antimicrobial and antifungal agents. Nanoparticles exhibit antimicrobial potential through multifaceted mechanisms. The adhesion of nanoparticles to microbial cells, and reactive oxygen species, and their penetration inside the cells, have been recognized as the most prominent modes of antimicrobial action. This review presents the mechanism of action of nanometals and oxide nanoparticles used as antimicrobials and the mechanisms of bacterial resistance to the toxic effects of nanoparticles. The article presents methods of forming microorganism resistance to the toxic effects of nanoparticles and the negative impact of nanoparticles on human health.
Collapse
Affiliation(s)
- Anita Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, Cracow, Poland
| | - Olga Długosz
- Department of Engineering and Chemical Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
18
|
Zinc Oxide and Silver Nanoparticle Effects on Intestinal Bacteria. MATERIALS 2021; 14:ma14102489. [PMID: 34065822 PMCID: PMC8151642 DOI: 10.3390/ma14102489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
The application of nanoparticles (NPs) for food safety is increasingly being explored. Zinc oxide (ZnO) and silver (Ag) NPs are inorganic chemicals with antimicrobial and bioactive characteristics and have been widely used in the food industry. However, not much is known about the behavior of these NPs upon ingestion and whether they inhibit natural gut microflora. The objective of this study was to investigate the effects of ZnO and Ag NPs on the intestinal bacteria, namely Escherichia coli, Lactobacillus acidophilus, and Bifidobacterium animalis. Cells were inoculated into tryptic soy broth or Lactobacilli MRS broth containing 1% of NP-free solution, 0, 12, 16, 20 mM of ZnO NPs or 0, 1.8, 2.7, 4.6 mM Ag NPs, and incubated at 37 °C for 24 h. The presence and characterization of the NPs on bacterial cells were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Membrane leakage and cell viability were assessed using a UV-visible spectrophotometer and confocal electron microscope, respectively. Numbers of treated cells were within 1 log CFU/mL less than those of the controls for up to 12 h of incubation. Cellular morphological changes were observed, but many cells remained in normal shapes. Only a small amount of internal cellular contents was leaked due to the NP treatments, and more live than dead cells were observed after exposure to the NPs. Based on these results, we conclude that ZnO and Ag NPs have mild inhibitory effects on intestinal bacteria.
Collapse
|
19
|
Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target 2021; 29:941-959. [PMID: 33703979 DOI: 10.1080/1061186x.2021.1895818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Simab Kanwal
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
20
|
Amaro F, Morón Á, Díaz S, Martín-González A, Gutiérrez JC. Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? Microorganisms 2021; 9:364. [PMID: 33673231 PMCID: PMC7917771 DOI: 10.3390/microorganisms9020364] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (Á.M.); (S.D.); (A.M.-G.); (J.C.G.)
| | | | | | | | | |
Collapse
|
21
|
Yang L, Yang H, Hao W, Li Y, Li Q, Sun T. Fabrication, characterization and antibacterial mechanism of
in‐situ
modification nano‐CaCO
3
/TiO
2
/CS coatings. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lili Yang
- College of Food Science and Engineering National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Bohai University Jinzhou121013China
- Keystone Foods Shenzhen518001China
| | - Hua Yang
- College of Food Science and Engineering National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Bohai University Jinzhou121013China
| | - Wenting Hao
- College of Food Science and Engineering National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Bohai University Jinzhou121013China
- the County Party Committee of Wuyi Hengshui053400China
| | - Yingchang Li
- College of Food Science and Engineering National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Bohai University Jinzhou121013China
| | - Qiuying Li
- College of Food Science and Engineering National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Bohai University Jinzhou121013China
| | - Tong Sun
- College of Food Science and Engineering National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Bohai University Jinzhou121013China
- Keystone Foods Shenzhen518001China
| |
Collapse
|
22
|
Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A. Nanoparticle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections. Bioconjug Chem 2020; 31:1708-1723. [PMID: 32538089 DOI: 10.1021/acs.bioconjchem.0c00297] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial infections in wounds often delay the healing process, and may seriously threaten human life. It is urgent to develop wound dressings to effectively detect and treat bacterial infections. Nanoparticles have been extensively used in wound dressings because of their specific properties. This review highlights the recent progress on nanoparticle-based wound dressings for bacterial detection and therapy. Specifically, nanoparticles have been applied as intrinsic antibacterial agents or drug delivery vehicles to treat bacteria in wounds. Moreover, nanoparticles with photothermal or photodynamic property have also been explored to endow wound dressings with significant optical properties to further enhance their bactericidal effect. More interestingly, nanoparticle-based smart dressings have been recently explored for bacteria detection and treatment, which enables an accurate assessment of bacterial infection and a more precise control of on-demand therapy.
Collapse
Affiliation(s)
- Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China.,Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, the People's Republic of China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, the People's Republic of China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, the People's Republic of China
| |
Collapse
|
23
|
Xu Q, Liu X, Yang G, Wang D, Wu Y, Li Y, Huang X, Fu Q, Wang Q, Liu Y, Li X, Yang Q. Norfloxacin-induced effect on enhanced biological phosphorus removal from wastewater after long-term exposure. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122336. [PMID: 32105958 DOI: 10.1016/j.jhazmat.2020.122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, long-term experiments were performed under synthetic wastewater conditions to evaluated the potential impacts of norfloxacin (NOR) (10, 100 and 500 μg/L) on enhanced biological phosphorus removal (EBPR). Experimental result showed that long-term exposure to 10 μg/L NOR induced negligible effects on phosphorus removal. The presence of 100 μg/L NOR slightly decreased phosphorus removal efficiency to 94.41 ± 1.59 %. However, when NOR level further increased to 500 μg/L, phosphorus removal efficiency was significantly decreased from 97.96 ± 0.8 5% (control) to 82.33 ± 3.07 %. The mechanism study revealed that the presence of 500 μg/L NOR inhibited anaerobic phosphorus release and acetate uptake as well as aerobic phosphorus uptake during long-term exposure. It was also found that 500 μg/L NOR exposure suppressed the activity of key enzymes related to phosphorus removal but promoted the transformations of intracellular polyhydroxyalkanoate and glycogen. Microbial analysis revealed that that the presence of 500 μg/L NOR reduced the abundances of polyphosphate accumulating organisms but increased glycogen accumulating organisms, as compared the control.
Collapse
Affiliation(s)
- Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guojing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoding Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
24
|
Hui Y, Dong Z, Wenkun P, Yao D, Huichang G, Tongxiang L. Facile synthesis of copper doping hierarchical hollow porous hydroxyapatite beads by rapid gelling strategy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110531. [PMID: 32228968 DOI: 10.1016/j.msec.2019.110531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/24/2022]
Abstract
Calcium phosphate based ceramic materials are widely used in bone tissue engineering. Till now, it remains an unmet challenge to construct monodispersed hollow porous calcium phosphate beads through facile and scalable-production strategy. Herein, a rapid gelling strategy is used to combine the guar gum and metal hydroxide, which helps to prepare hollow hierarchical porous hydroxyapatite beads. Results show that the concentration of copper ions and calcination temperature greatly affect the microstructure transformation of the product. Higher concentrations of copper ions lead to the growth of hollow structures, and these ceramic beads exhibit excellent biocompatibility and antibacterial properties. The structure evolution of the products is systematically investigated, and a formation mechanism has been proposed.
Collapse
Affiliation(s)
- Yang Hui
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China; Engineering Research Center for Hydrogen Energy Materials and Devices, Jiangxi University of Science and Technology, Ganzhou, China
| | - Zhang Dong
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Peng Wenkun
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Di Yao
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Gao Huichang
- School of Medicine, South China University of Technology, Guangzhou 510006, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Liang Tongxiang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China; Engineering Research Center for Hydrogen Energy Materials and Devices, Jiangxi University of Science and Technology, Ganzhou, China.
| |
Collapse
|
25
|
Alotaibi A, Williamson BAD, Sathasivam S, Kafizas A, Alqahtani M, Sotelo-Vazquez C, Buckeridge J, Wu J, Nair SP, Scanlon DO, Parkin IP. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO 2 Thin Films: Theory and Experiment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15348-15361. [PMID: 32109038 PMCID: PMC7146757 DOI: 10.1021/acsami.9b22056] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 05/12/2023]
Abstract
Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol-assisted chemical vapor deposition to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase and showed excellent antibacterial (vs Staphylococcus aureus and Escherichia coli) ability. Using a combination of transient absorption spectroscopy, photoluminescence measurements, and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples and the enhanced UV photoactivities observed.
Collapse
Affiliation(s)
- Abdullah
M. Alotaibi
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- The
National Centre for Building and Construction Technology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442-6086, Saudi Arabia
| | - Benjamin A. D. Williamson
- Department
of Chemistry, Christopher Ingold Building, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Thomas
Young Centre, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Sanjayan Sathasivam
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Andreas Kafizas
- Grantham Institute,
Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Mahdi Alqahtani
- Electronic
& Electrical Engineering, University
College London, Torrington
Place, London WC1E 7JE, U.K.
- Materials
Science Research Institute, King Abdulaziz
City for Science and Technology (KACST), Riyadh 11442-6086, Saudi Arabia
| | - Carlos Sotelo-Vazquez
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - John Buckeridge
- School
of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, U.K.
| | - Jiang Wu
- Electronic
& Electrical Engineering, University
College London, Torrington
Place, London WC1E 7JE, U.K.
- University
of Electronic Science and Technology of China, North Jianshe Road, Chengdu 610054, China
| | - Sean P. Nair
- Department
of Microbial Diseases, UCL Eastman Dental
Institute, 256 Gray’s
Inn Road, London WC1X 8LD, U.K.
| | - David O. Scanlon
- Department
of Chemistry, Christopher Ingold Building, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Thomas
Young Centre, University College London, Gower Street, London WC1E 6BT, U.K.
- Diamond Light Source Ltd., Diamond House, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Ivan P. Parkin
- Materials
Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
26
|
Zhu L, Liu X, Wang X, Meng X. Evaluation of photocatalytic selectivity of Ag/Zn modified molecularly imprinted TiO 2 by multiwavelength measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134732. [PMID: 31767306 DOI: 10.1016/j.scitotenv.2019.134732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
In this paper, Ag/Zn-MIP-TiO2 was prepared by sol-gel method, and the imprinted molecule was ethyl p-hydroxybenzoate. To study the properties of the Ag/Zn-MIP-TiO2 on the photocatalytic activity, these factors were investigated: the effects of the dosage of Ag and Zn, the amount of imprinted molecules, the calcination temperature and time, then the capture of active substances. Besides, the selectivity of Ag/Zn-MIP-TiO2 was investigated in three aspects: UV-vis multi-wavelength spectral integral area change, specific group absorbance change and traditional reaction kinetic parameter change. The selectivity coefficients of the three angles are 8.55, 1.47 and 6.77. And the selectivity factors are 4.12, 1.02 and 4.81, indicating that Ag/Zn-MIP-TiO2 has high selectivity. Furthermore, its selectivity is not only for the specific characteristic groups on the target pollutants, but for the integrated target pollutants. From the perspective of materials, Ag/Zn-MIP-TiO2 is 100% anatase with a lower band gap and a larger specific surface area. As a molecularly imprinted polymer, the active sites on the surface make it have selective recognition function. The results of photocatalytic experiments are as follows: the optimum Ag and Zn ratio is Ti:Ag:Zn = 100:1:0.75 (molar ratio); the best molecular weight of imprint is Ti:MIP = 5:1; the finest calcination temperature is 500 °C; the optimum calcination time is 2 h; the removal rate of ethyl p-hydroxybenzoate degraded by photocatalysis for 2 h is 99.1%; the main active substance of the photocatalytic reaction is •OH.
Collapse
Affiliation(s)
- Lei Zhu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, China.
| | - Xian Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, China.
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, China.
| | - Xide Meng
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02370-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Lee NY, Ko WC, Hsueh PR. Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Front Pharmacol 2019; 10:1153. [PMID: 31636564 PMCID: PMC6787836 DOI: 10.3389/fphar.2019.01153] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
Nanotechnology using nanoscale materials is increasingly being utilized for clinical applications, especially as a new paradigm for infectious diseases. Infections caused by multidrug-resistant organisms (MDROs) are emerging as causes of morbidity and mortality worldwide. Antibiotic options for infections caused by MDROs are often limited. These clinical challenges highlight the critical demand for alternative and effective antimicrobial strategies. Nanoparticles (NPs) can penetrate the cell membrane of pathogenic microorganisms and interfere with important molecular pathways, formulating unique antimicrobial mechanisms. In combination with optimal antibiotics, NPs have demonstrated synergy and may aid in limiting the global crisis of emerging bacterial resistance. In this review, we summarized current research on the broad classification of the NPs that have shown in vitro antimicrobial activity against MDROs, including the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The pharmacokinetics and pharmacodynamic characteristics of NPs and bacteria-resistant mechanisms to NPs were also discussed.
Collapse
Affiliation(s)
- Nan-Yao Lee
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital and Medical College, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital and Medical College, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
29
|
Kheiri S, Liu X, Thompson M. Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B Biointerfaces 2019; 184:110550. [PMID: 31606698 DOI: 10.1016/j.colsurfb.2019.110550] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Development of a biomaterial that is resistant to the adhesion and consequential proliferation of bacteria, represents a significant challenge in terms of application of such materials in various aspects of health care. Over recent years a large number of synthetic methods have appeared with the overall goal of the prevention of bacterial adhesion to surfaces. In contrast to these artificial techniques, living organisms over millions of years have developed different systems to prevent the colonization of microorganisms. Recently, these natural approaches, which are based on surface nanotopography, have been mimicked to fabricate a modern antibacterial surface. In this vein, use of nanoparticle (NP) technology has been explored in order to create a suitable antibacterial surface. However, few studies have focused on the toxicity of these techniques and the ecotoxicity of NP materials on mammalian and bacterial cells simultaneously. Researchers have observed that the majority of previous studies have demonstrated some of the extents of the harmful impacts on mammalian cells. Here, we provide a critical review of the NP approach to antibacterial surface treatment, and also summarize the studies of toxic effects caused by metal NPs on bacteria and mammalian cells.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.
| | - Michael Thompson
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
30
|
Xiao X, Ma XL, Liu ZY, Li WW, Yuan H, Ma XB, Li LX, Yu HQ. Degradation of rhodamine B in a novel bio-photoelectric reductive system composed of Shewanella oneidensis MR-1 and Ag 3PO 4. ENVIRONMENT INTERNATIONAL 2019; 126:560-567. [PMID: 30852443 DOI: 10.1016/j.envint.2019.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Photocatalytic catalysis is widely used for pollutant degradation. Since some pollutants with oxidative nature are readily reduced rather than oxidized and reductive reaction caused by photogenerated electrons is limited in the presence of oxygen, photocatalytic reduction process is more applicable for the degradation of pollutants with oxidative nature than oxidation. In this work, a novel bio-photoelectric reductive degradation system (BPRDS), composed of an electrochemically active bacterium Shewanella oneidensis MR-1 and a visible-light photocatalyst Ag3PO4, was established under anaerobic conditions and its photodegradation performance was evaluated through degrading rhodamine B (RhB), a typical organic pollutant. The as-synthesized Ag3PO4 nanoparticles exhibited absorption in the entire visible spectral range of 400-800 nm. RhB could be degraded in BPRDS with visible light irradiation under anaerobic conditions, but not be decomposed in the absence of Shewanella cells. Block of Mtr respiratory pathway, a transmembrane electron transport chain, resulted in a reduction in degradation rate of RHB in BPRDS. Dose of riboflavin also substantially decreased the RhB degradation. These results suggest that the electrons released by Shewanella were involved in the RhB photodegradation, which was achieved via a stepwise N-deethylation process. In BPRDS, RhB was degraded by photoreduction, rather than photooxidation. This work is useful to develop integrated physico-chemical-microbial systems for pollutant degradation, facilitate better understanding about the biophotoelectric reductive degradation mechanisms and beneficial to their applications for environmental remediation.
Collapse
Affiliation(s)
- Xiang Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Lin Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhao-Ying Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Hang Yuan
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiao-Bo Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li-Xia Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
31
|
Zheng S, Zhou Q, Chen C, Yang F, Cai Z, Li D, Geng Q, Feng Y, Wang H. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1182-1190. [PMID: 30743913 DOI: 10.1016/j.scitotenv.2019.01.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The effect of extracellular polymeric substances (EPS), vital organic matters and nutrient elements in the natural environment, on the behavior and toxicology of silver nanoparticles (AgNPs) and ions remains ambiguous. In this study, the role of EPS on the toxicity of AgNPs and dissolved silver ions (from AgNO3) to a green algae Chlorella vulgaris was investigated. After the removal of EPS, algae accumulated more silver, about 7.41- and 1.25-fold of those in the algae with EPS for AgNPs and AgNO3 treatments, respectively. The large amount of accumulated silver was bound to the algal cell surface for AgNPs treatment and was internalized in the algae for AgNO3 treatment, irrespective of the presence of EPS in algae. After exposure to AgNPs, the ruffles in the surfaces of algal cells were filled by AgNPs, and almost invisible. FTIR showed that for both AgNPs and AgNO3, the aldehyde groups on the cell surface were oxidized to carboxyl groups by silver ions, irrespective of the presence of EPS in algal cells, indicating that silver ions were released from the oxidization of AgNPs and reacted with algal cells. The content of chlorophyll showed that AgNPs depressed algal growth more remarkably than did AgNO3, independent of the presence of EPS in algae, suggesting that AgNPs had greater toxic effects on algae than did silver ions. The findings suggest that the barrier effect of EPS gave nanoparticles an extraordinary edge over ions, but EPS had no discerning effect on the interaction of algal cells with the silver ions released from AgNPs and AgNO3, and also on the effect of AgNPs and AgNO3 on algal growth.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Cuihong Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
| | - Zhang Cai
- College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Dan Li
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qijin Geng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China.
| | - Yimin Feng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Huiqin Wang
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
32
|
Liu D, Chen X, Bian B, Lai Z, Situ Y. Dual-Function Conductive Copper Hollow Fibers for Microfiltration and Anti-biofouling in Electrochemical Membrane Bioreactors. Front Chem 2018; 6:445. [PMID: 30320076 PMCID: PMC6167433 DOI: 10.3389/fchem.2018.00445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 11/13/2022] Open
Abstract
Membrane bioreactors (MBRs) with polymeric/ceramic microfiltration (MF) membranes have been commonly used for wastewater treatment today. However, membrane biofouling often results in a dramatically-reduced service life of MF membranes, which limits the application of this technology. In this study, Cu hollow fiber membranes (Cu-HFMs) with low resistivity (104.8-309.8 nΩ·m) and anti-biofouling properties were successfully synthesized. Further analysis demonstrated that Cu-HFMs reduced at 625°C achieved the bimodal pore size distribution of ~1 μm and a porosity of 46%, which enable high N2 permeance (1.56 × 10-5 mol/m2 s pa) and pure water flux (5812 LMH/bar). The Cu-HFMs were further applied as the conductive cathodes, as well as MF membranes, in the electrochemical membrane bioreactor (EMBR) system that was enriched with domestic wastewater at an applied voltage of 0.9 V. Excellent permeate quality (Total suspended solids (TSS) = 11 mg/L) was achieved at a flux of 9.47 LMH after Cu-HFM filtration, with relatively stable transmembrane pressure (TMP) and low Cu2+ dissolvability (<25 μg/L). The anti-biofouling over time was demonstrated by SEM characterization of the rare biofilm formation on the Cu-HFM cathode surface. By using Cu-HFMs in EMBR systems, an effective strategy to control the membrane biofouling is developed in this study.
Collapse
Affiliation(s)
- Defei Liu
- School of Environment and Chemical Engineering, Foshan University, Foshan, China.,School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.,Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xin Chen
- School of Environment and Chemical Engineering, Foshan University, Foshan, China.,School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Bin Bian
- Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yue Situ
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Abstract
Abstract
Nanoparticles have high potential as antibacterial agents, owing to their ability to produce reactive oxygen species (ROS). Recent studies have indicated that this ROS generation is highly affected by the modification of band structure by the introduction of various dopant materials into them. Thus, doped nanoparticles have been extensively studied in the recent literature. The types of dopants, synthesis techniques, and experimental parameters have been found to affect the overall electronic structure of the material, leading to varied antibacterial efficiency. This review summarizes some of the prominent dopant nanomaterials, various methods of synthesizing doped nanoparticles used against bacterial cells, and the main factors involved in it. Despite the extensive research on the mechanism of the antibacterial action, it is still poorly understood mainly due to the inherent complexities and dynamics in cell membranes. Some of the major proposed mechanisms of action of each kind of dopant nanomaterial have also been reported in this work, focusing on the bacterial cell structure.
Collapse
Affiliation(s)
- Proma Bhattacharya
- Department of Chemical Engineering , Indian Institute of Technology , Kharagpur, West Bengal 721302 , India
| | - Sudarsan Neogi
- Department of Chemical Engineering , Indian Institute of Technology , Kharagpur, West Bengal 721302 , India
| |
Collapse
|
34
|
Koklic T, Urbančič I, Zdovc I, Golob M, Umek P, Arsov Z, Dražić G, Pintarič Š, Dobeic M, Štrancar J. Surface deposited one-dimensional copper-doped TiO2 nanomaterials for prevention of health care acquired infections. PLoS One 2018; 13:e0201490. [PMID: 30048536 PMCID: PMC6062141 DOI: 10.1371/journal.pone.0201490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/15/2018] [Indexed: 01/03/2023] Open
Abstract
Bacterial infections acquired in healthcare facilities including hospitals, the so called healthcare acquired or nosocomial infections, are still of great concern worldwide and represent a significant economical burden. One of the major causes of morbidity is infection with Methicillin Resistant Staphylococcus aureus (MRSA), which has been reported to survive on surfaces for several months. Bactericidal activity of copper-TiO2 thin films, which release copper ions and are deposited on glass surfaces and heated to high temperatures, is well known even when illuminated with very weak UVA light of about 10 μW/cm2. Lately, there is an increased intrerest for one-dimensional TiO2 nanomaterials, due to their unique properties, low cost, and high thermal and photochemical stability. Here we show that copper doped TiO2 nanotubes produce about five times more ·OH radicals as compared to undoped TiO2 nanotubes and that effective surface disinfection, determined by a modified ISO 22196:2011 test, can be achieved even at low intensity UVA light of 30 μW/cm2. The nanotubes can be deposited on a preformed surface at room temperature, resulting in a stable deposition resistant to multiple washings. Up to 103 microorganisms per cm2 can be inactivated in 24 hours, including resistant strains such as Methicillin-resistant Staphylococcus aureus (MRSA) and Extended-spectrum beta-lactamase Escherichia coli (E. coli ESBL). This disinfection method could provide a valuable alternative to the current surface disinfection methods.
Collapse
Affiliation(s)
- Tilen Koklic
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Iztok Urbančič
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- University of Oxford, John Radcliffe Hospital, The Weatherall Institute of Molecular Medicine, Human Immunology Unit, Headington, Oxford, United Kingdom
| | - Irena Zdovc
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Umek
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Zoran Arsov
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Štefan Pintarič
- Institute of Environmental and Animal Hygiene with Animal Behaviour, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Dobeic
- Institute of Environmental and Animal Hygiene with Animal Behaviour, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Štrancar
- Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| |
Collapse
|
35
|
Koklic T, Pintarič Š, Zdovc I, Golob M, Umek P, Mehle A, Dobeic M, Štrancar J. Photocatalytic disinfection of surfaces with copper doped Ti02 nanotube coatings illuminated by ceiling mounted fluorescent light. PLoS One 2018; 13:e0197308. [PMID: 29768464 PMCID: PMC5955584 DOI: 10.1371/journal.pone.0197308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/29/2018] [Indexed: 11/18/2022] Open
Abstract
High economic burden is associated with foodborne illnesses. Different disinfection methods are therefore employed in food processing industry; such as use of ultraviolet light or usage of surfaces with copper-containing alloys. However, all the disinfection methods currently in use have some shortcomings. In this work we show that copper doped TiO2 nanotubes deposited on existing surfaces and illuminated with ceiling mounted fluorescent lights can retard the growth of Listeria Innocua by 80% in seven hours of exposure to the fluorescent lights at different places in a food processing plant or in the laboratory conditions with daily reinocuation and washing. The disinfection properties of the surfaces seem to depend mainly on the temperature difference of the surface and the dew point, where for the maximum effectiveness the difference should be about 3 degrees celsius. The TiO2 nanotubes have a potential to be employed for an economical and continuous disinfection of surfaces.
Collapse
Affiliation(s)
- Tilen Koklic
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Štefan Pintarič
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Zdovc
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Majda Golob
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Umek
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
| | - Alma Mehle
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Martin Dobeic
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- Veterinary faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (JŠ); (MD)
| | - Janez Štrancar
- Jožef Stefan Institute, Ljubljana, Slovenia
- NAMASTE Center of Excellence, Ljubljana, Slovenia
- * E-mail: (JŠ); (MD)
| |
Collapse
|
36
|
Happy Agarwal, Soumya Menon, Venkat Kumar S, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 2018; 286:60-70. [DOI: 10.1016/j.cbi.2018.03.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/16/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
37
|
Ahmad J, Siddiqui MA, Akhtar MJ, Alhadlaq HA, Alshamsan A, Khan ST, Wahab R, Al-Khedhairy AA, Al-Salim A, Musarrat J, Saquib Q, Fareed M, Ahamed M. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO 2 nanoparticles in A549 cells. Hum Exp Toxicol 2017. [PMID: 28621211 DOI: 10.1177/0960327117714040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Physicochemical properties of titanium dioxide nanoparticles (TiO2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO2 and Cu in Cu-doped TiO2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO2 NPs (24 nm) was lower than pure TiO2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO2 NPs was higher than pure TiO2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO2 NPs. This is the first report showing that Cu-doped TiO2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO2 NPs.
Collapse
Affiliation(s)
- J Ahmad
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - M A Siddiqui
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - M J Akhtar
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - H A Alhadlaq
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.,4 Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Alshamsan
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.,5 Department of Pharmaceutics, Nanomedicine Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - S T Khan
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - R Wahab
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - A A Al-Khedhairy
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Al-Salim
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Musarrat
- 6 Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Q Saquib
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - M Fareed
- 7 College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - M Ahamed
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
You Y, Das KK, Guo H, Chang CW, Navas-Moreno M, Chan JW, Verburg P, Poulson SR, Wang X, Xing B, Yang Y. Microbial Transformation of Multiwalled Carbon Nanotubes by Mycobacterium vanbaalenii PYR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2068-2076. [PMID: 28081361 DOI: 10.1021/acs.est.6b04523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbonaceous nanomaterials are widely used in industry and consumer products, but concerns have been raised regarding their release into the environment and subsequent impacts on ecosystems and human health. Although many efforts have been devoted to understanding the environmental fate of carbonaceous nanomaterials, information about their microbial transformation is still rare. In this study, we found that within 1 month a polycyclic aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, was able to degrade both pristine and carboxyl-functionalized multiwalled carbon nanotubes (p-MWCNT and c-MWCNT), as demonstrated by consistent results from high resolution transmission electron microscopy, Raman spectroscopy, and confocal Raman microspectroscopy. Statistical analysis of Raman spectra identified a significant increase in the density of disordered or amorphous carbon in p-MWCNT and c-MWCNT after biodegradation. Microbial respiration further suggested potential mineralization of MWCNTs within about 1 month. All of our analyses consistently showed higher degradation or mineralization of c-MWCNT compared to p-MWCNT. These results highlight the potential of using bacteria in engineered systems to remove residual carbonaceous nanomaterials and reduce risk of human exposure and environmental impact. Meanwhile, our finding suggests possible transformation of carbonaceous nanomaterials by polycyclic aromatic hydrocarbon-degrading bacteria in the natural environment, which should be accounted for in predicting the environmental fate of these emerging contaminants and in nanotechnology risk regulation.
Collapse
Affiliation(s)
- Yaqi You
- Department of Civil and Environmental Engineering, University of Nevada , Reno, Nevada 89557, United States
| | - Kamol K Das
- Department of Civil and Environmental Engineering, University of Nevada , Reno, Nevada 89557, United States
| | - Huiyuan Guo
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Che-Wei Chang
- Center for Biophotonics, University of California, Davis , Sacramento, California 95817, United States
| | - Maria Navas-Moreno
- Center for Biophotonics, University of California, Davis , Sacramento, California 95817, United States
| | - James W Chan
- Center for Biophotonics, University of California, Davis , Sacramento, California 95817, United States
| | - Paul Verburg
- Department of Natural Resources and Environmental Science, University of Nevada , Reno, Nevada 89557, United States
| | - Simon R Poulson
- Department of Geological Sciences & Engineering, University of Nevada , Reno, Nevada 89557, United States
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada , Reno, Nevada 89557, United States
| |
Collapse
|
39
|
Qiu TA, Meyer BM, Christenson KG, Klaper RD, Haynes CL. A mechanistic study of TiO 2 nanoparticle toxicity on Shewanella oneidensis MR-1 with UV-containing simulated solar irradiation: Bacterial growth, riboflavin secretion, and gene expression. CHEMOSPHERE 2017; 168:1158-1168. [PMID: 27823777 DOI: 10.1016/j.chemosphere.2016.10.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/14/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Toxicity of nanomaterials to ecological systems has recently emerged as an important field of research, and thus, many researchers are exploring the mechanisms of how nanoparticles impact organisms. Herein, we probe the mechanisms of bacteria-nanoparticle interaction by investigating how TiO2 nanoparticles impact a model organism, the metal-reducing bacterium Shewanella oneidensis MR-1. In addition to examining the effect of TiO2 exposure, the effect of synergistic simulated solar irradiation containing UV was explored in this study, as TiO2 nanoparticles are known photocatalysts. The data reveal that TiO2 nanoparticles cause an inhibition of S. oneidensis growth at high dosage without compromising cell viability, yet co-exposure of nanoparticles and illumination does not increase the adverse effects on bacterial growth relative to TiO2 alone. Measurements of intracellular reactive oxygen species and riboflavin secretion, on the same nanoparticle-exposed bacteria, reveal that TiO2 nanoparticles have no effect on these cell functions, but application of UV-containing illumination with TiO2 nanoparticles has an impact on the level of riboflavin outside bacterial cells. Finally, gene expression studies were employed to explore how cells respond to TiO2 nanoparticles and illumination, and these results were correlated with cell growth and cell function assessment. Together these data suggest a minimal impact of TiO2 NPs and simulated solar irradiation containing UV on S. oneidensis MR-1, and the minimal impact could be accounted for by the nutrient-rich medium used in this work. These measurements demonstrate a comprehensive scheme combining various analytical tools to enable a mechanistic understanding of nanoparticle-cell interactions and to evaluate the potential adverse effects of nanoparticles beyond viability/growth considerations.
Collapse
Affiliation(s)
- Tian A Qiu
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States
| | - Ben M Meyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States
| | - Ky G Christenson
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
40
|
Photocatalytic Properties of Doped TiO2 Coatings Deposited Using Reactive Magnetron Sputtering. COATINGS 2017. [DOI: 10.3390/coatings7010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Mohsenzadeh S, Moosavian SS. Zinc Sulphate and Nano-Zinc Oxide Effects on Some Physiological Parameters of Rosmarinus officinalis. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajps.2017.811178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Zheng X, Shen ZP, Cheng C, Shi L, Cheng R, Dong J. Electrospinning Cu–TiO2nanofibers used for photocatalytic disinfection of bacteriophage f2: preparation, optimization and characterization. RSC Adv 2017. [DOI: 10.1039/c7ra07770j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cu-Doped TiO2nanofibers were prepared using the electrospinning method and applied for the disinfection of bacteriophage f2.
Collapse
Affiliation(s)
- Xiang Zheng
- School of Environment & Natural Resources
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Zhi-peng Shen
- School of Environment & Natural Resources
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Can Cheng
- School of Environment & Natural Resources
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Lei Shi
- School of Environment & Natural Resources
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Rong Cheng
- School of Environment & Natural Resources
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Jing Dong
- Beijing Municipal Research Institute of Environmental Protection
- Beijing
- P. R. China
| |
Collapse
|
43
|
Murugan K, Choonara YE, Kumar P, du Toit LC, Pillay V. Neo-Geometric Copper Nanocrystals by Competitive, Dual Surfactant-Mediated Facet Adsorption Controlling Skin Permeation. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E966. [PMID: 28774086 PMCID: PMC5456976 DOI: 10.3390/ma9120966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/19/2023]
Abstract
Neogeometric copper nanoparticles (CuNPs) have various applications yet its synthesis still proves to be challenging with regards to self-assembly and uniformity control. This study aimed to synthesize shape-specific CuNPs in the biomedical application of ascertaining skin permeation and retention of the CuNPs as a drug delivery system. The approach to the shape design involved the dual control of two surfactants to direct the shape organisation of the nanoparticles (NPs) while an interesting aspect of the study showed the competitive adsorption of the surfactants onto the nanocrystal facets to direct facet growth. The resulting copper nanoparticles were characterised using X-ray diffraction (XRD) and electron diffraction spectra analysis (EDS) for elemental and crystalline analysis. Thermogravimetric Analysis (TGA) identified the degradation of the surfactant coat and the synthesis of a novel copper-polymer complex and extensive transmission electron microscopy (TEM) was conducted to determine the nanoparticle morphology. Epidermal skin tissue served as the model for permeation studies of five idealistic nano-geometries and investigated its application in drug delivery with regards to cellular internalisation and transbarrier transport of the geometric CuNPs. A mechanistic consideration for shape control is discussed.
Collapse
Affiliation(s)
- Karmani Murugan
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
44
|
Stankic S, Suman S, Haque F, Vidic J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology 2016; 14:73. [PMID: 27776555 PMCID: PMC5075760 DOI: 10.1186/s12951-016-0225-6] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
Th antibacterial activity of metal oxide nanoparticles has received marked global attention as they can be specifically synthesized to exhibit significant toxicity to bacteria. The importance of their application as antibacterial agents is evident keeping in mind the limited range and effectiveness of antibiotics, on one hand, and the plethora of metal oxides, on the other, along with the propensity of nanoparticles to induce resistance being much lower than that of antibiotics. Effective inhibition against a wide range of bacteria is well known for several nano oxides consisting of one metal (Fe3O4, TiO2, CuO, ZnO), whereas, research in the field of multi-metal oxides still demands extensive exploration. This is understandable given that the relationship between physicochemical properties and biological activity seems to be complex and difficult to generalize even for metal oxide nanoparticles consisting of only one metal component. Also, despite the broad scope that metal oxide nanoparticles have as antibacterial agents, there arise problems in practical applications taking into account the cytotoxic effects. In this respect, the consideration of polymetallic oxides for biological applications becomes even greater since these can provide synergetic effects and unify the best physicochemical properties of their components. For instance, strong antibacterial efficiency specific of one metal oxide can be complemented by non-cytotoxicity of another. This review presents the main methods and technological advances in fabrication of nanostructured metal oxides with a particular emphasis to multi-metal oxide nanoparticles, their antibacterial effects and cytotoxicity.
Collapse
Affiliation(s)
- Slavica Stankic
- CNRS, Institut des Nanosciences de Paris (INSP), UMR 7588, 4 Place Jussieu, 75252, Paris Cedex 05, France. .,UPMC-Université Paris 06, INSP, UMR 7588, Paris, France.
| | - Sneha Suman
- Birla Institute of Technology & Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India
| | - Francia Haque
- CNRS, Institut des Nanosciences de Paris (INSP), UMR 7588, 4 Place Jussieu, 75252, Paris Cedex 05, France.,UPMC-Université Paris 06, INSP, UMR 7588, Paris, France
| | - Jasmina Vidic
- Virologie et Immunologie Moléculaires, UR892, INRA, Paris Saclay University, Jouy en Josas, France. .,School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore. .,NTU-HJU-BGU CREATE Programme, 1 Create Way, Research Wing # 02-06 to 08, Singapore, 138602, Singapore.
| |
Collapse
|
45
|
Zhou K, Hu Y, Zhang L, Yang K, Lin D. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Sci Rep 2016; 6:32998. [PMID: 27615743 PMCID: PMC5018811 DOI: 10.1038/srep32998] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/18/2016] [Indexed: 12/27/2022] Open
Abstract
Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.
Collapse
Affiliation(s)
- Kaijun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
46
|
Mu D, Yu X, Xu Z, Du Z, Chen G. Physiological and transcriptomic analyses reveal mechanistic insight into the adaption of marine Bacillus subtilis C01 to alumina nanoparticles. Sci Rep 2016; 6:29953. [PMID: 27440502 PMCID: PMC4954987 DOI: 10.1038/srep29953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/24/2016] [Indexed: 12/05/2022] Open
Abstract
An increasing number of studies have investigated the effects of nanoparticles (NPs) on microbial systems; however, few existing reports have focused on the defense mechanisms of bacteria against NPs. Whether secondary metabolism biosynthesis is a response to NP stress and contributes to the adaption of bacteria to NPs is unclear. Here, a significant induction in the surfactin production and biofilm formation were detected by adding Al2O3 NPs to the B. subtilis fermentation broth. Physiological analysis showed that Al2O3 NP stress could also affect the cell and colony morphogenesis and inhibit the motility and sporulation. Exogenously adding commercial surfactin restored the swarming motility. Additionally, a suite of toxicity assays analyzing membrane damage, cellular ROS generation, electron transport activity and membrane potential was used to determine the molecular mechanisms of toxicity of Al2O3 NPs. Furthermore, whole transcriptomic analysis was used to elucidate the mechanisms of B. subtilis adaption to Al2O3 NPs. These results revealed several mechanisms by which marine B. subtilis C01 adapt to Al2O3 NPs. Additionally, this study broadens the applications of nanomaterials and describes the important effects on secondary metabolism and multicellularity regulation by using Al2O3 NPs or other nano-products.
Collapse
Affiliation(s)
- Dashuai Mu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Xiuxia Yu
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Zhenxing Xu
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Zongjun Du
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
- College of Marine Science, Shandong University (Weihai), Weihai 264209, PR China
| |
Collapse
|
47
|
Jiang Y, Raliya R, Fortner JD, Biswas P. Graphene Oxides in Water: Correlating Morphology and Surface Chemistry with Aggregation Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6964-6973. [PMID: 27248211 DOI: 10.1021/acs.est.6b00810] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aqueous aggregation processes can significantly impact function, effective toxicity, environmental transport, and ultimate fate of advanced nanoscale materials, including graphene and graphene oxide (GO). In this work, we have synthesized flat graphene oxide (GO) and five physically crumpled GOs (CGO, with different degrees of thermal reduction, and thus oxygen functionality) using an aerosol method, and characterized the evolution of surface chemistry and morphology using a suite of spectroscopic (UV-vis, FTIR, XPS) and microscopic (AFM, SEM, and TEM) techniques. For each of these materials, critical coagulation concentrations (CCC) were determined for NaCl, CaCl2, and MgCl2 electrolytes. The CCCs were correlated with material ζ-potentials (R(2) = 0.94-0.99), which were observed to be mathematically consistent with classic DLVO theory. We further correlated CCC values with CGO chemical properties including C/O ratios, carboxyl group concentrations, and C-C fractions. For all cases, edge-based carboxyl functional groups are highly correlated to observed CCC values (R(2) = 0.89-0.95). Observations support the deprotonation of carboxyl groups with low acid dissociation constants (pKa) as the main contributors to ζ-potentials and thus material aqueous stability. We also observe CCC values to significantly increase (by 18-80%) when GO is physically crumpled as CGO. Taken together, the findings from both physical and chemical analyses clearly indicate that both GO shape and surface functionality are critical to consider with regard to understanding fundamental material behavior in water.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Ramesh Raliya
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - John D Fortner
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Pratim Biswas
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
48
|
Ahmed KBA, Raman T, Veerappan A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:939-947. [PMID: 27524096 DOI: 10.1016/j.msec.2016.06.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Nanoparticles are being widely used as antibacterial agents with metal nanoparticles emerging as the most efficient antibacterial agents. There have been many studies which have reported the mechanism of antibacterial activity of nanoparticles on bacteria. In this review we aim to emphasize on all the possible mechanisms which are involved in the antibacterial activity of nanoparticles and also to understand their mode of action and role as bacterial enzyme inhibitor by comparing their antibacterial mechanism to that of antibiotics with enzyme inhibition as a major mechanism. With the emergence of widespread antibiotic resistance, nanoparticles offer a better alternative to our conventional arsenal of antibiotics. Once the biological safety of these nanoparticles is addressed, these nanoparticles can be of great medical importance in our fight against bacterial infections.
Collapse
Affiliation(s)
- Khan Behlol Ayaz Ahmed
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Thiagarajan Raman
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Anbazhagan Veerappan
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
49
|
Yadav HM, Kim JS, Pawar SH. Developments in photocatalytic antibacterial activity of nano TiO2: A review. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0118-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Yadav HM, Kolekar TV, Pawar SH, Kim JS. Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent light. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:57. [PMID: 26787489 DOI: 10.1007/s10856-016-5675-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 05/26/2023]
Abstract
In this paper, the photocatalytic activity of Fe-TiO2 nanoparticles (NPs) under fluorescent light was studied using Escherichia coli and Staphylococcus aureus. Fe-TiO2 NPs were synthesized using a sol-gel method and characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (UV-vis DRS) and transmission electron microscopy. The efficiency of photocatalytic inactivation towards E. coli was studied under different physicochemical parameters. The photocatalytic inactivation rate increased with increasing Fe content in TiO2 NPs and the highest inactivation was achieved for 3.0 mol% Fe-TiO2 NPs under fluorescent light. These results demonstrate that the presence of an optimum concentration of Fe in TiO2 matrix enhances the photocatalytic inactivation of TiO2 NPs under fluorescent light.
Collapse
Affiliation(s)
- Hemraj M Yadav
- Department of Materials Science and Engineering, University of Seoul, Seoul, 130743, South Korea.
| | - Tanaji V Kolekar
- Rajarambapu Institute of Technology, Islampur, Sangli, MS, 415414, India
| | - Shivaji H Pawar
- Center for Interdisciplinary Research, D.Y. Patil University, Kolhapur, MS, 416006, India
| | - Jung-Sik Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 130743, South Korea.
| |
Collapse
|