1
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
2
|
Płońska P, Saniewska D, Łęczyński L, Bełdowska M. Factors controlling methylmercury concentration in soils of Northern Poland. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135664. [PMID: 39226684 DOI: 10.1016/j.jhazmat.2024.135664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/26/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Soil acts as storage for many toxic substances, including mercury and its compounds. However, in addition to its storage function, soil can also be a source of many substances to the aquatic environment. Methylmercury (MeHg) is one of the most toxic form of mercury (Hg) present in the environment. Some studies consider Poland to be one of the major emitters of Hg into both the atmosphere and the Baltic Sea. The purpose of the study was to identify factors affecting the formation and retention of MeHg in the soil as well as it remobilization to the river. Fifteen soil core samples with a length of 200 cm were collected during the fall/winter of 2021-2022. The factors responsible for the inflow and formation of MeHg were precipitation, distance from the riverbank, soil moisture and age of organic matter. MeHg can be transported to topsoil with precipitation. An increase in MeHg concentration was also observed in moist soils located in the vicinity of riverbank. MeHg concentration was lower in soils with degraded organic matter than with fresh organic matter.
Collapse
Affiliation(s)
- Patrycja Płońska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Poland
| | - Dominika Saniewska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Poland.
| | - Leszek Łęczyński
- Department of Geophysics, Faculty of Oceanography and Geography, University of Gdańsk, Poland
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Poland
| |
Collapse
|
3
|
Madesh S, Sudhakaran G, Meenatchi R, Guru A, Arockiaraj J. Interconnected environmental challenges: heavy metal-drug interactions and their impacts on ecosystems. Drug Chem Toxicol 2024; 47:1282-1299. [PMID: 38658397 DOI: 10.1080/01480545.2024.2342956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
4
|
Zhong H, Su Y, Wu X, Nunes L, Li C, Hao Y, Liu YR, Tang W. Mercury supply limits methylmercury production in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172335. [PMID: 38604369 DOI: 10.1016/j.scitotenv.2024.172335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The neurotoxic methylmercury (MeHg) is a product of inorganic mercury (IHg) after microbial transformation. Yet it remains unclear whether microbial activity or IHg supply dominates Hg methylation in paddies, hotspots of MeHg formation. Here, we quantified the response of MeHg production to changes in microbial activity and Hg supply using 63 paddy soils under the common scenario of straw amendment, a globally prevalent agricultural practice. We demonstrate that the IHg supply is the limiting factor for Hg methylation in paddies. This is because IHg supply is generally low in soils and can largely be facilitated (by 336-747 %) by straw amendment. The generally high activities of sulfate-reducing bacteria (SRB) do not limit Hg methylation, even though SRB have been validated as the predominant microbial Hg methylators in paddies in this study. These findings caution against the mobilization of legacy Hg triggered by human activities and climate change, resulting in increased MeHg production and the subsequent flux of this potent neurotoxin to our dining tables.
Collapse
Affiliation(s)
- Huan Zhong
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Yao Su
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Xinda Wu
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China
| | - Luís Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Yunyun Hao
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wenli Tang
- School of Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Sánchez-Fortún M, Carrasco JL, Díez S, Amouroux D, Tessier E, López-Carmona S, Sanpera C. Temporal mercury dynamics throughout the rice cultivation season in the Ebro Delta (NE Spain): An integrative approach. ENVIRONMENTAL RESEARCH 2024; 250:118555. [PMID: 38412914 DOI: 10.1016/j.envres.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
During the last few decades, inputs of mercury (Hg) to the environment from anthropogenic sources have increased. The Ebro Delta is an important area of rice production in the Iberian Peninsula. Given the industrial activity and its legacy pollution along the Ebro river, residues containing Hg have been transported throughout the Ebro Delta ecosystems. Rice paddies are regarded as propitious environments for Hg methylation and its subsequent incorporation to plants and rice paddies' food webs. We have analyzed how Hg dynamics change throughout the rice cultivation season in different compartments from the paddies' ecosystems: soil, water, rice plants and fauna. Furthermore, we assessed the effect of different agricultural practices (ecological vs. conventional) associated to various flooding patterns (wet vs. mild alternating wet and dry) to the Hg levels in rice fields. Finally, we have estimated the proportion of methylmercury (MeHg) to total mercury in a subset of samples, as MeHg is the most bioaccumulable toxic form for humans and wildlife. Overall, we observed varying degrees of mercury concentration over the rice cultivation season in the different compartments. We found that different agricultural practices and flooding patterns did not influence the THg levels observed in water, soil or plants. However, Hg concentrations in fauna samples seemed to be affected by hydroperiod and we also observed evidence of Hg biomagnification along the rice fields' aquatic food webs.
Collapse
Affiliation(s)
- Moisès Sánchez-Fortún
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| | - Josep Lluís Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Sophie López-Carmona
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; UFR Sciences et Techniques, Université de Nantes, Nantes, France.
| | - Carola Sanpera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Salvato LA, Marvin-DiPasquale M, Fleck JA, McCord SA, Linquist BA. Influence of irrigation water and soil on annual mercury dynamics in Sacramento Valley rice fields. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:327-339. [PMID: 38468600 DOI: 10.1002/jeq2.20557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
Methylmercury (MeHg) is a human and environmental toxin produced in flooded soils. Little is known about MeHg in rice (Oryza Sativa L.) fields in Sacramento Valley, California. The objectives of this study were to quantify mercury fractions in irrigation water and within rice fields and to determine their mercury pools in surface water, soil, and grain. Soil, grain, and surface water (dissolved and particulate) MeHg and total mercury (THg) were monitored in six commercial rice fields throughout a winter fallow season and subsequent growing season. Both dissolved and particulate mercury fractions were higher in fallow season rice field water. Total suspended solids and particulate mercury concentrations were positively correlated (r = 0.99 and 0.98 for THg and MeHg, respectively), suggesting that soil MeHg was suspended in the water column and potentially exported. Dissolved THg and MeHg concentrations were positively correlated with absorbance at 254 nm (r = 0.47 and 0.58, respectively) in fallow season field water. In the growing season, fields with higher irrigation water MeHg concentrations (due to recycled water use) had elevated field-water MeHg (r = 0.86) and grain MeHg concentrations (r = 0.96). Based on a mass balance analysis, soil mercury pools were orders of magnitude larger than surface water or grain mercury pools; however, fallow season drainage and grain harvest were the primary pathways for MeHg export. Based on these findings, reducing (1) discharge when water is turbid, (2) straw inputs, and (3) use of recycled irrigation water could help reduce mercury exports in rice field drainage water.
Collapse
Affiliation(s)
- Luke A Salvato
- Department of Plant Sciences, University of California, Davis, California, USA
| | | | - Jacob A Fleck
- California Water Science Center, US Geological Survey, Sacramento, California, USA
| | | | - Bruce A Linquist
- Department of Plant Sciences, University of California, Davis, California, USA
| |
Collapse
|
7
|
Zhong H, Zhou H, Li Y, Li C, Tsui MTK, Mitchell CPJ, Zhou Y, Yang Y, Chen L, Ren H, Tang W. Methylmercury photodegradation in paddy water: An overlooked process mitigating methylmercury risks. WATER RESEARCH 2024; 253:121332. [PMID: 38377924 DOI: 10.1016/j.watres.2024.121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Photodegradation is critical to reduce the potent neurotoxic methylmercury (MeHg) in water and its subsequent accumulation along food chains. However, this process has been largely ignored in rice paddies, which are hotspots of MeHg production and receive about a quarter of the world's developed freshwater resources. Here, we reported that significant MeHg photodegradation, primarily mediated by hydroxyl radicals, occurs in the overlying water during rice growth. By incorporating field-measured light interception into a rice paddy biogeochemistry model, as well as photodegradation rates obtained from 42 paddy soils stretching ∼3500 km across China, we estimated that photodegradation reduced MeHg concentrations in paddy water and rice by 82 % and 11 %, respectively. Without photodegradation, paddy water could be a significant MeHg source for downstream ecosystems, with an annual export of 178 - 856 kg MeHg to downstream waters in China, the largest rice producer. These findings suggest that photodegradation in paddy water is critical for preventing greater quantities of MeHg entering human food webs.
Collapse
Affiliation(s)
- Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, PR China
| | - Hangyu Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, PR China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education) and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, PR China.
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, Guangdong Province, PR China
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, Earth and Environmental Sciences Programme, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR, PR China
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, PR China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, PR China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, PR China
| | - Hongqiang Ren
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, PR China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
8
|
Hall LA, Woo I, Marvin-DiPasquale M, Takekawa JY, Krabbenhoft DP, Yee D, Grenier L, De La Cruz SEW. Linking Mesoscale Spatial Variation in Methylmercury Production to Bioaccumulation in Tidal Marsh Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19263-19273. [PMID: 37956992 PMCID: PMC10702545 DOI: 10.1021/acs.est.3c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Differences in sediment biogeochemistry among tidal marsh features with different hydrological and geomorphological characteristics, including marsh interiors, marsh edges, first-order channels, and third-order channels, can result in spatial variation in MeHg production and availability. To better understand the link between MeHg production in sediments and bioaccumulation in primary and secondary consumer invertebrates and fish, we characterized mesoscale spatial variation in sediment biogeochemistry and MeHg concentrations of sediments, water, and consumer tissues among marsh features. Our results indicated that marsh interiors had biogeochemical conditions, including greater concentrations of organic matter and sulfate reduction rates, that resulted in greater MeHg concentrations in sediments and surface water particulates from marsh interiors compared to other features. Tissue MeHg concentrations of consumers also differed among features, with greater concentrations from marsh edges and interiors compared to channels. This spatial mismatch of MeHg concentrations in sediments and water compared to those in consumers may have resulted from differences in behavior and physiology among consumers that influenced the spatial scale over which MeHg was integrated into tissues. Our results highlight the importance of sampling across a suite of marsh features and considering the behavioral and physiological traits of sentinel taxa for contaminant monitoring studies.
Collapse
Affiliation(s)
- Laurie A. Hall
- U.S.
Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field
Station, NASA Research Park Bldg. 19, N. Akron Road, Moffett Field, California 94035, United States
| | - Isa Woo
- U.S.
Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field
Station, NASA Research Park Bldg. 19, N. Akron Road, Moffett Field, California 94035, United States
| | - Mark Marvin-DiPasquale
- U.S.
Geological Survey, Water Mission Area, Earth System Processes Division, 345 Middlefield Road, Menlo Park, California 94025, United States
| | - John Y. Takekawa
- U.S.
Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field
Station, NASA Research Park Bldg. 19, N. Akron Road, Moffett Field, California 94035, United States
| | - David P. Krabbenhoft
- U.S.
Geological Survey, Mercury Research Laboratory, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Donald Yee
- San
Francisco Estuary Institute, 4911 Central Avenue, Richmond, California 94804, United States
| | - Letitia Grenier
- San
Francisco Estuary Institute, 4911 Central Avenue, Richmond, California 94804, United States
| | - Susan E. W. De La Cruz
- U.S.
Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field
Station, NASA Research Park Bldg. 19, N. Akron Road, Moffett Field, California 94035, United States
| |
Collapse
|
9
|
Liu C, Ning Y, Liu J. Geochemical mercury pools regulate diverse communities of hgcA microbes and MeHg levels in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122172. [PMID: 37437760 DOI: 10.1016/j.envpol.2023.122172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Rice paddies are unique artificial wetlands generating methylmercury (MeHg), a highly potent neurotoxin. However, the impact of diverse mercury (Hg) pools on the Hg-methylating communities during rice growth is unclear. This study investigates soil treated with five mercury forms (HgCl2, α-HgS, β-HgS, nano-HgS, and Hg-DOM) at two levels (5 mg/kg and 50 mg/kg). The results showed a varying abundance of sulphate-reducing bacteria, Geobacteraceae, methanogens, and hgcA microbes in the soils across rice grown under different mercury treatments and concentrations. Soils treated with HgCl2, nano-HgS and β-HgS had higher than average levels of hgcA-methanogen abundance, and the abundance significantly and positively correlated with MeHg concentration in all samples (p < 0.05). The shifting trends in Hg-methylating microbial structure following treatment with α-HgS, β-HgS, nano-HgS and Hg-DOM at both 5 and 50 mg/kg Hg levels were diverse compared with the control group. HgCl2 treatment showed contrasting trends in community distribution of Hg methylators at 5 and 50 mg/kg Hg levels during rice growth. Dissolved organic carbon, redox potential and sulphate levels significantly correlated with variation in the Hg-methylating microbial community structure and MeHg production in soils.
Collapse
Affiliation(s)
- Chutong Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Yongqiang Ning
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
10
|
Zhu C, Lv S, Zhao Q, Liu X, Wang Z, Zheng X, Zhou L, Wang Y. Seasonal variation in mercury and methylmercury production in vegetated sediment in the Dongtan wetlands of the Yangtze River Estuary, China. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105999. [PMID: 37182325 DOI: 10.1016/j.marenvres.2023.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
The seasonal cycling of mercury (Hg) in vegetated sediments in the Dongtan wetlands of the Yangtze River Estuary were determined, and microcosm incubation experiments were conducted to evaluate methylmercury (MeHg) production after Hg input. The results showed that the seasonal variations of total Hg and MeHg were very different. The enhanced activity of methylating bacteria could have been the main contributor to the elevated MeHg in the upper surface layer (0-12 cm), which was supported by the higher copy numbers of the hgcA gene in the surface sediment and the MeHg increase during sediment incubation following litterfall addition. Moreover, the incubation results showed that Hg addition greatly increased net MeHg production and that this increase remained under suboxic conditions, suggesting that the potential health risk of Hg in estuarine wetlands could exist for a long time under changing redox conditions.
Collapse
Affiliation(s)
- Changle Zhu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shaoyang Lv
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Qing Zhao
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xia Liu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China
| | - Zhigang Wang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xiangmin Zheng
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China
| | - Limin Zhou
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, PR China
| | - Yongjie Wang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
11
|
Mancuso K, Hodges KE, Grosselet M, Elliott JE, Alexander JD, Zanuttig M, Bishop CA. Mercury toxicity risk and corticosterone levels across the breeding range of the Yellow-breasted Chat. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:234-250. [PMID: 34973137 PMCID: PMC8901494 DOI: 10.1007/s10646-021-02510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is an environmental contaminant that can negatively impact human and wildlife health. For songbirds, Hg risk may be elevated near riparian habitats due to the transfer of methylmercury (MeHg) from aquatic to terrestrial food webs. We measured Hg levels in tail feathers sampled across the breeding range of the Yellow-breasted Chat (Icteria virens), a riparian songbird species of conservation concern. We assessed the risk of Hg toxicity based on published benchmarks. Simultaneously, we measured corticosterone, a hormone implicated in the stress response system, released via the hypothalamus-pituitary-adrenal axis. To better understand range-wide trends in Hg and corticosterone, we examined whether age, sex, subspecies, or range position were important predictors. Lastly, we examined whether Hg and corticosterone were correlated. Hg levels in chats were relatively low: 0.30 ± 0.02 µg/g dry weight. 148 out of 150 (98.6%) had Hg levels considered background, and 2 (1.6%) had levels considered low toxicity risk. Hg levels were similar between sexes and subspecies. Younger chats (<1 year) had higher Hg levels than older chats (>1 year). Hg levels were lowest in the northern and central portion of the eastern subspecies' range. Corticosterone concentrations in feathers averaged 3.68 ± 0.23 pg/mm. Corticosterone levels were similar between ages and sexes. Western chats had higher levels of corticosterone than eastern chats. Hg and corticosterone were not correlated, suggesting these low Hg burdens did not affect the activity of the hypothalamus-pituitary-adrenal axis. Altogether, the chat has low Hg toxicity risk across its breeding range, despite living in riparian habitats.
Collapse
Affiliation(s)
- Kristen Mancuso
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada.
| | - Karen E Hodges
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC, Canada
| | | | - John E Elliott
- Science and Technology Branch, Environment and Climate Change Canada, Delta, BC, Canada
| | | | - Michelle Zanuttig
- Science and Technology Branch, Environment and Climate Change Canada, Delta, BC, Canada
| | - Christine A Bishop
- Science and Technology Branch, Environment and Climate Change Canada, Delta, BC, Canada
| |
Collapse
|
12
|
Strickman RJ, Larson S, Huang H, Kakouros E, Marvin-DiPasquale M, Mitchell CPJ, Neumann RB. The relative importance of mercury methylation and demethylation in rice paddy soil varies depending on the presence of rice plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113143. [PMID: 34998262 DOI: 10.1016/j.ecoenv.2021.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Neurotoxic methylmercury (MeHg) accumulates in rice grain from paddy soil, where its concentration is controlled by microbial mercury methylation and demethylation. Both up- and down-regulation of methylation is known to occur in the presence of rice plants in comparison to non-vegetated paddy soils; the influence of rice plant presence/absence on demethylation is unknown. To assess the concurrent influence of rice plant presence/absence on methylation and demethylation, and to determine which process was more dominant in controlling soil MeHg concentrations, we maintained six rhizoboxes of paddy soil with and without rice plants. At the peak of plant growth, we simultaneously measured ambient MeHg, ambient inorganic mercury (IHg), and potential rate constants of methylation and demethylation (Kmeth and Kdemeth) in soil using stable isotope tracers and ID-GC-ICPMS. We also measured organic matter content, elemental S, and water-extractable sulfate. We found MeHg concentrations were differentially controlled by MeHg production and degradation processes, depending on whether plants were present. In non-vegetated boxes, MeHg concentration was controlled by Kmeth, as evidenced by a strong and positive correlation, while Kdemeth had no relation to MeHg concentration. These results indicate methylation was the dominant driver of MeHg concentration in non-vegetated soil. In vegetated boxes, Kdemeth strongly and negatively predicted MeHg concentration, indicating that demethylation was the dominant control in soil with plants. MeHg concentration, Kmeth, and % MeHg all had significantly less variance in vegetated than in non-vegetated soils due to a consistent elimination of greater values. This pattern suggests that reduced MeHg production capacity was a secondary control on MeHg concentrations in vegetated soils. We observed no difference in the magnitude or variance of Kdemeth between treatments, suggesting that demethylation was robust to soil chemical conditions influenced by the plant, perhaps because of a wider taxonomic diversity of demethylators. Our results suggest that methylation and demethylation processes could both be leveraged to alter MeHg concentrations in rice paddy soil.
Collapse
Affiliation(s)
- R J Strickman
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA.
| | - S Larson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
| | - H Huang
- University of Toronto Scarborough, Ontario, Canada
| | - E Kakouros
- US Geological Survey, Menlo Park, Palo Alto, CA, USA
| | | | | | - R B Neumann
- Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
| |
Collapse
|
13
|
Uddin MM, Zakeel MCM, Zavahir JS, Marikar FMMT, Jahan I. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. TOXICS 2021; 9:360. [PMID: 34941794 PMCID: PMC8706345 DOI: 10.3390/toxics9120360] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Aquatic ecosystems are contaminated with heavy metals by natural and anthropogenic sources. Whilst some heavy metals are necessary for plants as micronutrients, others can be toxic to plants and humans even in trace concentrations. Among heavy metals, cadmium (Cd), arsenic (As), chromium (Cr), lead (Pb), and mercury (Hg) cause significant damage to aquatic ecosystems and can invariably affect human health. Rice, a staple diet of many nations, and other aquatic plants used as vegetables in many countries, can bioaccumulate heavy metals when they grow in contaminated aquatic environments. These metals can enter the human body through food chains, and the presence of heavy metals in food can lead to numerous human health consequences. Heavy metals in aquatic plants can affect plant physicochemical functions, growth, and crop yield. Various mitigation strategies are being continuously explored to avoid heavy metals entering aquatic ecosystems. Understanding the levels of heavy metals in rice and aquatic plants grown for food in contaminated aquatic environments is important. Further, it is imperative to adopt sustainable management approaches and mitigation mechanisms. Although narrowly focused reviews exist, this article provides novel information for improving our understanding about heavy metal accumulation in rice and aquatic plants, addressing the gaps in literature.
Collapse
Affiliation(s)
- Mohammad Main Uddin
- Institute of Forestry and Environmental Sciences, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mohamed Cassim Mohamed Zakeel
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Puliyankulama, Anuradhapura 50000, Sri Lanka
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia
| | - Junaida Shezmin Zavahir
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Melbourne, VIC 3800, Australia;
| | - Faiz M. M. T. Marikar
- Staff Development Centre, General Sir John Kotelawala Defense University, Ratmalana 10390, Sri Lanka;
| | - Israt Jahan
- Department of Environmental Science, Faculty of Science and Technology, Bangladesh University of Professionals, Mirpur, Dhaka 1216, Bangladesh;
| |
Collapse
|
14
|
AŽdajić M, Yumvihoze E, Blais JM, Poulain AJ. The effect of legacy gold mining on methylmercury cycling and microbial community structure in northern freshwater lakes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1220-1230. [PMID: 34318847 DOI: 10.1039/d1em00129a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smelting activities at Giant Mine (Yellowknife, NWT, Canada) have resulted in high sulfate and arsenic concentrations in nearby lakes. Here we tested whether historic smelting affects current mercury (Hg) cycling in 35 freshwater lakes over a 2800 km2 area around the former gold mine. We sampled lake water and sediment over three consecutive years (2015-2017) using a factorial sampling design that accounted for different environmental variables known to affect the net methylmercury (MeHg) levels in water. Stable Hg(ii) and MeHg isotope tracers were used to quantify Hg methylation and demethylation rate constants in sediments, and 16S rRNA gene amplicon sequencing was used to characterize microbial community structure. This study reveals that the fraction of methylated total Hg (% MeHg) found in surface water is positively correlated to the sulfate gradient, while the rate at which Hg is methylated (Km) in sediments is negatively correlated with total arsenic, and positively correlated with dissolved organic carbon, total phosphorous, and % MeHg in the water. Furthermore, 6 of the 28 lakes that had detectable demethylation rate constants (Kd) also had significantly lower DOC concentrations than lakes with non-detectable Kd. Our results also show that legacy pollution from smelting activities is affecting the structure of microbial communities in lake sediments. This study reveals the complex dynamics of Hg cycling in this northern environment, highlighting the importance of large-scale studies in which the effect of multiple pollution gradients (e.g. arsenic and sulfate) must be taken into consideration.
Collapse
Affiliation(s)
- Mija AŽdajić
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | |
Collapse
|
15
|
Ning Y, Liu J, Huang X, Wang P, Yang S, Bi X, Yang X, Mo J. Geochemical cycle of mercury associated with wet deposition and inflows in a subalpine wetland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111507. [PMID: 33120270 DOI: 10.1016/j.ecoenv.2020.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/26/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Subalpine wetland is a mercury (Hg) sensitive ecosystem, but there is poor understanding of Hg behavior in this typical wetland. Here, distribution and speciation of Hg in waters of a subalpine wetland (Dajiuhu) in China were investigated, and an initial model of the Hg geochemical cycle in the wetland was established based on Hg mass balance calculations. Concentrations of both total Hg (THg, 9.52 ± 6.61 ng L-1) and total methyl mercury (TMeHg, 0.34 ± 0.44 ng L-1) in the waters during the wet season were higher than in the dry season. The majority of THg was in dissolved form whereas most TMeHg was in particle form. The geochemical models suggested that, due to the wet deposition and surface runoff, the input of THg and TMeHg into the wetland in the wet season (222 and 2.74 g year-1, respectively) was higher than that in the dry season (57.9 and 1.15 g year-1, respectively). The output of THg and TMeHg from the wetland underground runoff in the wet season was estimated to be 154 and 2.51 g year-1, respectively, and in the dry season was 15.9 and 0.43 g year-1, respectively. Other losses of Hg were due to volatilization of Hg0 from the sediment water (30.5 and 12.5 g year-1 in the wet and dry seasons, respectively). The flux of the settling of particulate Hg in the wet season was higher than that in the dry season. The fluxes of Hg diffusion from the porewater were relatively low in comparison to the fluxes of inflows and wet deposition. The flux of oxidation was higher than reduction, while the flux of methylation was higher than demethylation. These results indicated that the elevated levels of THg and MeHg in the Dajiuhu wetland are a consequence of rainfall and surface runoff inputs.
Collapse
Affiliation(s)
- Yongqiang Ning
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Xianyu Huang
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 4370078, China
| | - Pengcong Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiaojing Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jiayong Mo
- Shennongjia National Park Administration, Shennongjia 442400, China
| |
Collapse
|
16
|
Su Y, Kwong RWM, Tang W, Yang Y, Zhong H. Straw return enhances the risks of metals in soil? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111201. [PMID: 32905933 DOI: 10.1016/j.ecoenv.2020.111201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Interactions between organic matter (OM) and metals in soils are important natural mechanisms that can mitigate metal bioaccumulation in terrestrial environments. A primary source of OM in soils is straw return, accounting for more than 65% of OM input. Straw-OM has long been believed to reduce metal bioaccumulation, e.g., by immobilizing metals in soils. However, there is growing evidence that straw return could possibly enhance bioavailability and thus risks (i.e., food safety) of some metals in crops, including Cd, Hg, and As. Poor understanding of straw return-induced increases in metal bioavailability would add uncertainty in assessing or mitigating risks of metals in contaminated farming soils. Here, 863 pieces of literature (2000-2019) that reported the effects of straw return on metal bioavailability and bioaccumulation were reviewed. Mechanisms responsible for the increased metal mobility and bioavailability under straw return are summarized, including the effects of dissolution, complexation, and methylation. Effects of straw return on the physiology and the absorption of metals in plants is also discussed (i.e., physiological effect). These mechanisms are then used to explain the observed increases in the mobility, bioavailability, and bioaccumulation of Cd, Hg, and As under straw amendment. Information summarized in this study highlights the importance to re-consider the current straw return policy, particularly in metal-contaminated farmlands.
Collapse
Affiliation(s)
- Yao Su
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
17
|
Adams EM, Sauer AK, Lane O, Regan K, Evers DC. The effects of climate, habitat, and trophic position on methylmercury bioavailability for breeding New York songbirds. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1843-1861. [PMID: 31865513 DOI: 10.1007/s10646-019-02151-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is a global pollutant that affects songbird populations across a variety of ecosystems following conversion to methylmercury (MeHg)-a form of Hg with high potential for bioaccumulation and bioavailability. The amount of bioavailable MeHg in an ecosystem is a function of the amount of total Hg present as well as Hg methylation rates, which vary across the landscape in space and time, and trophic transfer. Using songbirds as an indicator of MeHg bioavailability in terrestrial ecosystems, we evaluated the role of habitat, climate, and trophic level in dictating MeHg exposure risk across a variety of ecosystems. To achieve this objective, 2243 blood Hg samples were collected from 81 passerine and near-passerine species in New York State, USA, spanning 10 different sampling regions from Long Island to western New York. Using a general linear mixed modeling framework that accounted for regional variation in sampling species composition, we found that wetland habitat area within 100 m of capture location, 50-year average of summer maximum temperatures, and trophic position inferred using stable isotope analysis were all correlated with songbird blood Hg concentrations statewide. Moreover, these patterns had a large degree of spatial variability suggesting that the drivers of MeHg bioavailability differed significantly across the state. Mercury deposition, land cover, and climate are all expected to change throughout the northeastern United States in the coming decades. Terrestrial MeHg bioavailability will likely respond to these changes. Focused research and monitoring efforts will be critical to understand how exposure risk responds to global environmental change across the landscape.
Collapse
Affiliation(s)
- Evan M Adams
- Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA.
| | - Amy K Sauer
- Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
| | - Oksana Lane
- Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
| | - Kevin Regan
- Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Rd., Portland, ME, 04103, USA
| |
Collapse
|
18
|
Brasso R, Rittenhouse KA, Winder VL. Do songbirds in wetlands show higher mercury bioaccumulation relative to conspecifics in non-wetland habitats? ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1183-1194. [PMID: 31942663 DOI: 10.1007/s10646-020-02160-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Environmental conditions in wetlands facilitate favorable biogeochemical conditions for the conversion of inorganic mercury into methylmercury. For this reason, wetlands are increasingly classified as mercury hotspots, places where biota exhibit elevated mercury concentrations. While it is clear that wetlands play an important role in methylmercury production, factors such as geographic variation in mercury deposition, wetland type, and trophic dynamics can cause variation in mercury dynamics and bioaccumulation in biota occupying wetlands or connected to wetland trophic systems. Here, we use songbirds as bioindicators in a two-pronged approach aimed at evaluating the state of our understanding of mercury bioaccumulation by songbirds in wetland ecosystems. First, we use a case study in southeast Missouri to compare blood mercury concentrations in tree swallows (Tachycineta bicolor) and eastern bluebirds (Sialia sialis) occupying wetland and non-wetland habitats to test the hypothesis that songbirds in wetlands will have higher mercury bioaccumulation than those in non-wetlands. Adult tree swallows in wetlands had significantly higher blood mercury concentrations than those in non-wetlands; however, no difference between ecosystems was detected in eastern bluebirds. Second, we present a review of the current literature on mercury in songbirds in wetland ecosystems across North America. Mercury concentrations in songbirds varied among wetland types and with geographic location, often in an unpredictable manner. Mercury concentrations in songbird blood varied 3-10 fold at locations separated only by ~10 to several hundred kilometers. This magnitude of difference in blood mercury concentrations among wetlands exceeds documented differences between wetland and non-wetland ecosystems. Therefore, we caution against the automatic assumption that songbirds occupying wetlands will have higher mercury bioaccumulation than conspecifics living in other habitats.
Collapse
Affiliation(s)
- Rebecka Brasso
- Department of Zoology, Weber State University, Ogden, UT, 84408, USA.
| | - Katie Ann Rittenhouse
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, 63701, USA
| | - Virginia L Winder
- Department of Biology, Benedictine College, Atchison, KS, 66002, USA
| |
Collapse
|
19
|
Winder VL, Anteau MJ, Fisher MR, Wilcox MK, Igl LD, Ackerman JT. Wetland water-management may influence mercury bioaccumulation in songbirds and ducks at a mercury hotspot. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1229-1239. [PMID: 31902053 DOI: 10.1007/s10646-019-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Mercury is a persistent, biomagnifying contaminant that can cause negative behavioral, immunological, and reproductive effects in wildlife and human populations. We examined the role of wetland water-management on mercury bioaccumulation in songbirds and ducks at Kellys Slough National Wildlife Refuge Complex, near Grand Forks, North Dakota USA. We assessed mercury concentrations in blood of wetland-foraging songbirds (80 common yellowthroats [Geothlypis trichas] and 14 Nelson's sparrows [Ammospiza nelsoni]) and eggs of upland-nesting ducks (28 gadwall [Mareca strepera], 19 blue-winged teal [Spatula discors], and 13 northern shoveler [S. clypeta]) across four wetland water-management classifications. Nelson's sparrow blood mercury concentrations were elevated (mean: 1.00 µg/g ww; 95% CL: 0.76-1.31) and similar to those reported 6 years previously. Mercury in songbird blood and duck eggs varied among wetland water-management classifications. Songbirds and ducks had 67% and 49% lower mercury concentrations, respectively, when occupying wetlands that were drawn down with water flow compared to individuals occupying isolated-depressional wetlands with no outflow. Additionally, songbirds within impounded and partially drawn-down wetland units with water flow had mercury concentrations that were 26-28% lower, respectively, than individuals within isolated-depressional wetlands with no outflow. Our results confirm that mercury concentrations in songbirds at Kellys Slough continue to be elevated and suggest that water-management could be an important tool for wetland managers to reduce bioaccumulation of mercury in birds.
Collapse
Affiliation(s)
- Virginia L Winder
- Department of Biology, Benedictine College, Atchison, KS, 66002, USA.
| | - Michael J Anteau
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, 8711 37th St SE, Jamestown, ND, 58401, USA
| | - Mark R Fisher
- Devils Lake Wetland Management District, U.S. Fish and Wildlife Service, Devils Lake, ND, 58301, USA
| | - Mary Kate Wilcox
- Division of Biology, Kansas State University, Manhattan, KS, 66502, USA
| | - Lawrence D Igl
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, 8711 37th St SE, Jamestown, ND, 58401, USA
| | - Joshua T Ackerman
- Western Ecological Research Center, Dixon Field Station, U.S. Geological Survey, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| |
Collapse
|
20
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
21
|
Bishop K, Shanley JB, Riscassi A, de Wit HA, Eklöf K, Meng B, Mitchell C, Osterwalder S, Schuster PF, Webster J, Zhu W. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137647. [PMID: 32197286 DOI: 10.1016/j.scitotenv.2020.137647] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This review documents recent advances in terrestrial mercury cycling. Terrestrial mercury (Hg) research has matured in some areas, and is developing rapidly in others. We summarize the state of the science circa 2010 as a starting point, and then present the advances during the last decade in three areas: land use, sulfate deposition, and climate change. The advances are presented in the framework of three Hg "gateways" to the terrestrial environment: inputs from the atmosphere, uptake in food, and runoff with surface water. Among the most notable advances: These and other advances reported here are of value in evaluating the effectiveness of the Minamata Convention on reducing environmental Hg exposure to humans and wildlife.
Collapse
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | | | - Ami Riscassi
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Charlottesville, VA 22904-4123, USA.
| | - Heleen A de Wit
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Norway.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Carl Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble 18 INP, 38000 Grenoble, France.
| | - Paul F Schuster
- U.S. Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303-1066, USA.
| | - Jackson Webster
- Department of Civil Engineering, California State University, 400 W. 1st Street, 21 95929-0930 Chico, CA, USA.
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
| |
Collapse
|
22
|
Bravo AG, Cosio C. Biotic formation of methylmercury: A bio-physico-chemical conundrum. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1010-1027. [PMID: 32612306 PMCID: PMC7319479 DOI: 10.1002/lno.11366] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Mercury (Hg) is a natural and widespread trace metal, but is considered a priority pollutant, particularly its organic form methylmercury (MMHg), because of human's exposure to MMHg through fish consumption. Pioneering studies showed the methylation of divalent Hg (HgII) to MMHg to occur under oxygen-limited conditions and to depend on the activity of anaerobic microorganisms. Recent studies identified the hgcAB gene cluster in microorganisms with the capacity to methylate HgII and unveiled a much wider range of species and environmental conditions producing MMHg than previously expected. Here, we review the recent knowledge and approaches used to understand HgII-methylation, microbial biodiversity and activity involved in these processes, and we highlight the current limits for predicting MMHg concentrations in the environment. The available data unveil the fact that HgII methylation is a bio-physico-chemical conundrum in which the efficiency of biological HgII methylation appears to depend chiefly on HgII and nutrients availability, the abundance of electron acceptors such as sulfate or iron, the abundance and composition of organic matter as well as the activity and structure of the microbial community. An increased knowledge of the relationship between microbial community composition, physico-chemical conditions, MMHg production, and demethylation is necessary to predict variability in MMHg concentrations across environments.
Collapse
Affiliation(s)
- Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine SciencesSpanish National Research Council (CSIC)BarcelonaSpain
| | - Claudia Cosio
- Université de Reims Champagne Ardennes, UMR‐I 02 INERIS‐URCA‐ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiquesReimsFrance
| |
Collapse
|
23
|
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C. The assessment and remediation of mercury contaminated sites: A review of current approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136031. [PMID: 31869604 PMCID: PMC6980986 DOI: 10.1016/j.scitotenv.2019.136031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 04/13/2023]
Abstract
Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA.
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA.
| | - Sarah Janssen
- USGS Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Todd P Luxton
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Paul M Randall
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Lindsay Whalin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| | - Carrie Austin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| |
Collapse
|
24
|
Xu X, Han J, Pang J, Wang X, Lin Y, Wang Y, Qiu G. Methylmercury and inorganic mercury in Chinese commercial rice: Implications for overestimated human exposure and health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113706. [PMID: 31864929 DOI: 10.1016/j.envpol.2019.113706] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
China is the largest rice producer and consumer in the world, and mercury (Hg) levels, particularly methylmercury (MeHg), in rice and health exposure risks are public concerns. Total Hg (THg) and MeHg levels in 767 (domestic = 709 and abroad = 58) Chinese commercial rice were investigated to evaluate Hg pollution level, dietary exposures and risks of IHg and MeHg. The mean rice THg and MeHg levels were 3.97 ± 2.33 μg/kg and 1.37 ± 1.18 μg/kg, respectively. The highest daily intake of MeHg and IHg were obtained in younger groups, accounted for 6% of the reference dose-0.1 μg/kg bw/day for MeHg, 0.3% of the provisional tolerance week intake-0.571 μg/kg bw/day for IHg. Residents in Central China and Southern China meet the highest rice Hg exposure, which were more than 7 times of those in Northwest China. Lower concentrations than earlier studies were observed along the implementations of strict policies since 2007. This may indicate that a declining temporal trend of Hg in Chinese grown rice and associated exposures could be obtained with the implementations of strict policies. Though there exist Hg pollution in commercial rice, Hg levels in Chinese commercial rice is generally safe compared with Hg polluted sites. Populations dwelling in China have relatively a quite low and safe MeHg and IHg exposure via the intake of commercial rice. Strict policies contributed to the decrease in THg and MeHg levels in Chinese-grown rice. More attention should be paid to younger groups.
Collapse
Affiliation(s)
- Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Pang
- Guizhou Normal University, Guiyang, 550001, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yan Lin
- Norwegian Institute for Water Research, Oslo, 0349, Norway
| | - Yajie Wang
- College of Food Safety, Guizhou Medical University, Guiyang, 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
25
|
Xu X, Han J, Abeysinghe KS, Atapattu AJ, De Silva PMCS, Xu Z, Long S, Qiu G. Dietary exposure assessment of total mercury and methylmercury in commercial rice in Sri Lanka. CHEMOSPHERE 2020; 239:124749. [PMID: 31505443 DOI: 10.1016/j.chemosphere.2019.124749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) in rice has attracted growing health concern over the past decade, due to the accumulation of high MeHg levels, which may pose potential health risk to humans. Rice is the staple food in Sri Lanka; nevertheless, the presence of micro pollutants, such as MeHg has been not investigated. Therefore, commercial rice samples from the Sri Lankan market (n = 163) were measured to reveal the total mercury (THg) and MeHg levels. THg (mean: 1.73 ± 0.89 ng/g, range: 0.21-6.13 ng/g) and MeHg concentrations (mean: 0.51 ± 0.37 ng/g; range: 0.03-3.81 ng/g) were low. Compared to the fish MeHg exposure, the rice MeHg exposure was generally lower in different consumption groups, suggesting that rice plays a less role than fish in MeHg exposure in Sri Lanka. Babies (infants and toddlers) at one year old may face fish MeHg exposure (0.17 μg/kg bw/day) higher than the reference dose for MeHg (RfD)-0.1 μg/kg bw/day, which was more than 5 times that of rice MeHg exposure (0.031 μg/kg bw/day). Future studies in Sri Lanka should focus on health impacts under long-term overexposure of MeHg, especially in vulnerable populations. Some diet changes should be made to mitigate MeHg exposure levels in Sri Lankans.
Collapse
Affiliation(s)
- Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anjana J Atapattu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China; Agronomy Division, Coconut Research Institute, Lunuwila, 61150, Sri Lanka
| | | | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
26
|
Wang Y, Chen Z, Wu Y, Zhong H. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134143. [PMID: 31476499 DOI: 10.1016/j.scitotenv.2019.134143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Paddy soil is a key area of methylmercury (MeHg) production and is dominated by fluctuating redox conditions following rice plant growth or rice-wheat rotation planting in eastern and southern Asia. The role of organic matter in the formation of MeHg under these biogeochemical redox cycles remains poorly understood, especially in certain mercury (Hg)-contaminated paddy soils. Here, we provide a detailed understanding of the formation of MeHg and its accumulation in crops (i.e., wheat and rice) in rice-wheat rotation systems under straw return. Two series of experiments, pot and microcosm experiments, were performed using Hg-contaminated paddy soil with 1% (w/w) wheat or rice straw addition under aerobic or anoxic conditions. The results showed that straw amendments increased MeHg levels in wheat (by 225%) and rice (by 20%) grains, most likely due to the elevated soil MeHg following straw amendment. Microcosm experiments further confirmed that fresh straw-derived organic matter enhances MeHg net production in soil through an overall increase in the activity of sulfate-reducing bacteria (SRB), particularly under anoxic conditions. Our study clearly demonstrated that straw amendment enhanced MeHg accumulation in wheat and rice grains and highlighted that straw return in Hg-contaminated soils may increase the health risk of MeHg exposure to local residents via crop consumption. Thus, some guidance should be provided for crop residue return in rice-wheat rotation system farming practices.
Collapse
Affiliation(s)
- Yongjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, PR China
| | - Zongya Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550002, PR China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550002, PR China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
27
|
Ackerman JT, Fleck JA, Eagles-Smith CA, Marvin-DiPasquale M, Windham-Myers L, Herzog MP, McQuillen HL. Wetland Management Strategy to Reduce Mercury in Water and Bioaccumulation in Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2178-2196. [PMID: 31343757 DOI: 10.1002/etc.4535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Wetland environments provide numerous ecosystem services but also facilitate methylmercury (MeHg) production and bioaccumulation. We developed a wetland-management technique to reduce MeHg concentrations in wetland fish and water. We physically modified seasonal wetlands by constructing open- and deep-water treatment cells at the downstream end of seasonal wetlands to promote naturally occurring MeHg-removal processes. We assessed the effectiveness of reducing mercury (Hg) concentrations in surface water and western mosquitofish that were caged at specific locations within 4 control and 4 treatment wetlands. Methylmercury concentrations in wetland water were successfully decreased within treatment cells during only the third year of study; however, treatment cells were not effective for reducing total Hg concentrations. Furthermore, treatment cells were not effective for reducing total Hg concentrations in wetland fish. Mercury concentrations in fish were not correlated with total Hg concentrations in filtered, particulate, or whole water; and the slope of the correlation with water MeHg concentrations differed between months. Fish total Hg concentrations were weakly correlated with water MeHg concentrations in April when fish were introduced into cages but were not correlated in May when fish were retrieved from cages. Fish total Hg concentrations were greater in treatment wetlands than in control wetlands the year after the treatment wetlands' construction but declined by the second year. During the third year, fish total Hg concentrations increased in both control and treatment wetlands after an unexpected regional flooding event. Overall, we found limited support for the use of open- and deep-water treatment cells at the downstream end of wetlands to reduce MeHg concentrations in water but not fish. We suggest that additional evaluation over a longer period of time is necessary. Environ Toxicol Chem 2019;38:2178-2196. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America..
Collapse
Affiliation(s)
- Joshua T Ackerman
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California
| | - Jacob A Fleck
- US Geological Survey, California Water Science Center, Sacramento, California
| | - Collin A Eagles-Smith
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon
| | | | | | - Mark P Herzog
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California
| | - Harry L McQuillen
- US Bureau of Land Management, Cosumnes River Preserve, Galt, California
| |
Collapse
|
28
|
El-Tawil RS, El-Wakeel ST, Abdel-Ghany AE, Abuzeid HAM, Selim KA, Hashem AM. Silver/quartz nanocomposite as an adsorbent for removal of mercury (II) ions from aqueous solutions. Heliyon 2019; 5:e02415. [PMID: 31528746 PMCID: PMC6742848 DOI: 10.1016/j.heliyon.2019.e02415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
Silver nanoparticles (AgNPs) and silver/quartz nanocomposite (Ag/Q)NPs)) were synthesized by sol-gel method using table sugar as chelating agent. The synthesized nanosized materials were used for mercury ions adsorption from aqueous solutions. The materials were characterized by X-ray diffraction (XRD), Transmission Electron microscope (TEM), and surface area (BET). Adsorption of Hg2+ (10 mg/l) is strongly dependent on time, initial metal concentration, dose of adsorbent and pH value. Silver/quartz nanocomposite ((Ag/Q)NPs)) shows better efficiency than individual silver nanoparticles (AgNPs). This composite removed mercury ions from the aqueous solution with efficiency of 96% at 60 min with 0.5g adsorbent dosage at pH 6. The adsorption process explained well by the pseudo-second-order kinetic model. In conclusion silver/quartz nanocomposite (Ag/Q)NPs)) shows higher removal efficiency for mercury ions from aqueous solutions than individual silver naoparticles (AgNPs) or quartz (Q).
Collapse
Affiliation(s)
- Rasha S El-Tawil
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Shaimaa T El-Wakeel
- National Research Centre, Water Pollution Research Department, Environmental Research Division, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Ashraf E Abdel-Ghany
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Hanaa A M Abuzeid
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Khaled A Selim
- Central Metallurgical Research & Development Institute, Minerals Technology Department, CMRDI, Cairo, Egypt
| | - Ahmed M Hashem
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| |
Collapse
|
29
|
He M, Tian L, Braaten HFV, Wu Q, Luo J, Cai LM, Meng JH, Lin Y. Mercury-Organic Matter Interactions in Soils and Sediments: Angel or Devil? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:621-627. [PMID: 30600387 DOI: 10.1007/s00128-018-2523-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Many studies have suggested that organic matter (OM) substantially reduces the bioavailability and risks of mercury (Hg) in soils and sediments; however, recent reports have supported that OM greatly accelerates Hg methylation and increases the risks of Hg exposure. This study aims to summarize the interactions between Hg and OM in soils and sediments and improve our understanding of the effects of OM on Hg methylation. The results show that OM characteristics, promotion of the activity of Hg-methylating microbial communities, and the microbial availability of Hg accounted for the acceleration of Hg methylation which increases the risk of Hg exposure. These three key aspects were driven by multiple factors, including the types and content of OM, Hg speciation, desorption and dissolution kinetics and environmental conditions.
Collapse
Affiliation(s)
- Mei He
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Lei Tian
- School of Petroleum Engineering, Yangtze University, Wuhan, 430100, People's Republic of China
| | | | - Qingru Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jie Luo
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Li-Mei Cai
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Jiang-Hui Meng
- Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, 430100, People's Republic of China
| | - Yan Lin
- School of Resources and Environment, Yangtze University, Wuhan, 430100, People's Republic of China.
- Norwegian Institute for Water Research, 0349, Oslo, Norway.
| |
Collapse
|
30
|
Bachand PAM, Kraus TEC, Stumpner EB, Bachand SM, Stern D, Liang YL, Horwath WR. Mercury sequestration and transformation in chemically enhanced treatment wetlands. CHEMOSPHERE 2019; 217:496-506. [PMID: 30439661 DOI: 10.1016/j.chemosphere.2018.10.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) pollution is a concern to human and wildlife health worldwide, and management strategies that reduce Hg inputs to aquatic systems are of broad interest. Using a replicated field-scale study in California's Sacramento-San Joaquin Delta, we tested the effectiveness of chemically enhanced treatment wetlands (CETWs) under two coagulation treatments, polyaluminum chloride (Al treatment) and ferric sulfate (Fe treatment), in their initial removal and longer-term sequestration of Hg compared to untreated control wetlands. The primary mechanism for Hg removal by CETWs was the transfer of Hg from filtered forms to insoluble particulate forms and enhanced settling of particles. CETWs resulted in total Hg annual load removals of 63 ng m-2 yr-1 (71%) and 54 ng m-2 yr-1 (54%) for the Al and Fe treatments, respectively. Control wetlands removed significantly less at 13 ng m-2 yr-1 (14%). Load removals indicate that Fe treatment wetlands more effectively reduced filtered and total methylmercury (MeHg) exports, while Al treatment wetlands more effectively reduced particulate MeHg and total Hg exports. These differences in Hg species load reductions possibly indicate different mechanisms of Hg sequestration; current data suggest more effective floc formation and particle settling was likely responsible for the Al treatment behavior, while either preferential MeHg sequestration or methylation suppression was potentially responsible for Fe treatment behavior. Differences in Hg sequestration behavior post-coagulation between the flocs formed by different coagulants indicate the importance of in-situ studies and the need for careful selection of coagulant treatment depending on the Hg species requiring remediation.
Collapse
Affiliation(s)
| | - Tamara E C Kraus
- U.S. Geological Survey California Water Science Center, 6000 J Street Placer Hall, Sacramento, CA, 95819, USA.
| | - Elizabeth B Stumpner
- U.S. Geological Survey California Water Science Center, 6000 J Street Placer Hall, Sacramento, CA, 95819, USA.
| | | | - Dylan Stern
- Bachand & Associates, 231 G St., Ste. 28, Davis, CA 95616, USA; Delta Stewardship Council, 980 Ninth Street Ste 1500, Sacramento, CA 95814, USA.
| | - Yan Ling Liang
- Bachand & Associates, 231 G St., Ste. 28, Davis, CA 95616, USA; Department of Land, Air and Water Resources, 1 Shields Avenue, University of California Davis, Davis, CA, 95616, USA.
| | - William R Horwath
- Department of Land, Air and Water Resources, 1 Shields Avenue, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
31
|
Xu Q, Zhao L, Wang Y, Xie Q, Yin D, Feng X, Wang D. Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:115-126. [PMID: 30172117 DOI: 10.1016/j.envpol.2018.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/12/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Newly constructed reservoirs were recognized as hotspot of mercury (Hg) methylation, and then methylmercury (MeHg) accumulation in food chains. The risk of elevated MeHg concentrations in fish is one of the most important concerns in newly constructed reservoirs. The Three Gorges Reservoir (TGR) is one of the largest reservoirs in the world. However, the distribution and bioaccumulation characteristics of Hg species within the food chains and its potential ecological risk in the TGR remain poorly understood. In this study, 264 fish individuals covering 18 species were collected from the TGR. Total mercury (THg) and MeHg concentrations in different organs (gill, heart, liver, muscle and swim bladder) of fish species were analyzed; the values of δ13C and δ15N in fish muscle were determined as well to reveal the biomagnification properties of Hg in food chains. Our results showed that concentrations of THg (0.5-272 ng g-1, w.w.) and MeHg (0.1-199 ng g-1, w.w.) in fish muscle from the TGR ubiquitously fall below the safe fish consumption limit on Hg recommended by WHO (500 ng g-1, w.w.) and the US-EPA Water Quality Criterion for MeHg (300 ng g-1, w.w.). The short food web jointly with the limited trophic magnification factor in the TGR explained the relatively low Hg concentrations in predators. Among the five fish organs, muscle represented the highest Hg concentrations, followed by heart, liver, swim bladder, and gill, suggesting that muscle has the highest ability to accumulate Hg compared to the other organs. More importantly, no discernible "reservoir effect" was observed in the TGR within the initial few years after impoundment due to its special eco-environment including: 1) neutral and slightly alkaline pH and low dissolved organic carbon of water, 2) less vegetation coverage in inundated areas, 3) simple food web.
Collapse
Affiliation(s)
- Qinqin Xu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Qing Xie
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Deliang Yin
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
32
|
Zhao JY, Ye ZH, Zhong H. Rice root exudates affect microbial methylmercury production in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1921-1929. [PMID: 30072222 DOI: 10.1016/j.envpol.2018.07.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Microbial methylmercury (MeHg) production in contaminated soil-rice systems and its accumulation in rice pose health risks to consumers, especially those in Asia. However, the mechanism responsible for microbial MeHg production in paddy soils is far from clear. While previous studies examined the effect of soil and microbial factors on soil MeHg levels, in this work we explored the impact of rice cultivation itself on microbial MeHg production, focusing on the root exudate organic matter as a potential source of electron donors for microbial methylators. Effects of the cultivation of two rice cultivars, Heigu246 (H-rice) and Neiwuyou8015 (N-rice), on MeHg production in soils were therefore investigated in pot and batch incubation experiments. Soil MeHg levels measured in H-rice treatment during the heading and harvest stages were 18-49% higher than in the control and 23-108% higher than in N-rice treatment. Consequently, MeHg levels in grain, straw, and root were 38%, 81%, and 40% higher in H-rice than those in N-rice, which was mainly attributed to cultivar-specific MeHg production in soils. Results of the batch experiments suggested that root exudate organic matter could be responsible for MeHg production in soils during rice cultivation, by increasing the abundances of potential microbial methylators. For instance, root exudate organic matter increased copy numbers of Hg methylation genes (hgcA) in soils 4.1-fold. Furthermore, the 211% higher concentration of acetate (a key electron donor for microbial methylators) in the root exudate of H-rice could account for the higher MeHg production under H-rice than N-rice cultivation. Our results suggest that root exudate organic matter, especially acetate, as its key component, contributes to the elevated soil MeHg concentrations during rice cultivation. The proposed mechanism provides new insights into the elevated risk of MeHg production in contaminated soil-rice systems, as well as cultivar-specific MeHg bioaccumulation.
Collapse
Affiliation(s)
- Jia-Yin Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Zhi-Hong Ye
- State Key Laboratory for Bio-control and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
33
|
Wang X, Wang N, Xing Y, Yun J, Zhang H. Effects of Plastic Mulching and Basal Nitrogen Application Depth on Nitrogen Use Efficiency and Yield in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:1446. [PMID: 30333847 PMCID: PMC6176046 DOI: 10.3389/fpls.2018.01446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/12/2018] [Indexed: 05/27/2023]
Abstract
The demand for increased grain production to support population and consumption growth has led to increased interest in field management approaches that incorporate plastic mulching and fertilization management. The purpose of this study was to investigate the effects of plastic mulching and basal nitrogen (N)-fertilizer application depth on N balance estimations, N use efficiency (NUE) and maize yield. The experiment was conducted in 2014 and 2015 with six treatments: no N fertilizer and no mulching (CK), traditional broadcast N fertilizer with mulching (T0), basal N-fertilizer application at a depth of 6 cm with no mulching (T1), basal N-fertilizer application at a depth of 6 cm with plastic mulching (T2), basal N-fertilizer application at a depth of 12 cm with no mulching (T3) and basal N-fertilizer application at a depth of 12 cm with plastic mulching (T4). Mulching and basal N-fertilizer application depth each had significant effects on grain yield, but there were no significant interactions between them. The highest grain yield was observed in the T2 treatment and was 89.1% and 99.8% higher than the grain yield in the CK treatment in 2014 and 2015, respectively. The N uptake in T2 was 21.3% and 25.3% higher than that in the T0 treatment in 2014 and 2015, respectively. Relative to the value in the T0 treatment, the mean N loss over the 2 years was reduced by 34.6% in T2 and by 39.8% in T4. The basal N-fertilizer application depth of 12 cm yielded an obvious increase in NUE, but a high N residual remained below 50 cm after harvest, indicating the higher potential for N losses. In addition, the field application of this type of fertilizer management would require more labor in the absence of the implementation of mechanization. Based on the results, basal N-fertilizer application a depth of 6 cm without plastic mulching is recommended because it significantly increased grain yield and NUE, reduced N loss and requires no investment in plastic film, which are conducive to food security and environmental conservation.
Collapse
|
34
|
Ouattara AA, Yao KM, Soro MP, Diaco T, Trokourey A. Arsenic and Trace Metals in Three West African rivers: Concentrations, Partitioning, and Distribution in Particle-Size Fractions. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:449-463. [PMID: 30008014 DOI: 10.1007/s00244-018-0543-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Despite increasing mining activities, and fertilizer and pesticide use in agriculture, little information is available on the status of metal(loid) contamination in rivers in West Africa. Sixty water samples were collected from three significant rivers (the Bandama, Comoé, and Bia Rivers) in Côte d'Ivoire, the world's top cocoa producer, to examine As, Pb, Cu, Fe, Cd, and Zn concentrations, partitioning, and distribution in suspended particle-size fractions. The results showed higher total metal(loid) concentrations during the dry and flood seasons than during the rainy season. Significant As and Pb concentrations, moderate Cu and Fe concentrations, and low Zn concentrations were observed during the flood season. The metal(loid) concentrations decreased upstream to downstream primarily due to increased deposition through flocculation. Inverse or no obvious spatial trends often were observed, indicative of local contamination from anthropogenic activities. The suspended solid phase and the strength of metal affinity to the particles controlled the metal(loid) concentrations. Furthermore, total metal(loid) concentrations increased significantly with decreasing suspended particle-size fractions. The results underline that As and Pb contents in the Comoé and Bia Rivers threaten the health of at least 3 million people in southeastern Côte d'Ivoire. Filtering river waters before use will significantly reduce human health risks.
Collapse
Affiliation(s)
- Ahbeauriet Ahmed Ouattara
- Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Centre de Recherches Océanologiques (CRO), Abidjan, Côte d'Ivoire
| | | | - Maley Pacome Soro
- Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Centre de Recherches Océanologiques (CRO), Abidjan, Côte d'Ivoire
| | - Thomas Diaco
- Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Albert Trokourey
- Laboratoire de Chimie Physique, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| |
Collapse
|
35
|
Tanner KC, Windham-Myers L, Marvin-DiPasquale M, Fleck JA, Tate KW, Linquist BA. Methylmercury Dynamics in Upper Sacramento Valley Rice Fields with Low Background Soil Mercury Levels. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:830-838. [PMID: 30025065 DOI: 10.2134/jeq2017.10.0390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice ( L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g (range: <0.007-2.1 ng g). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76-110 ng m) and THg (1947-7224 ng m) during the growing season, and net exporters of MeHg (35-200 ng m) and THg (248-6496 ng m) during the fallow season. At harvest, 190 to 700 ng MeHg m and 1400 to 1700 ng THg m were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m and 7000-10,500 ng m THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.
Collapse
|
36
|
Hansen AM, Kraus TEC, Bachand SM, Horwath WR, Bachand PAM. Wetlands receiving water treated with coagulants improve water quality by removing dissolved organic carbon and disinfection byproduct precursors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:603-613. [PMID: 29223084 DOI: 10.1016/j.scitotenv.2017.11.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Constructed wetlands are used worldwide to improve water quality while also providing critical wetland habitat. However, wetlands have the potential to negatively impact drinking water quality by exporting dissolved organic carbon (DOC) that upon disinfection can form disinfection byproducts (DBPs) like trihalomethanes (THMs) and haloacetic acids (HAAs). We used a replicated field-scale study located on organic rich soils in California's Sacramento-San Joaquin Delta to test whether constructed flow-through wetlands which receive water high in DOC that is treated with either iron- or aluminum-based coagulants can improve water quality with respect to DBP formation. Coagulation alone removed DOC (66-77%) and THM (67-70%) precursors, and was even more effective at removing HAA precursors (77-90%). Passage of water through the wetlands increased DOC concentrations (1.5-7.5mgL-1), particularly during the warmer summer months, thereby reversing some of the benefits from coagulant addition. Despite this addition, water exiting the wetlands treated with coagulants had lower DOC and DBP precursor concentrations relative to untreated source water. Benefits of the coagulation-wetland systems were greatest during the winter months (approx. 50-70% reduction in DOC and DBP precursor concentrations) when inflow water DOC concentrations were higher and wetland DOC production was lower. Optical properties suggest DOC in this system is predominantly comprised of high molecular weight, aromatic compounds, likely derived from degraded peat soils.
Collapse
Affiliation(s)
- Angela M Hansen
- United States Geological Survey, 6000 J Street, Sacramento, CA 95819, USA
| | - Tamara E C Kraus
- United States Geological Survey, 6000 J Street, Sacramento, CA 95819, USA.
| | | | - William R Horwath
- University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
37
|
Cui W, Liu G, Bezerra M, Lagos DA, Li Y, Cai Y. Occurrence of Methylmercury in Rice-Based Infant Cereals and Estimation of Daily Dietary Intake of Methylmercury for Infants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9569-9578. [PMID: 29067797 DOI: 10.1021/acs.jafc.7b03236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent reports of elevated levels of methylmercury (MeHg) in rice revealed the possible occurrence of MeHg in infant rice cereals, leading to potential MeHg exposure through cereal consumption. Total mercury (THg) and MeHg levels in 119 infant cereal samples commonly marketed in the United States and China and estimated daily intake of MeHg through cereal consumption were determined. Concentrations of THg and MeHg in the tested cereal samples ranged from 0.35 to 15.9 μg/kg and from 0.07 to 13.9 μg/kg with means of 2.86 and 1.61 μg/kg, respectively. Rice-based cereals contained MeHg levels significantly higher than those of nonrice cereals, indicating that MeHg in rice could be source of MeHg in cereals. Cereal consumption could be a potential pathway of MeHg exposure for infants, as the EDI through cereal consumption amounted to 4-122% of the MeHg reference dose, suggesting the necessity of further evaluation of the potential health risk of dietary MeHg exposure to infants.
Collapse
Affiliation(s)
- Wenbin Cui
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Guangliang Liu
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
- Southeast Environmental Research Center, Florida International University , Miami, Florida 33199, United States
| | - Mayara Bezerra
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Danielle A Lagos
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China , Qingdao, China
| | - Yong Cai
- Department of Chemistry & Biochemistry, Florida International University , Miami, Florida 33199, United States
- Southeast Environmental Research Center, Florida International University , Miami, Florida 33199, United States
- Institute of Environment and Health, Jianghan University , Wuhan, China
| |
Collapse
|
38
|
Rothenberg SE, Jackson BP, Carly McCalla G, Donohue A, Emmons AM. Co-exposure to methylmercury and inorganic arsenic in baby rice cereals and rice-containing teething biscuits. ENVIRONMENTAL RESEARCH 2017; 159:639-647. [PMID: 28938205 PMCID: PMC5661960 DOI: 10.1016/j.envres.2017.08.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice is an important dietary source for methylmercury (MeHg), a potent neurotoxin, and inorganic arsenic (As), a human carcinogen. Rice baby cereals are a dietary source of inorganic As; however, less is known concerning MeHg concentrations in rice baby cereals and rice teething biscuits. METHODS MeHg concentrations were measured in 36 rice baby cereals, eight rice teething biscuits, and four baby cereals manufactured with oats/wheat (n = 48 total). Arsenic (As) species, including inorganic As, were determined in rice baby cereals and rice teething biscuits (n = 44/48), while total As was determined in all products (n = 48). RESULTS Rice baby cereals and rice teething biscuits were on average 61 and 92 times higher in MeHg, respectively, and 9.4 and 4.7 times higher in total As, respectively, compared to wheat/oat baby cereals. For a 15-g serving of rice baby cereal, average MeHg intake was 0.0092μgday-1 (range: 0.0013-0.034μgday-1), while average inorganic As intake was 1.3μgday-1 (range: 0.37-2.3μgday-1). Inorganic As concentrations in two brands of rice baby cereal (n = 12/36 boxes of rice cereal) exceeded 100ng/g, the proposed action level from the U.S. Food and Drug Administration. Log10 MeHg and inorganic As concentrations in rice baby cereals were strongly, positively correlated (Pearson's rho = 0.60, p < 0.001, n = 36). CONCLUSIONS Rice-containing baby cereals and teething biscuits were a dietary source of both MeHg and inorganic As. Studies concerning the cumulative impacts of MeHg and inorganic As on offspring development are warranted.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Brian P Jackson
- Trace Element Analysis Core Laboratory, Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - G Carly McCalla
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA; School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC, USA
| | - Alexis Donohue
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Alison M Emmons
- Trace Element Analysis Core Laboratory, Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
39
|
Abeysinghe KS, Qiu G, Goodale E, Anderson CWN, Bishop K, Evers DC, Goodale MW, Hintelmann H, Liu S, Mammides C, Quan RC, Wang J, Wu P, Xu XH, Yang XD, Feng X. Mercury flow through an Asian rice-based food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:219-228. [PMID: 28599206 DOI: 10.1016/j.envpol.2017.05.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) is a globally-distributed pollutant, toxic to humans and animals. Emissions are particularly high in Asia, and the source of exposure for humans there may also be different from other regions, including rice as well as fish consumption, particularly in contaminated areas. Yet the threats Asian wildlife face in rice-based ecosystems are as yet unclear. We sought to understand how Hg flows through rice-based food webs in historic mining and non-mining regions of Guizhou, China. We measured total Hg (THg) and methylmercury (MeHg) in soil, rice, 38 animal species (27 for MeHg) spanning multiple trophic levels, and examined the relationship between stable isotopes and Hg concentrations. Our results confirm biomagnification of THg/MeHg, with a high trophic magnification slope. Invertivorous songbirds had concentrations of THg in their feathers that were 15x and 3x the concentration reported to significantly impair reproduction, at mining and non-mining sites, respectively. High concentrations in specialist rice consumers and in granivorous birds, the later as high as in piscivorous birds, suggest rice is a primary source of exposure. Spiders had the highest THg concentrations among invertebrates and may represent a vector through which Hg is passed to vertebrates, especially songbirds. Our findings suggest there could be significant population level health effects and consequent biodiversity loss in sensitive ecosystems, like agricultural wetlands, across Asia, and invertivorous songbirds would be good subjects for further studies investigating this possibility.
Collapse
Affiliation(s)
- Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; Guangxi Key Laboratory of Forest Ecology and Conservation (under state evaluation status), College of Forestry, Guangxi University, Nanning, Guangxi 530005, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation (under state evaluation status), College of Forestry, Guangxi University, Nanning, Guangxi 530005, China.
| | - Christopher W N Anderson
- Soil and Earth Sciences, Institute of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Kevin Bishop
- Department of Earth Sciences, Uppsala University, Villavägen, Uppsala 16, 752 36, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelmsväg 9, Uppsala, SE 75007, Sweden
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, United States
| | - Morgan W Goodale
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, United States
| | - Holger Hintelmann
- Trent University, Chemistry Department, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Shengjie Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Christos Mammides
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Rui-Chang Quan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Jin Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Pianpian Wu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelmsväg 9, Uppsala, SE 75007, Sweden
| | - Xiao-Hang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Dong Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
40
|
Wang G, Gong Y, Zhu YX, Miao AJ, Yang LY, Zhong H. Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050525. [PMID: 28498359 PMCID: PMC5451976 DOI: 10.3390/ijerph14050525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/03/2022]
Abstract
Recent studies have revealed that not only fish but also rice consumption may significantly contribute to human exposure to mercury (Hg) in Asian countries. It is therefore essential to assess dietary exposure to Hg in rice and its associated health risk. However, risk assessments of Hg in rice in non-contaminated areas are generally lacking in Asian countries. In the present study, Hg concentrations were measured in rice samples collected from markets and supermarkets in Suzhou, a typical city in Eastern China. In addition, the rice ingestion rates (IR) were assessed via a questionnaire-based survey of Suzhou residents. The data were then used to assess the risk of Hg exposure associated with rice consumption, by calculating the hazard quotient (HQ). Hg contents in rice samples were well below the national standard (20 μg/kg), ranging from 1.46 to 8.48 ng/g. They were also significantly (p > 0.05) independent of the area of production and place of purchase (markets vs. supermarkets in the different districts). Our results indicate a low risk of Hg exposure from rice in Suzhou (HQ: 0.005–0.05), despite the generally high personal IR (0.05–0.4 kg/day). The risk of Hg associated with rice consumption for Suzhou residents was not significantly affected by the age or sex of the consumer (p > 0.05). Overall, our results provide a study of human exposure to Hg in rice in Chinese cities not known to be contaminated with Hg. Future studies should examine Hg exposure in different areas in China and in potentially vulnerable major food types.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yu Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yi-Xin Zhu
- CQC Intime Testing Technology Co. Ltd., Suzhou 210023, China.
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
41
|
Abeysinghe KS, Yang XD, Goodale E, Anderson CWN, Bishop K, Cao A, Feng X, Liu S, Mammides C, Meng B, Quan RC, Sun J, Qiu G. Total mercury and methylmercury concentrations over a gradient of contamination in earthworms living in rice paddy soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1202-1210. [PMID: 27699848 DOI: 10.1002/etc.3643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/07/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) deposited from emissions or from local contamination, can have serious health effects on humans and wildlife. Traditionally, Hg has been seen as a threat to aquatic wildlife, because of its conversion in suboxic conditions into bioavailable methylmercury (MeHg), but it can also threaten contaminated terrestrial ecosystems. In Asia, rice paddies in particular may be sensitive ecosystems. Earthworms are soil-dwelling organisms that have been used as indicators of Hg bioavailability; however, the MeHg concentrations they accumulate in rice paddy environments are not well known. Earthworm and soil samples were collected from rice paddies at progressive distances from abandoned mercury mines in Guizhou, China, and at control sites without a history of Hg mining. Total Hg (THg) and MeHg concentrations declined in soil and earthworms as distance increased from the mines, but the percentage of THg that was MeHg, and the bioaccumulation factors in earthworms, increased over this gradient. This escalation in methylation and the incursion of MeHg into earthworms may be influenced by more acidic soil conditions and higher organic content further from the mines. In areas where the source of Hg is deposition, especially in water-logged and acidic rice paddy soil, earthworms may biomagnify MeHg more than was previously reported. It is emphasized that rice paddy environments affected by acidifying deposition may be widely dispersed throughout Asia. Environ Toxicol Chem 2017;36:1202-1210. © 2016 SETAC.
Collapse
Affiliation(s)
- Kasun S Abeysinghe
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Dong Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Eben Goodale
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Christopher W N Anderson
- Soil and Earth Sciences, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Kevin Bishop
- Department of Earth Sciences, Uppsala University, Villavägen, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelmsväg, Uppsala, Sweden
| | - Axiang Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- School of Chemistry and Material Sciences, Guizhou Normal University, Guiyang, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Shengjie Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Christos Mammides
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Rui-Chang Quan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Jing Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
42
|
Paranjape AR, Hall BD. Recent advances in the study of mercury methylation in aquatic systems. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0027] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With increasing input of neurotoxic mercury to environments as a result of anthropogenic activity, it has become imperative to examine how mercury may enter biotic systems through its methylation to bioavailable forms in aquatic environments. Recent development of stable isotope-based methods in methylation studies has enabled a better understanding of the factors controlling methylation in aquatic systems. In addition, the identification and tracking of the hgcAB gene cluster, which is necessary for methylation, has broadened the range of known methylators and methylation-conducive environments. Study of abiotic factors in methylation with new molecular methods (the use of stable isotopes and genomic methods) has helped elucidate the confounding influences of many environmental factors, as these methods enable the examination of their direct effects instead of merely correlative observations. Such developments will be helpful in the finer characterization of mercury biogeochemical cycles, which will enable better predictions of the potential effects of climate change on mercury methylation in aquatic systems and, by extension, the threat this may pose to biota.
Collapse
Affiliation(s)
- Avnee R. Paranjape
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Britt D. Hall
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
43
|
Bigham GN, Murray KJ, Masue-Slowey Y, Henry EA. Biogeochemical controls on methylmercury in soils and sediments: Implications for site management. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:249-263. [PMID: 27427265 DOI: 10.1002/ieam.1822] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/10/2016] [Accepted: 06/28/2016] [Indexed: 05/25/2023]
Abstract
Management of Hg-contaminated sites poses particular challenges because methylmercury (MeHg), a potent bio-accumulative neurotoxin, is formed in the environment, and concentrations are not generally predictable based solely on total Hg (THg) concentrations. In this review, we examine the state of knowledge regarding the chemical, biological, and physical controls on MeHg production and identify those most critical for contaminated site assessment and management. We provide a list of parameters to assess Hg-contaminated soils and sediments with regard to their potential to be a source of MeHg to biota and therefore a risk to humans and ecological receptors. Because some measurable geochemical parameters (e.g., DOC) can have opposing effects on Hg methylation, we recommend focusing first on factors that describe the potential for Hg bio-accumulation: site characteristics, Hg and MeHg concentrations, Hg availability, and microbial activity, where practical. At some sites, more detailed assessment of biogeochemistry may be required to develop a conceptual site model for remedial decision making. Integr Environ Assess Manag 2017;13:249-263. © 2016 SETAC.
Collapse
|
44
|
Strickman RJ, Mitchell CPJ. Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: An enriched isotope tracer study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1415-1423. [PMID: 27542632 DOI: 10.1016/j.scitotenv.2016.08.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Methylmercury (MeHg) accumulation in rice is an emerging human health issue, but uptake pathways and translocation into the grain remain poorly understood. We grew Oryza sativa plants in pots of wetland soil amended with an enriched mercury isotope (94.3% 200Hg) tracer, alongside unvegetated control pots, and assessed both ambient and tracer MeHg and inorganic Hg (IHg) concentrations in soil and plant tissues at three growth stages. Based on similar ratios of ambient:tracer MeHg concentrations in soil and plant tissues, we provide the first direct evidence that MeHg is first synthesized in saturated soil and subsequently translocated to rice grains. There is no evidence of in planta methylation of IHg, but significant losses of MeHg from plant tissues between flowering and maturity indicates likely in planta demethylation. In this greenhouse experiment, lower percent of tracer MeHg in vegetated soils at late growth stages suggests that rice plants reduce the net MeHg accumulation capacity of soils, although the mechanism remains unclear. For IHg, roots accumulated Hg from the soil, straw from the soil and the atmosphere, and grain almost entirely from the atmosphere. Management strategies that aim to reduce MeHg accumulation in rice should focus on mercury methylation in paddy soils, but IHg reductions will depend on regional controls of atmospheric Hg.
Collapse
Affiliation(s)
- R J Strickman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - C P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| |
Collapse
|
45
|
Tanner KC, Windham-Myers L, Fleck JA, Tate KW, McCord SA, Linquist BA. The Contribution of Rice Agriculture to Methylmercury in Surface Waters: A Review of Data from the Sacramento Valley, California. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:133-142. [PMID: 28177412 DOI: 10.2134/jeq2016.07.0262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice ( L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L, range 0.15-0.23 ng L) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L, range 0.6-1.6 ng L) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.
Collapse
|
46
|
Rothenberg SE, Anders M, Ajami NJ, Petrosino JF, Balogh E. Water management impacts rice methylmercury and the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:608-617. [PMID: 27450246 PMCID: PMC5099098 DOI: 10.1016/j.scitotenv.2016.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/03/2016] [Accepted: 07/03/2016] [Indexed: 05/24/2023]
Abstract
Rice farmers are pressured to grow rice using less water. The impacts of water-saving rice cultivation methods on rice methylmercury concentrations are uncertain. Rice (Oryza sativa L. cv. Nipponbare) was cultivated in fields using four water management treatments, including flooded (no dry-downs), alternating wetting and drying (AWD) (with one or three dry-downs), and furrow-irrigated fields (nine dry-downs) (n=16 fields). Anoxic bulk soil was collected from rice roots during the rice maturation phase, and rice grain was harvested after fields were dried. Total mercury and methylmercury concentrations were determined in soil and polished rice samples, and the soil microbiome was analyzed using 16S (v4) rRNA gene profiling. Soil total mercury did not differ between fields. However, compared to continuously flooded fields, soil and rice methylmercury concentrations averaged 51% and 38% lower in the AWD fields, respectively, and 95% and 96% lower in the furrow-irrigated fields, respectively. Compared to flooded fields, grain yield was reduced on average by <1% in the AWD fields and 34% in the furrow-irrigated fields. Additionally, using 16S (v4) rRNA gene profiling, the relative abundance of genera (i.e., highest resolution via this method) known to contain mercury methylators averaged 2.9-fold higher in flooded and AWD fields compared to furrow-irrigated fields. These results reinforce the benefits of AWD in reducing rice methylmercury concentrations with minimal changes in rice production yields. In the furrow-irrigated fields, a lower relative abundance of genera known to contain mercury methylators suggests an association between lower concentrations of soil and rice methylmercury and specific soil microbiomes.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA.
| | - Merle Anders
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Rice Research & Extension Center, Stuttgart, AR, USA.
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Erika Balogh
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
47
|
Eagles-Smith CA, Wiener JG, Eckley CS, Willacker JJ, Evers DC, Marvin-DiPasquale M, Obrist D, Fleck JA, Aiken GR, Lepak JM, Jackson AK, Webster JP, Stewart AR, Davis JA, Alpers CN, Ackerman JT. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1213-1226. [PMID: 27320732 DOI: 10.1016/j.scitotenv.2016.05.094] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 05/25/2023]
Abstract
Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.
Collapse
Affiliation(s)
- Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.
| | - James G Wiener
- University of Wisconsin La Crosse, River Studies Center, 1725 State Street, La Crosse, WI 54601, USA
| | - Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 2100 6th Ave., Suite 900, Seattle, WA 98101, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, USA
| | | | - Daniel Obrist
- Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Jacob A Fleck
- U.S. Geological Survey, California Water Science Center, 6000 J St., Placer Hall, Sacramento, CA 95819, USA
| | - George R Aiken
- U.S. Geological Survey, National Research Program, 3215 Marine St., Boulder, CO 80303, USA
| | - Jesse M Lepak
- Colorado Parks and Wildlife, 317 West Prospect Road, Fort Collins, CO 80526, USA
| | - Allyson K Jackson
- Oregon State University, Department of Fisheries and Wildlife, 104 Nash Hall, Corvallis, OR 97331, USA
| | - Jackson P Webster
- University of Colorado, Civil, Environmental, and Architectural Engineering, Boulder, CO 80309, USA
| | - A Robin Stewart
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, USA
| | - Jay A Davis
- San Francisco Estuary Institute, 4911 Central Ave., Richmond, CA 94804, USA
| | - Charles N Alpers
- U.S. Geological Survey, California Water Science Center, 6000 J St., Placer Hall, Sacramento, CA 95819, USA
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Dixon, CA 95620, USA
| |
Collapse
|
48
|
Hong C, Yu X, Liu J, Cheng Y, Rothenberg SE. Low-level methylmercury exposure through rice ingestion in a cohort of pregnant mothers in rural China. ENVIRONMENTAL RESEARCH 2016; 150:519-527. [PMID: 27423706 PMCID: PMC5003649 DOI: 10.1016/j.envres.2016.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice ingestion is an important dietary exposure pathway for methylmercury. There are few studies concerning prenatal methylmercury exposure through rice ingestion, yet the health risks are greatest to the developing fetus, and thus should be investigated. OBJECTIVES Our main objective was to quantify dietary methylmercury intake through rice and fish/shellfish ingestion among pregnant mothers living in southern China, where rice was a staple food and mercury contamination was considered minimal. METHODS A total of 398 mothers were recruited at parturition, who donated scalp hair and blood samples. Total mercury and/or methylmercury concentrations were measured in biomarkers, in rice samples from each participant's home, and in fish tissue purchased from local markets. Additional fish/shellfish mercury concentrations were obtained from a literature search. Dietary methylmercury intake during the third trimester was equivalent to the ingestion rate for rice (or fish/shellfish)×the respective methylmercury concentration. RESULTS Dietary methylmercury intake from both rice and fish/shellfish ingestion averaged 1.2±1.8µg/day (median=0.79µg/day, range=0-22µg/day), including on average 71% from rice ingestion (median: 87%, range: 0-100%), and 29% from fish/shellfish consumption (median 13%, range: 0-100%). Median concentrations of hair total mercury, hair methylmercury, and blood total mercury were 0.40µg/g (range: 0.08-1.7µg/g), 0.28µg/g (range: 0.01-1.4µg/g), and 1.2µg/L (range: 0.29-8.6µg/L), respectively, and all three biomarkers were positively correlated with dietary methylmercury intake through rice ingestion (Spearman's rho=0.18-0.21, p≤0.0005), although the correlations were weak. In contrast, biomarkers were not correlated with fish/shellfish methylmercury intake (Spearman's rho=0.04-0.08, p=0.11-0.46). CONCLUSIONS Among pregnant mothers living in rural inland China, rice ingestion contributed to prenatal methylmercury exposure, more so than fish/shellfish ingestion.
Collapse
Affiliation(s)
- Chuan Hong
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Xiaodan Yu
- MOE-Shanghai Key Lab of Children's Environmental Health, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jihong Liu
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Yue Cheng
- Department of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Sarah E Rothenberg
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
49
|
Wang X, Xing Y. Effects of Mulching and Nitrogen on Soil Nitrate-N Distribution, Leaching and Nitrogen Use Efficiency of Maize (Zea mays L.). PLoS One 2016; 11:e0161612. [PMID: 27560826 PMCID: PMC4999137 DOI: 10.1371/journal.pone.0161612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/09/2016] [Indexed: 11/26/2022] Open
Abstract
Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0–40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0–20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0–40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg−1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain yield increase ranged from 31.41% to 83.61% in two consecutive years. The MN1 and MN2 treatment is recommended because it increased the grain yield and improved the fertilizer use efficiency, compared with the no-mulching treatment.
Collapse
Affiliation(s)
- Xiukang Wang
- College of Life Science, Yan'an University, Yan'an, Shaanxi, 716000, China
- * E-mail:
| | - Yingying Xing
- College of Life Science, Yan'an University, Yan'an, Shaanxi, 716000, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| |
Collapse
|
50
|
Su YB, Chang WC, Hsi HC, Lin CC. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan. CHEMOSPHERE 2016; 154:375-384. [PMID: 27070857 DOI: 10.1016/j.chemosphere.2016.03.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/05/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Recent studies have shown that rice consumption is another critical route of human exposure to methylmercury (MeHg), the most toxic and accumulative form of mercury (Hg) in the food web. Yet, the mechanisms that underlie the production and accumulation of MeHg in the paddy ecosystem are still poorly understood. In 2013 and 2014, we conducted field campaigns and laboratory experiments over a rice growing season to examine Hg and MeHg cycling, as well as associated biogeochemistry in a suite of paddies close to a municipal solid waste incinerator and a coal-fired power plant station in Taiwan. Concentrations of total Hg and MeHg in paddy soil and rice grain at both sites were low and found not to exceed the control standards for farmland soil and edible rice in Taiwan. However, seasonal variations of MeHg concentrations observed in pore water samples indicate that the in situ bioavailability of inorganic Hg and activity of Hg-methylating microbes in the rhizosphere increased from the early-season and peaked at the mid-season, presumably due to the anoxia created under flooded conditions and root exudation of organic compounds. The presence of Hg-methylators was also confirmed by the hgcA gene detected in all root soil samples. Subsequent methylation tests performed by incubating the root soil with inorganic Hg and an inhibitor or stimulant specific for certain microbes further revealed that sulfate-reducers might have been the principal Hg-methylting guild at the study sites. Interestingly, results of hydroponic experiments conducted by cultivating rice in a defined nutrient solution amended with fixed MeHg and varying levels of MeHg-binding ligands suggested that chemical speciation in soil pore water may play a key role in controlling MeHg accumulation in rice, and both passive and active transport pathways seem to take place in the uptake of MeHg in rice roots.
Collapse
Affiliation(s)
- Yen-Bin Su
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Wei-Chun Chang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Hsing-Cheng Hsi
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan, ROC; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan, ROC.
| |
Collapse
|