1
|
Gao L, Chen Y, Li S, Yang Z, Lu Y, Zhu G. Proteomic and spectral analysis reveals the role of extracellular polymeric substances in mercury biosorption by activated sludge under high-altitude conditions. ENVIRONMENTAL RESEARCH 2025; 267:120613. [PMID: 39675454 DOI: 10.1016/j.envres.2024.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In high-altitude regions, elevated mercury (Hg) levels in wastewater treatment plants (WWTPs) influent raise concerns about treatment efficiency and environmental impact. This study investigated the Hg biosorption capacity of activated sludge under high-altitude conditions, focusing on the binding mechanisms between EPS and Hg, and variations in EPS secretion. Low pressure, oxygen, and temperature at high altitudes increase EPS secretion, enhancing Hg biosorption. EPS provides numerous binding sites for Hg, forming nonfluorescent complexes with tryptophan-like and aromatic proteins, while hydrocarbon and oxygen-containing groups limit Hg entry into microbial cells. Proteomic analysis revealed the upregulation of transporters, stress-resistance, and binding proteins, along with those involved in carbon and amino acid metabolism, which enhance microbial resilience and EPS production, leading to increased Hg biosorption. These insights reveal adaptive mechanisms that optimize pollutant removal in high-altitude environments.
Collapse
Affiliation(s)
- Lei Gao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yue Chen
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China
| | - Shuping Li
- College of Information Engineer, Xizang Minzu University, Xianyang, 712082, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China
| | - Zhonglian Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China.
| |
Collapse
|
2
|
Abdulsada ZK, Kibbee R, Princz J, Örmeci B. Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:236. [PMID: 39940212 PMCID: PMC11820454 DOI: 10.3390/nano15030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
The effect of metal nanoparticles on the anaerobic digestion of sludge and the sludge bacterial community are still not well-understood, and both improvements and inhibitions have been reported. This study investigated the impact of 2, 10, and 30 mg/g TS silver and copper oxide nanoparticles (AgNPs and CuONPs) on the mesophilic anaerobic digestion of sludge and the bacterial community structure. The reactors were monitored for changes in tCOD, sCOD, TS, VS, biogas generation, and cell viability. Also, the relative abundance and taxonomic distribution of the bacterial communities were analyzed at the phylum and genus levels, including the genera involved in anaerobic digestion. Both AgNPs and CuONPs exhibited some inhibition on anaerobic digestion of sludge and biogas generation, and the inhibition was more evident at higher concentrations. CuONPs had a stronger inhibitory effect compared to AgNPs. After the introduction of AgNPs and CuONPs, cell viability initially decreased over the first two weeks but recovered after that. At high concentrations, AgNPs and CuONPs decreased the overall bacterial diversity, and inhibited the dominant bacterial species, allowing those in less abundance to flourish. The relative abundance of the bacteria responsible for hydrolysis and acidogenesis increased and the relative abundance of acetogenic bacteria decreased with higher AgNP and CuONP concentrations. The majority of the parameters measured for monitoring the anaerobic digestion performance and bacterial community were not statistically significant at 2 mg/g TS of AgNPs and CuONPs, which represents naturally present concentrations in wastewater sludge that are below the USEPA ceiling concentration limits.
Collapse
Affiliation(s)
- Zainab K. Abdulsada
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| | - Richard Kibbee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| | - Juliska Princz
- Environment and Climate Change Canada, 335 River Road South, Ottawa, ON K1V 1C7, Canada;
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| |
Collapse
|
3
|
Dokania P, Roy D, Banerjee R, Sarkar A. Green synthesis of nanoparticles for waste water treatment. BIO REFINERY OF WASTEWATER TREATMENT 2025:171-202. [DOI: 10.1016/b978-0-323-95670-3.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Li X, Chen CC, Wu L, Zhou J, Huang Y, Zhu X. Neglected negative effect of carbon quantum dots (CQDs) entering the ocean on marine organisms living in different water layers. MARINE POLLUTION BULLETIN 2024; 199:115921. [PMID: 38150977 DOI: 10.1016/j.marpolbul.2023.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Carbon quantum dots (CQDs) are well dispersed in water, but their potential risks in the marine environment have not been described. This study characterized CQDs and investigated their biological effects (including growth, photosynthesis and behavioural changes) in three marine organisms living in different water layers (the surface phytoplankton Phaeodactylum tricornutum and zooplankton Artemia salina and the benthic coral Zoanthus sp. at the bottom). The results showed that over 78 % of CQDs were suspended in seawater after 96 h. The biomass and photosynthesis of P. tricornutum were significantly affected, with a maximum reduction of 89.49 % in algal cells. CQDs accumulated in the intestinal tract of A. salina, reducing grazing and filtration rates by up to 71.88 % and 89.46 %, respectively. In contrast, CQD exposure had irreversible effects on the tentacle expansion behaviour of Zoanthus sp. This study helps clarify the environmental effects and ecological risks associated with the release of CQDs into the ocean.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, PR China
| | - Lin Wu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; College of Ecology and Environment, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
Truu M, Ligi T, Nõlvak H, Peeb A, Tiirik K, Devarajan AK, Oopkaup K, Kasemets K, Kõiv-Vainik M, Kasak K, Truu J. Impact of synthetic silver nanoparticles on the biofilm microbial communities and wastewater treatment efficiency in experimental hybrid filter system treating municipal wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129721. [PMID: 35963093 DOI: 10.1016/j.jhazmat.2022.129721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (AgNPs) threaten human and ecosystem health, and are among the most widely used engineered nanomaterials that reach wastewater during production, usage, and disposal phases. This study evaluated the effect of a 100-fold increase in collargol (protein-coated AgNP) and Ag+ ions concentrations in municipal wastewater on the microbial community composition of the filter material biofilms (FMB) and the purification efficiency of the hybrid treatment system consisting of vertical (VF) and horizontal (HF) subsurface flow filters. We found that increased amounts of collargol and AgNO3 in wastewater had a modest effect on the prokaryotic community composition in FMB and did not significantly affect the performance of the studied system. Regardless of how Ag was introduced, 99.9% of it was removed by the system. AgNPs and AgNO3 concentrations did not significantly affect the purification efficiency of the system. AgNO3 induced a higher increase in the genetic potential of certain Ag resistance mechanisms in VFs than collargol; however, the increase in Ag resistance potential was similar for both substances in HF. Hence, the microbial community composition in biofilms of vertical and horizontal flow filters is largely resistant, resilient, or functionally redundant in response to AgNPs addition in the form of collargol.
Collapse
Affiliation(s)
- Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Teele Ligi
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Hiie Nõlvak
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Angela Peeb
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kertu Tiirik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Arun Kumar Devarajan
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kristjan Oopkaup
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Margit Kõiv-Vainik
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Kuno Kasak
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
6
|
Ma LY, Li QY, Yu X, Jiang M, Xu L. Recent developments in the removal of metal-based engineered nanoparticles from the aquatic environments by adsorption. CHEMOSPHERE 2022; 291:133089. [PMID: 34856236 DOI: 10.1016/j.chemosphere.2021.133089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, metal-based engineered nanoparticles (m-ENPs) are ubiquitous in aquatic environments for their wide applications in all walks of life. m-ENPs have been demonstrated to exert ecotoxicity, cytotoxicity and genotoxicity towards organisms and even humans. Therefore, the removal of m-ENPs from water has recently become a hot global concerned issue. Adsorption is widely investigated for this purpose, owing to its advantages of low cost, easy operation, high removal efficiency and potential recycling use of both the adsorbents and adsorbates. As the adsorption and related technologies were hardly comprehensively overviewed for the removal of m-ENPs, herein, the present review particularly focuses on this topic. The fundamentals to the technology, including adsorption isotherm, adsorption dynamics, the adsorption process with the special emphasis on the relationship between surface area and porosity of the adsorbent and the adsorption capacity, etc., are fully discussed. As the kernel of the adsorption method, adsorbents with diversified chemical and physical properties in different types are comprehensively elaborated. The primary factors affecting the adsorption, and adsorption mechanisms are well summarized. Particularly, the regeneration of the adsorbents and the reuse of adsorbed m-ENPs are highlighted for the sustainability. Finally, challenges and prospects in this field are outlined. Overall, this review aims to provide valuable references for the development of new adsorbents with more efficient and practical applications to remove m-ENPs and direct the future study.
Collapse
Affiliation(s)
- Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin-Ying Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Yonathan K, Mann R, Mahbub KR, Gunawan C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118506. [PMID: 34793904 DOI: 10.1016/j.envpol.2021.118506] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Nanosilver (NAg) is currently one of the major alternative antimicrobials to control microorganisms. With its broad-spectrum efficacy and lucrative commercial values, NAg has been used in medical devices and increasingly, in consumer products and appliances. This widespread use has inevitably led to the release and accumulation of the nanoparticle in water and sediment, in soil and even, wastewater treatment plants (WWTPs). This Article describes the physical and chemical transformations of NAg as well as the impact of the nanoparticle on microbial communities in different environmental settings; how the nanoparticle shifts not only the diversity and abundance of microbes, including those that are important in nitrogen cycles and decomposition of organic matters, but also their associated genes and in turn, the key metabolic processes. Current findings on the microbiological activity of the leached soluble silver, solid silver particulates and their respective transformed products, which underpin the mechanism of the nanoparticle toxicity in environmental microbes, is critically discussed. The Article also addresses the emerging evidence of silver-driven co-selection of antibiotic resistance determinants. The mechanism has been linked to the increasing pools of many antibiotic resistance genes already detected in samples from different environmental settings, which could ultimately find their ways to animals and human. The realized ecological impact of NAg calls for more judicial use of the nanoparticle. The generated knowledge can inform strategies for a better 'risks versus benefits' assessment of NAg applications, including the disposal stage.
Collapse
Affiliation(s)
- Kevin Yonathan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Khandaker Rayhan Mahbub
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; South Australian Research and Development Institute, Primary Industries and Regions SA, Urrbrae, SA 5064, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Chemical Engineering, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
8
|
Abdulsada Z, Kibbee R, Schwertfeger D, Princz J, DeRosa M, Örmeci B. Fate and removal of silver nanoparticles during sludge conditioning and their impact on soil health after simulated land application. WATER RESEARCH 2021; 206:117757. [PMID: 34715524 DOI: 10.1016/j.watres.2021.117757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The growing use of silver nanoparticles (AgNPs) in personal care products and clothing has increased their concentrations in wastewater and subsequently in sludge raising concerns about their fate and toxicity during wastewater treatment and after land application of sludge. This research investigated the fate and removal of AgNPs during chemical conditioning of anaerobically digested sludge and their impact on soil bacteria and health after land application. Ferric chloride (FeCl3), alum (Al2 (SO4)3 • (14-18) H2O), and synthetic (polyacrylamide) polymer were used for sludge conditioning. All conditioners effectively removed AgNPs from the liquid phase and concentrated them in sludge solids. Concentration analyses showed that out of 53.0 mg/L of silver in the sludge, only 0.1 to 0.003 mg/L of silver remained in the sludge supernatant after conditioning and 12 to 20% of this value were particulates. Morphological analyses also showed that AgNPs went through physical, chemical, and morphological changes in sludge that were not observed in nanopure water and the resulting floc structures and the incorporation of nanoparticles were different for each conditioner. The impact of conditioned AgNPs on the biological activities of soil was evaluated by investigating its impact on the presence of five important phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria). The results showed that AgNPs at a concentration of 20 mg AgNPs/g soil had a minimal impact on the presence and diversity of the assessed phyla. Also, using different chemicals for sludge conditioning resulted in different growth behavior of studied phyla. This study provides new insight into how the presence of AgNPs and different chemicals used for sludge conditioning might impact the soil biological activities and hence plant growth. The study also provides a solid basis for further research in the risk assessment of nanoparticle toxicity in biosolids amended soils.
Collapse
Affiliation(s)
- Zainab Abdulsada
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; Department of Environmental Engineering, University of Baghdad, Karrada, Al-Jadriya, Baghdad, Iraq (present address)
| | - Richard Kibbee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Dina Schwertfeger
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON K1V 1C7, Canada
| | - Juliska Princz
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON K1V 1C7, Canada
| | - Maria DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
9
|
Hui X, Kui H. Effects of TiO 2 and ZnO nanoparticles on vermicomposting of dewatered sludge: studies based on the humification and microbial profiles of vermicompost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38718-38729. [PMID: 33742383 DOI: 10.1007/s11356-021-13226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) are prevalent in dewatered sludge, and their presence increases the environmental risks associated with the subsequent sludge treatment process. However, until now, their potential effects on sludge vermicomposting have not been clarified. This study investigated the effects of NPs on sludge humification and microbial profiles during vermicomposting by comparing fresh dewatered sludge substrates with substrates mixed with 0 mg/kg NPs (control), 100 mg/kg TiO2, 500 mg/kg TiO2, 100 mg/kg ZnO, and 500 mg/kg ZnO. The results showed that addition of TiO2 and ZnO NPs to sludge did not significantly affect the growth rate of earthworms and the superoxide dismutase activity in their guts during vermicomposting. Moreover, higher concentrations of the selected NPs promoted the humification index of sludge by 20.7-49.6%, through the formation of polysaccharides, aromatic substances, and organic acids in final vermicomposts. Compared with the control without NP addition, bacterial community diversity was enhanced in treatments with TiO2 and ZnO NPs, and dominant genera differed according to the type and concentration of NPs. This study suggests that the presence of TiO2 and ZnO NP residuals modify the microbial community of sludge, thus promoting sludge humification during vermicomposting.
Collapse
Affiliation(s)
- Xia Hui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huang Kui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Interaction between tetracycline and microorganisms during wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143981. [PMID: 33316507 DOI: 10.1016/j.scitotenv.2020.143981] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC) is a commonly used human and veterinary antibiotic that is mostly discharged into wastewater in the form of the parent compounds. At present, wastewater treatment plants (WWTPs) use activated sludge processes that are not specifically designed to remove such pollutants. Considering the biological toxicity of TC in aquatic environment, the migration and fate of TC in the process of wastewater treatment deserve attention. This paper reviews the influence of TC on the functional bacteria in the sludge matrix and the development of tetracycline-resistant genes, and also discusses their adsorption removal rates, their adsorption kinetics and adsorption isotherm models, and infers their adsorption mechanism. In addition, the biodegradation of TC in the process of biological treatment is reviewed. Co-metabolism and the role of dominant bacteria in the degradation process are described, along with the formation of degradation byproducts and their toxicity. Furthermore, the current popular integrated coupling-system for TC degradation is also introduced. This paper systematically introduces the interaction between TC and activated sludge in WWTPs. The review concludes by providing directions to address research and knowledge gaps in TC removal from wastewater.
Collapse
Affiliation(s)
- Quan Liao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Huayong Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaorui Chu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Randeng Wang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
11
|
Ahmed S, Sameen DE, Lu R, Li R, Dai J, Qin W, Liu Y. Research progress on antimicrobial materials for food packaging. Crit Rev Food Sci Nutr 2020; 62:3088-3102. [DOI: 10.1080/10408398.2020.1863327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Dur E. Sameen
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Rui Li
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya’an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Zakaria BS, Dhar BR. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139395. [PMID: 32454336 DOI: 10.1016/j.scitotenv.2020.139395] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 05/25/2023]
Abstract
Understanding the toxic effect of silver nanoparticles (AgNPs) on various biological wastewater treatment systems is of significant interest to researchers. In recent years, microbial electrochemical technologies have opened up new opportunities for bioenergy and chemicals production from organic wastewater. However, the effects of AgNPs on microbial electrochemical systems are yet to be understood fully. Notably, no studies have investigated the impact of AgNPs on a microbial electrochemical system fed with a complex fermentable substrate. Here, we investigated the impact of AgNPs (50 mg/L) exposure to a biofilm anode in a microbial electrolysis cell (MEC) fed with glucose. The volumetric current density was 29 ± 2.0 A/m3 before the AgNPs exposure, which decreased to 20 ± 2.2 A/m3 after AgNPs exposure. The biofilms produced more extracellular polymeric substances (EPS) to cope with the AgNPs exposure, while carbohydrate to protein ratio in EPS considerably increased from 0.4 to 0.7. Scanning electron microscope (SEM) imaging also confirmed the marked excretion of EPS, forming a thick layer covering the anode biofilms after AgNPs injection. Transmission electron microscope (TEM) imaging showed that AgNPs still penetrated some microbial cells, which could explain the deterioration of MEC performance after AgNPs exposure. The relative expression level of the quorum signalling gene (LuxR) increased by 30%. Microbial community analyses suggested that various fermentative bacterial species (e.g., Bacteroides, Synergistaceae_vadinCA02, Dysgonomonas, etc.) were susceptible to AgNPs toxicity, which led to the disruption of their syntrophic partnership with electroactive bacteria. The abundance of some specific electroactive bacteria (e.g., Geobacter species) also decreased. Moreover, decreased relative expressions of various extracellular electron transfer associated genes (omcB, omcC, omcE, omcZ, omcS, and pilA) were observed. However, the members of family Enterobacteriaceae, known to perform a dual function of fermentation and anodic respiration, became dominant after biofilm anode exposed to AgNPs. Thus, EPS extraction provided partial protection against AgNPs exposure.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
13
|
Khan S, Singh S, Gaikwad S, Nawani N, Junnarkar M, Pawar SV. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27221-27233. [PMID: 31065983 DOI: 10.1007/s11356-019-05239-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/22/2019] [Indexed: 05/24/2023]
Abstract
Biological methods offer eco-friendly and cost-effective alternatives for the synthesis of silver nanoparticles (AgNPs). The present study highlights a green process where AgNPs were synthesized and optimized by using silver nitrate (AgNO3) and the aqueous extract of Piper betle (Pbet) leaf as the reducing and capping agent. The stable and optimized process for the synthesis of Pbet-AgNPs was exposure of reaction mixture into the sunlight for 40 min, pH 9.0, and 2 mM AgNO3 using 1:4 diluted Pbet leaf aqueous extract. The optimized Pbet-AgNPs were characterized by UV-visible spectroscopy, high-resolution field emission scanning electron microscopy (FE-SEM), X-ray diffractometry (XRD), and Fourier-transform infrared spectroscopy (FTIR). The prepared Pbet-AgNPs were spherical in shape with size in the range of 6-14 nm. These nanoparticles were stable for 6 months in aqueous solution at room temperature under dark conditions. The biogenic synthesized Pbet-AgNPs are found to have significant antifungal activity against plant pathogenic fungi, Alternaria brassicae and Fusarium solani. Synthesized Pbet-AgNPs potentially reduced the fungal growth in a dose-dependent manner. Microscopic observation of treated mycelium showed that Pbet-AgNPs could disrupt the mycelium cell wall and induce cellular permeability. Protein leakage assay supports these findings. Overall, this study revealed the efficacy of green synthesized AgNPs to control the plant fungal pathogens. Pbet leaves are a rich source of phenolic biomolecule(s). It was hypothesized that these biomolecule(s) mediated metal reduction reactions. In this context, the present work investigates the phytobiomolecule(s) of the aqueous extract of Pbet leaves using high-resolution liquid chromatography-mass spectroscopy (HR-LCMS) method. The analysis revealed that eugenol, chavicol, and hydroxychavicol were present in the Pbet aqueous extract.
Collapse
Affiliation(s)
- Sadaf Khan
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Simran Singh
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Swapnil Gaikwad
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Neelu Nawani
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Manisha Junnarkar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | - Sarika Vishnu Pawar
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| |
Collapse
|
14
|
Sharma P, Tripathi S, Chandra R. Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon 2020; 6:e04559. [PMID: 32760841 PMCID: PMC7393463 DOI: 10.1016/j.heliyon.2020.e04559] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
The present manuscript has focused on the heavy metal; accumulation potential by common native plants i.e. Chenopodium album L., Ricinus communis, Ranunculus sceleratus, and Rumex dentatus growing on the disposed of pulp and paper mill effluent sludge. The sludge showed the abundance of benzene propanoic acid tert- butyldimethylsilyl ester, Octadecanoic acid, TMS, Hexadecanoic acid, TMS, cinnamic acid-α-phenyl-TMS ester, β-sitosterol TMS, 4-mercaptobenzoic acid as residual complex organic compounds along with heavy metals Fe (98.30 mg/L-1), Zn (51.00 mg/L-1), Cu (3.21 mg/L-1), Cd (9.11 mg/L-1), Mn (18.27 mg/L-1), Ni (5.21 mg/L-1), (Hg 0.014 mg/L-1) which were above the prescribed limit of environmental standard. The complexation of organic compounds with heavy metal restricts the bioavailability of metals to plants. But the metal analysis in various parts of the plant showed a significant amount of metal accumulation. Further, histological observations of root tissue through TEM showed apparent deposition of metal granules near the cell wall and vacuole as adoption features of plants. But the variable concentration of metal accumulation in different parts by various plants indicated the variable potential of tested plants with various metals. This also indicated their metal bio-availability and movement to plant tissue. Further, their bioconcentration factor (BCF) and translocation factor (TF) > 1.0 indicated the hyperaccumulation tendency of plants Mn was accumulated maximum in leaves C. album (69.38 mg/kg-1) followed by Cu (25.75 mg/kg -1), As (23.20 mg/kg -1), Fe (20.90 mg/kg -1) and Pb was maximum accumulated (22.41 mg/kg -1) in R. cummunis leaves. The result revealed that arsenic has been accumulated in higher amount root, shoot and leaves of all tested plants. The metal accumulator plants showed phytoremediation potential also by reducing various pollution parameters after growth on sludge. These potential plants may be used as biotechnological tools for the eco-restoration of polluted sites.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
15
|
Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. Unravelling mechanisms of bacterial quorum sensing disruption by metal-based nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133869. [PMID: 31450048 DOI: 10.1016/j.scitotenv.2019.133869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Nanoparticles are released in the environment causing a negative impact in several ecosystems such as microbial communities. To adapt to environmental changes some bacteria use a collective behaviour ruled by a cell-to-cell communication process called quorum sensing (QS). In this study, the impact of some of the most employed metal-based nanoparticles, such as zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs) on bacterial QS has been assessed by using two different strains of the model organism Chromobacterium violaceum and by employing different experimental conditions. TiO2NPs were tested with and without applying a previous step of UV-irradiation while the effect of AgNPs of two diameter sizes (40 and 60 nm) and two different coating agents (PVP and citrate) was evaluated. Results evidenced that all nanoparticles produced a significant effect on violacein production and therefore, in the QS system. ZnONPs mainly disrupted the QS steps related to signal perception and response whereas TiO2NPs and AgNPs affected the autoinducer biosynthesis. AgNPs with the smallest size and citrate as capping agent produced the most deleterious effect while the impact of TiO2NPs was not affected by UV irradiation. The present study provides new insights into the mechanisms by which these commonly employed metal-based nanoparticles disturb bacterial QS-based communication and clearly evidences the potential risk of releasing nanoparticles to the environment, especially for microbial communities which play a key role in many environmental and technological processes.
Collapse
Affiliation(s)
- Beatriz Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Lucia Arregui
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Susana Serrano
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Teresa Pérez-Corona
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Yolanda Madrid
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Cervantes-Avilés P, Huang Y, Keller AA. Incidence and persistence of silver nanoparticles throughout the wastewater treatment process. WATER RESEARCH 2019; 156:188-198. [PMID: 30913422 DOI: 10.1016/j.watres.2019.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 05/23/2023]
Abstract
While the predicted or observed concentrations of Ag NPs in wastewater treatment plants (WWTPs) have ranged from μg/L to ng/L, there is still uncertainty with regards to the realistic concentration range of Ag NPs in WWTPs. In addition, the persistence, removal, and size of Ag NPs throughout WWTP process is also not well investigated, particularly in real operating conditions. In this study, the incidence and persistence of Ag NPs in the wastewater process were studied by using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The incidence of Ag NPs was determined in samples collected at the influent and effluent of the conventional process, as well as reclaimed and backwash waters of the ultrafiltration (UF) system in a WWTP (Santa Barbara, CA), showing a concentration of 13.5, 3.2, 0.5 and 9.8 ng/L, respectively, with relative standard deviations (RSDs) < 5%. Total Ag concentration (Ag NP and Ag+) ranged from 40 to 70 ng/L, in line with lower predicted values. Most of the Ag NPs detected were below 100 nm, with a few above 100 nm in the conventional effluent. Biological and physical processes in the secondary treatment removed 76.3% of the colloidal Ag fraction, while with the tertiary treatment (UF) the WWTP achieved a removal of 96.3% of the colloidal fraction. Persistence of Ag NPs in various water matrixes, including a synthetic wastewater (SWW), was determined by spiking 300 ng/L of Ag NPs (40 nm) and monitoring the concentrations and size change for 15 days. The persistence of Ag NPs in suspension was Influent > Effluent > Reclaimed > SWW. Partial dissolution of NPs in all waters was observed from time 0 h. Although the current concentrations in the outlet flows from WWTP (effluent and reclaimed waters) were low, the presence of small and stable Ag NPs may raise ecotoxicological concerns via bioaccumulation.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA
| | - Yuxiong Huang
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
17
|
Li H, Chi Z, Yan B. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: Performance, microbial community and toxic mechanism. J Environ Sci (China) 2019; 79:239-247. [PMID: 30784446 DOI: 10.1016/j.jes.2018.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 06/09/2023]
Abstract
The increasing application of engineered nanoparticles (NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplanted subsurface-flow constructed wetlands (USFCWs) were investigated under the long-term exposure of different graphene oxides (GOs) and Ag NP concentrations. Results showed that the addition of GO could promote TN removal, manifesting as function anammox bacteria C. Anammoxoglobus having a relative high abundance, for GO did not cause significant damage to the cell integrity though there was an increase in ROS concentrations. TN removal would not be obviously affected under exposure of 1 mg/L Ag NPs, for the function gene related to cell biogenesis and repair was up-regulated; while the addition of 10 mg/L Ag NPs would have an inhibiting effect on TN removal in the USFCWs, for the disappearance of some species having anammox ability. Key enzymes of anammox process (NIR and HDH) decreased to some extent under GO and Ag NP exposure, and function gene of defense mechanisms had an increase trend in samples.
Collapse
Affiliation(s)
- Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zifang Chi
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
18
|
Guo Y, Cichocki N, Schattenberg F, Geffers R, Harms H, Müller S. AgNPs Change Microbial Community Structures of Wastewater. Front Microbiol 2019; 9:3211. [PMID: 30671038 PMCID: PMC6331452 DOI: 10.3389/fmicb.2018.03211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 01/31/2023] Open
Abstract
Due to their strong antimicrobial activity, silver nanoparticles (AgNPs) are massively produced, applied, consumed and, as a negative consequence, released into wastewater treatment plants. Most AgNPs are assumed to be bound by sludge, and thus bear potential risk for microbial performance and stability. In this lab-scale study, flow cytometry as a high-throughput method and 16S rRNA gene amplicon Illumina MiSeq sequencing were used to track microbial community structure changes when being exposed to AgNPs. Both methods allowed deeper investigation of the toxic impact of chemicals on microbial communities than classical EC50 determination. In addition, ecological metrics were used to quantify microbial community variations depending on AgNP types (10 and 30 nm) and concentrations. Only low changes in α- and intra-community β-diversity values were found both in successive negative and positive control batches and batches that were run with AgNPs below the EC50 value. Instead, AgNPs at EC50 concentrations caused upcoming of certain and disappearance of formerly dominant subcommunities. Flavobacteriia were among those that almost disappeared, while phylotypes affiliated with Gammaproteobacteria (3.6-fold) and Bacilli (8.4-fold) increased in cell abundance in comparison to the negative control. Thus, silver amounts at the EC50 value affected community structure suggesting a potential negative impact on functions in wastewater treatment systems.
Collapse
Affiliation(s)
- Yuting Guo
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Nicolas Cichocki
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Robert Geffers
- Research Group Genome Analysis, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
19
|
Zakaria BS, Barua S, Sharaf A, Liu Y, Dhar BR. Impact of antimicrobial silver nanoparticles on anode respiring bacteria in a microbial electrolysis cell. CHEMOSPHERE 2018; 213:259-267. [PMID: 30223131 DOI: 10.1016/j.chemosphere.2018.09.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
This study assessed the impact of antimicrobial AgNPs (50 mg L-1, 30-50 nm) on the electrocatalytic activity of a mixed-culture anode biofilm enriched with Geobacter species. The current densities and electrochemical kinetics were maintained after exposure to AgNPs in consecutive fed-batch cycles, despite significant changes in morphological structures and bacterial communities. Bacterial community analysis showed a substantial increase in the Geobacter population in response to AgNPs exposure, indicating their higher tolerance to AgNPs. In contrast, the population of other anode respiring bacteria (ARB) belongs to Acinetobacter, Dysgonomonas, and Cloacibacillus genera appeared to be very sensitive to AgNPs toxicity as their relative abundance significantly decreased. Microscopic imaging showed that AgNPs were accumulated within anode biofilm matrix without penetration inside the cells. Moreover, the anode biofilm became denser because of enhanced extracellular polymeric substances (EPSs) production by ARB after exposure of AgNPs, implying that EPS could protect ARB against AgNPs toxicity.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Sajib Barua
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Ahmed Sharaf
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
20
|
Ali A, Gul A, Mannan A, Zia M. Efficient metal adsorption and microbial reduction from Rawal Lake wastewater using metal nanoparticle coated cotton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:26-39. [PMID: 29778679 DOI: 10.1016/j.scitotenv.2018.05.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
This study was designed to investigate removal of toxic metals and reduction of bacterial count from Rawal Lake wastewater with novel nanocomposite sorbents. Iron, zinc and silver oxide nanoparticles (NPs) were attached on cotton. The nanocomposites (iron NPs on cotton (FeCt), zinc NPs on cotton (ZnCt) and silver NPs on cotton (AgCt)) were characterized by FTIR, XRD and SEM, which showed successful adsorption of 10-30 nm size nanoparticles. Batch experiments were performed to determine the adsorption capacity of nanocomposite for metal removal. All the three adsorbents demonstrated 100% adsorption efficiency for Ag+, Co2+, Fe3+, Zn2+ and Cu2+ whereas less adsorption for Cd2+ and Cr3+. The maximum adsorbance (qe) was exhibited by Co2+ on ZnCt, FeCt and AgCt as 125.0, 111.1 and 100.0 mg g-1, respectively. The efficiency of adsorbents for metal ions sorption was found as AgCt > ZnCt > FeCt while the order of adsorption for metals was observed as Fe3+ > Co2+ > Zn2+ > Cu2+ > Ag+ > Cr3+ > Cd2+. The adsorption mechanism mostly follow Langmuir isotherm and pseudo-second order kinetic model. The maximum microbial reduction was exhibited by AgCt followed by ZnCt and FeCt. The microbes were further processed for staining and biochemical characteristics to evaluate resistance and sensitive microbes. The study concludes that the NPs doped on cotton can be effectively used for adsorption of heavy metals and reduction of microbial count from natural wastewater making it valuable for human consumption. In addition, the nanoparticles impregnated cotton can be efficiently used in water filtration plants.
Collapse
Affiliation(s)
- Attarad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Mannan
- Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology Abbottabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
21
|
Koduru JR, Kailasa SK, Bhamore JR, Kim KH, Dutta T, Vellingiri K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv Colloid Interface Sci 2018; 256:326-339. [PMID: 29549999 DOI: 10.1016/j.cis.2018.03.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (Ag NPs) have recently emerged as promising materials in the biomedical sciences because of their antimicrobial activities towards a wide variety of microorganisms. Nanomaterial-based drug delivery systems with antimicrobial activity are critical as they may lead to novel treatments for cutaneous pathogens. In this review, we explore the recent progress on phytochemical-mediated synthesis of Ag NPs for antimicrobial treatment and associated infectious diseases. We discuss the biological activity of Ag NPs including mechanisms, antimicrobial activity, and antifungal/antiviral effects towards various microorganisms. The advent of Ag NP-based nanocarriers and nano-vehicles is also described for treatment of different diseases, along with the mechanisms of microbial inhibition. Overall, this review will provide a rational vision of the main achievements of Ag NPs as nanocarriers for inhibition of various microbial agents (bacteria, fungus, and virus).
Collapse
|
22
|
Dynamic Dispersal of Surface Layer Biofilm Induced by Nanosized TiO 2 Based on Surface Plasmon Resonance and Waveguide. Appl Environ Microbiol 2018; 84:AEM.00047-18. [PMID: 29500260 DOI: 10.1128/aem.00047-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/11/2018] [Indexed: 01/01/2023] Open
Abstract
Pollutant degradation is present mainly in the surface layer of biofilms, and the surface layer is the most vulnerable to impairment by toxic pollutants. In this work, the effects of nanosized TiO2 (n-TiO2) on the average thicknesses of Bacillus subtilis biofilm and on bacterial attachment on different surfaces were investigated. The binding mechanism of n-TiO2 to the cell surface was also probed. The results revealed that n-TiO2 caused biofilm dispersal and the thicknesses decreased by 2.0 to 2.6 μm after several hours of exposure. The attachment abilities of bacteria with extracellular polymeric substances (EPS) on hydrophilic surfaces were significantly reduced by 31% and 81% under 10 and 100 mg/liter of n-TiO2, respectively, whereas those of bacteria without EPS were significantly reduced by 43% and 87%, respectively. The attachment abilities of bacteria with and without EPS on hydrophobic surfaces were significantly reduced by 50% and 56%, respectively, under 100 mg/liter of n-TiO2 The results demonstrated that biofilm dispersal can be attributed to the changes in the cell surface structure and the reduction of microbial attachment ability.IMPORTANCE Nanoparticles can penetrate into the outer layer of biofilm in a relatively short period and can bind onto EPS and bacterial surfaces. The current work probed the effects of nanosized TiO2 (n-TiO2) on biofilm thickness, bacterial migration, and surface properties of the cell in the early stage using the surface plasmon resonance waveguide mode. The results demonstrated that n-TiO2 decreased the adhesive ability of both cell and EPS and induced bacterial migration and biofilm detachment in several hours. The decreased adhesive ability of microbes and EPS worked against microbial aggregation, reducing the effluent quality in the biological wastewater treatment process.
Collapse
|
23
|
Gwin CA, Lefevre E, Alito CL, Gunsch CK. Microbial community response to silver nanoparticles and Ag + in nitrifying activated sludge revealed by ion semiconductor sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1014-1021. [PMID: 29122352 DOI: 10.1016/j.scitotenv.2017.10.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs), which are known to act as biocides, are incorporated into medical and consumer products including athletic clothing, stuffed animals, liquid dietary supplements, and more. The increasing use of AgNPs in these products is likely to lead to their entry into both natural and engineered systems, which has the potential to disrupt bacterial processes including those involved in nutrient cycling in wastewater treatment. In the present study, sequencing batch reactors (SBR) mimicking secondary wastewater treatment were operated to determine the effects of AgNPs on the microbial communities contained within activated sludge of wastewater treatment plants (WWTP). SBRs were treated with 0.2 and 2ppm of either gum Arabic (GA)-coated AgNPs, citrate (Ca)-coated AgNPs, or Ag+ as AgNO3. Cell samples were collected and DNA isolated periodically throughout SBR operation. DNA was used for Ion Torrent Next Gen Sequencing of the V3 region of the 16S rDNA gene. Subsequent analyses revealed that the microbial community both shifted and recovered quickly in response to Ag+. Both AgNP treatments resulted in slower initial community shifts than that observed with the Ag+ treatment. GA-AgNPs elicited the longest lasting effect. Additional examination of nitrogen removal bacteria suggested the possibility of an increase in sludge bulking species with increased concentrations of AgNPs in WWTPs. This study supports the hypothesis that Ag+ release from AgNPs is largely coating-dependent and thus a key driver in dictating AgNP toxicity.
Collapse
Affiliation(s)
- Carley A Gwin
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States; Center for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27708, United States; Department of Civil and Environmental Engineering, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, United States
| | - Emilie Lefevre
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States
| | - Christina L Alito
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States; Center for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27708, United States
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, NC 27708, United States; Center for Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC 27708, United States.
| |
Collapse
|
24
|
Sheng Z, Van Nostrand JD, Zhou J, Liu Y. Contradictory effects of silver nanoparticles on activated sludge wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:448-456. [PMID: 28830010 DOI: 10.1016/j.jhazmat.2017.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Increased amount of nano-silver will be released into domestic and industrial waste streams due to its extensive application. However, great controversy still exists on the effects of silver nanoparticle (Ag-NP) on biological wastewater treatment processes and a toxicology model has not been built yet. Four sequencing batch reactors with activated sludge has been run for over three months with different silver species at a concentration of 1mg Ag/L in influent. Both freshly prepared Ag-NPs and aged Ag-NPs were tested with released silver ion as control. Results in this study showed that Ag-NPs, especially freshly prepared Ag-NPs, can help to maintain or even increase the diversity of microbial community in activated sludge and the biomass concentration even under long-term treatment. It indicates that the hormesis model need to be considered for the toxicology of Ag-NPs.
Collapse
Affiliation(s)
- Zhiya Sheng
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada.
| |
Collapse
|
25
|
Eduok S, Ferguson R, Jefferson B, Villa R, Coulon F. Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:232-241. [PMID: 28746890 DOI: 10.1016/j.scitotenv.2017.07.178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
To investigate the potential effect of aged engineered nanoparticles (a-ENPs) on sludge digestion performance, 150L pilot anaerobic digesters (AD) were fed with a blend of primary and waste activated sludge spiked either with a mixture of silver oxide, titanium dioxide and zinc oxide or a mixture of their equivalent bulk metal salts to achieve a target concentration of 250, 2000, and 2800mgkg-1 dry weight, respectively. Volatile fatty acids (VFA) were 1.2 times higher in the spiked digesters and significantly different (p=0.05) from the control conditions. Specifically, isovaleric acid concentration was 2 times lower in the control digester compared to the spiked digesters, whereas hydrogen sulfide was 2 times lower in the ENPs spiked digester indicating inhibitory effect on sulfate reducing microorganisms. Based on the ether-linked isoprenoids concentration, the total abundance of methanogens was 1.4 times lower in the ENPs spiked digester than in the control and metal salt spiked digesters. Pyrosequencing indicated 80% decrease in abundance and diversity of methanogens in ENPs spiked digester compared to the control digester. Methanosarcina acetivorans and Methanosarcina barkeri were identified as nano-tolerant as their relative abundance increased by a factor of 6 and 11, respectively, compared to the other digesters. The results further provide compelling evidence on the resilience of Fusobacteria, Actinobacteria and the Trojan horse-like effect of ENPs which offered a competitive advantage to some organisms while reducing microbial abundance and diversity.
Collapse
Affiliation(s)
- Samuel Eduok
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Robert Ferguson
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Bruce Jefferson
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Raffaella Villa
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Frédéric Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
26
|
Fall C, Silva-Hernández BC. Bacterial inactivation and regrowth in ozonated activated sludges. CHEMOSPHERE 2017; 189:357-364. [PMID: 28946069 DOI: 10.1016/j.chemosphere.2017.09.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/29/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Ozonation of the return activated sludge (AS) flow is an emerging option for excess-sludge reduction. This study aimed to evaluate the potential changes suffered by some kinetic parameters of the activated sludge models (ASMs) in the combined ozone-AS process. The heterotrophic maximum specific growth rate (μHmax) was determined by respirometry in three model-sludges (S1 to S3) treated in batch with different O3 doses. S1 was a fresh synthetic biosolid composed by only two particulate fractions. S2 was a digestate of S1 almost made by the endogenous residues. S3 was from a municipal wastewater treatment plant. μHmax increased significantly from 3.5 d-1 originally, to more than 10 d-1 in the ozonated sludges. Ozonation promoted the selection of fast-growing bacteria in the activated sludges, after transitory inactivation and long lag times. Some microorganisms survived to 3 months of digestion and subsequent ozonation, and then regrow faster than before, once fed again with acetate. The research is of interest from the point of view of the application of the ASM models to the ozone-AS process, but also for wastewater disinfection in general.
Collapse
Affiliation(s)
- C Fall
- Universidad Autónoma del Estado de México (UAEM, CIRA), col. Centro, C.P. 50000, Toluca, Mexico.
| | - B C Silva-Hernández
- Universidad Autónoma del Estado de México (UAEM, CIRA), col. Centro, C.P. 50000, Toluca, Mexico
| |
Collapse
|
27
|
Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics. MARINE POLLUTION BULLETIN 2017; 119:176-183. [PMID: 28363429 DOI: 10.1016/j.marpolbul.2017.03.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/17/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. CAPSULE The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation.
Collapse
Affiliation(s)
- Joana P Fernandes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana P Mucha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Telmo Francisco
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos Rocha Gomes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
28
|
Bacterial community dynamics in a biodenitrification reactor packed with polylactic acid/poly (3-hydroxybutyrate- co -3-hydroxyvalerate) blend as the carbon source and biofilm carrier. J Biosci Bioeng 2017; 123:606-612. [DOI: 10.1016/j.jbiosc.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
|
29
|
Sheng Z, Liu Y. Potential impacts of silver nanoparticles on bacteria in the aquatic environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 191:290-296. [PMID: 28129561 DOI: 10.1016/j.jenvman.2017.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 12/12/2016] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
It is inevitable that nano-silver will be released into the environment. Therefore, there is an urgent need to better understand the effects of silver nanoparticles (Ag-NPs) on microbes in natural and engineered environments. The most remarkable gap in our knowledge on this lies on the low Ag-NPs dose side. This review summarized studies on the effects of Ag-NPs on bacteria from simple to complicated aquatic systems. A hormetic model with a narrow stimulatory zone has been proposed based on both experimental phenomenon and the potential mechanisms of the observed effects. Spectrum of the stimulating zone depends on Ag-NP properties, bacterial types and environmental conditions tested. This may become a concern in terms of Ag-NP disposal, and further research is required to build a sophisticated toxicity model for Ag-NPs.
Collapse
Affiliation(s)
- Zhiya Sheng
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada.
| |
Collapse
|
30
|
Fernandes JP, Almeida CMR, Andreotti F, Barros L, Almeida T, Mucha AP. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:801-810. [PMID: 28069300 DOI: 10.1016/j.scitotenv.2017.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate Cu oxide nanoparticles (CuO NP) effect on microbial communities associated with salt marsh plants (Halimione portulacoides and Pragmites australis) rhizosphere and its implications for phytoremediation processes. Experiments were conducted, under controlled conditions, over one week. Rhizosediment soaked in the respective elutriate (a simplified natural medium) with or without plants, was doped with CuO NP or with Cu in ionic form. Microbial community in rhizosediments was characterized in terms of abundance (by DAPI) and structure (by ARISA). Metal uptake by plants was evaluated by measuring Cu in plant tissues (by atomic absorption spectroscopy). Results revealed significant metal uptake but only in plant roots, which was significantly lower (H. portulacoides) or not significant (P. australis) when the metal was in NP form. Microbial community structure was significantly changed by the treatment (absence/presence of Cu, ionic Cu or CuO NP) as showed by multivariate analysis of ARISA profiles and confirmed by analysis of similarities (Global test - one way ANOSIM). Moreover, in P. australis rhizosediments microbial abundance, bacterial richness and diversity indexes were significantly affected (increased or decreased) due to metal presence whereas in H. portulacoides rhizosediment microbial abundance showed a significant decrease, particularly when the metal was in NP form. Accordingly, Cu presence affected the response of the rhizosphere microbial community and in some cases that response was significantly different when Cu was in NP form. The response of the microbial communities to Cu NP might also contribute to the lower metal accumulation by plants when the metal was in this form. So, Cu NP may cause disturbances in ecosystems functions, ultimately affecting phytoremediation processes. These facts should be considered regarding the use of appropriate salt marshes plants to remediate moderately impacted areas such as estuaries, where NPs can be found.
Collapse
Affiliation(s)
- Joana P Fernandes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Federico Andreotti
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Agriculture and Environment Sciences, Faculty of Agriculture, University of Milan, Italy
| | - Leandro Barros
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Tânia Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana P Mucha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
31
|
Wang S, Liu Z, Wang W, You H. Fate and transformation of nanoparticles (NPs) in municipal wastewater treatment systems and effects of NPs on the biological treatment of wastewater: a review. RSC Adv 2017. [DOI: 10.1039/c7ra05690g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fate, transformation of NPs in WWTP & effects on wastewater treatment.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Zhisheng Liu
- Changchun Institute of Urban Planning & Design
- Changchun 130033
- China
| | - Weiqing Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
- Weihai 264209
| |
Collapse
|
32
|
Zhang C, Hu Z, Li P, Gajaraj S. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:852-873. [PMID: 27542630 DOI: 10.1016/j.scitotenv.2016.07.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Silver nanoparticles (nanosilver or AgNPs) enter municipal wastewater from various sources, raising concerns about their potential adverse effects on wastewater treatment processes. We argue that the biological effects of silver nanoparticles at environmentally realistic concentrations (μgL-1 or lower) on the performance of a full-scale municipal water resource recovery facility (WRRF) are minimal. Reactor configuration is a critical factor that reduces or even mutes the toxicity of silver nanoparticles towards wastewater microbes in a full-scale WRRF. Municipal sewage collection networks transform silver nanoparticles into silver(I)-complexes/precipitates with low ecotoxicity, and preliminary/primary treatment processes in front of biological treatment utilities partially remove silver nanoparticles to sludge. Microbial functional redundancy and microbial adaptability to silver nanoparticles also greatly alleviate the adverse effects of silver nanoparticles on the performance of a full-scale WRRF. Silver nanoparticles in a lab-scale bioreactor without a sewage collection system and/or a preliminary/primary treatment process, in contrast to being in a full scale system, may deteriorate the reactor performance at relatively high concentrations (e.g., mgL-1 levels or higher). However, in many cases, silver nanoparticles have minimal impacts on lab-scale bioreactors, such as sequencing batch bioreactors (SBRs), especially when at relatively low concentrations (e.g., less than 1mgL-1). The susceptibility of wastewater microbes to silver nanoparticles is species-specific. In general, silver nanoparticles have higher toxicity towards nitrifying bacteria than heterotrophic bacteria.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Ping Li
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shashikanth Gajaraj
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
33
|
Zhang Z, Gao P, Li M, Cheng J, Liu W, Feng Y. Influence of Silver nanoparticles on nutrient removal and microbial communities in SBR process after long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:234-243. [PMID: 27343942 DOI: 10.1016/j.scitotenv.2016.06.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
The widespread utilization of silver nanoparticles (AgNPs) in industrial and commercial products inevitably raises the release into wastewater that might cause potential negative impacts on sewage treatment system. In this paper, long-term exposure experiments at four levels were conducted to determine whether AgNPs caused adverse impacts on nutrient removals in sequencing batch reactors (SBRs) and changes of microbial community structure. Compared with the control reactor (without AgNPs), carbon, nitrogen and phosphorus removal in presence of 0.1mg/L AgNPs was no difference. However, presence of 1.0 and 10mg/L AgNPs decreased the average removal efficiencies of COD from 95.4% to 85.2% and 68.3%, ammonia nitrogen from 98.8% to 71.2% and 49%, SOP from 97.6% to 75.5% and 54.1%, respectively. It was found that AgNPs could accumulate in sludge with the distribution coefficients of 39.2-114L/g, inhibit the protein and polysaccharide production in EPS, reduce the SOUR of sludge, and greatly increase LDH release from microbial cells. The illumina high-throughput sequencing results indicated that AgNPs concentration changed the structures of bacterial communities, associating with the effects of AgNPs on reactor performance. Sequence analyses showed that Proteobacteria, Bacteroidetes and Acidobacteria were the dominant phyla. It was notable that AgNPs addition reduced the contents of several nitrifying bacteria at genera level in sludge, leading to the lower removal of nitrogen.
Collapse
Affiliation(s)
- Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001, China
| | - Peng Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Moqing Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Jiaqi Cheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Wei Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No 43, Songfa Street, Daoli District, Harbin 150001, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
34
|
Walden C, Zhang W. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8417-8431. [PMID: 27437755 DOI: 10.1021/acs.est.6b01282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released.
Collapse
Affiliation(s)
- Connie Walden
- Graduate Research Assistant, Department of Civil Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Wen Zhang
- Assistant Professor, Department of Civil Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
35
|
Zhang J, Dong Q, Liu Y, Zhou X, Shi H. Response to shock load of engineered nanoparticles in an activated sludge treatment system: Insight into microbial community succession. CHEMOSPHERE 2016; 144:1837-1844. [PMID: 26539708 DOI: 10.1016/j.chemosphere.2015.10.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
The environmental impacts of the use of engineered nanoparticles (NPs) remain unclear and have attracted increasing concern worldwide. Considering that NPs eventually end up in wastewater treatment systems, the potential impact of ZnO and TiO2 NPs on the activated sludge was investigated using laboratory-scale sequencing batch reactors (SBRs). Short-term (24 h) exposure to 1, 10 and 100 mg/L shock loads of NPs reduced the oxygen uptake rate of the activated sludge by 3.55%-12.51% compared with the controls. In our experiment, the toxicities of TiO2 NPs were higher than those of ZnO NPs as reflected in the inhibition of oxygen utilization in the activated sludge. However, both the short-term (24 h) and long-term (21 days) exposure to ZnO and TiO2 NPs did not adversely affect the pollutant removal of the SBRs. Furthermore, the polymerase chain reaction-denaturing gel gradient electrophoresis revealed that the microbial community did not significantly vary after the short-term exposure (24 h) to 1, 10 and 100 mg/L shock loads of NPs; however, the cluster analysis in our experiment revealed that the slight difference caused by the NPs largely depended on exposure time rather than on NP type and NP concentration. The long-term exposure (13 days) to 10 mg/L shock load of ZnO or TiO2 NPs caused no substantial microbial community shifts in the activated sludge. The microbial diversity also showed no significant change when exposed to NPs as revealed by the Shannon-Wiener index.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, A-1 Fuxing Road Haidian District, Beijing 100038, China
| | - Qian Dong
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yanchen Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|
36
|
Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fiebiger C, Wright C, Cavagnaro TR, Bertsch PM. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:256-263. [PMID: 26196315 DOI: 10.1016/j.envpol.2015.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 05/23/2023]
Abstract
We investigated effects of Ag2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag(+) on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+) exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+). Overall, Ag2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag(+). However, significant effects were observed at 1 mg kg(-1) Ag2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag2S ENMs.
Collapse
Affiliation(s)
- Jonathan D Judy
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia.
| | - Jason K Kirby
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Courtney Creamer
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Sustaining Agriculture Soil and Landscapes Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Mike J McLaughlin
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Cathy Fiebiger
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Claire Wright
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, Environmental Contaminant Mitigation and Technologies Research Program, Waite Campus, Waite Road, Urrbrae, 5064, South Australia, Australia
| | - Timothy R Cavagnaro
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, 5064, South Australia, Australia
| | - Paul M Bertsch
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Land and Water Flagship, 41 Boggo Road, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia; Center for the Environmental Implications for Nanotechnology, Duke University, Durham, 27708, NC, USA; Department of Plant and Soil Sciences, University of Kentucky, Lexington, 40546, KY, United States
| |
Collapse
|
37
|
Eduok S, Hendry C, Ferguson R, Martin B, Villa R, Jefferson B, Coulon F. Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiol Ecol 2015; 91:fiv082. [PMID: 26187478 PMCID: PMC4629872 DOI: 10.1093/femsec/fiv082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2015] [Indexed: 11/12/2022] Open
Abstract
In this study, the effects, fate and transport of ENPs in wastewater treatment plants (WWTP) were investigated using three parallel pilot WWTPs operated under identical conditions. The WWTPs were spiked with (i) an ENP mixture consisting of silver oxide, titanium dioxide and zinc oxide, and (ii) bulk metal salts. The third plant served as control (unspiked). ENP effects were evaluated for (i) bulk contaminant removal, (ii) activated sludge (AS) process performance, (iii) microbial community structure and dynamics and (iv) microbial inhibition. ENPs showed a strong affinity for biosolids and induced a specific oxygen uptake rate two times higher than the control. The heterotrophic biomass retained its ability to nitrify and degrade organic matter. However, non-recovery of ammonia- and nitrite-oxidizing bacteria such as Nitrosomonas, Nitrobacter or Nitrospira in the ENP spiked reactors suggests selective inhibitory effects. The results further suggest that ENPs and metal salts have antimicrobial properties which can reduce synthesis of extracellular polymeric substances and therefore floc formation. Scanning electron microscopy evidenced selective damage to some microbes, whereas lipid fingerprinting and 454 pyrosequencing indicated a temporal shift in the microbial community structure and diversity. Acidovorax, Rhodoferax, Comamonas and Methanosarcina were identified as nano-tolerant species. Competitive growth advantage of the nano-tolerant species influenced the removal processes and unlike other xenobiotic compounds, ENPs can hasten the natural selection of microbial species in AS. The work endeavours to establish linkage between different scales of characterization to establish the true influence of ENP input in wastewater treatment plant.
Collapse
Affiliation(s)
- Samuel Eduok
- School of Energy, Environment and Agrifood, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Callum Hendry
- School of Energy, Environment and Agrifood, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Robert Ferguson
- School of Energy, Environment and Agrifood, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Ben Martin
- School of Energy, Environment and Agrifood, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Raffaella Villa
- School of Energy, Environment and Agrifood, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Bruce Jefferson
- School of Energy, Environment and Agrifood, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - Frédéric Coulon
- School of Energy, Environment and Agrifood, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| |
Collapse
|
38
|
Abstract
Silver nanoparticles (Ag-NPs) have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission electron microscopy. Forty-five minutes after Ag-NP application, Ag-NPs were seen in the biofilm extracellular polymeric substances (EPS). After 24 h, Ag-NPs had entered certain microbial cells, while other cells contained no observable Ag-NPs. Some cells were dying after the uptake of Ag-NPs. However, there was no significant reduction in cultivable bacteria in the biofilms, based on heterotrophic plate counts (HPC). While this may indicate that wastewater biofilms are highly resistant to Ag-NPs, the HPC represents only a small portion of the total microbial population. To further investigate the effects of Ag-NPs, a GeoChip microarray was used to directly detect changes in the functional gene structure of the microbial community in the biofilm. A clear decrease (34.6% decreases in gene number) in gene diversity was evident in the GeoChip analysis. However, the complete loss of any specific gene was rare. Most gene families present in both treated and untreated biofilms. However, this doesn’t necessarily mean that there was no change in these families. Signal intensity decreased in certain variants in each family while other variants increased to compensate the effects of Ag-NPs. The results indicate that Ag-NP treatment decreased microbial community diversity but did not significantly affect the microbial community function. This provides direct evidence for the functional redundancy of microbial community in engineered ecosystems such as wastewater biofilms.
Collapse
Affiliation(s)
- Zhiya Sheng
- Department of Civil and Environmental Engineering, University of Alberta Edmonton, AB, Canada
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, The University of Oklahoma Norman, OK, USA
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
39
|
Wang D, Chen Y. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Crit Rev Biotechnol 2015; 36:816-28. [DOI: 10.3109/07388551.2015.1049509] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dongbo Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P.R. China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P.R. China
| |
Collapse
|
40
|
Supha C, Boonto Y, Jindakaraked M, Ananpattarachai J, Kajitvichyanukul P. Long-term exposure of bacterial and protozoan communities to TiO 2 nanoparticles in an aerobic-sequencing batch reactor. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:034609. [PMID: 27877796 PMCID: PMC5099833 DOI: 10.1088/1468-6996/16/3/034609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 06/01/2023]
Abstract
Titanium dioxide (TiO2) nanopowders at different concentrations (0-50 mg L-1) were injected into an aerobic-sequencing batch reactor (SBR) to investigate the effects of long-term exposure to nanoparticles on bacterial and protozoan communities. The detection of nanoparticles in the bioflocs was analyzed by scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The SBR wastewater experiments were conducted under the influence of ultraviolet light with photocatalytic TiO2. The intrusion of TiO2 nanoparticles was found both on the surface and inside of the bioflocs. The change of microbial population in terms of mixed liquor-suspended solids and the sludge volume index was monitored. The TiO2 nanoparticles tentatively exerted an adverse effect on the microbial population, causing the reduction of microorganisms (both bacteria and protozoa) in the SBR. The respiration inhibition rate of the bacteria was increased, and the viability of the microbial population was reduced at the high concentration (50 mg L-1) of TiO2. The decreasing number of protozoa in the presence of TiO2 nanoparticles during 20 days of treatment with 0.5 and 1.0 mg L-1 TiO2 is clearly demonstrated. The measured chemical oxygen demand (COD) in the effluent tends to increase with a long-term operation. The increase of COD in the system suggests a decrease in the efficiency of the wastewater treatment plant. However, the SBR can effectively remove the TiO2 nanoparticles (up to 50 mg L-1) from the effluent.
Collapse
Affiliation(s)
| | | | | | | | - Puangrat Kajitvichyanukul
- Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
41
|
Hou J, Miao L, Wang C, Wang P, Ao Y, Lv B. Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs. BIORESOURCE TECHNOLOGY 2015; 176:65-70. [PMID: 25460985 DOI: 10.1016/j.biortech.2014.11.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
The effects of CuO nanoparticles (NPs) on the production and composition of extracellular polymeric substances (EPS) and the physicochemical stability of activated sludge were investigated. The results showed enhanced production of loosely bound extracellular polymeric substances (LB-EPS), protecting against nanotoxicity. Specifically, polysaccharide production increased by 89.7% compared to control upon exposure to CuO NPs (50mg/L). Fourier transform-infrared spectroscopy analysis revealed changes in the polysaccharide COC group and the carboxyl group of proteins in the EPS in the presence of CuO NPs. The sludge flocs were unstable after exposure to CuO NPs (50mg/L) because of excess LB-EPS. This also corresponded with decreased cell viability of the sludge flocs, as determined by the production of reactive oxygen species and the release of lactate dehydrogenase. These results are key to assessing the adverse effects of the CuO NPs on activated sludge in wastewater treatment plants.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bowen Lv
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
42
|
Bibbs RK, Harris RD, Peoples VA, Barnett C, Singh SR, Dennis VA, Coats MT. Silver polyvinyl pyrrolidone nanoparticles exhibit a capsular polysaccharide influenced bactericidal effect against Streptococcus pneumoniae. Front Microbiol 2014; 5:665. [PMID: 25520713 PMCID: PMC4253953 DOI: 10.3389/fmicb.2014.00665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/16/2014] [Indexed: 11/17/2022] Open
Abstract
Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. The highly adaptive nature of S. pneumoniae exemplifies the need for next generation antimicrobials designed to avoid high level resistance. Metal based nanomaterials fit this criterion. Our study examined the antimicrobial activity of gold nanospheres, silver coated polyvinyl pyrrolidone (AgPVP), and titanium dioxide (TiO2) against various serotypes of S. pneumoniae. Twenty nanometer spherical AgPVP demonstrated the highest level of killing among the tested materials. AgPVP (0.6 mg/mL) was able to kill pneumococcal serotypes 2, 3, 4, and 19F within 4 h of exposure. Detailed analysis of cultures during exposure to AgPVP showed that both the metal ions and the solid nanoparticles participate in the killing of the pneumococcus. The bactericidal effect of AgPVP was lessened in the absence of the pneumococcal capsular polysaccharide. Capsule negative strains, JD908 and RX1, were only susceptible to AgPVP at concentrations at least 33% higher than their respective capsule expressing counterparts. These findings suggest that mechanisms of killing used by nanomaterials are not serotype dependent and that the capsular polysaccharide participates in the inhibition. In the near future these mechanisms will be examined as targets for novel antimicrobials.
Collapse
Affiliation(s)
- Ronda K Bibbs
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Rhonda D Harris
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Veolanda A Peoples
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Cleon Barnett
- Department of Physical Sciences, Alabama State University Montgomery, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA
| | - Mamie T Coats
- Center for NanoBiotechnology Research, Alabama State University Montgomery, AL, USA ; Department of Biological Sciences, Alabama State University Montgomery, AL, USA
| |
Collapse
|
43
|
Dao L, Grigoryeva T, Laikov A, Devjatijarov R, Ilinskaya O. Full-scale bioreactor pretreatment of highly toxic wastewater from styrene and propylene oxide production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:195-202. [PMID: 25086231 DOI: 10.1016/j.ecoenv.2014.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
The wastewater originating from simultaneous production of styrene and propylene oxide (SPO) is classified as highly polluted with chemical oxygen demand level in the range 5965 to 9137mgL(-1)-as well as highly toxic. The dilution factor providing for a 10 percent toxic effect of wastewater samples in a test with Paramecium caudatum was 8.0-9.5. Biological approach for pretreatment and detoxification of the wastewater under full-scale bioreactor conditions was investigated. The number of suspended microorganisms and the clean up efficiency were increased up to 5.5-6.58×10(8)CFUmL(-1) and 88 percent, respectively during the bioreactor's operation. Isolates in the Citrobacter, Burkholderia, Pseudomonas, and Paracoccus genera were dominant in the mature suspended, as well as the immobilized microbial community of the bioreactor. The most dominant representatives were tested for their ability to biodegrade the major components of the SPO wastewater and evidence of their role in the treatment process was demonstrated. The investigated pretreatment process allowed the wastewater to be detoxified for conventional treatment with activated sludge and was closely related to the maturation of the bioreactor's microbial community.
Collapse
Affiliation(s)
- Linh Dao
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation.
| | - Tatiana Grigoryeva
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| | - Alexander Laikov
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| | - Ruslan Devjatijarov
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| | - Olga Ilinskaya
- Department of Microbiology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation
| |
Collapse
|
44
|
Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol 2014; 98:8457-68. [DOI: 10.1007/s00253-014-6000-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
45
|
|
46
|
de Faria AF, de Moraes ACM, Alves OL. Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Jeong E, Im WT, Kim DH, Kim MS, Kang S, Shin HS, Chae SR. Different susceptibilities of bacterial community to silver nanoparticles in wastewater treatment systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:685-693. [PMID: 24521414 DOI: 10.1080/10934529.2014.865454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The release of silver (Ag) nanoparticles (NPs) into sewage streams has heightened concerns about potential adverse impacts on wastewater treatment processes. Here, we show that the rate constants of both biological nitrification and organic oxidation decreased exponentially with an increase in the Ag NP concentration, but nitrification was more severely inhibited than the organic oxidation even at low Ag NP concentrations (<1 mg Ag L(-1)) in batch experiments. The long-term exposure effects of Ag NPs on activated sludge bacteria were evaluated in sequencing batch reactors (SBRs) fed with two different substrates favoring heterotrophic and autotrophic bacteria. From a continuous operation for 50 days, it was found that heterotrophic bacteria in the organic removal process have higher tolerance to Ag NPs than do nitrifying bacteria. The effects of Ag NPs on the microbial community in both SBRs were analyzed using 16S ribosomal ribonucleic acid (rRNA) gene sequences obtained from pyrosequencing. The results showed that the level of microbial susceptibility is different for each type of microorganism and that the microbial diversity decreased dramatically after continuous exposure to Ag NPs for 50 days, resulting in a decrease of wastewater treatment efficiency.
Collapse
Affiliation(s)
- Emma Jeong
- a Center for Water Resource Cycle Research, Korea Institute of Science and Technology (KIST) , Seongbuk-gu , Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Gitipour A, El Badawy A, Arambewela M, Miller B, Scheckel K, Elk M, Ryu H, Gomez-Alvarez V, Santo Domingo J, Thiel S, Tolaymat T. The impact of silver nanoparticles on the composting of municipal solid waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14385-14393. [PMID: 24143996 DOI: 10.1021/es402510a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The study evaluates the impact of polyvinylpyrrolidone (PVP) coated silver nanoparticles (PVP-AgNPs) on the composting of municipal solid waste. The results suggest that there was no statistically significant difference in the leachate, gas, and solid quality parameters and overall composting performance between the treatments containing the AgNPs, Ag(+), and negative control. Nonetheless, taxonomical analyses of 25 Illumina 16S rDNA barcoded libraries containing 2 393 504 sequences indicated that the bacterial communities in composted samples were highly diverse and primarily dominated by Clostridia (48.5%), Bacilli (27.9%), and beta-Proteobacteria (13.4%). Bacterial diversity studies showed that the overall bacterial community structure in the composters changed in response to the Ag-based treatments. However, the data suggest that functional performance was not significantly affected due to potential bacterial functional redundancy within the compost samples. The data also indicate that while the surface transformation of AgNPs to AgCl and Ag2S can reduce the toxicity, complexation with organic matter may also play a major role. The results of this study further suggest that at relatively low concentrations, the organically rich waste management systems' functionality may not be influenced by the presence of AgNPs.
Collapse
Affiliation(s)
- Alireza Gitipour
- School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati , Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|