1
|
Parameswari E, Paulsebastian S, Kalaiselvi P, Ilakiya T, Davamani V, Suganya K, Karchiyappan T, Bharani A. Sustainable management of mixed soil contaminants through integrated biosystems: Efficacy of biochar and humic acid amendments in marigold phytoremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:494. [PMID: 40164848 DOI: 10.1007/s10661-025-13914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
A study investigated the fate and transport of mixed contaminants-chromium (Cr), cadmium (Cd), and perfluorooctanoic acid (PFOA)-in soil using an integrated biosystem. Known concentrations of contaminants and organic amendments (biochar and humic acid) were introduced into unpolluted soil to assess degradability, mobility, bioavailability, and phytoremediation potential using marigold plants. Contaminants reduced plant physiological traits, including photosynthetic rate (33%), stomatal conductance (58%), and transpiration rate (74%) compared to control plants. Root traits and the effectiveness of biochar and humic acid were evaluated using "GiA Roots" software. Root architecture varied significantly due to contamination, with seven traits analyzed through principal component analysis (PCA). PC1 accounted for 79% variance, highlighting amendment effects, while PC2 (21%) grouped mixed contaminant treatments, indicating that biochar and humic acid enhanced root growth in contaminated soil. Additionally, untreated contaminated soil produced the root growth inhibitor 2-methyl cortisol, identified via GC/MS analysis. Scanning electron microscope analysis showed that roots in control soil had well-defined stele structures, whereas contaminated soil led to severe structural collapse. Post-harvest soil analysis revealed that humic acid treatments reduced Cr, Cd, and PFOA by 48.5%, 40.1%, and 88%, respectively, while biochar treatments achieved reductions of 68.3%, 52.7%, and 92%. These results highlight the effectiveness of biochar and humic acid in reducing contamination through sorptive properties and chemical binding. Applying biochar at 5 t ha⁻1 or humic acid at 20 kg ha⁻1, combined with phytoremediation, effectively mitigated soil toxicity, improving crop productivity by lowering contaminant levels.
Collapse
Affiliation(s)
- Ettiyagounder Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Selvaraj Paulsebastian
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Periyasamy Kalaiselvi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Veeraswamy Davamani
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kathirvel Suganya
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Alagirisamy Bharani
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
2
|
Campbell G, Tscharke BJ, Prasad P, Knight ER, Reeks T, Jackson A, Thomas KV, Mueller JF, Kaserzon SL. Occurrence and fate of glyphosate and AMPA in wastewater treatment plants in Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178964. [PMID: 40022983 DOI: 10.1016/j.scitotenv.2025.178964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Glyphosate is the most used herbicide globally, but little is known of its prevalence in the Australian environment or its behaviour during wastewater treatment. This study examined the concentration of glyphosate and its primary biodegradation product, aminomethylphosphonic acid (AMPA), in influent and effluent from 22 Australian wastewater treatment plants (WWTPs) to inform exposure risks. Glyphosate was detected in all 22 WWTP influent samples, with concentrations ranging from 0.37 to 370 μg/L (mean: 22 ± 76 μg/L). In treated effluent, glyphosate was found in 82 % of samples with concentrations ranging from
Collapse
Affiliation(s)
- Garth Campbell
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Ben J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Pritesh Prasad
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Emma R Knight
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Tim Reeks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Aiko Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
3
|
Yang W, Wang F, Que Q, Fang C, Ao F, Xu Z, Chu W. Urban stormwater discharge contributes more micropollutants to surface water in humid regions of China: Comparison with treated wastewater. WATER RESEARCH 2025; 268:122712. [PMID: 39500004 DOI: 10.1016/j.watres.2024.122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/27/2025]
Abstract
Micropollutants have raised increasing concern due to their adverse effect on ecosystems and human health. So far, the effects of micropollutants in urban stormwater discharge on surface water quality or ecosystem health remains unclear. In this study, target and non-target screening methods were used to quantify and identify micropollutants in urban stormwater, wastewater, and surface water in humid regions of China. Results showed that the average concentration of micropollutants in surface waters in wet weather was 1.8 times that in dry weather. The cumulative concentrations of 143 micropollutants in samples from stormwater discharge were in the range of 490-1659 ng/L, which were comparable to or exceeded those from wastewater discharge. In terms of mass load in the studying area, stormwater discharges contained 10.8 kg of micropollutants in the month, a higher level compared to 4.58 kg in treated wastewater. Furthermore, the calculated risk quotients revealed medium to high ecological risk to aquatic organisms from substances such as telmisartan, irbesartan, 1,7-dimethylxanthine, and caffeine at ng/L concentrations, which are in typical levels in urban stormwater and surface waters in wet weathers. Our study reveals that urban stormwater discharge is an important pathway for micropollutants to surface waters, and urges for increased emphasis on, and reinforcement of, urban stormwater monitoring and control measures to minimize the transport of micropollutants to receiving waterbodies.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qidong Que
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Feiyang Ao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Itarte M, Forés E, Martínez-Puchol S, Scheiber L, Vázquez-Suñé E, Bofill-Mas S, Rusiñol M. Exploring viral contamination in urban groundwater and runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174238. [PMID: 38925381 DOI: 10.1016/j.scitotenv.2024.174238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The reliance of the global population on urban aquifers is steadily increasing, and urban aquifers are susceptible to pathogenic contamination through sources such as sewer leakage or urban runoff. However, there is insufficient monitoring of groundwater quality in urban areas. In this study, quantitative polymerase chain reaction (qPCR) was employed to evaluate the presence of human fecal viral indicators and viral pathogens in urban wastewater (n = 13) and groundwater (n = 12) samples from four locations in Barcelona with different degrees of urbanization, as well as in runoff samples (n = 2). Additionally, a target enrichment sequencing (TES) approach was utilized to explore the viral diversity within groundwater and runoff samples, offering insights into viral contamination and potential virus transmission routes in urban areas. Human adenovirus (HAdV) was identified in all wastewater samples, 67 % (8/12) of groundwater samples, and one runoff sample by qPCR indicating human viral fecal contamination. The viral pathogen Norovirus genogroup GI (NoV GI) was detected in wastewater and two winter groundwater samples from highly and medium urbanized areas. NoV genogroup GII (NoV GII), Enterovirus (EV) and SARS-CoV-2 were exclusively detected in wastewater. Human and other vertebrate viruses were detected in groundwater and runoff samples using TES. This study gives insights about the virome present in urban water sources, emphasizing the need for thorough monitoring and deeper understanding to address emerging public health concerns.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain.
| | - Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Vicerectorat de Recerca, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Laura Scheiber
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
| | - Enric Vázquez-Suñé
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| |
Collapse
|
5
|
Friedman SD, Cooper E, Blackwell A, Elliott MA, Weinstein M, Cara J, Wan Y. A multi-tiered approach to assess fecal pollution in an urban watershed: Bacterial and viral indicators and sediment microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174141. [PMID: 38901597 PMCID: PMC11247622 DOI: 10.1016/j.scitotenv.2024.174141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Development of effective pollution mitigation strategies require an understanding of the pollution sources and factors influencing fecal pollution loading. Fecal contamination of Turkey Creek in Gulfport, Mississippi, one of the nation's most endangered creeks, was studied through a multi-tiered approach. Over a period of approximately two years, four stations across the watershed were analyzed for nutrients, enumeration of E. coli, male-specific coliphages and bioinformatic analysis of sediment microbial communities. The results demonstrated that two stations, one adjacent to a lift station and one just upstream from the wastewater-treatment plant, were the most impacted. The station adjacent to land containing a few livestock was the least impaired. While genotyping of male-specific coliphage viruses generally revealed a mixed viral signature (human and other animals), fecal contamination at the station near the wastewater treatment plant exhibited predominant impact by municipal sewage. Fecal indicator loadings were positively associated with antecedent rainfall for three of four stations. No associations were noted between fecal indicator loadings and any of the nutrients. Taxonomic signatures of creek sediment were unique to each sample station, but the sediment microbial community did overlap somewhat following major rain events. No presence of Escherichia coli (E. coli) or enterococci were found in the sediment. At some of the stations it was evident that rainfall was not always the primary driver of fecal transport. Repeated monitoring and analysis of a variety of parameters presented in this study determined that point and non-point sources of fecal pollution varied spatially in association with treated and/or untreated sewage.
Collapse
Affiliation(s)
- Stephanie D Friedman
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Breeze, FL, USA.
| | - Emilie Cooper
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Breeze, FL, USA
| | - Aaron Blackwell
- Department of Civil Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Mark A Elliott
- Department of Civil Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
| | | | - Jared Cara
- Zymo Research Corporation, Irvine, CA, USA
| | - Yongshan Wan
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Breeze, FL, USA
| |
Collapse
|
6
|
Carson LR, Goodman C, van Duin B, Neumann NF. Application of a microbial and pathogen source tracking toolbox to identify infrastructure problems in stormwater drainage networks: a case study. Microbiol Spectr 2024; 12:e0033724. [PMID: 39109868 PMCID: PMC11371268 DOI: 10.1128/spectrum.00337-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Water scarcity and increasing urbanization are forcing municipalities to consider alternative water sources, such as stormwater, to fill in water supply gaps or address hydromodification of receiving urban streams. Mounting evidence suggests that stormwater is often contaminated with human feces, even in stormwater drainage systems separate from sanitary sewers. Pinpointing sources of human contamination in drainage networks is challenging given the diverse sources of fecal pollution that can impact these systems and the non-specificity of traditional fecal indicator bacteria (FIB) for identifying these host sources. As such, we used a toolbox approach that encompassed microbial source tracking (MST), FIB monitoring, and bacterial pathogen monitoring to investigate microbial contamination of stormwater in an urban municipality. We demonstrate that human sewage frequently contaminated stormwater (in >50% of routine samples), based on the presence of the human fecal marker HF183, and often exceeded microbial water quality criteria. Arcobacter butzleri, a pathogen of emerging concern, was also detected in >50% of routine samples, with 75% of these pathogen-positive samples also being positive for the human fecal marker HF183, suggesting human municipal sewage as the likely source for this pathogen. MST and FIB were used to track human fecal pollution in the drainage network to the most likely point source of contamination, for which a sewage cross-connection was identified and confirmed using tracer dyes. These results point to the ubiquitous presence of human sewage in stormwater and also provide municipalities with the tools to identify sources of anthropogenic contamination in storm drainage networks.IMPORTANCEWater scarcity, increased urbanization, and population growth are driving municipalities worldwide to consider stormwater as an alternative water source in urban environments. However, many studies suggest that stormwater is relatively poor in terms of microbial water quality, is frequently contaminated with human sewage, and therefore could represent a potential health risk depending on the type of exposure (e.g., irrigation of community gardens). Traditional monitoring of water quality based on fecal bacteria does not provide any information about the sources of fecal pollution contaminating stormwater (i.e., animals/human feces). Herein, we present a case study that uses fecal bacterial monitoring, microbial source tracking, and bacterial pathogen analysis to identify a cross-connection that contributed to human fecal intrusion into an urban stormwater network. This microbial toolbox approach can be useful for municipalities in identifying infrastructure problems in stormwater drainage networks to reduce risks associated with water reuse.
Collapse
Affiliation(s)
- Liam R. Carson
- School of Public
Health, University of Alberta,
Edmonton, Alberta,
Canada
| | - Clint Goodman
- Community
Infrastructure, City of Airdrie,
Airdrie, Alberta,
Canada
| | - Bert van Duin
- City & Regional
Planning, City of Calgary,
Calgary, Alberta,
Canada
| | - Norman F. Neumann
- School of Public
Health, University of Alberta,
Edmonton, Alberta,
Canada
| |
Collapse
|
7
|
Bouchali R, Mandon C, Danty-Berger E, Géloën A, Marjolet L, Youenou B, Pozzi ACM, Vareilles S, Galia W, Kouyi GL, Toussaint JY, Cournoyer B. Runoff microbiome quality assessment of a city center rainwater harvesting zone shows a differentiation of pathogen loads according to human mobility patterns. Int J Hyg Environ Health 2024; 260:114391. [PMID: 38781750 DOI: 10.1016/j.ijheh.2024.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The hygienic quality of urban surfaces can be impaired by multiple sources of microbiological contaminants. These surfaces can trigger the development of multiple bacterial taxa and favor their spread during rain events through the circulation of runoff waters. These runoff waters are commonly directed toward sewer networks, stormwater infiltration systems or detention tanks prior a release into natural water ways. With water scarcity becoming a major worldwide issue, these runoffs are representing an alternative supply for some usage like street cleaning and plant watering. Microbiological hazards associated with these urban runoffs, and surveillance guidelines must be defined to favor these uses. Runoff microbiological quality from a recently implemented city center rainwater harvesting zone was evaluated through classical fecal indicator bacteria (FIB) assays, quantitative PCR and DNA meta-barcoding analyses. The incidence of socio-urbanistic patterns on the organization of these urban microbiomes were investigated. FIB and DNA from Human-specific Bacteroidales and pathogens such as Staphylococcus aureus were detected from most runoffs and showed broad distribution patterns. 16S rRNA DNA meta-barcoding profilings further identified core recurrent taxa of health concerns like Acinetobacter, Mycobacterium, Aeromonas and Pseudomonas, and divided these communities according to two main groups of socio-urbanistic patterns. One of these was highly impacted by heavy traffic, and showed recurrent correlation networks involving bacterial hydrocarbon degraders harboring significant virulence properties. The tpm-based meta-barcoding approach identified some of these taxa at the species level for more than 30 genera. Among these, recurrent pathogens were recorded such as P. aeruginosa, P. paraeruginosa, and Aeromonas caviae. P. aeruginosa and A. caviae tpm reads were found evenly distributed over the study site but those of P. paraeruginosa were higher among sub-catchments impacted by heavy traffic. Health risks associated with these runoff P. paraeruginosa emerging pathogens were high and associated with strong cytotoxicity on A549 lung cells. Recurrent detections of pathogens in runoff waters highlight the need of a microbiological surveillance prior allowing their use. Good microbiological quality can be obtained for certain typologies of sub-catchments with good hygienic practices but not all. A reorganization of Human mobility and behaviors would likely trigger changes in these bacterial diversity patterns and reduce the occurrences of the most hazardous groups.
Collapse
Affiliation(s)
- Rayan Bouchali
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Claire Mandon
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Emmanuelle Danty-Berger
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Alain Géloën
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Laurence Marjolet
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Benjamin Youenou
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Adrien C M Pozzi
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | - Sophie Vareilles
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Wessam Galia
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France
| | | | - Jean-Yves Toussaint
- Université de Lyon, INSA Lyon, UMR Environnement, Ville, Société, CNRS 5600, 18 rue Chevreul, 69362, Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UMR Ecologie Microbienne / Microbial Ecology (LEM), CNRS 5557, INRAE 1418, 69280, Marcy L'Etoile, France.
| |
Collapse
|
8
|
Nie W, Che Q, Chen D, Cao H, Deng Y. Comparative Study for Propranolol Adsorption on the Biochars from Different Agricultural Solid Wastes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2793. [PMID: 38930162 PMCID: PMC11204899 DOI: 10.3390/ma17122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Currently, large amounts of agricultural solid wastes have caused serious environmental problems. Agricultural solid waste is made into biochar by pyrolysis, which is an effective means of its disposal. As the prepared biochar has a good adsorption capacity, it is often used to treat pollutants in water, such as heavy metals and pharmaceuticals. PRO is an emerging contaminant in the environment today. However, there are limited studies on the interaction between biochars with PRO. Thus, in this study, we investigate the adsorption of PRO onto the biochars derived from three different feedstocks. The order of adsorption capacity was corn stalk biochar (CS, 10.97 mg/g) > apple wood biochar (AW, 10.09 mg/g) > rice husk biochar (RH, 8.78 mg/g). When 2 < pH < 9, the adsorption capacity of all the biochars increased as the pH increased, while the adsorption decreased when pH > 9, 10 and 10.33 for AW, CS and RH, respectively. The adsorption of PRO on biochars was reduced with increasing Na+ and Ca2+ concentrations from 0 to 200 mg·L-1. The effects of pH and coexisting ions illustrated that there exist electrostatic interaction and cation exchange in the process. In addition, when HA concentration was less than 20 mg/L, it promoted the adsorption of PRO on the biochars; however, when the concentration was more than 20 mg/L, its promoting effect was weakened and gradually changed into an inhibitory effect. The adsorption isotherm data of PRO by biochars were best fitted with the Freundlich model, indicating that the adsorption process is heterogeneous adsorption. The adsorption kinetics were fitted well with the pseudo-second-order model. All the results can provide new information into the adsorption behavior of PRO and the biochars in the aquatic environment and a theoretical basis for the large-scale application of biochar from agricultural solid wastes.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| | - Qianqian Che
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Danni Chen
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Hongyu Cao
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
| | - Yuehua Deng
- College of Geology and Environment, Xi’an University of Science and Technology, 58 Yanta Road, Xi’an 710054, China; (W.N.); (Q.C.); (D.C.); (H.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
| |
Collapse
|
9
|
Hynes JM, Beattie RE, Blackwood AD, Clerkin T, Gallard-Góngora J, Noble RT. Using a combination of quantitative culture, molecular, and infrastructure data to rank potential sources of fecal contamination in Town Creek Estuary, North Carolina. PLoS One 2024; 19:e0299254. [PMID: 38640136 PMCID: PMC11029655 DOI: 10.1371/journal.pone.0299254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 04/21/2024] Open
Abstract
Estuarine water quality is declining worldwide due to increased tourism, coastal development, and a changing climate. Although well-established methods are in place to monitor water quality, municipalities struggle to use the data to prioritize infrastructure for monitoring and repair and to determine sources of contamination when they occur. The objective of this study was to assess water quality and prioritize sources of contamination within Town Creek Estuary (TCE), Beaufort, North Carolina, by combining culture, molecular, and geographic information systems (GIS) data into a novel contamination source ranking system. Water samples were collected from TCE at ten locations on eight sampling dates in Fall 2021 (n = 80). Microbiological water quality was assessed using US Environmental Protection Agency (U.S. EPA) approved culture-based methods for fecal indicator bacteria (FIB), including analysis of total coliforms (TC), Escherichia coli (EC), and Enterococcus spp. (ENT). The quantitative microbial source tracking (qMST) human-associated fecal marker, HF183, was quantified using droplet digital PCR (ddPCR). This information was combined with environmental data and GIS information detailing proximal sewer, septic, and stormwater infrastructure to determine potential sources of fecal contamination in the estuary. Results indicated FIB concentrations were significantly and positively correlated with precipitation and increased throughout the estuary following rainfall events (p < 0.01). Sampling sites with FIB concentrations above the U.S. EPA threshold also had the highest percentages of aged, less durable piping materials. Using a novel ranking system combining concentrations of FIB, HF183, and sewer infrastructure data at each site, we found that the two sites nearest the most aged sewage infrastructure and stormwater outflows were found to have the highest levels of measurable fecal contamination. This case study supports the inclusion of both traditional water quality measurements and local infrastructure data to support the current need for municipalities to identify, prioritize, and remediate failing infrastructure.
Collapse
Affiliation(s)
- Jenna M. Hynes
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Rachelle E. Beattie
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - A. Denene Blackwood
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Thomas Clerkin
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Javier Gallard-Góngora
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| | - Rachel T. Noble
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States of America
| |
Collapse
|
10
|
Kang D, Yun D, Cho KH, Baek SS, Jeon J. Profiling emerging micropollutants in urban stormwater runoff using suspect and non-target screening via high-resolution mass spectrometry. CHEMOSPHERE 2024; 352:141402. [PMID: 38346509 DOI: 10.1016/j.chemosphere.2024.141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Urban surface runoff contains chemicals that can negatively affect water quality. Urban runoff studies have determined the transport dynamics of many legacy pollutants. However, less attention has been paid to determining the first-flush effects (FFE) of emerging micropollutants using suspect and non-target screening (SNTS). Therefore, this study employed suspect and non-target analyses using liquid chromatography-high resolution mass spectrometry to detect emerging pollutants in urban receiving waters during stormwater events. Time-interval sampling was used to determine occurrence trends during stormwater events. Suspect screening tentatively identified 65 substances, then, their occurrence trend was grouped using correlation analysis. Non-target peaks were prioritized through hierarchical cluster analysis, focusing on the first flush-concentrated peaks. This approach revealed 38 substances using in silico identification. Simultaneously, substances identified through homologous series observation were evaluated for their observed trends in individual events using network analysis. The results of SNTS were normalized through internal standards to assess the FFE, and the most of tentatively identified substances showed observed FFE. Our findings suggested that diverse pollutants that could not be covered by target screening alone entered urban water through stormwater runoff during the first flush. This study showcases the applicability of the SNTS in evaluating the FFE of urban pollutants, offering insights for first-flush stormwater monitoring and management.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Daeun Yun
- Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, South Korea
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea.
| |
Collapse
|
11
|
Liu Z, Yuan J, Lin Y, Lin F, Liu B, Yin Q, He K, Zhao X, Lu H. Integrating fecal pollution markers and fluorescence analysis for water quality assessment of urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168492. [PMID: 37967636 DOI: 10.1016/j.scitotenv.2023.168492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Human fecal contamination in urban rivers poses significant health risks, but their potential connections with other substances like dissolved organic matter (DOM) remain underexplored. In this study, five fecal pollution markers related to fecal Bacteroides or human fecal contamination (AllBac, HF183, BacH, Hum2, and Hum163) and DOM along an urban river were analyzed using quantitative polymerase chain reaction (qPCR) and three-dimensional excitation-emission (3D EEM) fluorescence spectrometry. All five markers were detected with average absolute abundance ranging from 2.51 to 6.28 lg gene copies/100 mL, showing a progressive increase along the river (R2 = 0.29-0.92, p < 0.05). Parallel factor analysis identified three dominant DOM components (humic acid-like, fulvic acid-like, and protein-like), with strong positive correlations between protein-like components and all fecal markers (R2 = 0.59-0.66, p < 0.001). Both fecal and DOM distributions consistently showed significant differences between upstream and downstream areas (p < 0.001), suggesting their complementary assessment. While DOM was more sensitive to environmental variables such as rainfall, rubber dam, and tidal dynamic, the combination of fecal pollution markers and 3D EEM analysis allowed a more comprehensive assessment of contamination levels, mitigating potential biases caused by the influence of multiple factors on a single method. Furthermore, due to the strong correlation between protein-like and fecal markers in the DOM, 3D EEM can be used as a pre-detection means for qPCR detection, reducing testing time and costs.
Collapse
Affiliation(s)
- Zejun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Zhuhai 519082, China
| | - Jinlong Yuan
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Zhuhai 519082, China
| | - Yingying Lin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China
| | - Feng Lin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China
| | - Bingjun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Kai He
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Water Security Guarantee in Guangdong-Hong Kong-Marco Greater Bay Area of Ministry of Water Resources, Zhuhai 519082, China.
| | - Xinfeng Zhao
- Zhuhai Ecological Environment Monitoring Station of Guangdong Province, Zhuhai 519070, China
| | - Haoxian Lu
- Marine Biological Resources Bank, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
12
|
Suresh G, Srivastava S. A concise review on genes involved in biofilm-related disease and differential gene expression in medical-related biofilms. MICROBIAL BIOFILMS 2024:215-235. [DOI: 10.1016/b978-0-443-19252-4.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Nahusenay H, Tola A, Sisay Tessema T, Vipham J, Woldegiorgis AZ. Seasonal Comparison of Microbial Hygiene Indicators in Raw and Pasteurized Milk and Cottage Cheese Collected across Dairy Value Chain in Three Regions of Ethiopia. Foods 2023; 12:4377. [PMID: 38137180 PMCID: PMC10743099 DOI: 10.3390/foods12244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
A longitudinal design with a simple random sampling method was used to collect and compare microbial hygiene levels between the dry season (January to April) and wet season (June to August). A total of 456 milk and cottage cheese samples were collected from each site along the dairy value chain from three regions. Enumeration of total aerobic mesophilic bacteria (APC), total coliforms (TCC), and Escherichia coli (EC) was performed according to standard methods. Independent t-tests were employed to assess the significant variation at (p < 0.05) between the two seasons. The cumulative result of APC of 7.61 log cfu/mL and g and TCC of 3.50 log cfu/mL in the dry season were significantly higher than the wet season of 7.15 log cfu/mL and 2.49 log cfu/mL, respectively, whereas generic E. coli count (EC) was significantly higher in the wet season (0.70 log cfu/mL and g) than that in the dry season (0.40 log cfu/mL and g). The results of hygienic indicator microbial load significantly varied with season. Hence, hygienic milk production and handling practices that comprehend seasonal influence should be implemented to improve the safety of milk.
Collapse
Affiliation(s)
- Henok Nahusenay
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, New Graduate Building, Addis Ababa P.O. Box 1176, Ethiopia;
- Food Science and Nutrition Research Directorate, Ethiopian Institute of Agricultural Research, Addis Ababa P.O. Box 036, Ethiopia
| | - Alganesh Tola
- Holeta Agricultural Centre, Ethiopian Institute of Agricultural Research, Holeta P.O. Box 036, Ethiopia;
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, New Graduate Building, Addis Ababa University, New Graduate Building, Addis Ababa P.O. Box 1176, Ethiopia;
| | - Jessie Vipham
- Department of Animal Science and Industry, Kansas State University, 247 Weber Hall, Manhattan, KS 66506, USA;
| | - Ashagrie Zewdu Woldegiorgis
- Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, New Graduate Building, Addis Ababa P.O. Box 1176, Ethiopia;
| |
Collapse
|
14
|
Flores ME, Jafarzadeh A, Moghadam SV, Vadde KK, Dhar DA, Nunu RR, Kapoor V. Occurrence and removal of fecal bacteria and microbial source tracking markers in a stormwater detention basin overlying the Edwards Aquifer recharge zone in Texas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103836-103850. [PMID: 37691063 DOI: 10.1007/s11356-023-29636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
The Edwards Aquifer is the primary water resource for over 2 million people in Texas and faces challenges including fecal contamination of water recharging the aquifer, while effectiveness of best management practices (BMPs) such as detention basins in mitigating fecal pollution remains poorly understood. For this study, the inlet and outlet of a detention basin overlying the aquifer's recharge zone were sampled following storm events using automated samplers. Microbial source tracking and culture-based methods were used to determine the occurrence and removal of fecal genetic markers and fecal coliform bacteria in collected water samples. Markers included E. coli (EC23S857), Enterococcus (Entero1), human (HF183), canine (BacCan), and bird (GFD). Fecal coliforms, EC23S857, and Entero1 were detected following each storm event. GFD was the most frequent host-associated marker detected (91% of samples), followed by BacCan (46%), and HF183 (17%). Wilcoxon signed rank tests indicated significantly lower outlet concentrations for fecal coliforms, EC23S857, and Entero1, but not for HF183, GFD, and BacCan. Higher GFD and BacCan outlet concentrations may be due to factors independent of basin design, such as the non-point source nature of bird fecal contamination and domestic dog care practices in neighborhoods contributing to the basin. Mann-Whitney tests showed marker concentrations were not significantly higher during instances of fecal coliform water quality criterion exceedance, except for E. coli, and that fecal coliform concentrations were not significantly different based on marker detection. Overall, results suggest that the detention basin is effective in attenuating fecal contamination associated with fecal coliforms and the general markers, but not for host-associated markers. Consequently, management efforts should focus on mitigating dog and bird-associated fecal pollution in the study region.
Collapse
Affiliation(s)
- Mauricio Eduardo Flores
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
- Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX, 78238, USA
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Sina Vedadi Moghadam
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Dipti Anik Dhar
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Rebecca R Nunu
- Southwest Research Institute, 6220 Culebra Rd, San Antonio, TX, 78238, USA
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and Construction Management, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
15
|
Soffritti I, D’Accolti M, Bini F, Mazziga E, Volta A, Bisi M, Rossi S, Viroli F, Balzani M, Petitta M, Mazzacane S, Caselli E. Characterization of the Pathogenic Potential of the Beach Sand Microbiome and Assessment of Quicklime as a Remediation Tool. Microorganisms 2023; 11:2031. [PMID: 37630591 PMCID: PMC10460030 DOI: 10.3390/microorganisms11082031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Beach sand may act as a reservoir for potential human pathogens, posing a public health risk. Despite this, the microbiological monitoring of sand microbiome is rarely performed to determine beach quality. In this study, the sand microbial population of a Northern Adriatic Sea beach sand was profiled by microbiological (CFU counts) and molecular methods (WGS, microarray), showing significant presence of potential human pathogens including drug-resistant strains. Consistent with these results, the potential of quicklime as a restoring method was tested in vitro and on-field. Collected data showed that adding 1-3% quicklime (w/w) to sand provided an up to -99% of bacteria, fungi, and viruses, in a dose- and time-dependent manner, till 45 days post-treatment. In conclusion, data suggest that accurate monitoring of sand microbiome may be essential, besides water, to assess beach quality and safety. Moreover, first evidences of quicklime potential for sand decontamination are provided, suggesting its usage as a possible way to restore the microbiological quality of sand in highly contaminated areas.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| | - Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| | - Antonella Volta
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| | - Matteo Bisi
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| | - Silvia Rossi
- Building and Construction Cluster of the Emilia Romagna Region, 40129 Bologna, Italy;
| | - Francesco Viroli
- TekneHub, Department of Architecture, University of Ferrara, 44121 Ferrara, Italy; (F.V.); (M.B.)
| | - Marcello Balzani
- TekneHub, Department of Architecture, University of Ferrara, 44121 Ferrara, Italy; (F.V.); (M.B.)
| | - Marco Petitta
- Department of Earth Sciences, University “La Sapienza”, 00185 Rome, Italy;
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy; (A.V.); (M.B.); (S.M.)
| |
Collapse
|
16
|
Bertrand L, Iturburu FG, Valdés ME, Menone ML, Amé MV. Risk evaluation and prioritization of contaminants of emerging concern and other organic micropollutants in two river basins of central Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163029. [PMID: 36990232 DOI: 10.1016/j.scitotenv.2023.163029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
A research gap exists in baseline concentrations of organic micropollutants in South American rivers. Identification of areas with different degrees of contamination and risk to the inhabitant biota is needed to improve management of freshwater resources. Here we inform the incidence and ecological risk assessment (ERA) of current used pesticides (CUPs), pharmaceutical and personal care products (PPCPs) and cyanotoxins (CTX) measured in two river basins from central Argentina (South America). Risk Quotients approach was used for ERA differentiating wet and dry seasons. High risk was associated to CUPs in both basins (45 % and 30 % of sites from Suquía and Ctalamochita rivers, respectively), mostly in the basins extremes. Main contributors to risk in water were insecticides and herbicides in Suquía river and insecticides and fungicides in Ctalamochita river. In Suquía river sediments, a very high risk was observed in the lower basin, mainly from AMPA contribution. Additionally, 36 % of the sites showed very high risk of PCPPs in Suquía river water, with the highest risk downstream the wastewater treatment plant of Córdoba city. Main contribution was from a psychiatric drug and analgesics. In sediments medium risk was observed at the same places with antibiotics and psychiatrics as main contributors. Few data of PPCPs are available in the Ctalamochita river. The risk in water was low, with one site (downstream Santa Rosa de Calamuchita town) presenting moderated risk caused by an antibiotic. CTX represented in general medium risk in San Roque reservoir, with San Antonio river mouth and the dam exit showing high risk during the wet season. The main contributor was microcystin-LR. Priority chemicals for monitoring or further management include two CUPs, two PPCPs, and one CTX, demonstrating a significant input of pollutants to water ecosystems from different sources and the need to include organic micropollutants in current and future monitoring.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Eugenia Valdés
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET) and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Juan Filloy s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
17
|
Karanth S, Patel J, Shirmohammadi A, Pradhan AK. Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends. Curr Res Food Sci 2023; 6:100525. [PMID: 37377491 PMCID: PMC10290999 DOI: 10.1016/j.crfs.2023.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown a correlation between outbreaks of Salmonella enterica and meteorological trends, especially related to temperature and precipitation. Additionally, current studies based on outbreaks are performed on data for the species Salmonella enterica, without considering its intra-species and genetic heterogeneity. In this study, we analyzed the effect of differential gene expression and a suite of meteorological factors on salmonellosis outbreak scale (typified by case numbers) using a combination of machine learning and count-based modeling methods. Elastic Net regularization model was used to identify significant genes from a Salmonella pan-genome, and a multi-variable Poisson regression developed to fit the individual and mixed effects data. The best-fit Elastic Net model (α = 0.50; λ = 2.18) identified 53 significant gene features. The final multi-variable Poisson regression model (χ2 = 5748.22; pseudo R2 = 0.669; probability > χ2 = 0) identified 127 significant predictor terms (p < 0.10), comprising 45 gene-only predictors, average temperature, average precipitation, and average snowfall, and 79 gene-meteorological interaction terms. The significant genes ranged in functionality from cellular signaling and transport, virulence, metabolism, and stress response, and included gene variables not considered as significant by the baseline model. This study presents a holistic approach towards evaluating multiple data sources (such as genomic and environmental data) to predict outbreak scale, which could help in revising the estimates for human health risk.
Collapse
Affiliation(s)
- Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Jitendra Patel
- Environmental Microbial & Food Safety Lab, USDA-ARS, Beltsville, MD, 20705, USA
| | - Adel Shirmohammadi
- Environmental Science & Technology, University of Maryland, College Park, MD, 20742, USA
| | - Abani K. Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
18
|
Yun D, Kang D, Cho KH, Baek SS, Jeon J. Characterization of micropollutants in urban stormwater using high-resolution monitoring and machine learning. WATER RESEARCH 2023; 235:119865. [PMID: 36934536 DOI: 10.1016/j.watres.2023.119865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Urban rainfall events can lead to the runoff of pollutants, including industrial, pesticide, and pharmaceutical chemicals. Transporting micropollutants (MPs) into water systems can harm both human health and aquatic species. Therefore, it is necessary to investigate the dynamics of MPs during rainfall events. However, few studies have examined MPs during rainfall events due to the high analytical expenses and extensive spatiotemporal variability. Few studies have investigated the occurrence patterns of MPs and factors that influence their transport, such as rainfall duration, antecedent dry periods, and variations in streamflow. Moreover, while there have been many analyses of nutrients, suspended solids, and heavy metals during the first flush effect (FFE), studies on the transport of MPs during FFE are insufficient. This study aimed to identify the dynamics of MPs and FFE in an urban catchment, using high-resolution monitoring and machine learning methods. Hierarchical clustering analysis and partial least squares regression (PLSR) were implemented to estimate the similarity between each MP and identify the factors influencing their transport during rainfall events. Eleven dominant MPs comprised 75% of the total MP concentration and had a 100% detection frequency. During rainfall events, pesticides and pharmaceutical MPs showed a higher FFE than industrial MPs. Moreover, the initial 30% of the runoff volume contained 78.0% of pesticide and 50.1% of pharmaceutical substances for events W1 (July 5 to July 6, 2021) and W6 (August 31 to September 1, 2021), respectively. The PLSR model suggested that stormflow (m3/s) and the duration of antecedent dry hours (h) significantly influenced MP dynamics, yielding the variable importance on projection scores greater than 1.0. Hence, our findings indicate that MPs in urban waters should be managed by considering FFE.
Collapse
Affiliation(s)
- Daeun Yun
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si, Gyeongsangnam-do 51140, Republic of Korea
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea.
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si, Gyeongsangnam-do 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea.
| |
Collapse
|
19
|
Rafique H, Iqbal MW, Wabaidur SM, Hassan HU, Afzal AM, Abbas T, Habila MA, Elahi E. The supercapattery designed with a binary composite of niobium silver sulfide (NbAg 2S) and activated carbon for enhanced electrochemical performance. RSC Adv 2023; 13:12634-12645. [PMID: 37101525 PMCID: PMC10123492 DOI: 10.1039/d3ra01230a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
A supercapattery is a hybrid device that is a combination of a battery and a capacitor. Niobium sulfide (NbS), silver sulfide (Ag2S), and niobium silver sulfide (NbAg2S) were synthesized by a simple hydrothermal method. NbAg2S (50/50 wt% ratio) had a specific capacity of 654 C g-1, which was higher than the combined specific capacities of NbS (440 C g-1) and Ag2S (232 C g-1), as determined by the electrochemical investigation of a three-cell assembly. Activated carbon and NbAg2S were combined to develop the asymmetric device (NbAg2S//AC). A maximum specific capacity of 142 C g-1 was delivered by the supercapattery (NbAg2S//AC). The supercapattery (NbAg2S/AC) provided 43.06 W h kg-1 energy density while retaining 750 W kg-1 power density. The stability of the NbAg2S//AC device was evaluated by subjecting it to 5000 cycles. After 5000 cycles, the (NbAg2S/AC) device still had 93% of its initial capacity. This research indicates that merging NbS and Ag2S (50/50 wt% ratio) may be the best choice for future energy storage technologies.
Collapse
Affiliation(s)
- Hirra Rafique
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | | | | | - Haseeb Ul Hassan
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Amir Muhammad Afzal
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Tasawar Abbas
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Mohamed A Habila
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ehsan Elahi
- Department of Physics and Astronomy, Sejong University Seoul South Korea
| |
Collapse
|
20
|
Identification of Heavy Metals and Organic Micropollutants in Drinking Water Sources in Typical Villages and Towns in Northeast China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228033. [PMID: 36432133 PMCID: PMC9693205 DOI: 10.3390/molecules27228033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
This study identified and detected the existence of major pollutants in northeast China. As an alpine region and an agricultural base, this region has representative significance in pollution research. We selected 56 samples from drinking water sources of typical villages and towns, focusing on the analysis of heavy metals and organic micropollutants in northeast China. The analysis results showed that Fe and Mn were the main metal elements exceeding the standard. The exceeding rates were 17.9% and 19.6%. Experiments showed that there were 19 kinds of pesticides, 6 kinds of OPEs, 2 kinds of PAEs, 22 kinds of PPCPs. The detection rate of these 49 kinds of organic micro-pollutants were 1.79~82.14%. The characteristics of organic pollution were extensive and varied. Many underground water samples had high level of micropollutants. The water quality parameters of drinking water sources in villages and towns showed close relation to local geological conditions and agricultural activities. Actions must be taken to control these parameters from the source of pollution.
Collapse
|
21
|
Nasrollahi N, Vatanpour V, Khataee A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156010. [PMID: 35595150 DOI: 10.1016/j.scitotenv.2022.156010] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics and related pharmaceuticals are applied to enhance public health and life quality. A major environmental concern is wastewaters from pharmaceutical industries, which contain significant amounts of antibiotics. Pharmaceutical industries apply conventional processes (biological, filtration, coagulation, flocculation, and sedimentation) for wastewater treatment, but these approaches cannot remove antibiotics completely. Moreover, unmetabolized antibiotics released by humans and animals are dangerous for municipal and effluent wastewater. Besides, antibiotic resistance is another challenge in treatment of wastewater for superbugs. This comprehensive study summarizes different techniques for antibiotic removal with an emphasis on membrane technology in individual and hybrid systems such as chemical, physical, biological, and conditional-based strategies. A combination of membrane processes with advanced oxidation processes (AOPs), adsorption, and biological treatments can be the right solution for perfect removal. Furthermore, this review briefly compares different procedures for antibiotic removal, which can be helpful for further studies with their advantages and drawbacks.
Collapse
Affiliation(s)
- Nazanin Nasrollahi
- Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
22
|
Wei Y, Li Y, Wang Y, Luo X, Du F, Liu W, Xie L, Chen J, Ren Z, Hou S, Wang S, Fu S, Dang Y, Li P, Liu X. The microbial diversity in industrial effluents makes high-throughput sequencing-based source tracking of the effluents possible. ENVIRONMENTAL RESEARCH 2022; 212:113640. [PMID: 35688222 DOI: 10.1016/j.envres.2022.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In order to explore the microbial diversity in industrial effluents, and on this basis, to verify the feasibility of tracking industrial effluents in sewer networks based on sequencing data, we collected 28 sewage samples from the industrial effluents relative to four factories in Shenzhen, China, and sequenced the 16S rRNA genes to profile the microbial compositions. We identified 5413 operational taxonomic units (OTUs) in total, and found that microbial compositions were highly diverse among samples from different locations in the sewer system, with only 107 OTUs shared by 90% of the samples. These shared OTUs were enriched in the phylum of Proteobacteria, the families of Comamonadaceae and Pseudomonadaceae, as well as the genus of Pseudomonas, with both degradation related and pathogenic bacteria. More importantly, we found differences in microbial composition among samples relevant to different factories, and identified microbial markers differentiating effluents from these factories, which can be used to track the sources of the effluents. This study improved our understanding of microbial diversity in industrial effluents, proved the feasibility of industrial effluent source tracking based on sequencing data, and provided an alternative technique solution for environmental surveillance and management.
Collapse
Affiliation(s)
- Yan Wei
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Ping An Digital Information Technology (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Yumeng Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yayu Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xinyue Luo
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Feirong Du
- Ping An Digital Information Technology (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Weifang Liu
- Shenzhen Howay Technology Co., Ltd., Shenzhen 518000, China
| | - Li Xie
- Shenzhen Howay Technology Co., Ltd., Shenzhen 518000, China
| | | | - Ziwei Ren
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shiqi Hou
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Sunhaoyu Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shaojie Fu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengsong Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Beijing, Beijing 100101, China.
| |
Collapse
|
23
|
Sherchan S, Shahin S, Alarcon J, Brosky H, Potter C, Dada AC. Microbial source tracking of fecal contamination in stormwater runoff. JOURNAL OF WATER AND HEALTH 2022; 20:1271-1283. [PMID: 36170186 DOI: 10.2166/wh.2022.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Concerns over fecal contamination in stormwater canals have promoted the need for pollution control strategies, including the use of microbial source tracking, to identify fecal contamination in the Greater New Orleans Area. Surface water samples were collected over a 12-month period at five canal locations within Jefferson Parish, Louisiana. Quantitative polymerase chain reaction and the IDEXX method were used to assess the concentrations of coliforms, Escherichia coli (E. coli) and human fecal 183 bacteroides (HF183) in stormwater samples. A 100% positive detection rate of total coliforms and E. coli was observed across all tested sites. Despite the closeness of the five sites, when averaged across all sampling time points, Kruskal-Wallis tests indicated that E. coli was present at significantly different concentrations in these locations (χ2(5) = 19.8, p = 0.0005). HF183 was detected in 62% of the water samples collected during the stormwater sampling. Without further testing for HF183 markers, the conclusion from this study would have been that fecal contamination from an unknown source was always present at varying levels during the study period. Analysis of HF183 markers therefore adds another layer of conclusions to the results deductible from E. coli concentrations. A 100% E. coli detection rate, high E. coli concentrations coupled with low rates of HF183 detection particularly at the Esplanade, Poplar Street, and Bonnabel Boat Launch sites, the sites closest to the lake outlet, throughout the study period, indicate that fecal contamination at these stormwater canal sites comes primarily from non-human sources. However, the Metairie Road and Napoleon Avenue sites, which have the highest HF183 detection rates, on top of chronic pollution by other non-human sources, are also influenced by human fecal pollution, possibly because of human development and faulty infrastructure. This study highlights the advantages of the use of microbial source-tracking methods to complement traditional indicator bacteria.
Collapse
Affiliation(s)
- Samendra Sherchan
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA E-mail: ; Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Shalina Shahin
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA E-mail:
| | - Joshua Alarcon
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA E-mail:
| | - Hanna Brosky
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA E-mail:
| | - Collin Potter
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA E-mail:
| | | |
Collapse
|
24
|
Wells EC, Vidmar AM, Webb WA, Ferguson AC, Verbyla ME, de Los Reyes FL, Zhang Q, Mihelcic JR. Meeting the Water and Sanitation Challenges of Underbounded Communities in the U.S. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11180-11188. [PMID: 35930490 DOI: 10.1021/acs.est.2c03076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water and sanitation (wastewater) infrastructure in the United States is aging and deteriorating, with massive underinvestment over the past several decades. For many years, lack of attention to water and sanitation infrastructure has combined with racial segregation and discrimination to produce uneven access to water and wastewater services resulting in growing threats to human and environmental health. In many metropolitan areas in the U.S., those that often suffer disproportionately are residents of low-income, minority communities located in urban disadvantaged unincorporated areas on the margins of major cities. Through the process of underbounding (the selective expansion of city boundaries to exclude certain neighborhoods often based on racial demographics or economics), residents of these communities are disallowed municipal citizenship and live without piped water, sewage lines, and adequate drainage or flood control. This Perspective identifies the range of water and sanitation challenges faced by residents in these communities. We argue that future investment in water and sanitation should prioritize these communities and that interventions need to be culturally context sensitive. As such, approaches to address these problems must not only be technical but also social and give attention to the unique geographic and political setting of local infrastructures.
Collapse
Affiliation(s)
- E Christian Wells
- Department of Anthropology, University of South Florida, Tampa, Florida 33620, United States
| | - Abby M Vidmar
- Department of Anthropology, University of South Florida, Tampa, Florida 33620, United States
| | - W Alex Webb
- Department of Anthropology, University of South Florida, Tampa, Florida 33620, United States
| | - Alesia C Ferguson
- Department of Built Environment, North Carolina Agriculture and Technical State University, Greensboro, North Carolina 27411, United States
| | - Matthew E Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Qiong Zhang
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - James R Mihelcic
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
25
|
Fuchte HE, Beck N, Bieg E, Bayer VJ, Achten C, Krauss M, Schäffer A, Smith KEC. A look down the drain: Identification of dissolved and particle bound organic pollutants in urban runoff waters and sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119047. [PMID: 35227846 DOI: 10.1016/j.envpol.2022.119047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Urban runoff contains a range of organic micropollutants which, if not removed during wastewater treatment, pose a risk to aquatic environments. These mixtures are complex and often site-specific. Street drains provide an ideal sampling point given they collect the runoff from local and defined catchments. In this study, runoff was collected and sampled in five street drains located in a medium sized town in Germany. A specially constructed trap was used to collect the particulate and total water fractions of the runoff. In addition, passive samplers were deployed to determine the freely dissolved concentrations of selected compounds in the runoff. In sum, 187 polar organic micropollutants could be quantified using LC-HRMS. Thirty of these could only be detected by the use of passive samplers. Traffic derived pollutants such as corrosion inhibitors, rubber- and plastic additives, but also pollutants of industrial origin were strongly represented with sum median concentrations of 100 μg/kg dry weight (DW) in the sediment and 400 ng/L in the water fraction. Several of these substances are of concern due to their environmental persistence and mobility. Perfluorinated compounds and pesticides occurred at lower levels of several μg/kg DW sediment or ng/L water. A number of substances including pharmaceuticals, sweeteners and stimulants indicated domestic wastewater influences. Furthermore, a total of 62 parent and alkylated PAHs were quantified by GC-MS and contributed 30-70% to the sum concentrations of the micropollutants. Non-EPA PAHs dominated the carcinogenic PAH toxicity. The increased PAH alkylation indices (0.7-0.9) showed these primarily came from combustion sources. The runoff particles were additionally microscopically characterized, and correlations were found between the rubber particle counts and the PAH alkylation-index as well as the levels of 2-(methylthio)benzothiazole, a marker compound for tire leaching.
Collapse
Affiliation(s)
- Hanna E Fuchte
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Natascha Beck
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Evelyn Bieg
- Umwelt-Mikroskopie Evelyn Bieg, Greppstraße 64, 52159, Roetgen, Germany
| | - Viviane J Bayer
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, 210093, PR China
| | - Kilian E C Smith
- Department of Water, Environment, Construction and Safety, University of Applied Sciences Magdeburg-Stendal, 39114, Magdeburg, Germany
| |
Collapse
|
26
|
Li D, Van De Werfhorst LC, Holden PA. Genetic Sequence Data Evidence that Human Fecal‐associated
HF183
sequences Are on Human Skin and in Urine. J Appl Microbiol 2022; 133:232-240. [PMID: 35429105 PMCID: PMC9544380 DOI: 10.1111/jam.15577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/26/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022]
Abstract
Aims The DNA marker HF183 is a partial 16S rRNA gene sequence highly specific to human‐associated Bacteroides including Bacteroides dorei. While HF183 is used to assess human faecal contamination in aquatic environments worldwide, little is known about the existence of HF183 and B. dorei in human microbiomes outside of the human gastrointestinal tract and faeces. Methods and Results Previously published human skin and urine microbiome data sets from five independent human body skin studies, the Human Microbiome Project (HMP) and three independent human urine studies were analysed. The HF183 gene sequence was detected in all skin data sets, with the ratios of positive samples ranging from 0.5% to 36.3%. Popliteal fossa (knee), volar forearm and inguinal (groin) creases were identified as hot spots. HF183 was detected in two of three urine data sets, with ratios of positive samples ranging from 0% to 37.5%. All HF183‐containing sequences from these data sets were classified as associated with B. dorei. Conclusions HF183 is widespread on human skin and present in urine. Significance and Impact of Study Skin and urine microbiomes could be sources of HF183 to environmental waters. Such non‐faecal sources of HF183 might explain low concentrations of HF183 in recreational waters when swimmers are present.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management University of California Santa Barbara
| | | | - Patricia A. Holden
- Bren School of Environmental Science & Management University of California Santa Barbara
| |
Collapse
|
27
|
Schiperski F, Zirlewagen J, Stange C, Tiehm A, Licha T, Scheytt T. Transport-based source tracking of contaminants in a karst aquifer: Model implementation, proof of concept, and application to event-based field data. WATER RESEARCH 2022; 213:118145. [PMID: 35151087 DOI: 10.1016/j.watres.2022.118145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Identification and location of contamination sources is crucial for water resource protection - especially in karst aquifers which provide 25% of the world´s population with water but are highly vulnerable to contamination. Transport-based source tracking is proposed and verified here as a complementary approach to microbial and chemical source tracking in karst aquifers for identifying and locating such sources of contamination and for avoiding ambiguities that might arise from using one method alone. The transport distance is inversely modelled from contaminant breakthrough curves (BTC), based on analytical solutions of the 1D two-region non-equilibrium advection dispersion equation using GNU Octave. Besides the BTC, the model requires reliable estimates of transport velocity and input time. The model is shown to be robust, allows scripted based, automated 2D sensitivity analyses (interplay of two parameters), and can be favourable when distributed numerical models are inappropriate due to insufficient data. Sensitivity analyses illustrate that the model is highly sensitive to the input time, the flow velocity, and the fraction of the mobile fluid region. A conclusive verification approach was performed by applying the method to synthetic data, tracer tests, and event-based field data. Transport distances were correctly modelled for a set of artificial tracer tests using a discharge-velocity relationship that could be established for the respective karst catchment. For the first time such an approach was shown to be applicable to estimate the maximum distance to the contamination source for coliform bacteria in karst spring water combined with microbial source tracking. However, prediction intervals for the transport distance can be large even in well-studied karst catchments mainly related to uncertainties in the flow velocity and the input time. Using a maximum transport distance is proposed to account for less permeable, "slower" pathways. In general, transport-based source tracking might be used wherever transport can be described by the 1D two-region non-equilibrium model, e.g. rivers and fractured or porous aquifers.
Collapse
Affiliation(s)
- Ferry Schiperski
- Technische Univerinfromt Berlin, Dept. of Applied Geosciences, Applied Geochemistry, Ernst-Reuter-Platz 1, 10587, Berlin 10587, Germany.
| | - Johannes Zirlewagen
- Technische Univerinfromt Berlin, Dept. of Applied Geosciences, Applied Geochemistry, Ernst-Reuter-Platz 1, 10587, Berlin 10587, Germany
| | - Claudia Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, Karlsruhe D-76139, Germany
| | - Andreas Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, Karlsruhe D-76139, Germany
| | - Tobias Licha
- Hydrochemistry Group, Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitatsstr. 150, Bochum 44801, Germany
| | - Traugott Scheytt
- Technische Universität Bergakademie Freiberg, Dept. of Geology, Hydrogeology, Freiberg 09596, Germany
| |
Collapse
|
28
|
Hachad M, Lanoue M, Vo Duy S, Villlemur R, Sauvé S, Prévost M, Dorner S. Locating illicit discharges in storm sewers in urban areas using multi-parameter source tracking: Field validation of a toolbox composite index to prioritize high risk areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152060. [PMID: 34861306 DOI: 10.1016/j.scitotenv.2021.152060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
In urban areas served by separate sewerage systems, illicit connections to the storm drain system from residences or commercial establishments are frequent whether these misconnections were made accidentally or deliberately. As a result, untreated and contaminated wastewater enters into storm sewers leading to pollution of receiving waters and non-compliance with water quality standards. Typical procedures for detecting illicit connections to the storm sewer system are time consuming and expensive, especially in a highly urbanised area. In this study, we investigated the use of human wastewater micropollutants WWMPs (caffeine, theophylline, and carbamazepine) and advanced DNA molecular markers (human specific Bacteroides HF183 and mitochondrial DNA) as anthropogenic tracers in order to assist identifying potential cross connections. Water samples from storm outfalls and storm sewer pipes in three urban subcatchments were collected in dry weather from 2013 to 2018. All samples contained various concentrations of these markers especially HF183, caffeine and theophylline, suggesting that the storm pipe system studied is widely contaminated by sanitary sewers. None of the traditional indicators or markers tested is sufficient alone to determine the origin of fecal pollution. In a highly urbanised area, the combination of at least three specific human markers was needed in order to locate the residential section with likely misconnections. The human specific Bacteroides HF183, and theophylline appeared to be the most effective markers (along with E. coli) of crossconnections, whereas carbamazepine can provide an indication of contamination through sanitary sewer exfiltration. A composite sewer cross-connection index was developed, and eight misconnected houses were identified and corrected. The index approach enables the reduction of false positives that could lead to expensive interventions to identify cross-connected households. The results show the multiparameter source tracking toolbox as an effective method to identify sewer cross connections for sustainable storm water management.
Collapse
Affiliation(s)
- Mounia Hachad
- Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| | - Martine Lanoue
- City of Laval, soutien technique eau et salubrité, service de l'environnement et de l'écocitoyenneté, 480, Boulevard Armand-Frappier, Laval, QC H7V 3Z4, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, P.O. Box 6128, succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Richard Villlemur
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, P.O. Box 6128, succ, Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Michèle Prévost
- Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada; NSERC Industrial Chair on Drinking Water, Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, QC, Canada
| | - Sarah Dorner
- Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, CP 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada; Canada Research Chair in Microbial Contaminant Dynamics in Source Waters, Civil, Geological and Mining Engineering Department, Polytechnique de Montréal, QC, Canada
| |
Collapse
|
29
|
Bajpai M, Katoch SS, Kadier A, Singh A. A review on electrocoagulation process for the removal of emerging contaminants: theory, fundamentals, and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15252-15281. [PMID: 34978675 DOI: 10.1007/s11356-021-18348-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.
Collapse
Affiliation(s)
- Mukul Bajpai
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India.
| | - Surjit Singh Katoch
- Environmental Engineering Laboratory, Civil Engineering Department, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Adarsh Singh
- Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
30
|
Ndione M, Ory P, Agion T, Treilles M, Vacher L, Simon-Bouhet B, Le Beguec M, Pineau P, Montanié H, Agogué H. Temporal variations in fecal indicator bacteria in bathing water and sediment in a coastal ecosystem (Aytré Bay, Charente-Maritime, France). MARINE POLLUTION BULLETIN 2022; 175:113360. [PMID: 35134737 DOI: 10.1016/j.marpolbul.2022.113360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
This study presents the fecal contamination dynamic at the two bathing sites of Aytré Bay (Charente Maritime, France). We quantified fecal indicator bacteria (FIB) abundances (Escherichia coli and enterococci) from water and sediment samples over one-year survey. Then we measured biological (bacterial abundance, chlorophyll-a), physico-chemical (dissolved nutrients and oxygen, salinity, pH …) and climatic (temperatures, rainfall and tidal coefficient) parameters. Results showed that FIB abundances were occasionally higher than the European regulatory threshold during winter, summer and fall. The "poor quality" of the bathing water was due to high enterococci abundance. We found negative significant correlations between FIB and water temperature and salinity, and positive significant correlations between FIB and rainfall, PO4, NO3, NO2, and SiO2 mainly in water. Relationships between parameters showed that during summer and spring the main environmental drivers were temperature and salinity, while in fall and winter they were rainfall and dissolved nutrients.
Collapse
Affiliation(s)
- Méry Ndione
- Littoral Environnement et Sociétés (LIENSs) UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Pascaline Ory
- Littoral Environnement et Sociétés (LIENSs) UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Tony Agion
- QUALYSE, Laboratoire d'analyses, La Rochelle, France
| | | | - Luc Vacher
- Littoral Environnement et Sociétés (LIENSs) UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Benoit Simon-Bouhet
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, Chizé, France
| | - Maëlig Le Beguec
- Littoral Environnement et Sociétés (LIENSs) UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Philippe Pineau
- Littoral Environnement et Sociétés (LIENSs) UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Hélène Montanié
- Littoral Environnement et Sociétés (LIENSs) UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Hélène Agogué
- Littoral Environnement et Sociétés (LIENSs) UMR 7266 CNRS-La Rochelle Université, La Rochelle, France.
| |
Collapse
|
31
|
Couso-Pérez S, Ares-Mazás E, Gómez-Couso H. A review of the current status of Cryptosporidium in fish. Parasitology 2022; 149:1-13. [PMID: 35166202 PMCID: PMC10090634 DOI: 10.1017/s0031182022000099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/06/2022]
Abstract
Species of the genus Cryptosporidium (phylum Apicomplexa) infect the epithelium of the gastrointestinal tract of several vertebrate hosts, including humans and domestic and wild animals. In the past 20 years, several studies have focused on Cryptosporidium in fish. To date, a total of four piscine-host-specific species (Cryptosporidium molnari, Cryptosporidium huwi, Cryptosporidium bollandi and Cryptosporidium abrahamseni), nine piscine genotypes and more than 29 unnamed genotypes have been described in fish hosts. In addition, Cryptosporidium species and genotypes typical of other groups of vertebrates have also been identified. This review summarizes the history, biology, pathology and clinical manifestations, as well as the transmission, prevalence and molecular epidemiology of Cryptosporidium in wild, cultured and ornamental fish from both marine and freshwater environments. Finally, the potential role of piscine hosts as a reservoir of zoonotic Cryptosporidium species is also discussed.
Collapse
Affiliation(s)
- Seila Couso-Pérez
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
- Institute of Research on Chemical and Biological Analysis, University of Santiago de Compostela, 15782Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
32
|
Transformation Products of Emerging Pollutants Explored Using Non-Target Screening: Perspective in the Transformation Pathway and Toxicity Mechanism—A Review. TOXICS 2022; 10:toxics10020054. [PMID: 35202240 PMCID: PMC8874687 DOI: 10.3390/toxics10020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
The scientific community has increasingly focused on forming transformation products (TPs) from environmental organic pollutants. However, there is still a lot of discussion over how these TPs are generated and how harmful they are to living terrestrial or aquatic organisms. Potential transformation pathways, TP toxicity, and their mechanisms require more investigation. Non-target screening (NTS) via high-resolution mass spectrometry (HRMS) in model organisms to identify TPs and the formation mechanism on various organisms is the focus of this review. Furthermore, uptake, accumulation process, and potential toxicity with their detrimental consequences are summarized in various organisms. Finally, challenges and future research initiatives, such as performing NTS in a model organism, characterizing and quantifying TPs, and evaluating future toxicity studies on TPs, are also included in this review.
Collapse
|
33
|
Xu Q, Jia Z, Tang S, Luo W. The effect of flow partition on storm runoff and pollutant retention through raingardens with and without subsurface drainage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114038. [PMID: 34739904 DOI: 10.1016/j.jenvman.2021.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/19/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Green infrastructures (GIs) have been advocated worldwide to mitigate the negative impact of urbanization on regional hydrological cycle, their functions are closely related to their design features and the local environmental condition. This paper reports a field monitoring study that aimed to investigate how runoff partition in raingardens would affect flow and pollutant retention. A paired field experiment was conducted to compare runoff and pollutant retentions in two raingardens with and without subsurface drainage in a shallow water table area. Concentrations of ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N) and total phosphorus (TP) were measured at raingarden inflow, overflow and drainage paths. The results from 28 monitored storm events over two years showed that the raingarden without subsurface drainage achieved its retention mainly through ponding and infiltration, its pollutant retention rates (76% for TP, 81% for NO3-N, and 79% for NH3-N) were higher than its runoff retention rate (61%), indicating a first flush effect on pollutants retention in the raingarden during storm events, especially when the raingarden was empty and dry. The raingarden with subsurface drainage facilitated quick discharge of water, the observed runoff reduction through the raingarden was 36%; pollutant removal rates were quite variable: NH3-N was removed by 91% while the NO3-N and TP were increased by 3-47%. These results suggest that facilitating specific processes for targeted pollutants is necessary for achieving substantial pollutant removal in a stormwater retention device. Subsurface drainage pipes resulted in short circulating of runoff and lowered pollutant removal rates in the raingarden. Considering the water table fluctuation during the experimental period, we recommend to build infiltration-based GI devices to better capture first flush in intensively developed urban area, which caused deeper groundwater table. In conclusion, installations of different GI devices in urban landscape need to consider the local environmental conditions and facilitate the design features to meet specific storm runoff and pollutants mitigation requirement.
Collapse
Affiliation(s)
- Qing Xu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhonghua Jia
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Shuangcheng Tang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wan Luo
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| |
Collapse
|
34
|
Sustainable Amelioration of Heavy Metals in Soil Ecosystem: Existing Developments to Emerging Trends. MINERALS 2022. [DOI: 10.3390/min12010085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The consequences of heavy metal contamination are progressively degrading soil quality in this modern period of industry. Due to this reason, improvement of the soil quality is necessary. Remediation is a method of removing pollutants from the root zone of plants in order to minimize stress and increase yield of plants grown in it. The use of plants to remove toxins from the soil, such as heavy metals, trace elements, organic chemicals, and radioactive substances, is referred to as bioremediation. Biochar and fly ash techniques are also studied for effectiveness in improving the quality of contaminated soil. This review compiles amelioration technologies and how they are used in the field. It also explains how nanoparticles are becoming a popular method of desalination, as well as how they can be employed in heavy metal phytoremediation.
Collapse
|
35
|
Shubo T, Maranhão AG, Ferreira FC, de Silva E Mouta Júnior S, de Pedrosa Macena LDG, do Rosário Vaz Morgado C, Warish A, Sidhu JPS, Miagostovich MP. Microbiological characterization of stormwater in a high-income neighborhood in Rio de Janeiro, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:51. [PMID: 34985601 DOI: 10.1007/s10661-021-09677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Stormwater harvesting and reuse in the urban environment is emerging as an alternative water source, despite human pathogens in the stormwater may represent a hazard to public health. This study presents the results of 1-year monitoring to evaluate the quality of stormwater obtained in a high-income neighborhood in Rio de Janeiro for a set of microbiological parameters as total coliforms, Escherichia coli (E. coli), human adenovirus (HAdV), human JC polyomavirus (JCPyV), Group A rotavirus (RVA), and norovirus GI and GII. Forty-eight stormwater samples obtained from two multiplex units presented total coliforms and E. coli in 91.7% (n = 44) and 58.3% (n = 28) of samples, while HAdV and JCPyV were detected in 20.8% (n = 10) and 12.5% (n = 6), respectively. Viral quantification ranged from 103 to 104 genomic copies/liter (GC/L) for HAdV and from 101 to 104 GC/L for JCPyV. Neither RVA nor norovirus GI and GII was detected. Fifteen out of sixteen (93.8%) samples containing viruses were compliant as per fecal indicator bacteria (FIB) according to Brazilian standards for rainwater reuse and US EPA Guidelines for Water Reuse, suggesting that viruses monitoring should complement the study of bacterial indicators.
Collapse
Affiliation(s)
- Tatsuo Shubo
- Environmental Engineering Program (PEA), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Fundação Oswaldo Cruz, Av. Brazil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Adriana Gonçalves Maranhão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Fernando César Ferreira
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Sérgio de Silva E Mouta Júnior
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Lorena da Graça de Pedrosa Macena
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Ahmed Warish
- Environmental Contaminant Mitigation & Biotechnologies (ECMB), Commonwealth Scientific and Industrial Research Organization (CSIRO), Brisbane, QLD, Australia
| | - Jatinder P S Sidhu
- Ecoscience Precinct, CSIRO Oceans and Atmosphere, 41 Boggo Road, Brisbane, 4102, Australia
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Chachuła K, Słojewski TM, Nowak R. Multisensor Data Fusion for Localization of Pollution Sources in Wastewater Networks. SENSORS (BASEL, SWITZERLAND) 2022; 22:387. [PMID: 35009927 PMCID: PMC8749882 DOI: 10.3390/s22010387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Illegal discharges of pollutants into sewage networks are a growing problem in large European cities. Such events often require restarting wastewater treatment plants, which cost up to a hundred thousand Euros. A system for localization and quantification of pollutants in utility networks could discourage such behavior and indicate a culprit if it happens. We propose an enhanced algorithm for multisensor data fusion for the detection, localization, and quantification of pollutants in wastewater networks. The algorithm processes data from multiple heterogeneous sensors in real-time, producing current estimates of network state and alarms if one or many sensors detect pollutants. Our algorithm models the network as a directed acyclic graph, uses adaptive peak detection, estimates the amount of specific compounds, and tracks the pollutant using a Kalman filter. We performed numerical experiments for several real and artificial sewage networks, and measured the quality of discharge event reconstruction. We report the correctness and performance of our system. We also propose a method to assess the importance of specific sensor locations. The experiments show that the algorithm's success rate is equal to sensor coverage of the network. Moreover, the median distance between nodes pointed out by the fusion algorithm and nodes where the discharge was introduced equals zero when more than half of the network nodes contain sensors. The system can process around 5000 measurements per second, using 1 MiB of memory per 4600 measurements plus a constant of 97 MiB, and it can process 20 tracks per second, using 1.3 MiB of memory per 100 tracks.
Collapse
|
37
|
de Lambert JR, Walsh JF, Scher DP, Firnstahl AD, Borchardt MA. Microbial pathogens and contaminants of emerging concern in groundwater at an urban subsurface stormwater infiltration site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145738. [PMID: 33631564 DOI: 10.1016/j.scitotenv.2021.145738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Urban stormwater may contain a variety of pollutants, including viruses and other pathogens, and contaminants of emerging concern (pharmaceuticals, artificial sweeteners, and personal care products). In vulnerable geologic settings, the potential exists for these contaminants to reach underlying aquifers and contaminate drinking water wells. Viruses and other pathogens, as well as other contaminants of emerging concern, were measured in stormwater and groundwater at an urban site containing a stormwater cistern and related subsurface infiltration gallery, three shallow lysimeter wells, and a monitoring well. Five of 12 microbial targets were detected more than once across the eight rounds of sampling and at multiple sampling points, with human-specific Bacteroides detected most frequently. The microbial and chemical contaminants present in urban stormwater were much lower in the water table monitoring well than the vadose zone lysimeters. There may be numerous causes for these reductions, but they are most likely related to transit across fine-grained sediments that separate the water table from the vadose zone at this location. Precipitation amount prior to sample collection was significantly associated with microbial load. A significant relation between microbial load and chloride-bromide ratio was also observed. The reduction in number and concentrations of contaminants found in the monitoring well indicates that although geologically sensitive aquifers receiving urban stormwater effluent in the subsurface may be prone to contamination, those with a protective cap of fine-grained sediments are less vulnerable. These results can inform stormwater infiltration guidance relative to drinking water wells, with an emphasis on restricting infiltration near water supply wells finished in geologically sensitive aquifers to reduce public health risks.
Collapse
Affiliation(s)
- Jane R de Lambert
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, United States.
| | - James F Walsh
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, United States
| | - Deanna P Scher
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, United States
| | - Aaron D Firnstahl
- U.S. Geological Survey Upper Midwest Water Science Center, 2615 Yellowstone Drive, Marshfield, WI 54449, United States
| | - Mark A Borchardt
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, WI 54449, United States
| |
Collapse
|
38
|
Denissen JK, Reyneke B, Waso M, Khan S, Khan W. Human Pathogenic Bacteria Detected in Rainwater: Risk Assessment and Correlation to Microbial Source Tracking Markers and Traditional Indicators. Front Microbiol 2021; 12:659784. [PMID: 34025613 PMCID: PMC8138566 DOI: 10.3389/fmicb.2021.659784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/09/2021] [Indexed: 11/22/2022] Open
Abstract
Roof-harvested rainwater (RHRW) was investigated for the presence of the human pathogenic bacteria Mycobacterium tuberculosis (M. tuberculosis), Yersinia spp. and Listeria monocytogenes (L. monocytogenes). While Yersinia spp. were detected in 92% (n = 25) of the RHRW samples, and L. monocytogenes and M. tuberculosis were detected in 100% (n = 25) of the samples, a significantly higher mean concentration (1.4 × 103 cells/100 mL) was recorded for L. monocytogenes over the sampling period. As the identification of appropriate water quality indicators is crucial to ensure access to safe water sources, correlation of the pathogens to traditional indicator organisms [Escherichia coli (E. coli) and Enterococcus spp.] and microbial source tracking (MST) markers (Bacteroides HF183, adenovirus and Lachnospiraceae) was conducted. A significant positive correlation was then recorded for E. coli versus L. monocytogenes (r = 0.6738; p = 0.000), and Enterococcus spp. versus the Bacteroides HF183 marker (r = 0.4071; p = 0.043), while a significant negative correlation was observed for M. tuberculosis versus the Bacteroides HF183 marker (r = −0.4558; p = 0.022). Quantitative microbial risk assessment indicated that the mean annual risk of infection posed by L. monocytogenes in the RHRW samples exceeded the annual infection risk benchmark limit (1 × 10–4 infections per person per year) for intentional drinking (∼10–4). In comparison, the mean annual risk of infection posed by E. coli was exceeded for intentional drinking (∼10–1), accidental consumption (∼10–3) and cleaning of the home (∼10–3). However, while the risk posed by M. tuberculosis for the two relevant exposure scenarios [garden hosing (∼10–5) and washing laundry by hand (∼10–5)] was below the benchmark limit, the risk posed by adenovirus for garden hosing (∼10–3) and washing laundry by hand (∼10–3) exceeded the benchmark limit. Thus, while the correlation analysis confirms that traditional indicators and MST markers should be used in combination to accurately monitor the pathogen-associated risk linked to the utilisation of RHRW, the integration of QMRA offers a more site-specific approach to monitor and estimate the human health risks associated with the use of RHRW.
Collapse
Affiliation(s)
- Julia K Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Monique Waso
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
39
|
Li Z, Yu X, Yu F, Huang X. Occurrence, sources and fate of pharmaceuticals and personal care products and artificial sweeteners in groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20903-20920. [PMID: 33666841 DOI: 10.1007/s11356-021-12721-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is considered as the main source for supplying the public drinking water in many countries and regions; however, pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) found in groundwater can exert harmful effects on human health and aquatic ecosystems, and therefore, they are of persistent concern. The recent data on the occurrence of a series of PPCPs (including antibiotics, excitants and lipid regulators) and ASs often detected in groundwater are reviewed, in which the PPCPs and ASs occur in groundwater at the concentration from several nanograms to several micrograms per litre. In addition, the spatio-temporal distribution characteristics of PPCPs and ASs are discussed and the main sources and possibly pollution pathways of PPCPs and ASs in groundwater are summarised and analysed. Additionally, the adsorption, migration and degradation of PPCPs and ASs in underground environments are evaluated. Due to the long residence time in groundwater, pollutants are likely to threaten the freshwater body for decades under certain conditions. Therefore, according to the current level of pollution, it is necessary to improve and enhance the supervision on PPCP and AS pollutants and prevent and control groundwater pollution.
Collapse
Affiliation(s)
- Zhiping Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Xiaopeng Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China.
| | - Xin Huang
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| |
Collapse
|
40
|
Abstract
Microbial pathogens present in stormwater, which originate from human sewage and animal faecal matters, are one of the major impediments in stormwater reuse. The transport of microbes in stormwater is more than just a physical process. The mobility of microbes in stormwater is governed by many factors, such as dissolved organic matter, cations, pH, temperature and water flow. This paper examined the roles of three environmental variables, namely: dissolved organic matter, positive cations and stormwater flow on the transport of two faecal indicator bacteria (FIB), Enterococcus spp. and Escherichia coli. Stormwater runoff samples were collected during twelve wet weather events and one dry weather event from a medium density residential urban catchment in Brisbane. Enterococcus spp. numbers as high as 3 × 104 cfu/100 mL were detected in the stormwater runoff, while Escherichia coli numbers up to 3.6 × 103 cfu/100 mL were observed. The dissolved organic carbon (DOC) in the stormwater samples was in the range of 2.2–5.9 mg/L with an average concentration of 4.5 mg/L in which the hydrophilic carbon constituted the highest mass fraction of 60–80%. The results also showed that the transport of FIB in stormwater was reduced with an increasing concentration of the hydrophilic organic fraction, especially the humic fraction. On the contrary, the concentration of trivalent cations and stormwater flow rate showed a positive correlation with the FIB numbers. These findings indicated the potentiality to make a good use and measurement of simple environmental variables to reflect the degree of microbe transport in stormwater from residential/suburban catchments.
Collapse
|
41
|
Xu J, Wu X, Ge X, Tian Y, Ma X, Li Y, Xu X, Li Z. Variations of Concentration Characteristics of Rainfall Runoff Pollutants in Typical Urban Living Areas. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:608-613. [PMID: 33491127 DOI: 10.1007/s00128-021-03110-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Based on a typical residential area, this paper studies the characteristics of pollutant concentration changes in two rainfall runoffs and the first flush effect of rainfall. In rainfall runoff, the concentrations of seven pollutants (CODMn, TN, DTN, NH3-N, TP, DTP, and PO43-) increased during the initial rainfall period and decreased in the later period. Rainfall causes the erosion of pollutants on the underlying surface so that water pollution begins when rainfall runoff occurs, and the pollution level drops over time. The seven pollutants all experience this first flush effect, of which, rainfall has the strongest scouring effect on NH3-N produced by domestic sewage. The significant excess of pollutants in rainfall runoff should be considered by management departments. In addition, the existence of the first flush effect makes it possible in theory to partially intercept rainfall runoff to control water pollution, thereby reducing the cost of pollution control.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaodong Wu
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China.
- Huangshi Key Laboratory of Soil Pollution and Control, Huangshi, 435002, China.
| | - Xuguang Ge
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
- Huangshi Key Laboratory of Soil Pollution and Control, Huangshi, 435002, China
| | - Ying Tian
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Xiaochan Ma
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Yunmei Li
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhichun Li
- School of Environment and Surveying Engineering, Suzhou University, Suzhou City, 234000, China
| |
Collapse
|
42
|
Serwecińska L, Kiedrzyńska E, Kiedrzyński M. A catchment-scale assessment of the sanitary condition of treated wastewater and river water based on fecal indicators and carbapenem-resistant Acinetobacter spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142266. [PMID: 33182211 DOI: 10.1016/j.scitotenv.2020.142266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 05/14/2023]
Abstract
Urbanization and population growth have created considerable sanitation challenges in cities and communities in many parts of Europe and the world. As such, it is imperative to identify the most environmentally-harmful microbiological and chemical sources of pollution, these being wastewater treatment plants (WWTPs) which release wastewater of low quality. In the present manuscript, an extensive study was performed of the sanitary conditions of river water and treated wastewater from seventeen WWTPs of various sizes along the Pilica River catchment in central Poland, with the aim of identifying "hot spots" in terms of most serious sources of sanitary hazards. The bacteriological risk for the river, including fecal indicator bacteria (FIB) such as coliforms, E.coli, enterococci, C. perfringens, and carbapenem-resistant Acinetobacter spp. (CRA) were assessed using classical microbiological methods, and the physicochemical parameters were also tested. The WWTPs, particularly the small ones (<2000 people equivalent, PE) demonstrated significant variation regarding the physicochemical parameters. Carbapenem-resistant Acinetobacter spp. bacteria growing at 42 °C were found in the effluent wastewaters of all tested municipal WWTPs, and in most of the Pilica River water samples, presenting a potential hazard to public health. A positive correlation was identified between E. coli and CRA abundance in treated wastewater; however, no such relationship was found in river water. It was found that seven small treatment plants discharged wastewater with very different microbiological parameters. Moreover, three small treatment plants serving only 0.56% of the population in the studied area continuously released extremely high microbiological contamination, constituting as much as 54-82% of fecal indicator bacteria loads in the area studied. Our findings show that this type of comprehensive analysis may enable assessment of the use of the entire catchment area, thus identifying the most serious threats to surface water quality and guiding the actions needed to improve the worst operating WWTPs.
Collapse
Affiliation(s)
- Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
| | - Edyta Kiedrzyńska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Marcin Kiedrzyński
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
| |
Collapse
|
43
|
Hart JD, Blackwood AD, Noble RT. Examining coastal dynamics and recreational water quality by quantifying multiple sewage specific markers in a North Carolina estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141124. [PMID: 32795790 DOI: 10.1016/j.scitotenv.2020.141124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Fecal contamination is observed downstream of municipal separate storm sewer systems in coastal North Carolina. While it is well accepted that wet weather contributes to this phenomenon, less is understood about the contribution of the complex hydrology in this low-lying coastal plain. A quantitative microbial assessment was conducted in Beaufort, North Carolina to identify trends and potential sources of fecal contamination in stormwater receiving waters. Fecal indicator concentrations were significantly higher in receiving water downstream of a tidally submerged outfall compared to an outfall that was permanently submerged (p < 0.001), though tidal height was not predictive of human-specific microbial source tracking (MST) marker concentrations at the tidally submerged site. Short-term rainfall (i.e. <12 h) was predictive of E. coli, Enterococcus spp., and human-specific MST marker concentrations (Fecal Bacteroides, BacHum, and HF183) in receiving waters. The strong correlation between 12-hr antecedent rainfall and Enterococcus spp. (r = 0.57, p < 0.001, n = 92) suggests a predictive model could be developed based on rainfall to communicate risk for bathers. Additional molecular marker data indicates that the delivery of fecal sources is complex and highly variable, likely due to the influence of tidal influx (saltwater intrusion from the estuary) into the low-lying stormwater pipes. In particular, elevated MST marker concentrations (up to 2.56 × 104 gene copies HF183/mL) were observed in standing water near surcharging street storm drain. These data are being used to establish a baseline for stormwater dynamics prior to dramatic rainfall in 2018 and to characterize the interaction between complex stormwater dynamics and water quality impairment in coastal NC.
Collapse
Affiliation(s)
- Justin D Hart
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, United States of America; Department of Environmental Sciences and Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America
| | - A Denene Blackwood
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, United States of America
| | - Rachel T Noble
- University of North Carolina Institute of Marine Sciences, Morehead City, NC, United States of America; Department of Environmental Sciences and Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, United States of America.
| |
Collapse
|
44
|
Jennings WC, Gálvez-Arango E, Prieto AL, Boehm AB. CrAssphage for fecal source tracking in Chile: Covariation with norovirus, HF183, and bacterial indicators. WATER RESEARCH X 2020; 9:100071. [PMID: 33083778 PMCID: PMC7552103 DOI: 10.1016/j.wroa.2020.100071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 05/12/2023]
Abstract
Anthropogenic fecal pollution in urban waterbodies can promote the spread of waterborne disease. The objective of this study was to test crAssphage, a novel viral human fecal marker not previously applied for fecal source tracking in Latin America, as a fecal pollution marker in an urban river in Chile. Human fecal markers crAssphage CPQ_064 and Bacteroides HF183, the human pathogen norovirus GII, and culturable fecal indicator bacteria (FIB) were quantified at six locations spanning reaches of the Mapocho River from upstream to downstream of Santiago, as well as in repeated sub-daily frequency samples at two urban locations. Norovirus showed positive correlation trends with crAssphage (τ = 0.57, p = 0.06) and HF183 (τ = 0.64, p = 0.03) in river water, but not with E. coli or enterococci. CrAssphage and HF183 concentrations were strongly linearly related (slope = 0.97, p < 0.001). Chlorinated wastewater effluent was an important source of norovirus GII genes to the Mapocho. Precipitation showed non-significant positive relationships with human and general fecal indicators. Concentrations of crAssphage and HF183 in untreated sewage were 8.35 and 8.07 log10 copy/100 ml, respectively. Preliminary specificity testing did not detect crAssphage or HF183 in bird or dog feces, which are predominant non-human fecal sources in the urban Mapocho watershed. This study is the first to test crAssphage for microbial source tracking in Latin America, provides insight into fecal pollution dynamics in a highly engineered natural system, and indicates river reaches where exposure to human fecal pollution may pose a public health risk.
Collapse
Affiliation(s)
- Wiley C. Jennings
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Ana L. Prieto
- Departamento de Ingeniería Civil, Universidad de Chile, Av. Blanco Encalada 2002, 3er Piso, Santiago, Chile
| | - Alexandria B. Boehm
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
- Corresponding author.
| |
Collapse
|
45
|
Vassalle L, Sunyer-Caldú A, Uggetti E, Díez-Montero R, Díaz-Cruz MS, García J, García-Galán MJ. Bioremediation of emerging micropollutants in irrigation water. The alternative of microalgae-based treatments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111081. [PMID: 32810678 DOI: 10.1016/j.jenvman.2020.111081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/24/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluated the efficiency of a semi-closed horizontal tubular photobioreactor (PBR) at demonstrative scale to remove a total of 35 target compounds, including benzotriazoles, benzophenones, antibiotics and different pharmaceuticals present in irrigation water in a peri-urban rural area. This water run through an open channel and was a mixture of reclaimed wastewater from a nearby wastewater treatment plant (WWTP) and run-off from the different agricultural fields in the area. Most of the compounds studied are usually not fully eliminated during conventional wastewater treatment, which justifies the need to investigate alternative treatment strategies. A total of 21 of these compounds were detected in the irrigation water. Benzotriazoles were only partially removed after the microalgae treatment, with elimination rates similar to those of conventional WWTPs. The UV filter benzophenone-3 (BP3) showed variable removals, ranging from no elimination to 51%, whereas 4-methylbenzilidenecamphor (4MBC) was completely eliminated. Regarding pharmaceuticals, average removals were higher, in the range of 60-100%, with the exception of the antibiotics sulfamethoxazole (46%) and sulfapyridine, which was not removed. Despite the low biomass productivity of the PBR, parameters such as the size of the reactors, the specific mixed cultures developed and the high temperatures and pH in the closed system may account for the overall good results, The efficiency and sustainability of these systems make them a solid, feasible treatment choice.
Collapse
Affiliation(s)
- Lucas Vassalle
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain; Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, Brazil
| | - Adrià Sunyer-Caldú
- ENFOCHEM-Water, Environmental and Food Chemistry Unit, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Rubén Díez-Montero
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - M Silvia Díaz-Cruz
- ENFOCHEM-Water, Environmental and Food Chemistry Unit, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Joan García
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - M Jesús García-Galán
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| |
Collapse
|
46
|
Stange C, Tiehm A. Occurrence of antibiotic resistance genes and microbial source tracking markers in the water of a karst spring in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140529. [PMID: 32629259 DOI: 10.1016/j.scitotenv.2020.140529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The emergence of antimicrobial resistances causes serious public health concerns worldwide. In recent years, the aquatic ecosystem has been recognized as a reservoir for antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). The prevalence of 11 ARGs, active against six antibiotic classes (β-lactams, aminoglycosides, tetracycline, macrolides, trimethoprim, and sulfonamides), was evaluated at a karst spring (Gallusquelle) in Germany, using molecular biological methods. In addition, fecal indicator bacteria (FIB), turbidity, electrical conductivity, spring discharge, and microbial source tracking markers specific for human, horse, chicken, and cow were determined. The ARGs most frequently detected were ermB (42.1%), tet(C) (40.8%), sul2 (39.5%), and sul1 (36.8%), which code for resistance to macrolides, tetracycline and sulfonamides, respectively. After a heavy rain event, the increase in FIB in the spring water was associated with the increase in ARGs and human-specific microbial source tracking (MST) markers. The determined correlations of the microbiological parameters, the observed overflow of a combined sewer overflow basin a few days before the increase of these parameters, and the findings of previous studies indicate that the overflow of this undersized basin located 9 km away from the spring could be a factor affecting the water quality of the karst spring. Our results provide a scientific basis for minimization of the input of fecal pollution and thus ARGs into the karst spring.
Collapse
Affiliation(s)
- C Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
47
|
Zeki S, Aslan A, Burak S, Rose JB. Occurrence of a human-associated microbial source tracking marker and its relationship with faecal indicator bacteria in an urban estuary. Lett Appl Microbiol 2020; 72:167-177. [PMID: 33025621 DOI: 10.1111/lam.13405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022]
Abstract
One of the main impacts of urban sprawl in rapidly growing countries has been contamination of coastal environments by waterborne pathogens, posing a critical risk to ecosystem and human health. Microbial source tracking (MST) has been a robust tool to identify the origin of these pathogens globally. This study compared the occurrence of a human-associated Bacteroides marker (BT-α) with faecal indicator bacteria (FIB) in an urban estuary (Golden Horn, Istanbul, Turkey). Faecal coliform (culture method), enterococci (both culture and qPCR method) concentrations and physicochemical variables were compared with the BT-α concentrations in monthly collected samples for a year (n = 108). Enterococci concentrations detected by culture and qPCR were positively correlated (r = 0·86, P < 0·01) suggesting that qPCR can be an alternative method for monitoring. BT-α marker was positive for 30% of the samples and positively correlated with enterococci (r = 0·61 and r = 0·64 for culture and qPCR methods respectively, P < 0·01). Rainfall had a moderate positive correlation with all faecal/MST indicators suggesting combined sewer overflows also severely impacted estuarine water quality. The high FIB and BT-α concentrations at upper estuary suggested that faecal pollution mainly originated from the peri-urban settlements around two creeks entering the estuary.
Collapse
Affiliation(s)
- S Zeki
- Department of Marine Environment, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - A Aslan
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA, USA
| | - S Burak
- Department of Marine Environment, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - J B Rose
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
48
|
Pinasseau L, Wiest L, Volatier L, Mermillod-Blondin F, Vulliet E. Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115387. [PMID: 32829126 DOI: 10.1016/j.envpol.2020.115387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hydrophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological relevance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of Empore™ disk were deployed in GW wells upstream and downstream of SIS, as well as in the stormwater runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concentrations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.
Collapse
Affiliation(s)
- Lucie Pinasseau
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France.
| | - Laurence Volatier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire D'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622, Villeurbanne, France
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 Laboratoire D'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), 6 Rue Raphaël Dubois, F-69622, Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| |
Collapse
|
49
|
Relationship between Rainfall, Fecal Pollution, Antimicrobial Resistance, and Microbial Diversity in an Urbanized Subtropical Bay. Appl Environ Microbiol 2020; 86:AEM.01229-20. [PMID: 32709726 PMCID: PMC7499047 DOI: 10.1128/aem.01229-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of human enteric pathogens, stemming from fecal pollution, is a serious environmental and public health concern in recreational waters. Accurate assessments of fecal pollution are therefore needed to properly assess exposure risks and guide water quality policies and practices. In this study, the absence of a direct correlation between enterococci and source-specific human and animal markers disputes the utility of enterococci as an indicator of fecal pollution in urbanized subtropical bays. Moreover, the inverse correlation between enterococci and the human-specific marker HF183 indicates that recreational beach advisories, triggered by elevated enterococcus concentrations, are a misleading practice. This study clearly demonstrates that a multiparameter approach that includes the quantitation of host-specific markers, as well as analyses of microbial diversity, is a more effective means of assessing water quality in urbanized subtropical bays. Urbanized bays are vulnerable to fecal bacterial pollution, and the extent of this pollution, in marine recreational waters, is commonly assessed by quantifying enterococcus concentrations. Recent reports have questioned the utility of enterococci as an indicator of fecal bacterial pollution in subtropical bays impaired by non-point source pollution, and enterococcus data alone cannot identify fecal bacterial sources (i.e., hosts). The purpose of this study was to assess relationships between rainfall, fecal bacterial pollution, antimicrobial resistance, and microbial diversity in an urbanized subtropical bay. Thus, a comprehensive bacterial source tracking (BST) study was conducted using a combination of traditional and modern BST methods. Findings show that rainfall was directly correlated with elevated enterococcus concentrations, including the increased prevalence of Enterococcus faecium, although it was not correlated with an increase in the prevalence of antimicrobial-resistant strains. Rainfall was also correlated with decreased microbial diversity. In contrast, neither rainfall nor enterococcus concentrations were directly correlated with the concentrations of three omnipresent host-associated fecal markers (i.e., human, canine, and gull). Notably, the human fecal marker (HF183) was inversely correlated with enterococcus concentrations, signifying that traditional enterococcus data alone are not an accurate proxy for human fecal waste in urbanized subtropical bays. IMPORTANCE The presence of human enteric pathogens, stemming from fecal pollution, is a serious environmental and public health concern in recreational waters. Accurate assessments of fecal pollution are therefore needed to properly assess exposure risks and guide water quality policies and practices. In this study, the absence of a direct correlation between enterococci and source-specific human and animal markers disputes the utility of enterococci as an indicator of fecal pollution in urbanized subtropical bays. Moreover, the inverse correlation between enterococci and the human-specific marker HF183 indicates that recreational beach advisories, triggered by elevated enterococcus concentrations, are a misleading practice. This study clearly demonstrates that a multiparameter approach that includes the quantitation of host-specific markers, as well as analyses of microbial diversity, is a more effective means of assessing water quality in urbanized subtropical bays.
Collapse
|
50
|
Henderson A, Ng B, Landeweer S, Quinete N, Gardinali P. Assessment of Sucralose, Caffeine and Acetaminophen as Anthropogenic Tracers in Aquatic Systems Across Florida. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:351-357. [PMID: 32749513 DOI: 10.1007/s00128-020-02942-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/13/2020] [Indexed: 05/25/2023]
Abstract
Sucralose is one of the most popular artificial sweeteners worldwide. Due to its high stability, persistence and low removal efficiency in wastewater treatment plants, sucralose has been used as an indicator of wastewater intrusion into aquatic systems. However, its stability has also been a reason for discussion whether sucralose's presence in surface water could indicate a recent anthropogenic input. Caffeine and acetaminophen have been considered as tracers in human impacted aquatic ecosystems and potentially good indicators of recent anthropogenic inputs into the environment due to their short half-lives in water. Here, a novel, high throughput and sensitive method based on online SPE-LC-HRMS for the determination of caffeine, sucralose and acetaminophen was developed and validated for both fresh and seawater samples and applied to environmental water samples to evaluate the efficiency of these compounds as tracers of aquatic pollution. Caffeine and sucralose were detected in > 70% of samples, while acetaminophen was only detected in 3% of samples above the MDL, demonstrating its limited environmental applicability.
Collapse
Affiliation(s)
- Autumn Henderson
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Brian Ng
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Steven Landeweer
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Natalia Quinete
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Southeast Environmental Research Center (SERC), Institute of Environment, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
- Southeast Environmental Research Center (SERC), Institute of Environment, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|